Package ‘autoMrP’

April 4, 2022

Type Package

Title Improving MrP with Ensemble Learning

Version 1.0.2

Description A tool that improves the prediction performance of multilevel regression with post-stratification (MrP) by combining a number of machine learning methods. For information on the method, please refer to Broniecki, Wüest, Leemann (2020) "Improving Multilevel Regression with Post-Stratification Through Machine Learning (autoMrP)" forthcoming in 'Journal of Politics'. Final pre-print version: <https://lucasleemann.files.wordpress.com/2020/07/automrp-r2pa.pdf>.

URL https://github.com/retowuest/autoMrP

BugReports https://github.com/retowuest/autoMrP/issues

Depends R (>= 3.6)

Imports rlang (>= 0.4.5), dplyr (>= 1.0.2), lme4 (>= 1.1), gbm (>= 2.1.5), e1071 (>= 1.7-3), tibble (>= 3.0.1), glmLasso (>= 1.5.1), EBMAforecast (>= 1.0.0), foreach (>= 1.5.0), doParallel (>= 1.0.15), doRNG (>= 1.8.2), ggplot2 (>= 3.3.2), knitr (>= 1.29), tidyr (>= 1.1.2), purrr (>= 0.3.4), R.rsp (>= 0.44.0), forcats (>= 0.5.1)

Suggests rmarkdown

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

VignetteBuilder R.rsp

NeedsCompilation no

Author Reto Wüest [aut] (<https://orcid.org/0000-0002-7502-6489>), Lucas Leemann [aut] (<https://orcid.org/0000-0001-5201-869X>), Philipp Broniecki [aut, cre] (<https://orcid.org/0000-0001-9214-4404>), Hadley Wickham [ctb]
Maintainer Philipp Broniecki <philippbroniecki@gmail.com>
Repository CRAN
Date/Publication 2022-04-04 16:30:07 UTC

R topics documented:

absentee_census ... 3
absentee_voting ... 4
auto_MrP ... 5
best_subset_classifier 11
binary_cross_entropy 12
boot_auto_mrp ... 13
census ... 18
cv_folding .. 19
ebma .. 19
ebma_folding .. 21
ebma_mc_draws ... 22
ebma_mc_tol ... 23
error_checks ... 25
f1_score ... 29
gb_classifier .. 29
gb_classifier_update 30
lasso_classifier .. 31
log_spaced .. 32
loss_function ... 32
loss_score_ranking 33
mean_absolute_error 34
mean_squared_error 34
mean_squared_false_error 35
model_list .. 35
model_list_pca ... 36
multicore .. 37
output_table .. 37
plot.autoMrP .. 38
post_stratification 38
predict_glmmLasso 40
quiet ... 41
run_best_subset ... 42
run_best_subset_mc 43
run_classifiers .. 44
run_gb ... 49
run_gb_mc ... 51
run_lasso ... 53
run_lasso_mc_lambda 54
run_pca .. 56
run_svm ... 57
run_svm_mc ... 59
absentee_census

Quasi census data.

Description
The census file is generated from the full 2008 Cooperative Congressional Election Studies item cc419_1 by disaggregating the 64 ideal type combinations of the individual level variables L1x1, L2x2 and L1x3. A row is an ideal type in a given state.

Usage
data(absentee_census)

Format
A data frame with 2934 rows and 13 variables:

- **state**: U.S. state
- **L2.unit**: U.S. state id
- **region**: U.S. region (four categories: 1 = Northeast; 2 = Midwest; 3 = South; 4 = West)
- **L1x1**: Age group (four categories)
- **L1x2**: Education level (four categories)
- **L1x3**: Gender-race combination (six categories)
- **proportion**: State-level proportion of respondents of that ideal type in the population
- **L2.x1**: State-level share of votes for the Republican candidate in the previous presidential election
- **L2.x2**: State-level percentage of Evangelical Protestant or Mormon respondents
- **L2.x3**: State-level percentage of the population living in urban areas
- **L2.x4**: State-level unemployment rate
- **L2.x5**: State-level share of Hispanics
- **L2.x6**: State-level share of Whites

Source
The data set (excluding L2.x3, L2.x4, L2.x5, L2.x6) is taken from the article: Buttice, Matthew K, and Benjamin Highton. 2013. "How does multilevel regression and poststrat-stratification perform with conventional national surveys?" Political Analysis 21(4): 449-467. L2.x3, L2.x3, L2.x4, L2.x5 and L2.x6 are available at https://www.census.gov.
A sample of the absentee voting item from the CCES 2008

Description

The Cooperative Congressional Election Studies (CCES) item (cc419_1) asked: "States have tried many new ways to run elections in recent years. Do you support or oppose any of the following ways of voting or conducting elections in your state? Election Reform - Allow absentee voting over the Internet?" The original 2008 CCES item contains 26,934 respondents. This sample mimics a typical national survey. It contains at least 5 respondents from each state but is otherwise a random sample.

Usage

data(absentee_voting)

Format

A data frame with 1500 rows and 13 variables:

YES 1 if individual supports use of troops; 0 otherwise

L1x1 Age group (four categories: 1 = 18-29; 2 = 30-44; 3 = 45-64; 4 = 65+)

L1x2 Education level (four categories: 1 = < high school; 2 = high school graduate; 3 = some college; 4 = college graduate)

L1x3 Gender-race combination (six categories: 1 = white male; 2 = black male; 3 = hispanic male; 4 = white female; 5 = black female; 6 = hispanic female)

state U.S. state

L2.unit U.S. state id

region U.S. region (four categories: 1 = Northeast; 2 = Midwest; 3 = South; 4 = West)

L2.x1 State-level share of votes for the Republican candidate in the previous presidential election

L2.x2 State-level percentage of Evangelical Protestant or Mormon respondents

L2.x3 State-level percentage of the population living in urban areas

L2.x4 State-level unemployment rate

L2.x5 State-level share of Hispanics

L2.x6 State-level share of Whites

Source

The data set (excluding L2.x3, L2.x4, L2.x5, L2.x6) is taken from the article: Buttice, Matthew K, and Benjamin Highton. 2013. "How does multilevel regression and poststrat-stratification perform with conventional national surveys?" Political Analysis 21(4): 449-467. It is a random sample with at least 5 respondents per state. L2.x3, L2.x3, L2.x4, L2.x5 and L2.x6 are available at https://www.census.gov.
auto_MrP

Improve MrP through ensemble learning.

Description

This package improves the prediction performance of multilevel regression with post-stratification (MrP) by combining a number of machine learning methods through ensemble Bayesian model averaging (EBMA).

Usage

```r
code
auto_MrP(
  y,
  L1.x,
  L2.x,
  L2.unit,
  L2.reg = NULL,
  L2.x.scale = TRUE,
  pcs = NULL,
  folds = NULL,
  bin.proportion = NULL,
  bin.size = NULL,
  survey,
  census,
  ebma.size = 1/3,
  cores = 1,
  k.folds = 5,
  cv.sampling = "L2 units",
  loss.unit = c("individuals", "L2 units"),
  loss.fun = c("msfe", "cross-entropy", "f1", "MSE"),
  best.subset = TRUE,
  lasso = TRUE,
  pca = TRUE,
  gb = TRUE,
  svm = TRUE,
  mrp = FALSE,
  oversampling = FALSE,
  forward.select = FALSE,
  best.subset.L2.x = NULL,
  lasso.L2.x = NULL,
  pca.L2.x = NULL,
  gb.L2.x = NULL,
  svm.L2.x = NULL,
  mrp.L2.x = NULL,
  gb.L2.unit = TRUE,
  gb.L2.reg = FALSE,
  svm.L2.unit = TRUE,
```
auto_MrP

svm.L2.reg = FALSE,
lasso.lambda = NULL,
lasso.n.iter = 100,
gb.interaction.depth = c(1, 2, 3),
gb.shrinkage = c(0.04, 0.01, 0.008, 0.005, 0.001),
gb.n.trees.init = 50,
gb.n.trees.increase = 50,
gb.n.trees.max = 1000,
gb.n.minobsinnode = 20,
svm.kernel = c("radial"),
svm.gamma = NULL,
svm.cost = NULL,
ebma.n.draws = 100,
ebma.tol = c(0.01, 0.005, 0.001, 5e-04, 1e-04, 5e-05, 1e-05),
seed = NULL,
verbose = FALSE,
uncertainty = FALSE,
boot.iter = NULL
)

Arguments

y
Outcome variable. A character vector containing the column names of the outcome variable. A character scalar containing the column name of the outcome variable in survey.

L1.x
Individual-level covariates. A character vector containing the column names of the individual-level variables in survey and census used to predict outcome y. Note that geographic unit is specified in argument L2.unit.

L2.x
Context-level covariates. A character vector containing the column names of the context-level variables in survey and census used to predict outcome y.

L2.unit
Geographic unit. A character scalar containing the column name of the geographic unit in survey and census at which outcomes should be aggregated.

L2.reg
Geographic region. A character scalar containing the column name of the geographic region in survey and census by which geographic units are grouped (L2.unit must be nested within L2.reg). Default is NULL.

L2.x.scale
Scale context-level covariates. A logical argument indicating whether the context-level covariates should be normalized. Default is TRUE. Note that if set to FALSE, then the context-level covariates should be normalized prior to calling auto_MrP().

pcs
Principal components. A character vector containing the column names of the principal components of the context-level variables in survey and census. Default is NULL.

folds
EBMA and cross-validation folds. A character scalar containing the column name of the variable in survey that specifies the fold to which an observation is allocated. The variable should contain integers running from 1 to \(k + 1 \), where \(k \) is the number of cross-validation folds. Value \(k + 1 \) refers to the EBMA
fold. Default is NULL. *Note:* if folds is NULL, then ebma.size, k.folds, and
cv.sampling must be specified.

bin.proportion Proportion of ideal types. A character scalar containing the column name of
the variable in census that indicates the proportion of individuals by ideal type
and geographic unit. Default is NULL. *Note:* if bin.proportion is NULL, then
bin.size must be specified.

bin.size Bin size of ideal types. A character scalar containing the column name of the
variable in census that indicates the bin size of ideal types by geographic unit.
Default is NULL. *Note:* ignored if bin.proportion is provided, but must be
specified otherwise.

survey Survey data. A data.frame whose column names include y, L1.x, L2.x, L2.unit,
and, if specified, L2.reg, pcs, and folds.

census Census data. A data.frame whose column names include L1.x, L2.x, L2.unit,
if specified, L2.reg and pcs, and either bin.proportion or bin.size.

ebma.size EBMA fold size. A number in the open unit interval indicating the proportion
of respondents to be allocated to the EBMA fold. Default is 1/3. *Note:* ignored
if folds is provided, but must be specified otherwise.

cores The number of cores to be used. An integer indicating the number of processor
cores used for parallel computing. Default is 1.

k.folds Number of cross-validation folds. An integer-valued scalar indicating the num-
ber of folds to be used in cross-validation. Default is 5. *Note:* ignored if folds
is provided, but must be specified otherwise.

cv.sampling Cross-validation sampling method. A character-valued scalar indicating whether
cross-validation folds should be created by sampling individual respondents
(individuals) or geographic units (L2 units). Default is L2 units. *Note:* ignored
if folds is provided, but must be specified otherwise.

loss.unit Loss function unit. A character-valued scalar indicating whether performance
loss should be evaluated at the level of individual respondents (individuals),
geographic units (L2 units) or at both levels. Default is c("individuals","L2
units"). With multiple loss units, parameters are ranked for each loss unit and
the loss unit with the lowest rank sum is chosen. Ties are broken according to
the order in the search grid.

loss.fun Loss function. A character-valued scalar indicating whether prediction loss
should be measured by the mean squared error (MSE), the mean absolute error
(MAE), binary cross-entropy (cross-entropy), mean squared false error (msfe),
the f1 score (f1), or a combination thereof. Default is c("MSE","cross-entropy","msfe","f1").
With multiple loss functions, parameters are ranked for each loss function and
the parameter combination with the lowest rank sum is chosen. Ties are broken
according to the order in the search grid.

best.subset Best subset classifier. A logical argument indicating whether the best subset
classifier should be used for predicting outcome y. Default is TRUE.

lasso Lasso classifier. A logical argument indicating whether the lasso classifier should
be used for predicting outcome y. Default is TRUE.

pca PCA classifier. A logical argument indicating whether the PCA classifier should
be used for predicting outcome y. Default is TRUE.
gb GB classifier. A logical argument indicating whether the GB classifier should be used for predicting outcome \(y\). Default is TRUE.

svm SVM classifier. A logical argument indicating whether the SVM classifier should be used for predicting outcome \(y\). Default is TRUE.

mrp MRP classifier. A logical argument indicating whether the standard MRP classifier should be used for predicting outcome \(y\). Default is FALSE.

oversampling Over sample to create balance on the dependent variable. A logical argument. Default is FALSE.

forward.select Forward selection classifier. A logical argument indicating whether to use forward selection rather than best subset selection. Default is FALSE. Note: forward selection is recommended if there are more than 8 context-level variables. Note: forward selection is not implemented yet.

best.subset.L2.x Best subset context-level covariates. A character vector containing the column names of the context-level variables in survey and census to be used by the best subset classifier. If NULL and best.subset is set to TRUE, then best subset uses the variables specified in \(L2.x\). Default is NULL.

lasso.L2.x Lasso context-level covariates. A character vector containing the column names of the context-level variables in survey and census to be used by the lasso classifier. If NULL and lasso is set to TRUE, then lasso uses the variables specified in \(L2.x\). Default is NULL.

pca.L2.x PCA context-level covariates. A character vector containing the column names of the context-level variables in survey and census whose principal components are to be used by the PCA classifier. If NULL and pca is set to TRUE, then PCA uses the principal components of the variables specified in \(L2.x\). Default is NULL.

gb.L2.x GB context-level covariates. A character vector containing the column names of the context-level variables in survey and census to be used by the GB classifier. If NULL and gb is set to TRUE, then GB uses the variables specified in \(L2.x\). Default is NULL.

svm.L2.x SVM context-level covariates. A character vector containing the column names of the context-level variables in survey and census to be used by the SVM classifier. If NULL and svm is set to TRUE, then SVM uses the variables specified in \(L2.x\). Default is NULL.

mrp.L2.x MRP context-level covariates. A character vector containing the column names of the context-level variables in survey and census to be used by the MRP classifier. The character vector empty if no context-level variables should be used by the MRP classifier. If NULL and mrp is set to TRUE, then MRP uses the variables specified in \(L2.x\). Default is NULL.

gb.L2.unit GB L2.unit. A logical argument indicating whether \(L2.unit\) should be included in the GB classifier. Default is FALSE.

gb.L2.reg GB L2.reg. A logical argument indicating whether \(L2.reg\) should be included in the GB classifier. Default is FALSE.

svm.L2.unit SVM L2.unit. A logical argument indicating whether \(L2.unit\) should be included in the SVM classifier. Default is FALSE.
auto_MrP

- **svm.L2.reg**
 SVM L2.reg. A logical argument indicating whether L2.reg should be included in the SVM classifier. Default is **FALSE**.

