Package ‘autohrf’

July 21, 2022

Type Package

Title Automated Generation of Data-Informed GLM Models in Task-Based fMRI Data Analysis

Version 1.0.3

Maintainer Jure Demšar <jure.demsar@fri.uni-lj.si>

Description
Analysis of task-related functional magnetic resonance imaging (fMRI) activity at the level of individual participants is commonly based on general linear modelling (GLM) that allows us to estimate to what extent the blood oxygenation level dependent (BOLD) signal can be explained by task response predictors specified in the GLM model. The predictors are constructed by convolving the hypothesised timecourse of neural activity with an assumed hemodynamic response function (HRF). To get valid and precise estimates of task response, it is important to construct a model of neural activity that best matches actual neuronal activity. The construction of models is most often driven by predefined assumptions on the components of brain activity and their duration based on the task design and specific aims of the study. However, our assumptions about the onset and duration of component processes might be wrong and can also differ across brain regions. This can result in inappropriate or suboptimal models, bad fitting of the model to the actual data and invalid estimations of brain activity. Here we present an approach in which theoretically driven models of task response are used to define constraints based on which the final model is derived computationally using the actual data. Specifically, we developed 'autohrf' — a package for the 'R' programming language that allows for data-driven estimation of HRF models. The package uses genetic algorithms to efficiently search for models that fit the underlying data well. The package uses automated parameter search to find the onset and duration of task predictors which result in the highest fitness of the resulting GLM based on the fMRI signal under predefined restrictions. We evaluate the usefulness of the 'autohrf' package on publicly available datasets of task-related fMRI activity. Our results suggest that by using 'autohrf' users can find better task related brain activity models in a quick and efficient manner.

License GPL (>= 3)

Encoding UTF-8

LazyData true

Imports cowplot (>= 1.1.1), doParallel (>= 1.0.17), dplyr (>= 1.0.8), foreach (>= 1.5.2), ggpplot2 (>= 3.3.5), gtools (>= 3.9.2), lubridate (>= 1.8.0), magrittr (>= 2.0.2), RColorBrewer (>= 1.1.3), sjmisc, sjoTools
1.1)

Suggests knitr (>= 1.38), testthat (>= 3.1.3)

VignetteBuilder knitr

RoxygenNote 7.2.0

URL https://github.com/demsarjure/autohrf

BugReports https://github.com/demsarjure/autohrf/issues

NeedsCompilation no

Author Jure Demšar [cre, aut],
Nina Purg [aut],
Grega Repovš [aut]

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2022-07-21 12:00:11 UTC

R topics documented:

autohrf .. 3
autohrf-datasets 5
convolve_events 5
convolve_hrf .. 6
create_boynton_hrf 7
create_child .. 7
create_first_generation 8
create_new_generation 9
create_spm_hrf .. 10
downsample .. 10
evaluate_model .. 11
fit_to_constraints 12
get_best_models 13
get_parents .. 14
plot_best_models 15
plot_events ... 16
plot_fitness ... 16
plot_model ... 17
run_model .. 18

Index 19
autohrf

Description

A function that automatically finds the parameters of model's that best match the underlying data.

Usage

```r
autohrf(
  d, model_constraints, tr,
  roi_weights = NULL,
  allow_overlap = FALSE,
  population = 100,
  iter = 100,
  mutation_rate = 0.1,
  mutation_factor = 0.05,
  elitism = 0.1,
  hrf = "spm",
  t = 32,
  p_boynton = c(2.25, 1.25, 2),
  p_spm = c(6, 16, 1, 1, 6, 0),
  f = 100,
  cores = NULL,
  autohrf = NULL,
  verbose = TRUE
)
```

Arguments

d A dataframe with the signal data: roi, t and y. ROI is the name of the region, t is the timestamp and y the value of the signal.

model_constraints A list of model specifications to use for fitting. Each specification is represented as a data frame containing information about it (event, start_time, end_time, min_duration and max_duration).

tr MRI’s repetition time.

roi_weights A data frame with ROI weights: roi, weight. ROI is the name of the region, weight a number that defines the importance of that roi, the default weight for a ROI is 1. If set to 2 for a particular ROI that ROI will be twice as important.

allow_overlap Whether to allow overlap between events.

population The size of the population in the genetic algorithm.

iter Number of iterations in the genetic algorithm.
mutation_rate The mutation rate in the genetic algorithm.
mutation_factor The mutation factor in the genetic algorithm.
elitism The degree of elitism (promote a percentage of the best solutions) in the genetic algorithm.
hrf Method to use for HRF generation.
t The t parameter for Boynton or SPM HRF generation.
p_boynton Parameters for the Boynton’s HRF.
p_spm Parameters for the SPM HRF.
f Upsampling factor.
cores Number of cores to use for parallel processing. Set to the number of provided model constraints by default.
autohrf Results of a previous autohrf run to continue.
verbose Whether to print progress of the fitting process.

