Package ‘auctionr’

October 12, 2022

Type Package

Title Estimate First-Price Auction Model

Version 0.1.0

Description Estimates a first-price auction model with conditionally independent private values as described in MacKay (2020) <doi:10.2139/ssrn.3096534>. The model allows for unobserved heterogeneity that is common to all bidders in addition to observable heterogeneity.

License GPL-3

URL https://github.com/ajmack/auctionr

BugReports https://github.com/ajmack/auctionr/issues

Depends R (>= 3.5.0)

Imports stats, parallel, numDeriv (>= 2016.8-1)

VignetteBuilder knitr

Encoding UTF-8

LazyData TRUE

RoxygenNote 7.1.0

Suggests testthat (>= 2.1.0), knitr, rmarkdown

NeedsCompilation no

Author Alex MacKay [aut, cre],
Bob Freeman [aut],
Paul Jonak [aut],
Victoria Prince [aut],
Ista Zahn [aut]

Maintainer Alex MacKay <amackay@hbs.edu>

Repository CRAN

Date/Publication 2020-06-25 10:00:07 UTC
R topics documented:

- auction_generate_data .. 2
- auction_model ... 3
- print.auctionmodel ... 5

Index

auction_generate_data Generates sample data for running auction_model

Description

Generates sample data for running auction_model

Usage

```r
auction_generate_data(
  obs = NULL,
  max_n_bids = 10,
  new_x_mean = NULL,
  new_x_sd = NULL,
  mu = NULL,
  alpha = NULL,
  sigma = NULL,
  beta = NULL
)
```

Arguments

- `obs` Number of observations (or auctions) to draw.
- `max_n_bids` Maximum number of bids per auction (must be 3 or greater). The routine generates a vector of length `obs` of random numbers between 2 and `max_n_bids`.
- `new_x_mean` Mean values for observable controls to be generated from a Normal distribution.
- `new_x_sd` Standard deviations for observable controls to be generated from a Normal distribution.
- `mu` Value for mu, or mean, of private value distribution (Weibull) to be generated.
- `alpha` Value for alpha, or shape parameter, of private value distribution (Weibull) to be generated.
- `sigma` Value for standard deviation of unobserved heterogeneity distribution. Note that the distribution is assumed to have mean 1.
- `beta` Coefficients for the generated observable controls. Must be of the same length as `new_x_mean` and `new_x_sd`.
Details

This function generates example data for feeding into auction_model(). Specifically, the winning bid, number of bids, and observed heterogeneity are sampled for the specified number of observations.

Value

A data frame with obs rows and the following columns:

- **winning_bid**: numeric values of the winning bids for each observation
- **n_bids**: number of bids for each observation
- **X#**: X terms that represent observed heterogeneity

See Also

auction_model

Examples

```r
dat <- auction_generate_data(obs = 100,
                             mu = 10,
                             new_x_mean = c(-1,1),
                             new_x_sd = c(0.5,0.8),
                             alpha = 2,
                             sigma = 0.2,
                             beta = c(-1,1))

dim(dat)
head(dat)
```

auction_model *Estimates a first-price auction model.*

Description

Estimates a first-price auction model.

Usage

```r
auction_model(
  dat = NULL,
  init_param = NULL,
  num_cores = 1,
  method = "BFGS",
  control = list(),
  std_err = FALSE,
  hessian_args = list()
)
```
Arguments

dat A data.frame containing input columns in the following order: the winning bids, number of bids, and \(X \) variables that represent observed heterogeneity.

init_param Vector of initial values for \(\mu, \alpha, \sigma, \) and \(\beta \) vector, provided in order specified. Note that the Weibull distribution requires \(\mu \) and \(\alpha \) to be positive. The standard deviation of unobserved heterogeneity, \(\sigma \), must be positive as well. The Beta vector may take any values. If \(\text{init_params} \) is not provided, all values will be set to 1 by default.

num_cores The number of cores for running the model in parallel. The default value is 1.

method Optimization method to be used in \(\text{optim()} \) (see \(?\text{optim}\) for details).

control A list of control parameters to be passed to \(\text{optim()} \) (see \(?\text{optim}\) for details).

std_err If TRUE, the standard errors of the parameters will also be calculated. Note that it may significantly increase the computation time.

hessian_args A list of arguments passed as the \(\text{method.arg} \) argument of the \(\text{hessian()} \) function if standard errors are calculated (see \(?\text{hessian}\) for details).

Details

This function estimates a first-price auction model with conditionally independent private values. This version of the package estimates a procurement auction, where the winning bid is the amount that a single buyer will pay to the top bidding supplier, and values correspond to costs. The model allows for unobserved heterogeneity that is common to all bidders in addition to observable heterogeneity. The winning bid (\(Y \)) takes the form

\[
Y = B \times U \times h(X)
\]

where \(B \) is the proportional winning bid, \(U \) is the unobserved heterogeneity, and \(h(X) \) controls for observed heterogeneity. The model is log-linear so that \(\log(Y) = \log(B) + \log(U) + \log(h(X)) \) and \(\log(h(X)) = \beta_1 \times X_1 + \beta_2 \times X_2 + ... \)

The (conditionally) independent private costs are drawn from a Weibull distribution with parameters \(\mu \) (mean) and \(\alpha \) (shape). The CDF of this distribution is given by

\[
F(c) = 1 - \exp(-\left(c \times \frac{1}{\mu} \times \Gamma(1 + \frac{1}{\alpha})\right)^{\alpha})
\]

The unobserved heterogeneity \(U \) is sampled from log-normal distribution with mean 1 and a free parameter \(\sigma \) representing its standard deviation.

init_params, the initial guess for convergence, must be supplied.

This function utilizes the \text{Rsnow} framework within the \text{Rparallel} package. If numcores is not specified, this will be run using only one CPU/core. One can use \text{parallel::detectCores()} to determine how many are available on your system, but you are not advised to use all at once, as this may make your system unresponsive. Please see \text{Rparallel} and \text{Rsnow} for more details.

Note that the supplied data can not have missing values.

Value

A list returned by \(\text{optim()} \). See \(?\text{optim}\) for more details. If \(\text{std_err} \) was set to TRUE and the routine succeeded in inverting the estimated Hessian, the list will have an additional component:

\(\text{std_err} \) A vector of standard errors for parameter estimates.
print.auctionmodel

Author(s)
Mackay, Alexander. <amackay@hbs.edu>, HBS Research Computing <research@hbs.edu>.

References

See Also
auction_generate_data

Examples
##
Estimating parameters and standard errors with custom "control" argument
set.seed(100)
dat <- auction_generate_data(obs = 15, mu = 10, alpha = 2,
sigma = 0.2, beta = c(-1,1),
new_x_mean= c(-1,1),
norm_x_sd = c(0.5,0.8))

res <- auction_model(dat, init_param = c(8, 2, .5, .4, .6),
num_cores = 1,
control = list(parscale = c(1,0.1,0.1,1,1)),
std_err = TRUE)

res

run vignette("auctionr") to view a more detailed example

Description
Print an auction model.

Usage
S3 method for class 'auctionmodel'
print(x, digits = 6, ...)

Arguments
x An object of class auctionmodel.
digits Number of digits to display.
... Additional arguments passed to other methods.
Value

x, invisibly.
Index

auction_generate_data, 2, 5
auction_model, 2, 3, 3
print.auctionmodel, 5