- **lasso.lambda**
 Lasso penalty parameter. A numeric vector of non-negative values. The penalty parameter controls the shrinkage of the context-level variables in the lasso model. Default is a sequence with minimum 0.1 and maximum 250 that is equally spaced on the log-scale. The number of values is controlled by the lasso.n.iter parameter.

- **lasso.n.iter**
 Lasso number of lambda values. An integer-valued scalar specifying the number of lambda values to search over. Default is 100. **Note:** Is ignored if a vector of lasso.lambda values is provided.

- **gb.interaction.depth**
 GB interaction depth. An integer-valued vector whose values specify the interaction depth of GB. The interaction depth defines the maximum depth of each tree grown (i.e., the maximum level of variable interactions). Default is c(1, 2, 3).

- **gb.shrinkage**
 GB learning rate. A numeric vector whose values specify the learning rate or step-size reduction of GB. Values between 0.001 and 0.1 usually work, but a smaller learning rate typically requires more trees. Default is c(0.04, 0.01, 0.008, 0.005, 0.001).

- **gb.n.trees.init**
 GB initial total number of trees. An integer-valued scalar specifying the initial number of total trees to fit by GB. Default is 50.

- **gb.n.trees.increase**
 GB increase in total number of trees. An integer-valued scalar specifying by how many trees the total number of trees to fit should be increased (until gb.n.trees.max is reached). Default is 50.

- **gb.n.trees.max**
 GB maximum number of trees. An integer-valued scalar specifying the maximum number of trees to fit by GB. Default is 1000.

- **gb.n.minobsinnode**
 GB minimum number of observations in the terminal nodes. An integer-valued scalar specifying the minimum number of observations that each terminal node of the trees must contain. Default is 20.

- **svm.kernel**
 SVM kernel. A character-valued scalar specifying the kernel to be used by SVM. The possible values are linear, polynomial, radial, and sigmoid. Default is radial.

- **svm.gamma**
 SVM kernel parameter. A numeric vector whose values specify the gamma parameter in the SVM kernel. This parameter is needed for all kernel types except linear. Default is a sequence with minimum = 1e-5, maximum = 1e-1, and length = 20 that is equally spaced on the log-scale.

- **svm.cost**
 SVM cost parameter. A numeric vector whose values specify the cost of constraints violation in SVM. Default is a sequence with minimum = 0.5, maximum = 10, and length = 5 that is equally spaced on the log-scale.

- **ebma.n.draws**
 EBMA number of samples. An integer-valued scalar specifying the number of bootstrapped samples to be drawn from the EBMA fold and used for tuning EBMA. Default is 100.
ebma.tol EBMA tolerance. A numeric vector containing the tolerance values for improvements in the log-likelihood before the EM algorithm stops optimization. Values should range at least from 0.01 to 0.001. Default is c(0.01, 0.005, 0.001, 0.0005, 0.00005, 0.000005, 0.0000005).
seed Seed. Either NULL or an integer-valued scalar controlling random number generation. If NULL, then the seed is set to 546213978. Default is NULL.
verbose Verbose output. A logical argument indicating whether or not verbose output should be printed. Default is FALSE.
uncertainty Uncertainty estimates. A logical argument indicating whether uncertainty estimates should be computed. Default is FALSE.
boot.iter Number of bootstrap iterations. An integer argument indicating the number of bootstrap iterations to be computed. Will be ignored unless uncertainty = TRUE. Default is 200 if uncertainty = TRUE and NULL if uncertainty = FALSE.

Details

Bootstrapping samples the level two units, sometimes referred to as the cluster bootstrap. For the multilevel model, for example, when running MrP only, the bootstrapped median level two predictions will differ from the level two predictions without bootstrapping. We recommend assessing the difference by running autoMrP without bootstrapping alongside autoMrP with bootstrapping and then comparing level two predictions from the model without bootstrapping to the median level two predictions from the model with bootstrapping.

Value

The context-level predictions. A list with two elements. The first element, EBMA, contains the post-stratified ensemble bayesian model averaging (EBMA) predictions. The second element, classifiers, contains the post-stratified predictions from all estimated classifiers.

Examples

```r
# An MrP model without machine learning
m <- auto_MrP(
y = "YES",
L1.x = c("L1x1"),
L2.x = c("L2.x1", "L2.x2"),
L2.unit = "state",
bin.proportion = "proportion",
survey = taxes_survey,
census = taxes_census,
ebma.size = 0,
cores = max_cores,
best.subset = FALSE,
lasso = FALSE,
pca = FALSE,
svmb = FALSE,
pr = TRUE
)

# summarize and plot results
```

auto_MrP
best_subset_classifier

summary(m)
plot(m)

MrP model only:
mrp_out <- auto_MrP(
y = "YES",
L1.x = c("L1x1", "L1x2", "L1x3"),
L2.x = c("L2.x1", "L2.x2", "L2.x3", "L2.x4", "L2.x5", "L2.x6"),
L2.unit = "state",
L2.reg = "region",
bin.proportion = "proportion",
survey = taxes_survey,
census = taxes_census,
ebma.size = 0,
best.subset = FALSE,
lasso = FALSE,
pca = FALSE,
gb = FALSE,
svm = FALSE,
mrp = TRUE
)

Predictions through machine learning

detect number of available cores
max_cores <- parallel::detectCores()

autoMrP with machine learning
ml_out <- auto_MrP(
y = "YES",
L1.x = c("L1x1", "L1x2", "L1x3"),
L2.x = c("L2.x1", "L2.x2", "L2.x3", "L2.x4", "L2.x5", "L2.x6"),
L2.unit = "state",
L2.reg = "region",
bin.proportion = "proportion",
survey = taxes_survey,
census = taxes_census,
gb.L2.reg = TRUE,
svm.L2.reg = TRUE,
cores = max_cores
)

best_subset_classifier

Best subset classifier

Description

best_subset_classifier applies best subset classification to a data set.
Usage

```r
best_subset_classifier(
    model,
    data.train,
    model.family,
    model.optimizer,
    n.iter,
    verbose = c(TRUE, FALSE)
)
```

Arguments

- **model**: Multilevel model. A model formula describing the multilevel model to be estimated on the basis of the provided training data.
- **data.train**: Training data. A data.frame containing the training data used to train the model.
- **model.family**: Model family. A variable indicating the model family to be used by glmer. Defaults to binomial(link = "probit").
- **model.optimizer**: Optimization method. A character-valued scalar describing the optimization method to be used by glmer. Defaults to "bobyqa".
- **n.iter**: Iterations. A integer-valued scalar specifying the maximum number of function evaluations tried by the optimization method.
- **verbose**: Verbose output. A logical vector indicating whether or not verbose output should be printed.

Value

The multilevel model. An `glmer` object.

binary_cross_entropy

Estimates the inverse binary cross-entropy, i.e. 0 is the best score and 1 the worst.

Description

`binary_cross_entropy()` estimates the inverse binary cross-entropy on the individual and state-level.

Usage

```r
binary_cross_entropy(
    pred,
    data.valid,
    loss.unit = c("individuals", "L2 units"),
    y,
    L2.unit
)
```
boot_auto_mrp

Arguments

- **pred**: Predictions of outcome. A numeric vector of outcome predictions.
- **data.valid**: Test data set. A tibble of data that was not used for prediction.
- **loss.unit**: Loss function unit. A character-valued scalar indicating whether performance loss should be evaluated at the level of individual respondents (individuals) or geographic units (L2 units). Default is individuals.
- **y**: Outcome variable. A character vector containing the column names of the outcome variable.
- **L2.unit**: Geographic unit. A character scalar containing the column name of the geographic unit in survey and census at which outcomes should be aggregated.

Value

Returns a tibble containing two binary cross-entropy prediction errors. The first is measured at the level of individuals and the second is measured at the context level. The tibble dimensions are 2x3 with variables: measure, value and level.

Value

Returns a tibble containing two binary cross-entropy prediction errors. The first is measured at the level of individuals and the second is measured at the context level. The tibble dimensions are 2x3 with variables: measure, value and level.

boot_auto_mrp
Bootstrapping wrapper for auto_mrp

Description

`boot_auto_mrp` estimates uncertainty for auto_mrp via bootstrapping.

Usage

```r
boot_auto_mrp(
  y,
  L1.x,
  L2.x,
  mrp.L2.x,
  L2.unit,
  L2.reg,
  L2.x.scale,
  pcs,
  folds,
  bin.proportion,
  bin.size,
  survey,
  census,
  ebma.size,
  k.folds,
  cv.sampling,
  loss.unit,
  loss.fun,
)```
Arguments

\textbf{y} \\
Outcome variable. A character vector containing the column names of the outcome variable. A character scalar containing the column name of the outcome variable in \texttt{survey}.

\textbf{L1.x} \\
Individual-level covariates. A character vector containing the column names of the individual-level variables in \texttt{survey} and \texttt{census} used to predict outcome \texttt{y}. Note that geographic unit is specified in argument \texttt{L2.unit}.

\textbf{L2.x} \\
Context-level covariates. A character vector containing the column names of the context-level variables in \texttt{survey} and \texttt{census} used to predict outcome \texttt{y}.

\textbf{mrp.L2.x} \\
MRP context-level covariates. A character vector containing the column names of the context-level variables in \texttt{survey} and \texttt{census} to be used by the MRP classifier. The character vector \textit{empty} if no context-level variables should be used by the MRP classifier. If \texttt{NULL} and \texttt{mrp} is set to \texttt{TRUE}, then MRP uses the variables specified in \texttt{L2.x}. Default is \texttt{NULL}. 

L2.unit Geographic unit. A character scalar containing the column name of the geographic unit in survey and census at which outcomes should be aggregated.

L2.reg Geographic region. A character scalar containing the column name of the geographic region in survey and census by which geographic units are grouped (L2.unit must be nested within L2.reg). Default is NULL.

L2.x.scale Scale context-level covariates. A logical argument indicating whether the context-level covariates should be normalized. Default is TRUE. Note that if set to FALSE, then the context-level covariates should be normalized prior to calling auto_MrP().

pcs Principal components. A character vector containing the column names of the principal components of the context-level variables in survey and census. Default is NULL.

census Cross-validation sampling method. A character-valued scalar indicating whether cross-validation folds should be created by sampling individual respondents (individuals) or geographic units (L2 units). Default is L2 units. Note: ignored if folds is provided, but must be specified otherwise.
loss.fun  Loss function. A character-valued scalar indicating whether prediction loss should be measured by the mean squared error (MSE), the mean absolute error (MAE), binary cross-entropy (cross-entropy), mean squared false error (msfe), the f1 score (f1), or a combination thereof. Default is c("MSE","cross-entropy","msfe","f1"). With multiple loss functions, parameters are ranked for each loss function and the parameter combination with the lowest rank sum is chosen. Ties are broken according to the order in the search grid.

best.subset  Best subset classifier. A logical argument indicating whether the best subset classifier should be used for predicting outcome y. Default is TRUE.

lasso  Lasso classifier. A logical argument indicating whether the lasso classifier should be used for predicting outcome y. Default is TRUE.

pca  PCA classifier. A logical argument indicating whether the PCA classifier should be used for predicting outcome y. Default is TRUE.

gb  GB classifier. A logical argument indicating whether the GB classifier should be used for predicting outcome y. Default is TRUE.

svm  SVM classifier. A logical argument indicating whether the SVM classifier should be used for predicting outcome y. Default is TRUE.

mrp  MRP classifier. A logical argument indicating whether the standard MRP classifier should be used for predicting outcome y. Default is FALSE.

forward.select  Forward selection classifier. A logical argument indicating whether to use forward selection rather than best subset selection. Default is FALSE. Note: forward selection is recommended if there are more than 8 context-level variables. Note: forward selection is not implemented yet.

best.subset.L2.x  Best subset context-level covariates. A character vector containing the column names of the context-level variables in survey and census to be used by the best subset classifier. If NULL and best.subset is set to TRUE, then best subset uses the variables specified in L2.x. Default is NULL.

lasso.L2.x  Lasso context-level covariates. A character vector containing the column names of the context-level variables in survey and census to be used by the lasso classifier. If NULL and lasso is set to TRUE, then lasso uses the variables specified in L2.x. Default is NULL.

pca.L2.x  PCA context-level covariates. A character vector containing the column names of the context-level variables in survey and census whose principal components are to be used by the PCA classifier. If NULL and pca is set to TRUE, then PCA uses the principal components of the variables specified in L2.x. Default is NULL.

pc.names  A character vector of the principal component variable names in the data.

gb.L2.x  GB context-level covariates. A character vector containing the column names of the context-level variables in survey and census to be used by the GB classifier. If NULL and gb is set to TRUE, then GB uses the variables specified in L2.x. Default is NULL.

svm.L2.x  SVM context-level covariates. A character vector containing the column names of the context-level variables in survey and census to be used by the SVM classifier. If NULL and svm is set to TRUE, then SVM uses the variables specified in L2.x. Default is NULL.
boot_auto_mrp

svm.L2.unit SVM L2.unit. A logical argument indicating whether L2.unit should be included in the SVM classifier. Default is FALSE.

svm.L2.reg SVM L2.reg. A logical argument indicating whether L2.reg should be included in the SVM classifier. Default is FALSE.

gb.L2.unit GB L2.unit. A logical argument indicating whether L2.unit should be included in the GB classifier. Default is FALSE.

gb.L2.reg GB L2.reg. A logical argument indicating whether L2.reg should be included in the GB classifier. Default is FALSE.

lasso.lambda Lasso penalty parameter. A numeric vector of non-negative values. The penalty parameter controls the shrinkage of the context-level variables in the lasso model. Default is a sequence with minimum 0.1 and maximum 250 that is equally spaced on the log-scale. The number of values is controlled by the lasso.n.iter parameter.

lasso.n.iter Lasso number of lambda values. An integer-valued scalar specifying the number of lambda values to search over. Default is 100. Note: Is ignored if a vector of lasso.lambda values is provided.

gb.interaction.depth GB interaction depth. An integer-valued vector whose values specify the interaction depth of GB. The interaction depth defines the maximum depth of each tree grown (i.e., the maximum level of variable interactions). Default is c(1,2,3).

gb.shrinkage GB learning rate. A numeric vector whose values specify the learning rate or step-size reduction of GB. Values between 0.001 and 0.1 usually work, but a smaller learning rate typically requires more trees. Default is c(0.04,0.01,0.008,0.005,0.001).

gb.n.trees.init GB initial total number of trees. An integer-valued scalar specifying the initial number of total trees to fit by GB. Default is 50.

gb.n.trees.increase GB increase in total number of trees. An integer-valued scalar specifying by how many trees the total number of trees to fit should be increased (until gb.n.trees.max is reached). Default is 50.

gb.n.trees.max GB maximum number of trees. An integer-valued scalar specifying the maximum number of trees to fit by GB. Default is 1000.

gb.n.minobsinnode GB minimum number of observations in the terminal nodes. An integer-valued scalar specifying the minimum number of observations that each terminal node of the trees must contain. Default is 20.

svm.kernel SVM kernel. A character-valued scalar specifying the kernel to be used by SVM. The possible values are linear, polynomial, radial, and sigmoid. Default is radial.

svm.gamma SVM kernel parameter. A numeric vector whose values specify the gamma parameter in the SVM kernel. This parameter is needed for all kernel types except linear. Default is a sequence with minimum = 1e-5, maximum = 1e-1, and length = 20 that is equally spaced on the log-scale.
census

**Description**

The census file is generated from the full 2008 Cooperative Congressional Election Studies item cc418_1 by dissaggregating the 64 ideal type combinations of the individual level variables L1x1, L2x2 and L1x3. A row is an ideal type in a given state.

**Usage**

census

**Format**

A data frame with 2934 rows and 13 variables:

- **state** U.S. state
- **L2.unit** U.S. state id
- **region** U.S. region (four categories: 1 = Northeast; 2 = Midwest; 3 = South; 4 = West)
- **L1x1** Age group (four categories)
- **L1x2** Education level (four categories)
- **L1x3** Gender-race combination (six categories)
- **proportion** State-level proportion of respondents of that ideal type in the population
- **L2.x1** State-level share of votes for the Republican candidate in the previous presidential election
- **L2.x2** State-level percentage of Evangelical Protestant or Mormon respondents
- **L2.x3** State-level percentage of the population living in urban areas
- **L2.x4** State-level unemployment rate
- **L2.x5** State-level share of Hispanics
- **L2.x6** State-level share of Whites

---

**svm.cost** SVM cost parameter. A numeric vector whose values specify the cost of constraints violation in SVM. Default is a sequence with minimum = 0.5, maximum = 10, and length = 5 that is equally spaced on the log-scale.

**ebma.tol** EBMA tolerance. A numeric vector containing the tolerance values for improvements in the log-likelihood before the EM algorithm stops optimization. Values should range at least from 0.01 to 0.001. Default is c(0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001).

**boot.iter** Number of bootstrap iterations. An integer argument indicating the number of bootstrap iterations to be computed. Will be ignored unless uncertainty = TRUE. Default is 200 if uncertainty = TRUE and NULL if uncertainty = FALSE.

**cores** The number of cores to be used. An integer indicating the number of processor cores used for parallel computing. Default is 1.
cv_folding

Generates folds for cross-validation

Description

cv_folding creates folds used in classifier training within the survey data.

Usage

cv_folding(data, L2.unit, k.folds, cv.sampling = c("individuals", "L2 units"))

Arguments

data The survey data; must be a tibble.
L2.unit The column name of the factor variable identifying the context-level unit
k.folds An integer value indicating the number of folds to be generated.
cv.sampling Cross-validation sampling method. A character-valued scalar indicating whether cross-validation folds should be created by sampling individual respondents (individuals) or geographic units (L2 units). Default is L2 units. Note: ignored if folds is provided, but must be specified otherwise.

Value

Returns a list with length specified by k.folds argument. Each element is a tibble with a fold used in k-fold cross-validation.

ebma

Bayesian Ensemble Model Averaging EBMA

Description

ebma tunes EBMA and generates weights for classifier averaging.
Usage

```r
ebma(
ebma.fold,
y,
L1.x,
L2.x,
L2.unit,
L2.reg,
pc.names,
post.strat,
n.draws,
tol,
best.subset.opt,
pca.opt,
lasso.opt,
gb.opt,
svm.opt,
verbose,
cores
)
```

Arguments

- **ebma.fold** - New data for EBMA tuning. A list containing the data that must not have been used in classifier training.
- **y** - Outcome variable. A character vector containing the column names of the outcome variable. A character scalar containing the column name of the outcome variable in `survey`.
- **L1.x** - Individual-level covariates. A character vector containing the column names of the individual-level variables in `survey` and `census` used to predict outcome `y`. Note that geographic unit is specified in argument `L2.unit`.
- **L2.x** - Context-level covariates. A character vector containing the column names of the context-level variables in `survey` and `census` used to predict outcome `y`.
- **L2.unit** - Geographic unit. A character scalar containing the column name of the geographic unit in `survey` and `census` at which outcomes should be aggregated.
- **L2.reg** - Geographic region. A character scalar containing the column name of the geographic region in `survey` and `census` by which geographic units are grouped (`L2.unit` must be nested within `L2.reg`). Default is `NULL`.
- **pc.names** - Principal Component Variable names. A character vector containing the names of the context-level principal components variables.
- **post.strat** - Post-stratification results. A list containing the best models for each of the tuned classifiers, the individual level predictions on the data classifier training data and the post-stratified context-level predictions.
- **n.draws** - EBMA number of samples. An integer-valued scalar specifying the number of bootstrapped samples to be drawn from the EBMA fold and used for tuning EBMA. Default is 100. Passed on from `ebma.n.draws`. 

**tol**    EBMA tolerance. A numeric vector containing the tolerance values for improvements in the log-likelihood before the EM algorithm stops optimization. Values should range at least from 0.01 to 0.001. Default is c(0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001).

Passed on from ebma.tol.

**best.subset.opt**    Tuned best subset parameters. A list returned from run_best_subset().

**pca.opt**    Tuned best subset with principal components parameters. A list returned from run_pca().

**lasso.opt**    Tuned lasso parameters. A list returned from run_lasso().

**gb.opt**    Tuned gradient tree boosting parameters. A list returned from run_gb().

**svm.opt**    Tuned support vector machine parameters. A list returned from run_svm().

**verbose**    Verbose output. A logical argument indicating whether or not verbose output should be printed. Default is FALSE.

**cores**    The number of cores to be used. An integer indicating the number of processor cores used for parallel computing. Default is 1.

---

**ebma_folding**    Generates data fold to be used for EBMA tuning

### Description

`ebma_folding()` generates a data fold that will not be used in classifier tuning. It is data that is needed to determine the optimal tolerance for EBMA.

### Usage

`ebma_folding(data, L2.unit, ebma.size)`

### Arguments

- **data**    The full survey data. A tibble.
- **L2.unit**    Geographic unit. A character scalar containing the column name of the geographic unit in survey and census at which outcomes should be aggregated.
- **ebma.size**    EBMA fold size. A number in the open unit interval indicating the proportion of respondents to be allocated to the EBMA fold. Default is 1/3.

### Value

Returns a list with two elements which are both tibble. List element one is named `ebma_fold` and contains the tibble used in Ensemble Bayesian Model Averaging Tuning. List element two is named `cv_data` and contains the tibble used for classifier tuning.
ebma_mc_draws

**EBMA multicore tuning - parallelises over draws.**

**Description**

`ebma_mc_draws` is called from within `ebma`. It tunes using multiple cores.

**Usage**

```r
ebma_mc_draws(
 train.preds,
 train.y,
 ebma.fold,
 y,
 L1.x,
 L2.x,
 L2.unit,
 L2.reg,
 pc.names,
 model.bs,
 model.pca,
 model.lasso,
 model.gb,
 model.svm,
 model.mrp,
 tol,
 n.draws,
 cores
)
```

**Arguments**

- **train.preds** Predictions of classifiers on the classifier training data. A tibble.
- **train.y** Outcome variable of the classifier training data. A numeric vector.
- **ebma.fold** New data for EBMA tuning. A list containing the the data that must not have been used in classifier training.
- **y** Outcome variable. A character vector containing the column names of the outcome variable. A character scalar containing the column name of the outcome variable in `survey`.
- **L1.x** Individual-level covariates. A character vector containing the column names of the individual-level variables in `survey` and `census` used to predict outcome `y`. Note that geographic unit is specified in argument `L2.unit`.
- **L2.x** Context-level covariates. A character vector containing the column names of the context-level variables in `survey` and `census` used to predict outcome `y`.
- **L2.unit** Geographic unit. A character scalar containing the column name of the geographic unit in `survey` and `census` at which outcomes should be aggregated.
L2.reg Geographic region. A character scalar containing the column name of the geographic region in survey and census by which geographic units are grouped (L2.unit must be nested within L2.reg). Default is NULL.

pc.names Principal Component Variable names. A character vector containing the names of the context-level principal components variables.

model.bs The tuned model from the multilevel regression with best subset selection classifier. An glmer object.

model.pca The tuned model from the multilevel regression with principal components as context-level predictors classifier. An glmer object.

model.lasso The tuned model from the multilevel regression with L1 regularization classifier. A glmmLasso object.

model.gb The tuned model from the gradient boosting classifier. A gbm object.

model.svm The tuned model from the support vector machine classifier. An svm object.

model.mrp The standard MrP model. An glmer object.

tol EBMA tolerance. A numeric vector containing the tolerance values for improvements in the log-likelihood before the EM algorithm stops optimization. Values should range at least from 0.01 to 0.001. Default is c(0.01, 0.005, 0.001, 0.0005, 0.00001, 0.000005, 0.0000001). Passed on from ebma.tol.

n.draws EBMA number of samples. An integer-valued scalar specifying the number of bootstrapped samples to be drawn from the EBMA fold and used for tuning EBMA. Default is 100. Passed on from ebma.n.draws.

cores The number of cores to be used. An integer indicating the number of processor cores used for parallel computing. Default is 1.

Value
The classifier weights. A numeric vector.

Description

ebma_mc_tol is called from within ebma. It tunes using multiple cores.

Usage

```r
ebma_mc_tol(
 train.preds,
 train.y,
 ebma.fold,
 y,
 L1.x,
 L2.x,
```

EBMA multicore tuning - parallelises over tolerance values.
L2.unit,
L2.reg,
pc.names,
model.bs,
model.pca,
model.lasso,
model.gb,
model.svm,
model.mrp,
tol,
n.draws,
cores
)

Arguments

train.preds Predictions of classifiers on the classifier training data. A tibble.
train.y Outcome variable of the classifier training data. A numeric vector.
ebma.fold Outcome variable. A character vector containing the column names of the outcome variable. A character scalar containing the column name of the outcome variable in survey.

y Individual-level covariates. A character vector containing the column names of the individual-level variables in survey and census used to predict outcome y. Note that geographic unit is specified in argument L2.unit.

L1.x Context-level covariates. A character vector containing the column names of the context-level variables in survey and census used to predict outcome y.

L2.x Geographic unit. A character scalar containing the column name of the geographic unit in survey and census at which outcomes should be aggregated.

L2.reg Geographic region. A character scalar containing the column name of the geographic region in survey and census by which geographic units are grouped (L2.unit must be nested within L2.reg). Default is NULL.

c.name Principal Component Variable names. A character vector containing the names of the context-level principal components variables.

model.bs The tuned model from the multilevel regression with best subset selection classifier. An glmer object.
model.pca The tuned model from the multilevel regression with principal components as context-level predictors classifier. An glmer object.
model.lasso The tuned model from the multilevel regression with L1 regularization classifier. A glmmLasso object.
model.gb The tuned model from the gradient boosting classifier. A gbm object.
model.svm The tuned model from the support vector machine classifier. An svm object.
model.mrp The standard MrP model. An glmer object.
tol The tolerance values used for EBMA. A numeric vector.
n.draws  EBMA number of samples. An integer-valued scalar specifying the number of bootstrapped samples to be drawn from the EBMA fold and used for tuning EBMA. Default is 100. Passed on from ebma.n.draws.

cores  The number of cores to be used. An integer indicating the number of processor cores used for parallel computing. Default is 1.

Value

The classifier weights. A numeric vector.

Examples

```r
Not run:
not yet
End(Not run)
```

Description

`error_checks()` checks for incorrect data entry in `autoMrP()` call.

Usage

```r
error_checks(
 y,
 L1.x,
 L2.x,
 L2_unit,
 L2_reg,
 L2.x.scale,
 pcs,
 folds,
 bin.proportion,
 bin.size,
 survey,
 census,
 ebma.size,
 k_folds,
 cv.sampling,
 loss.unit,
 loss.fun,
 best.subset,
 lasso,
 pca,
)```
gb,
svm,
mrp,
forward.select,
best.subset.L2.x,
lasso.L2.x,
bg.L2.x,
svm.L2.x,
mrp.L2.x,
bg.L2.unit,
bg.L2.reg,
lasso.lambda,
lasso.n.iter,
uncertainty,
boot.iter
)

Arguments

y
Outcome variable. A character vector containing the column names of the outcome variable. A character scalar containing the column name of the outcome variable in survey.

L1.x
Individual-level covariates. A character vector containing the column names of the individual-level variables in survey and census used to predict outcome y. Note that geographic unit is specified in argument L2.unit.

L2.x
Context-level covariates. A character vector containing the column names of the context-level variables in survey and census used to predict outcome y.

L2.unit
Geographic unit. A character scalar containing the column name of the geographic unit in survey and census at which outcomes should be aggregated.

L2.reg
Geographic region. A character scalar containing the column name of the geographic region in survey and census by which geographic units are grouped (L2.unit must be nested within L2.reg). Default is NULL.

L2.x.scale
Scale context-level covariates. A logical argument indicating whether the context-level covariates should be normalized. Default is TRUE. Note that if set to FALSE, then the context-level covariates should be normalized prior to calling auto_MrP().

pcs
Principal components. A character vector containing the column names of the principal components of the context-level variables in survey and census. Default is NULL.

folds
EBMA and cross-validation folds. A character scalar containing the column name of the variable in survey that specifies the fold to which an observation is allocated. The variable should contain integers running from 1 to $k + 1$, where k is the number of cross-validation folds. Value $k + 1$ refers to the EBMA fold. Default is NULL. Note: if folds is NULL, then ebma.size, k.folds, and cv.sampling must be specified.

bin.proportion
Proportion of ideal types. A character scalar containing the column name of the variable in census that indicates the proportion of individuals by ideal type
and geographic unit. Default is NULL. *Note:* if bin.proportion is NULL, then bin.size must be specified.

bin.size
Bin size of ideal types. A character scalar containing the column name of the variable in census that indicates the bin size of ideal types by geographic unit. Default is NULL. *Note:* ignored if bin.proportion is provided, but must be specified otherwise.

survey
Survey data. A `data.frame` whose column names include `y`, L1.x, L2.x, L2.unit, and, if specified, L2.reg, pcs, and folds.

census
Census data. A `data.frame` whose column names include L1.x, L2.x, L2.unit, if specified, L2.reg and pcs, and either bin.proportion or bin.size.

ebma.size
EBMA fold size. A number in the open unit interval indicating the proportion of respondents to be allocated to the EBMA fold. Default is $1/3$. *Note:* ignored if folds is provided, but must be specified otherwise.

k.folds
Number of cross-validation folds. An integer-valued scalar indicating the number of folds to be used in cross-validation. Default is 5. *Note:* ignored if folds is provided, but must be specified otherwise.

cv.sampling
Cross-validation sampling method. A character-valued scalar indicating whether cross-validation folds should be created by sampling individual respondents (individuals) or geographic units (L2 units). Default is L2 units. *Note:* ignored if folds is provided, but must be specified otherwise.

loss.unit
Loss function unit. A character-valued scalar indicating whether performance loss should be evaluated at the level of individual respondents (individuals), geographic units (L2 units) or at both levels. Default is c("individuals","L2 units"). With multiple loss units, parameters are ranked for each loss unit and the loss unit with the lowest rank sum is chosen. Ties are broken according to the order in the search grid.

loss.fun
Loss function. A character-valued scalar indicating whether prediction loss should be measured by the mean squared error (MSE), the mean absolute error (MAE), binary cross-entropy (cross-entropy), mean squared false error (msfe), the f1 score (f1), or a combination thereof. Default is c("MSE","cross-entropy","msfe","f1"). With multiple loss functions, parameters are ranked for each loss function and the parameter combination with the lowest rank sum is chosen. Ties are broken according to the order in the search grid.

best.subset
Best subset classifier. A logical argument indicating whether the best subset classifier should be used for predicting outcome y. Default is TRUE.

lasso
Lasso classifier. A logical argument indicating whether the lasso classifier should be used for predicting outcome y. Default is TRUE.

pca
PCA classifier. A logical argument indicating whether the PCA classifier should be used for predicting outcome y. Default is TRUE.

gb
GB classifier. A logical argument indicating whether the GB classifier should be used for predicting outcome y. Default is TRUE.

svm
SVM classifier. A logical argument indicating whether the SVM classifier should be used for predicting outcome y. Default is TRUE.

mrp
MRP classifier. A logical argument indicating whether the standard MRP classifier should be used for predicting outcome y. Default is FALSE.
forward.select Forward selection classifier. A logical argument indicating whether to use forward selection rather than best subset selection. Default is FALSE. Note: forward selection is recommended if there are more than 8 context-level variables. Note: forward selection is not implemented yet.

best.subset.L2.x Best subset context-level covariates. A character vector containing the column names of the context-level variables in survey and census to be used by the best subset classifier. If NULL and best.subset is set to TRUE, then best subset uses the variables specified in L2.x. Default is NULL.

lasso.L2.x Lasso context-level covariates. A character vector containing the column names of the context-level variables in survey and census to be used by the lasso classifier. If NULL and lasso is set to TRUE, then lasso uses the variables specified in L2.x. Default is NULL.

gb.L2.x GB context-level covariates. A character vector containing the column names of the context-level variables in survey and census to be used by the GB classifier. If NULL and gb is set to TRUE, then GB uses the variables specified in L2.x. Default is NULL.

svm.L2.x SVM context-level covariates. A character vector containing the column names of the context-level variables in survey and census to be used by the SVM classifier. If NULL and svm is set to TRUE, then SVM uses the variables specified in L2.x. Default is NULL.

mrp.L2.x MRP context-level covariates. A character vector containing the column names of the context-level variables in survey and census to be used by the MRP classifier. The character vector empty if no context-level variables should be used by the MRP classifier. If NULL and mrp is set to TRUE, then MRP uses the variables specified in L2.x. Default is NULL.

gb.L2.unit GB L2.unit. A logical argument indicating whether L2.unit should be included in the GB classifier. Default is FALSE.

gb.L2.reg GB L2.reg. A logical argument indicating whether L2.reg should be included in the GB classifier. Default is FALSE.

lasso.lambda Lasso penalty parameter. A numeric vector of non-negative values. The penalty parameter controls the shrinkage of the context-level variables in the lasso model. Default is a sequence with minimum 0.1 and maximum 250 that is equally spaced on the log-scale. The number of values is controlled by the lasso.n.iter parameter.

lasso.n.iter Lasso number of lambda values. An integer-valued scalar specifying the number of lambda values to search over. Default is 100. Note: Is ignored if a vector of lasso.lambda values is provided.

uncertainty Uncertainty estimates. A logical argument indicating whether uncertainty estimates should be computed. Default is FALSE.

boot.iter Number of bootstrap iterations. An integer argument indicating the number of bootstrap iterations to be computed. Will be ignored unless uncertainty = TRUE. Default is 200 if uncertainty = TRUE and NULL if uncertainty = FALSE.
f1_score

Estimates the inverse f1 score, i.e. 0 is the best score and 1 the worst.

Value

No return value, called for detection of errors in autoMrP() call.

Description

f1_score() estimates the inverse f1 scores on the individual and state levels.

Usage

```r
f1_score(pred, data.valid, y, L2.unit)
```

Arguments

- **pred**: Predictions of outcome. A numeric vector of outcome predictions.
- **data.valid**: Test data set. A tibble of data that was not used for prediction.
- **y**: Outcome variable. A character vector containing the column names of the outcome variable.
- **L2.unit**: Geographic unit. A character scalar containing the column name of the geographic unit in survey and census at which outcomes should be aggregated.

Value

Returns a tibble containing two f1 prediction errors. The first is measured at the level of individuals and the second is measured at the context level. The tibble dimensions are 2x3 with variables: measure, value and level.

gb_classifier

GB classifier

Description

gb_classifier applies gradient boosting classification to a data set.

Usage

```r
gb_classifier(
  form,
  distribution,
  data.train,
  n.trees,
  interaction.depth,
  n.minobsinnode,
  shrinkage,
  verbose = c(TRUE, FALSE)
)
```
gb_classifier_update

Arguments

form Model formula. A two-sided linear formula describing the model to be fit, with the outcome on the LHS and the covariates separated by + operators on the RHS.
distribution Model distribution. A character string specifying the name of the distribution to be used.
data.train Training data. A data.frame containing the training data used to train the model.
n.trees Total number of trees. An integer-valued scalar specifying the total number of trees to be fit.
interaction.depth Interaction depth. An integer-valued scalar specifying the maximum depth of each tree.
n.minobsinnode Minimum number of observations in terminal nodes. An integer-valued scalar specifying the minimum number of observations in the terminal nodes of the trees.
shrinkage Learning rate. A numeric scalar specifying the shrinkage or learning rate applied to each tree in the expansion.
verbose Verbose output. A logical vector indicating whether or not verbose output should be printed.

Value

A gradient tree boosting model. A gbm object.

gb_classifier_update

GB classifier update

Description

gb_classifier_update() grows additional trees in gradient tree boosting ensemble.

Usage

gb_classifier_update(object, n.new.trees, verbose = c(TRUE, FALSE))

Arguments

object Gradient tree boosting output. A gbm object.
n.new.trees Number of additional trees to grow. A numeric scalar.
verbose Verbose output. A logical vector indicating whether or not verbose output should be printed.

Value

An updated gradient tree boosting model. A gbm.more object.
lasso_classifier

Lasso classifier

Description

`lasso_classifier` applies lasso classification to a data set.

Usage

```
lasso_classifier(  
  L2.fix,  
  L1.re,  
  data.train,  
  lambda,  
  model.family,  
  verbose = c(TRUE, FALSE)  
)
```

Arguments

- **L2.fix**
 Fixed effects. A two-sided linear formula describing the fixed effects part of the model, with the outcome on the LHS and the fixed effects separated by + operators on the RHS.

- **L1.re**
 Random effects. A named list object, with the random effects providing the names of the list elements and ~ 1 being the list elements.

- **data.train**
 Training data. A data.frame containing the training data used to train the model.

- **lambda**
 Tuning parameter. Lambda is the penalty parameter that controls the shrinkage of fixed effects.

- **model.family**
 Model family. A variable indicating the model family to be used by glmmLasso. Defaults to binomial(link = "probit").

- **verbose**
 Verbose output. A logical vector indicating whether or not verbose output should be printed.

Value

A multilevel lasso model. An `glmmLasso` object.
log_spaced

Sequence that is equally spaced on the log scale

Description

Sequence that is equally spaced on the log scale

Usage

log_spaced(min, max, n)

Arguments

<table>
<thead>
<tr>
<th>min</th>
<th>The minimum value of the sequence. A positive numeric scalar (min > 0).</th>
</tr>
</thead>
<tbody>
<tr>
<td>max</td>
<td>The maximum value of the sequence. A positive numeric scalar (max > 0).</td>
</tr>
<tr>
<td>n</td>
<td>The length of the sequence. An integer valued scalar.</td>
</tr>
</tbody>
</table>

Value

Returns a numeric vector with length specified in argument n. The vector elements are equally spaced on the log-scale.

loss_function

Estimates loss value.

Description

loss_function() estimates the loss based on a loss function.

Usage

```r
loss_function(
  pred,
  data.valid,
  loss.unit = c("individuals", "L2 units"),
  loss.fun = c("MSE", "MAE", "cross-entropy"),
  y,
  L2.unit
)
```
loss_score_ranking

Arguments

pred Predictions of outcome. A numeric vector of outcome predictions.
data.valid Test data set. A tibble of data that was not used for prediction.
loss.unit Loss function unit. A character-valued scalar indicating whether performance
 loss should be evaluated at the level of individual respondents (individuals) or geographic units (L2 units). Default is individuals.
loss.fun Loss function. A character-valued scalar indicating whether prediction loss should be measured by the mean squared error (MSE) or the mean absolute error (MAE). Default is MSE.
y Outcome variable. A character vector containing the column names of the outcome variable.
L2.unit Geographic unit. A character scalar containing the column name of the geographic unit in survey and census at which outcomes should be aggregated.

Value

Returns a tibble with number of rows equal to the number of loss functions tested (defaults to 4 for cross-entropy, f1, MSE, and msfe). The number of columns is 2 where the first is called measure and contains the names of the loss-functions and the second is called value and contains the loss-function scores.

Description

loss_score_ranking() ranks tuning parameters according to the scores received in multiple loss functions.

Usage

loss_score_ranking(score, loss.fun)

Arguments

score A data set containing loss function names, the loss function values, and the tuning parameter values.
loss.fun Loss function. A character-valued scalar indicating whether prediction loss should be measured by the mean squared error (MSE) or the mean absolute error (MAE). Default is MSE.

Value

Returns a tibble containing the parameter grid as well as a rank column that corresponds to the cross-validation rank of a parameter combination across all loss function scores.
mean_absolute_error*

Estimates the mean absolute prediction error.

Description

mean_absolute_error() estimates the mean absolute error for the desired loss unit.

Usage

mean_absolute_error(pred, data.valid, y, L2.unit)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pred</td>
<td>Predictions of outcome. A numeric vector of outcome predictions.</td>
</tr>
<tr>
<td>data.valid</td>
<td>Test data set. A tibble of data that was not used for prediction.</td>
</tr>
<tr>
<td>y</td>
<td>Outcome variable. A character vector containing the column names of the outcome variable.</td>
</tr>
<tr>
<td>L2.unit</td>
<td>Geographic unit. A character scalar containing the column name of the geographic unit in survey and census at which outcomes should be aggregated.</td>
</tr>
</tbody>
</table>

Value

Returns a tibble containing two mean absolute prediction errors. The first is measured at the level of individuals and the second is measured at the context level. The tibble dimensions are 2x3 with variables: measure, value and level.

mean_squared_error*

Estimates the mean squared prediction error.

Description

mean_squared_error() estimates the mean squared error for the desired loss unit.

Usage

mean_squared_error(pred, data.valid, y, L2.unit)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pred</td>
<td>Predictions of outcome. A numeric vector of outcome predictions.</td>
</tr>
<tr>
<td>data.valid</td>
<td>Test data set. A tibble of data that was not used for prediction.</td>
</tr>
<tr>
<td>y</td>
<td>Outcome variable. A character vector containing the column names of the outcome variable.</td>
</tr>
<tr>
<td>L2.unit</td>
<td>Geographic unit. A character scalar containing the column name of the geographic unit in survey and census at which outcomes should be aggregated.</td>
</tr>
</tbody>
</table>
mean_squared_false_error

Estimates the mean squared false error.

Description

msfe() estimates the inverse f1 scores on the individual and state levels.

Usage

```r
mean_squared_false_error(pred, data.valid, y, L2.unit)
```

Arguments

- **pred**: Predictions of outcome. A numeric vector of outcome predictions.
- **data.valid**: Test data set. A tibble of data that was not used for prediction.
- **y**: Outcome variable. A character vector containing the column names of the outcome variable.
- **L2.unit**: Geographic unit. A character scalar containing the column name of the geographic unit in survey and census at which outcomes should be aggregated.

Value

Returns a tibble containing two mean squared false prediction errors. The first is measured at the level of individuals and the second is measured at the context level. The tibble dimensions are 2x3 with variables: measure, value and level.

model_list

A list of models for the best subset selection.

Description

model_list() generates an exhaustive list of lme4 model formulas from the individual level and context level variables as well as geographic unit variables to be iterated over in best subset selection.

Usage

```r
model_list(y, L1.x, L2.x, L2.unit, L2.reg = NULL)
```
Arguments

y Outcome variable. A character vector containing the column names of the outcome variable.
L1.x Individual-level covariates. A character vector containing the column names of the individual-level variables in survey and census used to predict outcome y. Note that geographic unit is specified in argument L2.unit.
L2.x Context-level covariates. A character vector containing the column names of the context-level variables in survey and census used to predict outcome y.
L2.unit Geographic unit. A character scalar containing the column name of the geographic unit in survey and census at which outcomes should be aggregated.
L2.reg Geographic region. A character scalar containing the column name of the geographic region in survey and census by which geographic units are grouped (L2.unit must be nested within L2.reg). Default is NULL.

Value

Returns a list with the number of elements equal to 2^k where k is the number context-level variables. Each element is of class formula.

Description

model_list_pca() generates an exhaustive list of lme4 model formulas from the individual level and context level principal components as well as geographic unit variables to be iterated over in best subset selection with principal components.

Usage

model_list_pca(y, L1.x, L2.x, L2.unit, L2.reg = NULL)

Arguments

y Outcome variable. A character vector containing the column names of the outcome variable.
L1.x Individual-level covariates. A character vector containing the column names of the individual-level variables in survey and census used to predict outcome y. Note that geographic unit is specified in argument L2.unit.
L2.x Context-level covariates. A character vector containing the column names of the context-level variables in survey and census used to predict outcome y.
L2.unit Geographic unit. A character scalar containing the column name of the geographic unit in survey and census at which outcomes should be aggregated.
L2.reg Geographic region. A character scalar containing the column name of the geographic region in survey and census by which geographic units are grouped (L2.unit must be nested within L2.reg). Default is NULL.
multicore

Value

Returns a list with the number of elements k+1 where k is the number of context-level variables. Each element is of class formula. The first element is a model with context-level variables and the following models iteratively add the principal components as context-level variables.

multicore

Register cores for multicore computing

Description

`multicore()` registers cores for parallel processing.

Usage

`multicore(cores = 1, type, cl = NULL)`

Arguments

- **cores**: Number of cores to be used. An integer. Default is 1.
- **type**: Whether to start or end parallel processing. A character string. The possible values are `open`, `close`.
- **cl**: The registered cluster. Default is `NULL`.

Value

No return value, called to register or un-register clusters for parallel processing.

output_table

A table for the summary function

Description

`output_table()` ...

Usage

`output_table(object, col.names, format, digits)`

Arguments

- **object**: An `autoMrP()` object for which a summary is desired.
- **col.names**: The column names of the table. A
- **format**: The table format. A character string passed to `kable`. Default is `simple`.
- **digits**: The number of digits to be displayed. An integer scalar. Default is 4.
Value

No return value, prints a table to the console.

plot.autoMrP

A plot method for `autoMrP` objects. Plots unit-level preference estimates.

Description

`plot.autoMrP()` plots unit-level preference estimates and error bars.

Usage

```r
## S3 method for class 'autoMrP'
plot(x, algorithm = "ebma", ci.lvl = 0.95, ...)
```

Arguments

- `x`: An `autoMrP()` object.
- `algorithm`: The algorithm/classifier for which preference estimates are desired. A character-valued scalar indicating either ebma or the classifier to be used. Allowed choices are: "ebma", "best_subset", "lasso", "pca", "gb", "svm", and "mrp". Default is `ebma`.
- `ci.lvl`: The level of the confidence intervals. A proportion. Default is 0.95. Confidence intervals are based on bootstrapped estimates and will not be printed if bootstrapping was not carried out.
- `...`: Additional arguments affecting the summary produced.

post_stratification

Apply post-stratification to classifiers.

Description

Apply post-stratification to classifiers.

Usage

```r
post_stratification(  
y,  
L1.x,  
L2.x,  
L2.unit,  
L2.reg,  
best.subset.opt,
)```
post_stratification

lasso.opt,
lasso.L2.x,
pca.opt,
gb.opt,
svm.opt,
svm.L2.reg,
svm.L2.unit,
svm.L2.x,
mrp.include,
n.minobsinnode,
L2.unit.include,
L2.reg.include,
kernel,
mrp.L2.x,
data,
ebma.fold,
census,
verbose
)

Arguments

y Outcome variable. A character vector containing the column names of the outcome variable. A character scalar containing the column name of the outcome variable in survey.

L1.x Individual-level covariates. A character vector containing the column names of the individual-level variables in survey and census used to predict outcome y. Note that geographic unit is specified in argument L2.unit.

L2.x Context-level covariates. A character vector containing the column names of the context-level variables in survey and census used to predict outcome y.

L2.unit Geographic unit. A character scalar containing the column name of the geographic unit in survey and census at which outcomes should be aggregated.

L2.reg Geographic region. A character scalar containing the column name of the geographic region in survey and census by which geographic units are grouped (L2.unit must be nested within L2.reg). Default is NULL.

best.subset.opt Optimal tuning parameters from best subset selection classifier. A list returned by run_best_subset().

lasso.opt Optimal tuning parameters from lasso classifier A list returned by run_lasso().

lasso.L2.x Lasso context-level covariates. A character vector containing the column names of the context-level variables in survey and census to be used by the lasso classifier. If NULL and lasso is set to TRUE, then lasso uses the variables specified in L2.x. Default is NULL.

pca.opt Optimal tuning parameters from best subset selection with principal components classifier A list returned by run_pca().

gb.opt Optimal tuning parameters from gradient tree boosting classifier A list returned by run_gb().
predict_glmmLasso

predict_glmmLasso$newdata$ predicts on newdata from glmmLasso objects

Description

glmmLasso() predicts on newdata objects from a glmmLasso object.
Usage

predict_glmmLasso(census, m, L1.x, lasso.L2.x, L2.unit, L2.reg)

Arguments

census  Census data. A data.frame whose column names include L1.x, L2.x, L2.unit, if specified, L2.reg and pcs, and either bin.proportion or bin.size.
m  A glmmLasso() object.
L1.x  Individual-level covariates. A character vector containing the column names of the individual-level variables in survey and census used to predict outcome y. Note that geographic unit is specified in argument L2.unit.
lasso.L2.x  Lasso context-level covariates. A character vector containing the column names of the context-level variables in survey and census to be used by the lasso classifier. If NULL and lasso is set to TRUE, then lasso uses the variables specified in L2.x. Default is NULL.
L2.unit  Geographic unit. A character scalar containing the column name of the geographic unit in survey and census at which outcomes should be aggregated.
L2.reg  Geographic region. A character scalar containing the column name of the geographic region in survey and census by which geographic units are grouped (L2.unit must be nested within L2.reg). Default is NULL.

Value

Returns a numeric vector of predictions from a glmmLasso() object.

Description

quiet() suppresses cat output.

Usage

quiet(x)

Arguments

x  Input. It can be any kind.
run_best_subset

Apply best subset classifier to MrP.

**Description**

run_best_subset is a wrapper function that applies the best subset classifier to a list of models provided by the user, evaluates the models’ prediction performance, and chooses the best-performing model.

**Usage**

```r
run_best_subset(
 y,
 L1.x,
 L2.x,
 L2.unit,
 L2.reg,
 loss.unit,
 loss.fun,
 data,
 verbose,
 cores
)
```

**Arguments**

- `y` Outcome variable. A character vector containing the column names of the outcome variable. A character scalar containing the column name of the outcome variable in `survey`.
- `L1.x` Individual-level covariates. A character vector containing the column names of the individual-level variables in `survey` and `census` used to predict outcome `y`. Note that geographic unit is specified in argument `L2.unit`.
- `L2.x` Context-level covariates. A character vector containing the column names of the context-level variables in `survey` and `census` used to predict outcome `y`.
- `L2.unit` Geographic unit. A character scalar containing the column name of the geographic unit in `survey` and `census` at which outcomes should be aggregated.
- `L2.reg` Geographic region. A character scalar containing the column name of the geographic region in `survey` and `census` by which geographic units are grouped (`L2.unit` must be nested within `L2.reg`). Default is NULL.
- `loss.unit` Loss function unit. A character-valued scalar indicating whether performance loss should be evaluated at the level of individual respondents (individuals), geographic units (L2 units) or at both levels. Default is c("individuals", "L2 units"). With multiple loss units, parameters are ranked for each loss unit and the loss unit with the lowest rank sum is chosen. Ties are broken according to the order in the search grid.
loss.fun  Loss function. A character-valued scalar indicating whether prediction loss should be measured by the mean squared error (MSE), the mean absolute error (MAE), binary cross-entropy (cross-entropy), mean squared false error (msfe), the f1 score (f1), or a combination thereof. Default is c("MSE", "cross-entropy", "msfe", "f1"). With multiple loss functions, parameters are ranked for each loss function and the parameter combination with the lowest rank sum is chosen. Ties are broken according to the order in the search grid.

data  Data for cross-validation. A list of \( k \) data.frames, one for each fold to be used in \( k \)-fold cross-validation.

verbose  Verbose output. A logical argument indicating whether or not verbose output should be printed. Default is FALSE.

cores  The number of cores to be used. An integer indicating the number of processor cores used for parallel computing. Default is 1.

Value

A model formula of the winning best subset classifier model.

run_best_subset_mc

Best subset multicore tuning.

Description

run_best_subset_mc is called from within run_best_subset. It tunes using multiple cores.

Usage

run_best_subset_mc(
    y,
    L1.x,
    L2.x,
    L2.unit,
    L2.reg,
    loss.unit,
    loss.fun,
    data,
    cores,
    models,
    verbose
)

Arguments

y  Outcome variable. A character scalar containing the column name of the outcome variable in survey.
Individual-level covariates. A character vector containing the column names of the individual-level variables in survey and census used to predict outcome y. Note that geographic unit is specified in argument L2.unit.

Context-level covariates. A character vector containing the column names of the context-level variables in survey and census used to predict outcome y.

Geographic unit. A character scalar containing the column name of the geographic unit in survey and census at which outcomes should be aggregated.

Geographic region. A character scalar containing the column name of the geographic region in survey and census by which geographic units are grouped (L2.unit must be nested within L2.reg). Default is NULL.

Loss function unit. A character-valued scalar indicating whether performance loss should be evaluated at the level of individual respondents (individuals) or geographic units (L2 units). Default is individuals.

Loss function. A character-valued scalar indicating whether prediction loss should be measured by the mean squared error (MSE) or the mean absolute error (MAE). Default is MSE.

Data for cross-validation. A list of k data.frames, one for each fold to be used in k-fold cross-validation.

The number of cores to be used. An integer indicating the number of processor cores used for parallel computing. Default is 1.

The models to perform best subset selection on. A list of model formulas.

Verbose output. A logical argument indicating whether or not verbose output should be printed. Default is TRUE.

The cross-validation errors for all models. A list.

## Not run:
# not yet

## End(Not run)

---

**run_classifiers**

**Optimal individual classifiers**

**Description**

run_classifiers tunes classifiers, post-stratifies and carries out EMBA.
Usage

run_classifiers(
    y,
    L1.x,
    L2.x,
    mrp.L2.x,
    L2.unit,
    L2.reg,
    L2.x.scale,
    pcs,
    pc.names,
    folds,
    bin.proportion,
    bin.size,
    cv.folds,
    cv.data,
    ebma.fold,
    census,
    ebma.size,
    ebma.n.draws,
    k.folds,
    cv.sampling,
    loss.unit,
    loss.fun,
    best.subset,
    lasso,
    pca,
    gb,
    svm,
    mrp,
    forward.select,
    best.subset.L2.x,
    lasso.L2.x,
    pca.L2.x,
    gb.L2.x,
    svm.L2.x,
    gb.L2.unit,
    gb.L2.reg,
    svm.L2.unit,
    svm.L2.reg,
    lasso.lambda,
    lasso.n.iter,
    gb.interaction.depth,
    gb.shrinkage,
    gb.n.trees.init,
    gb.n.trees.increase,
    gb.n.trees.max,
    gb.n.minobsinnode,
run_classifiers

```r
svm.kernel,
svm.gamma,
svm.cost,
ebma.tol,
core,
verbose
```

Arguments

`y`  
Outcome variable. A character vector containing the column names of the outcome variable. A character scalar containing the column name of the outcome variable in `survey`.

`L1.x`  
Individual-level covariates. A character vector containing the column names of the individual-level variables in `survey` and `census` used to predict outcome `y`. Note that geographic unit is specified in argument `L2.unit`.

`L2.x`  
Context-level covariates. A character vector containing the column names of the context-level variables in `survey` and `census` used to predict outcome `y`.

`mrp.L2.x`  
MRP context-level covariates. A character vector containing the column names of the context-level variables in `survey` and `census` to be used by the MRP classifier. The character vector empty if no context-level variables should be used by the MRP classifier. If `NULL` and `mrp` is set to `TRUE`, then MRP uses the variables specified in `L2.x`. Default is `NULL`.

`L2.unit`  
Geographic unit. A character scalar containing the column name of the geographic unit in `survey` and `census` at which outcomes should be aggregated.

`L2.reg`  
Geographic region. A character scalar containing the column name of the geographic region in `survey` and `census` by which geographic units are grouped (`L2.unit` must be nested within `L2.reg`). Default is `NULL`.

`L2.x.scale`  
Scale context-level covariates. A logical argument indicating whether the context-level covariates should be normalized. Default is `TRUE`. Note that if set to `FALSE`, then the context-level covariates should be normalized prior to calling `auto_MrP()`.

`pcs`  
Principal components. A character vector containing the column names of the principal components of the context-level variables in `survey` and `census`. Default is `NULL`.

`pc.names`  
A character vector of the principal component variable names in the data.

`folds`  
EBMA and cross-validation folds. A character scalar containing the column name of the variable in `survey` that specifies the fold to which an observation is allocated. The variable should contain integers running from 1 to `k + 1`, where `k` is the number of cross-validation folds. Value `k + 1` refers to the EBMA fold. Default is `NULL`. Note: if `folds` is `NULL`, then `ebma.size`, `k.folds`, and `cv.sampling` must be specified.

`bin.proportion`  
Proportion of ideal types. A character scalar containing the column name of the variable in `census` that indicates the proportion of individuals by ideal type and geographic unit. Default is `NULL`. Note: if `bin.proportion` is `NULL`, then `bin.size` must be specified.
`run_classifiers`

**bin.size**  
Bin size of ideal types. A character scalar containing the column name of the variable in `census` that indicates the bin size of ideal types by geographic unit. Default is `NULL`. Note: ignored if `bin.proportion` is provided, but must be specified otherwise.

**cv.folds**  
Data for cross-validation. A list of k data.frames, one for each fold to be used in k-fold cross-validation.

**cv.data**  
A data.frame containing the survey data used in classifier training.

**ebma.fold**  
A data.frame containing the data not used in classifier training.

**census**  
Census data. A data.frame whose column names include `L1.x`, `L2.x`, `L2.unit`, if specified, `L2.reg` and `pcs`, and either `bin.proportion` or `bin.size`.

**ebma.size**  
EBMA fold size. A number in the open unit interval indicating the proportion of respondents to be allocated to the EBMA fold. Default is 1/3. Note: ignored if `folds` is provided, but must be specified otherwise.

**ebma.n.draws**  
EBMA number of samples. An integer-valued scalar specifying the number of bootstrapped samples to be drawn from the EBMA fold and used for tuning EBMA. Default is 100.

**k.folds**  
Number of cross-validation folds. An integer-valued scalar indicating the number of folds to be used in cross-validation. Default is 5. Note: ignored if `folds` is provided, but must be specified otherwise.

**cv.sampling**  
Cross-validation sampling method. A character-valued scalar indicating whether cross-validation folds should be created by sampling individual respondents (individuals) or geographic units (L2 units). Default is L2 units. Note: ignored if `folds` is provided, but must be specified otherwise.

**loss.unit**  
Loss function unit. A character-valued scalar indicating whether performance loss should be evaluated at the level of individual respondents (individuals), geographic units (L2 units) or at both levels. Default is c("individuals","L2 units"). With multiple loss units, parameters are ranked for each loss unit and the loss unit with the lowest rank sum is chosen. Ties are broken according to the order in the search grid.

**loss.fun**  
Loss function. A character-valued scalar indicating whether prediction loss should be measured by the mean squared error (MSE), the mean absolute error (MAE), binary cross-entropy (cross-entropy), mean squared false error (msfe), the f1 score (f1), or a combination thereof. Default is c("MSE","cross-entropy","msfe","f1"). With multiple loss functions, parameters are ranked for each loss function and the parameter combination with the lowest rank sum is chosen. Ties are broken according to the order in the search grid.

**best.subset**  
Best subset classifier. A logical argument indicating whether the best subset classifier should be used for predicting outcome y. Default is `TRUE`.

**lasso**  
Lasso classifier. A logical argument indicating whether the lasso classifier should be used for predicting outcome y. Default is `TRUE`.

**pca**  
PCA classifier. A logical argument indicating whether the PCA classifier should be used for predicting outcome y. Default is `TRUE`.

**gb**  
GB classifier. A logical argument indicating whether the GB classifier should be used for predicting outcome y. Default is `TRUE`. 
SVM classifier. A logical argument indicating whether the SVM classifier should be used for predicting outcome $y$. Default is TRUE.

MRP classifier. A logical argument indicating whether the standard MRP classifier should be used for predicting outcome $y$. Default is FALSE.

Forward selection classifier. A logical argument indicating whether to use forward selection rather than best subset selection. Default is FALSE. Note: forward selection is recommended if there are more than 8 context-level variables. Note: forward selection is not implemented yet.

Best subset context-level covariates. A character vector containing the column names of the context-level variables in survey and census to be used by the best subset classifier. If NULL and best.subset is set to TRUE, then best subset uses the variables specified in L2.x. Default is NULL.

Lasso context-level covariates. A character vector containing the column names of the context-level variables in survey and census to be used by the lasso classifier. If NULL and lasso is set to TRUE, then lasso uses the variables specified in L2.x. Default is NULL.

PCA context-level covariates. A character vector containing the column names of the context-level variables in survey and census whose principal components are to be used by the PCA classifier. If NULL and pca is set to TRUE, then PCA uses the principal components of the variables specified in L2.x. Default is NULL.

GB context-level covariates. A character vector containing the column names of the context-level variables in survey and census to be used by the GB classifier. If NULL and gb is set to TRUE, then GB uses the variables specified in L2.x. Default is NULL.

SVM context-level covariates. A character vector containing the column names of the context-level variables in survey and census to be used by the SVM classifier. If NULL and svm is set to TRUE, then SVM uses the variables specified in L2.x. Default is NULL.

GB L2.unit. A logical argument indicating whether L2.unit should be included in the GB classifier. Default is FALSE.

GB L2.reg. A logical argument indicating whether L2.reg should be included in the GB classifier. Default is FALSE.

SVM L2.unit. A logical argument indicating whether L2.unit should be included in the SVM classifier. Default is FALSE.

SVM L2.reg. A logical argument indicating whether L2.reg should be included in the SVM classifier. Default is FALSE.

Lasso penalty parameter. A numeric vector of non-negative values. The penalty parameter controls the shrinkage of the context-level variables in the lasso model. Default is a sequence with minimum 0.1 and maximum 250 that is equally spaced on the log-scale. The number of values is controlled by the lasso.n.iter parameter.

Lasso number of lambda values. An integer-valued scalar specifying the number of lambda values to search over. Default is 100. Note: Is ignored if a vector of lasso.lambda values is provided.
run_gb

**gb.interaction.depth**
GB interaction depth. An integer-valued vector whose values specify the interaction depth of GB. The interaction depth defines the maximum depth of each tree grown (i.e., the maximum level of variable interactions). Default is c(1, 2, 3).

**gb.shrinkage**
GB learning rate. A numeric vector whose values specify the learning rate or step-size reduction of GB. Values between 0.001 and 0.1 usually work, but a smaller learning rate typically requires more trees. Default is c(0.04, 0.01, 0.008, 0.005, 0.001).

**gb.n.trees.init**
GB initial total number of trees. An integer-valued scalar specifying the initial number of total trees to fit by GB. Default is 50.

**gb.n.trees.increase**
GB increase in total number of trees. An integer-valued scalar specifying by how many trees the total number of trees to fit should be increased (until gb.n.trees.max is reached). Default is 50.

**gb.n.trees.max**
GB maximum number of trees. An integer-valued scalar specifying the maximum number of trees to fit by GB. Default is 1000.

**gb.n.minobsinnode**
GB minimum number of observations in the terminal nodes. An integer-valued scalar specifying the minimum number of observations that each terminal node of the trees must contain. Default is 20.

**svm.kernel**
SVM kernel. A character-valued scalar specifying the kernel to be used by SVM. The possible values are linear, polynomial, radial, and sigmoid. Default is radial.

**svm.gamma**
SVM kernel parameter. A numeric vector whose values specify the gamma parameter in the SVM kernel. This parameter is needed for all kernel types except linear. Default is a sequence with minimum = 1e-5, maximum = 1e-1, and length = 20 that is equally spaced on the log-scale.

**svm.cost**
SVM cost parameter. A numeric vector whose values specify the cost of constraints violation in SVM. Default is a sequence with minimum = 0.5, maximum = 10, and length = 5 that is equally spaced on the log-scale.

**ebma.tol**
EBMA tolerance. A numeric vector containing the tolerance values for improvements in the log-likelihood before the EM algorithm stops optimization. Values should range at least from 0.01 to 0.001. Default is c(0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001).

**cores**
The number of cores to be used. An integer indicating the number of processor cores used for parallel computing. Default is 1.

**verbose**
Verbose output. A logical argument indicating whether or not verbose output should be printed. Default is FALSE.

---

**run_gb**
*Apply gradient boosting classifier to MrP.*
Description

`run_gb` is a wrapper function that applies the gradient boosting classifier to data provided by the user, evaluates prediction performance, and chooses the best-performing model.

Usage

```r
run_gb(
 y,
 L1.x,
 L2.x,
 L2.eval.unit,
 L2.unit,
 L2.reg,
 loss.unit,
 loss.fun,
 interaction.depth,
 shrinkage,
 n.trees.init,
 n.trees.increase,
 n.trees.max,
 cores = cores,
 n.minobsinnode,
 data,
 verbose
)
```

Arguments

- **y**: Outcome variable. A character vector containing the column names of the outcome variable. A character scalar containing the column name of the outcome variable in `survey`.
- **L1.x**: Individual-level covariates. A character vector containing the column names of the individual-level variables in `survey` and `census` used to predict outcome `y`. Note that geographic unit is specified in argument `L2.unit`.
- **L2.x**: Context-level covariates. A character vector containing the column names of the context-level variables in `survey` and `census` used to predict outcome `y`.
- **L2.eval.unit**: Geographic unit for the loss function. A character scalar containing the column name of the geographic unit in `survey` and `census`.
- **L2.unit**: Geographic unit. A character scalar containing the column name of the geographic unit in `survey` and `census` at which outcomes should be aggregated.
- **L2.reg**: Geographic region. A character scalar containing the column name of the geographic region in `survey` and `census` by which geographic units are grouped (`L2.unit` must be nested within `L2.reg`). Default is NULL.
- **loss.unit**: Loss function unit. A character-valued scalar indicating whether performance loss should be evaluated at the level of individual respondents (individuals) or geographic units (L2 units). Default is `individuals`.
loss.fun  
Loss function. A character-valued scalar indicating whether prediction loss should be measured by the mean squared error (MSE) or the mean absolute error (MAE). Default is MSE.

interaction.depth  
GB interaction depth. An integer-valued vector whose values specify the interaction depth of GB. The interaction depth defines the maximum depth of each tree grown (i.e., the maximum level of variable interactions). Default is c(1,2,3).

shrinkage  
GB learning rate. A numeric vector whose values specify the learning rate or step-size reduction of GB. Values between 0.001 and 0.1 usually work, but a smaller learning rate typically requires more trees. Default is c(0.04,0.01,0.008,0.005,0.001).

n.trees.init  
GB initial total number of trees. An integer-valued scalar specifying the initial number of total trees to fit by GB. Default is 50.

n.trees.increase  
GB increase in total number of trees. An integer-valued scalar specifying by how many trees the total number of trees to fit should be increased (until n.trees.max is reached) or an integer-valued vector of length length(shrinkage) with each of its values being associated with a learning rate in shrinkage. Default is 50.

n.trees.max  
GB maximum number of trees. An integer-valued scalar specifying the maximum number of trees to fit by GB or an integer-valued vector of length length(shrinkage) with each of its values being associated with a learning rate and an increase in the total number of trees. Default is 1000.

cores  
The number of cores to be used. An integer indicating the number of processor cores used for parallel computing. Default is 1.

n.minobsinnode  
GB minimum number of observations in the terminal nodes. An integer-valued scalar specifying the minimum number of observations that each terminal node of the trees must contain. Default is 5.

data  
Data for cross-validation. A list of k data.frames, one for each fold to be used in k-fold cross-validation.

verbose  
Verbose output. A logical argument indicating whether or not verbose output should be printed. Default is TRUE.

Value  
The tuned gradient boosting parameters. A list with three elements: interaction_depth contains the interaction depth parameter, shrinkage contains the learning rate, n.trees the number of trees to be grown.

---

run_gb_mc  
GB multicore tuning.

Description  
run_gb_mc is called from within run_gb. It tunes using multiple cores.
Usage

```r
run_gb_mc(
 y,
 L1.x,
 L2.eval.unit,
 L2.unit,
 L2.reg,
 form,
 gb.grid,
 n.minobsinnode,
 loss.unit,
 loss.fun,
 data,
 cores
)
```

Arguments

- **y**: Outcome variable. A character vector containing the column names of the outcome variable. A character scalar containing the column name of the outcome variable in `survey`.

- **L1.x**: Individual-level covariates. A character vector containing the column names of the individual-level variables in `survey` and `census` used to predict outcome `y`. Note that geographic unit is specified in argument `L2.unit`.

- **L2.eval.unit**: Geographic unit for the loss function. A character scalar containing the column name of the geographic unit in `survey` and `census`.

- **L2.unit**: Geographic unit. A character scalar containing the column name of the geographic unit in `survey` and `census` at which outcomes should be aggregated.

- **L2.reg**: Geographic region. A character scalar containing the column name of the geographic region in `survey` and `census` by which geographic units are grouped (`L2.unit` must be nested within `L2.reg`). Default is `NULL`.

- **form**: The model formula. A formula object.

- **gb.grid**: The hyper-parameter search grid. A matrix of all hyper-parameter combinations.

- **n.minobsinnode**: GB minimum number of observations in the terminal nodes. An integer-valued scalar specifying the minimum number of observations that each terminal node of the trees must contain. Default is 5.

- **loss.unit**: Loss function unit. A character-valued scalar indicating whether performance loss should be evaluated at the level of individual respondents (individuals) or geographic units (`L2.units`). Default is `individuals`.

- **loss.fun**: Loss function. A character-valued scalar indicating whether prediction loss should be measured by the mean squared error (MSE) or the mean absolute error (MAE). Default is MSE.

- **data**: Data for cross-validation. A list of `k` `data.frames`, one for each fold to be used in `k`-fold cross-validation.

- **cores**: The number of cores to be used. An integer indicating the number of processor cores used for parallel computing. Default is 1.
run_lasso

Value

The tuning parameter combinations and there associated loss function scores. A list.

run_lasso

Apply lasso classifier to MrP.

Description

run_lasso is a wrapper function that applies the lasso classifier to data provided by the user, evaluates prediction performance, and chooses the best-performing model.

Usage

run_lasso(
  y,
  L1.x,
  L2.x,
  L2.unit,
  L2.reg,
  n.iter,
  loss.unit,
  loss.fun,
  lambda,
  data,
  verbose,
  cores
)

Arguments

y Outcome variable. A character vector containing the column names of the outcome variable. A character scalar containing the column name of the outcome variable in survey.

L1.x Individual-level covariates. A character vector containing the column names of the individual-level variables in survey and census used to predict outcome y. Note that geographic unit is specified in argument L2.unit.

L2.x Context-level covariates. A character vector containing the column names of the context-level variables in survey and census used to predict outcome y.

L2.unit Geographic unit. A character scalar containing the column name of the geographic unit in survey and census at which outcomes should be aggregated.

L2.reg Geographic region. A character scalar containing the column name of the geographic region in survey and census by which geographic units are grouped (L2.unit must be nested within L2.reg). Default is NULL.

n.iter Lasso number of lambda values. An integer-valued scalar specifying the number of lambda values to search over. Default is 100. Note: Is ignored if a vector of lasso.lambda values is provided.
**Run Lasso Mc Lambda**

**Loss Unit**

A character-valued scalar indicating whether performance loss should be evaluated at the level of individual respondents (individuals), geographic units (L2 units) or at both levels. Default is c("individuals","L2 units"). With multiple loss units, parameters are ranked for each loss unit and the loss unit with the lowest rank sum is chosen. Ties are broken according to the order in the search grid.

**Loss Function**

A character-valued scalar indicating whether prediction loss should be measured by the mean squared error (MSE), the mean absolute error (MAE), binary cross-entropy (cross-entropy), mean squared false error (msfe), the f1 score (f1), or a combination thereof. Default is c("MSE","cross-entropy","msfe","f1"). With multiple loss functions, parameters are ranked for each loss function and the parameter combination with the lowest rank sum is chosen. Ties are broken according to the order in the search grid.

**Lasso Penalty Parameter**

A numeric vector of non-negative values. The penalty parameter controls the shrinkage of the context-level variables in the lasso model. Default is a sequence with minimum 0.1 and maximum 250 that is equally spaced on the log-scale. The number of values is controlled by the lasso.n.iter parameter.

**Data**

Data for cross-validation. A list of k data.frames, one for each fold to be used in k-fold cross-validation.

**Verbose**

Verbose output. A logical argument indicating whether or not verbose output should be printed. Default is FALSE.

**Cores**

The number of cores to be used. An integer indicating the number of processor cores used for parallel computing. Default is 1.

**Value**

The tuned lambda value. A numeric scalar.

---

**Run Lasso Mc Lambda**

Lasso multicore tuning.

**Description**

run_lasso_mc_lambda is called from within run_lasso. It tunes using multiple cores.

**Usage**

```r
code_snippet
```
run_lasso_me_lambda

data,
cores,
L2.fe.form,
L1.re,
lambda
)

Arguments

y  Outcome variable. A character vector containing the column names of the outcome variable. A character scalar containing the column name of the outcome variable in survey.
L1.x  Individual-level covariates. A character vector containing the column names of the individual-level variables in survey and census used to predict outcome y. Note that geographic unit is specified in argument L2.unit.
L2.x  Context-level covariates. A character vector containing the column names of the context-level variables in survey and census used to predict outcome y.
L2.unit  Geographic unit. A character scalar containing the column name of the geographic unit in survey and census at which outcomes should be aggregated.
L2.reg  Geographic region. A character scalar containing the column name of the geographic region in survey and census by which geographic units are grouped (L2.unit must be nested within L2.reg). Default is NULL.
loss.unit  Loss function unit. A character-valued scalar indicating whether performance loss should be evaluated at the level of individual respondents (individuals), geographic units (L2 units) or at both levels. Default is c("individuals","L2 units"). With multiple loss units, parameters are ranked for each loss unit and the loss unit with the lowest rank sum is chosen. Ties are broken according to the order in the search grid.
loss.fun  Loss function. A character-valued scalar indicating whether prediction loss should be measured by the mean squared error (MSE), the mean absolute error (MAE), binary cross-entropy (cross-entropy), mean squared false error (msfe), the f1 score (f1), or a combination thereof. Default is c("MSE","cross-entropy","msfe","f1"). With multiple loss functions, parameters are ranked for each loss function and the parameter combination with the lowest rank sum is chosen. Ties are broken according to the order in the search grid.
data  Data for cross-validation. A list of k data.frames, one for each fold to be used in k-fold cross-validation.
cores  The number of cores to be used. An integer indicating the number of processor cores used for parallel computing. Default is 1.
L2.fe.form  The fixed effects part of the Lasso classifier formula. The formula is inherited from run_lasso.
L1.re  A list of random effects for the Lasso classifier formula. The formula is inherited from run_lasso.
lambda  Lasso penalty parameter. A numeric vector of non-negative values. The penalty parameter controls the shrinkage of the context-level variables in the lasso model.
Default is a sequence with minimum 0.1 and maximum 250 that is equally spaced on the log-scale. The number of values is controlled by the `lasso.n.iter` parameter.

Value

The cross-validation errors for all models. A list.

---

**run_pca**

*Apply PCA classifier to MrP.*

**Description**

`run_pca` is a wrapper function that applies the PCA classifier to data provided by the user, evaluates prediction performance, and chooses the best-performing model.

**Usage**

```r
run_pca(
 y,
 L1.x,
 L2.x,
 L2.unit,
 L2.reg,
 loss.unit,
 loss.fun,
 data,
 cores,
 verbose
)
```

**Arguments**

- **y**
  - Outcome variable. A character vector containing the column names of the outcome variable. A character scalar containing the column name of the outcome variable in `survey`.

- **L1.x**
  - Individual-level covariates. A character vector containing the column names of the individual-level variables in `survey` and `census` used to predict outcome `y`. Note that geographic unit is specified in argument `L2.unit`.

- **L2.x**
  - Context-level covariates. A character vector containing the column names of the context-level variables in `survey` and `census` used to predict outcome `y`.

- **L2.unit**
  - Geographic unit. A character scalar containing the column name of the geographic unit in `survey` and `census` at which outcomes should be aggregated.

- **L2.reg**
  - Geographic region. A character scalar containing the column name of the geographic region in `survey` and `census` by which geographic units are grouped (`L2.unit` must be nested within `L2.reg`). Default is `NULL`.
**run_svm**

Loss function unit. A character-valued scalar indicating whether performance loss should be evaluated at the level of individual respondents (individuals), geographic units (L2 units) or at both levels. Default is c("individuals","L2 units"). With multiple loss units, parameters are ranked for each loss unit and the loss unit with the lowest rank sum is chosen. Ties are broken according to the order in the search grid.

Loss function. A character-valued scalar indicating whether prediction loss should be measured by the mean squared error (MSE), the mean absolute error (MAE), binary cross-entropy (cross-entropy), mean squared false error (msfe), the f1 score (f1), or a combination thereof. Default is c("MSE","cross-entropy","msfe","f1"). With multiple loss functions, parameters are ranked for each loss function and the parameter combination with the lowest rank sum is chosen. Ties are broken according to the order in the search grid.

Data for cross-validation. A list of k data.frames, one for each fold to be used in k-fold cross-validation.

The number of cores to be used. An integer indicating the number of processor cores used for parallel computing. Default is 1.

Verbose output. A logical argument indicating whether or not verbose output should be printed. Default is FALSE.

Value

A model formula of the winning best subset classifier model.

---

**run_svm**

Apply support vector machine classifier to MrP.

Description

run_svm is a wrapper function that applies the support vector machine classifier to data provided by the user, evaluates prediction performance, and chooses the best-performing model.

Usage

```r
run_svm(
 y,
 L1.x,
 L2.x,
 L2.eval.unit,
 L2.unit,
 L2.reg,
 kernel = "radial",
 loss.fun,
 loss.unit,
 gamma,
 cost,
)```

run_svm(data, verbose, cores)

Arguments

y Outcome variable. A character vector containing the column names of the outcome variable. A character scalar containing the column name of the outcome variable in survey.

L1.x Individual-level covariates. A character vector containing the column names of the individual-level variables in survey and census used to predict outcome y. Note that geographic unit is specified in argument L2.unit.

L2.x Context-level covariates. A character vector containing the column names of the context-level variables in survey and census used to predict outcome y.

L2.eval.unit Geographic unit for the loss function. A character scalar containing the column name of the geographic unit in survey and census.

L2.unit Geographic unit. A character scalar containing the column name of the geographic unit in survey and census at which outcomes should be aggregated.

L2.reg Geographic region. A character scalar containing the column name of the geographic region in survey and census by which geographic units are grouped (L2.unit must be nested within L2.reg). Default is NULL.

kernel SVM kernel. A character-valued scalar specifying the kernel to be used by SVM. The possible values are linear, polynomial, radial, and sigmoid. Default is radial.

loss.fun Loss function. A character-valued scalar indicating whether prediction loss should be measured by the mean squared error (MSE) or the mean absolute error (MAE). Default is MSE.

loss.unit Loss function unit. A character-valued scalar indicating whether performance loss should be evaluated at the level of individual respondents (individuals), geographic units (L2 units) or at both levels. Default is c("individuals","L2 units"). With multiple loss units, parameters are ranked for each loss unit and the loss unit with the lowest rank sum is chosen. Ties are broken according to the order in the search grid.

gamma SVM kernel parameter. A numeric vector whose values specify the gamma parameter in the SVM kernel. This parameter is needed for all kernel types except linear. Default is a sequence with minimum = 1e-5, maximum = 1e-1, and length = 20 that is equally spaced on the log-scale.

cost SVM cost parameter. A numeric vector whose values specify the cost of constraints violation in SVM. Default is a sequence with minimum = 0.5, maximum = 10, and length = 5 that is equally spaced on the log-scale.

data Data for cross-validation. A list of k data.frames, one for each fold to be used in k-fold cross-validation.

verbose Verbose output. A logical argument indicating whether or not verbose output should be printed. Default is FALSE.
run_svm_mc

cores

The number of cores to be used. An integer indicating the number of processor cores used for parallel computing. Default is 1.

Value

The support vector machine tuned parameters. A list.

Description

run_svm_mc is called from within run_svm. It tunes using multiple cores.

Usage

run_svm_mc(
 y,
 L1.x,
 L2.x,
 L2.eval.unit,
 L2.unit,
 L2.reg,
 form,
 loss.unit,
 loss.fun,
 data,
 cores,
 svm.grid,
 verbose
)

Arguments

y

Outcome variable. A character vector containing the column names of the outcome variable. A character scalar containing the column name of the outcome variable in survey.

L1.x

Individual-level covariates. A character vector containing the column names of the individual-level variables in survey and census used to predict outcome y. Note that geographic unit is specified in argument L2.unit.

L2.x

Context-level covariates. A character vector containing the column names of the context-level variables in survey and census used to predict outcome y.

L2.eval.unit

Geographic unit for the loss function. A character scalar containing the column name of the geographic unit in survey and census.

L2.unit

Geographic unit. A character scalar containing the column name of the geographic unit in survey and census at which outcomes should be aggregated.
L2.reg Geographic region. A character scalar containing the column name of the geographic region in survey and census by which geographic units are grouped (L2.unit must be nested within L2.reg). Default is NULL.

form The model formula. A formula object.

loss.unit Loss function unit. A character-valued scalar indicating whether performance loss should be evaluated at the level of individual respondents (individuals), geographic units (L2 units) or at both levels. Default is c("individuals","L2 units"). With multiple loss units, parameters are ranked for each loss unit and the loss unit with the lowest rank sum is chosen. Ties are broken according to the order in the search grid.

loss.fun Loss function. A character-valued scalar indicating whether prediction loss should be measured by the mean squared error (MSE) or the mean absolute error (MAE). Default is MSE.

data Data for cross-validation. A list of k data.frames, one for each fold to be used in k-fold cross-validation.

cores The number of cores to be used. An integer indicating the number of processor cores used for parallel computing. Default is 1.

svm.grid The hyper-parameter search grid. A matrix of all hyper-parameter combinations.

verbose Verbose output. A logical argument indicating whether or not verbose output should be printed. Default is FALSE.

Value The cross-validation errors for all models. A list.

summary.autoMrP A summary method for autoMrP objects.

Description summary.autoMrP()

Usage ## S3 method for class 'autoMrP'

summary(
 object,
 ci.lvl = 0.95,
 digits = 4,
 format = "simple",
 classifiers = NULL,
 n = 10,
 ...
)
survey_item

Arguments

- object: An `autoMrP()` object for which a summary is desired.
- ci.lvl: The level of the confidence intervals. A proportion. Default is 0.95. Confidence intervals are based on bootstrapped estimates and will not be printed if bootstrapping was not carried out.
- digits: The number of digits to be displayed. An integer scalar. Default is 4.
- format: The table format. A character string passed to `kable`. Default is `simple`.
- classifiers: Summarize a single classifier. A character string. Must be one of `best_subset`, `lasso`, `pca`, `gb`, `svm`, or `mrp`. Default is `NULL`.
- n: Number of rows to be printed. An integer scalar. Default is 10.
- ...: Additional arguments affecting the summary produced.

survey_item A sample of a survey item from the CCES 2008

Description

The Cooperative Congressional Election Studies (CCES) item (cc418_1) asked: "Would you approve of the use of U.S. military troops in order to ensure the supply of oil?" The original 2008 CCES item contains 36,832 respondents. This sample mimics a typical national survey. It contains at least 5 respondents from each state but is otherwise a random sample.

Usage

survey_item

Format

A data frame with 1500 rows and 13 variables:

- **YES**: 1 if individual supports use of troops; 0 otherwise
- **L1x1**: Age group (four categories: 1 = 18-29; 2 = 30-44; 3 = 45-64; 4 = 65+)
- **L1x2**: Education level (four categories: 1 = < high school; 2 = high school graduate; 3 = some college; 4 = college graduate)
- **L1x3**: Gender-race combination (six categories: 1 = white male; 2 = black male; 3 = hispanic male; 4 = white female; 5 = black female; 6 = hispanic female)
- **state**: U.S. state
- **L2.unit**: U.S. state id
- **region**: U.S. region (four categories: 1 = Northeast; 2 = Midwest; 3 = South; 4 = West)
- **L2.x1**: Normalized state-level share of votes for the Republican candidate in the previous presidential election
- **L2.x2**: Normalized state-level percentage of Evangelical Protestant or Mormon respondents
\textbf{L.2.x3} Normalized state-level percentage of the population living in urban areas
\textbf{L.2.x4} Normalized state-level unemployment rate
\textbf{L.2.x5} Normalized state-level share of Hispanics
\textbf{L.2.x6} Normalized state-level share of Whites

\textbf{Source}

The data set (excluding L.2.x3, L.2.x4, L.2.x5, L.2.x6) is taken from the article: Buttice, Matthew K, and Benjamin Highton. 2013. "How does multilevel regression and poststrat-stratification perform with conventional national surveys?" Political Analysis 21(4): 449-467. It is a random sample with at least 5 respondents per state. L.2.x3, L.2.x3, L.2.x4, L.2.x5 and L.2.x6 are available at \url{https://www.census.gov}.

\textbf{svm_classifier} \hspace{1cm} \textit{SVM classifier}

\textbf{Description}

\texttt{svm_classifier} applies support vector machine classification to a data set.

\textbf{Usage}

\begin{verbatim}
svm_classifier(
 form,
 data,
 kernel,
 type,
 probability,
 svm_gamma,
 svm_cost,
 verbose = c(TRUE, FALSE)
)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{form} \hspace{1cm} Model formula. A two-sided linear formula describing the model to be fit, with the outcome on the LHS and the covariates separated by + operators on the RHS.
 \item \texttt{data} \hspace{1cm} Data. A data.frame containing the cross-validation data used to train and evaluate the model.
 \item \texttt{kernel} \hspace{1cm} Kernel for SVM. A character string specifying the kernel to be used for SVM. The possible types are linear, polynomial, radial, and sigmoid. Default is radial.
 \item \texttt{type} \hspace{1cm} \texttt{svm} can be used as a classification machine, as a regression machine, or for novelty detection. Depending of whether \texttt{y} is a factor or not, the default setting for type is C-classification or eps-regression, respectively, but may be overwritten by setting an explicit value. Valid options are: #'
\end{itemize}
1. C-classification
2. nu-classification
3. one-classification (for novelty detection)
4. eps-regression
5. nu-regression

probability
 Probability predictions. A logical argument indicating whether the model should allow for probability predictions

svm.gamma
 Gamma parameter for SVM. This parameter is needed for all kernels except linear.

svm.cost
 Cost parameter for SVM. This parameter specifies the cost of constraints violation.

verbose
 Verbose output. A logical vector indicating whether or not verbose output should be printed.

Value
 The support vector machine model. An \texttt{svm} object.

\begin{itemize}
\item \texttt{taxes_census}
\item Quasi census data.
\end{itemize}

Description
 The census file is generated from the full 2008 National Annenberg Election Studies item CBb01 by dissaggregating the 64 ideal type combinations of the individual level variables L1x1, L2x2 and L1x3. A row is an ideal type in a given state.

Usage
 \texttt{data(taxes_census)}

Format
 A data frame with 2934 rows and 13 variables:
 \begin{itemize}
 \item \texttt{state} U.S. state
 \item \texttt{L2.unit} U.S. state id
 \item \texttt{region} U.S. region (four categories: 1 = Northeast; 2 = Midwest; 3 = South; 4 = West)
 \item \texttt{L1x1} Age group (four categories)
 \item \texttt{L1x2} Education level (four categories)
 \item \texttt{L1x3} Gender-race combination (six categories)
 \item \texttt{freq} State-level frequency of ideal type
 \item \texttt{proportion} State-level proportion of respondents of that ideal type in the population
Source

The data set (excluding L2.x3, L2.x4, L2.x5, L2.x6) is taken from the article: Buttice, Matthew K, and Benjamin Highton. 2013. "How does multilevel regression and poststratification perform with conventional national surveys?" Political Analysis 21(4): 449-467. L2.x3, L2.x3, L2.x4, L2.x5 and L2.x6 are available at https://www.census.gov.

Description

The 2008 National Annenberg Election Studies (NAES) item (CBb01) asked: "I’m going to read you some options about federal income taxes. Please tell me which one comes closest to your view on what we should be doing about federal income taxes: (1) Cut taxes; (2) Keep taxes as they are; (3) Raise taxes if necessary; (4) None of these; (998) Don’t know; (999) No answer. Category (3) was turned into a 'raise taxes response,' categories (1) and (2) were combined into a 'do not raise taxes' response. The original item from the phone and online surveys contains 50,483 respondents. This sample mimics a typical national survey. It contains at least 5 respondents from each state but is otherwise a random sample.

The 2008 National Annenberg Election Studies (NAES) item (CBb01) asked: "I’m going to read you some options about federal income taxes. Please tell me which one comes closest to your view on what we should be doing about federal income taxes: (1) Cut taxes; (2) Keep taxes as they are; (3) Raise taxes if necessary; (4) None of these; (998) Don’t know; (999) No answer. Category (3) was turned into a 'raise taxes response,' categories (1) and (2) were combined into a 'do not raise taxes' response. The original item from the phone and online surveys contains 50,483 respondents. This sample mimics a typical national survey. It contains at least 5 respondents from each state but is otherwise a random sample.

Usage

data(taxes_survey)

data(taxes_survey)
Format

A data frame with 1500 rows and 13 variables:

YES 1 if individual supports raising taxes; 0 otherwise
L1x1 Age group (four categories: 1 = 18-29; 2 = 30-44; 3 = 45-64; 4 = 65+)
L1x2 Education level (four categories: 1 = < high school; 2 = high school graduate; 3 = some college; 4 = college graduate)
L1x3 Gender-race combination (six categories: 1 = white male; 2 = black male; 3 = hispanic male; 4 = white female; 5 = black female; 6 = hispanic female)
state U.S. state
L2.unit U.S. state id
region U.S. region (four categories: 1 = Northeast; 2 = Midwest; 3 = South; 4 = West)
L2.x1 State-level share of votes for the Republican candidate in the previous presidential election
L2.x2 State-level percentage of Evangelical Protestant or Mormon respondents
L2.x3 State-level percentage of the population living in urban areas
L2.x4 State-level unemployment rate
L2.x5 State-level share of Hispanics
L2.x6 State-level share of Whites

A data frame with 1500 rows and 13 variables:

YES 1 if individual supports raising taxes; 0 otherwise
L1x1 Age group (four categories: 1 = 18-29; 2 = 30-44; 3 = 45-64; 4 = 65+)
L1x2 Education level (four categories: 1 = < high school; 2 = high school graduate; 3 = some college; 4 = college graduate)
L1x3 Gender-race combination (six categories: 1 = white male; 2 = black male; 3 = hispanic male; 4 = white female; 5 = black female; 6 = hispanic female)
state U.S. state
L2.unit U.S. state id
region U.S. region (four categories: 1 = Northeast; 2 = Midwest; 3 = South; 4 = West)
L2.x1 State-level share of votes for the Republican candidate in the previous presidential election
L2.x2 State-level percentage of Evangelical Protestant or Mormon respondents
L2.x3 State-level percentage of the population living in urban areas
L2.x4 State-level unemployment rate
L2.x5 State-level share of Hispanics
L2.x6 State-level share of Whites
Source

The data set (excluding L2.x3, L2.x4, L2.x5, L2.x6) is taken from the article: Buttice, Matthew K, and Benjamin Highton. 2013. "How does multilevel regression and poststrat-stratification perform with conventional national surveys?" Political Analysis 21(4): 449-467. It is a random sample with at least 5 respondents per state. L2.x3, L2.x3, L2.x4, L2.x5 and L2.x6 are available at https://www.census.gov.

The data set (excluding L2.x3, L2.x4, L2.x5, L2.x6) is taken from the article: Buttice, Matthew K, and Benjamin Highton. 2013. "How does multilevel regression and poststrat-stratification perform with conventional national surveys?" Political Analysis 21(4): 449-467. It is a random sample with at least 5 respondents per state. L2.x3, L2.x3, L2.x4, L2.x5 and L2.x6 are available at https://www.census.gov.
Index

* Bayesian
 auto_MrP, 5
* EBMA
 auto_MrP, 5
* MRP
 auto_MrP, 5
* averaging
 auto_MrP, 5
* datasets
 absentee_census, 3
 absentee_voting, 4
 census, 18
 survey_item, 61
 taxes_census, 63
 taxes_survey, 64
* ensemble
 auto_MrP, 5
* learning
 auto_MrP, 5
* machine
 auto_MrP, 5
* model
 auto_MrP, 5
* multilevel
 auto_MrP, 5
* post-stratification
 auto_MrP, 5
* regression
 auto_MrP, 5

absentee_census, 3
absentee_voting, 4
auto_MrP, 5

best_subset_classifier, 11
binary_cross_entropy, 12
boot_auto_mrp, 13

census, 18
cv_folding, 19

ebma, 19
ebma_folding, 21
ebma_mc_draws, 22
ebma_mc_tol, 23
error_checks, 25

f1_score, 29
gb_classifier, 29
gb_classifier_update, 30
gbm, 23, 24, 30
gbm_more, 30
glmer, 12, 23, 24
glmmLasso, 23, 24, 31

kable, 37, 61

lasso_classifier, 31
log_spaced, 32
loss_function, 32
loss_score_ranking, 33

mean_absolute_error, 34
mean_squared_error, 34
mean_squared_false_error, 35
model_list, 35
model_list_pca, 36
multicore, 37

output_table, 37

plot.autoMrP, 38
post_stratification, 38
predict_glmmLasso, 40

quiet, 41

run_best_subset, 42
run_best_subset_mc, 43
run_classifiers, 44
run_gb, 49
run_gb_mc, 51
run_lasso, 53
run_lasso_mc_lambda, 54
run_pca, 56
run_svm, 57
run_svm_mc, 59
summary.autoMrP, 60
survey_item, 61
svm, 23, 24, 63
svm_classifier, 62
taxes_census, 63
taxes_survey, 64