Value
A list containing model fits for each of the provided model specifications.

Examples

prepare model specs
model3 <- data.frame(
 event = c("encoding", "delay", "response"),
 start_time = c(0, 2.65, 12.5),
 end_time = c(3, 12.5, 16)
)

model4 <- data.frame(
 event = c("fixation", "target", "delay", "response"),
 start_time = c(0, 2.5, 2.65, 12.5),
 end_time = c(2.5, 3, 12.5, 15.5)
)

model_constraints <- list(model3, model4)

run autohrf
df <- swm
autofit <- autohrf(df, model_constraints, tr = 2.5,
 population = 2, iter = 2, cores = 1)
autohrf-datasets

Datasets for autohrf examples Example datasets for use in autohrf examples and vignettes. The datasets were extracted from the internal Mind and Brain Lab's (MBLab, http://www.mlab.si repository. MBLab is a research lab at the Faculty of Arts, Department of Psychology, University of Ljubljana, Slovenia.

Description

Datasets for autohrf examples Example datasets for use in autohrf examples and vignettes. The datasets were extracted from the internal Mind and Brain Lab's (MBLab, http://www.mlab.si repository. MBLab is a research lab at the Faculty of Arts, Department of Psychology, University of Ljubljana, Slovenia.

Format

swm fMRI dataset for a spatial working memory experiment.
 Source: Internal MBLab repository.
 504 obs. of 3 variables
 • roi region of interest.
 • time time stamp.
 • y BOLD value.

swm Autofit Stored results from a complete autohrf run.
 Source: Internal MBLab repository.

Examples

load swm data
data_swm <- swm

load the previously completed autofit
autofit <- swm Autofit

convolve_events

Description

A helper function for convolving events of a model with a generated HRF signal.
Usage

```
convolve_events(
    model,
    tr,
    max_duration,
    hrf = "spm",
    t = 32,
    p_boynton = c(2.25, 1.25, 2),
    p_spm = c(6, 16, 1, 1, 6, 0),
    f = 100
)
```

Arguments

- **model**: A data frame containing information about the model to use and its events (event, start_time and duration).
- **tr**: MRI's repetition time.
- **max_duration**: Maximum duration of the signal.
- **hrf**: Method to use for HRF generation, can be "boynton" or "spm".
- **t**: The t parameter for Boynton or SPM HRF generation.
- **p_boynton**: Parameters for the Boynton's HRF.
- **p_spm**: Parameters for the SPM HRF.
- **f**: Upsampling factor.

Value

Returns a list with the convolved signal and time series.

convolve_hrf

Description

A helper function for convolving HRF with a signal.

Usage

```
convolve_hrf(y, hrf_s)
```

Arguments

- **y**: The signal.
- **hrf_s**: The HRF.

Value

Returns the convolution between HRF and the signal.
create_boynton_hrf

Description
A helper function for creating a Boynton HRF.

Usage
create_boynton_hrf(tr, t = 32, p = c(2.25, 1.25, 2))

Arguments
- tr: MRI's repetition time.
- t: The t parameter for Boynton or SPM HRF generation.
- p: Parameters for the Boynton's HRF.

Value
Returns a Boynton HRF function.

create_child

Description
A helper function for creating a child from parents.

Usage
create_child(
 start_time,
 end_time,
 n_events,
 mutation_rate,
 mutation_factor,
 current_model,
 p1,
 p2,
 allow_overlap
)
create_first_generation

Arguments

- `start_time`: A list with model’s event start times.
- `end_time`: A list with model’s event end times.
- `n_events`: Number of events in the model.
- `mutation_rate`: The mutation rate in the genetic algorithm.
- `mutation_factor`: The mutation factor in the genetic algorithm.
- `current_model`: The constraints of the current model.
- `p1`: The first selected parent.
- `p2`: The second selected parent.
- `allow_overlap`: Whether to allow overlap between events.

Value

A child model created from two parents.

Description

A helper function for creating the first generation.

Usage

```
create_first_generation(current_model, n_events, population, allow_overlap)
```
create_new_generation

Description

A helper function for creating a new generation of possible solutions.

Usage

create_new_generation(
elitism,
population,
start_time,
end_time,
fitness,
n_events,
mutation_factor,
mutation_rate,
current_model,
allow_overlap
)

Arguments

elitism The degree of elitism (promote a percentage of the best solutions) in the genetic algorithm.
population The size of the population in the genetic algorithm.
start_time A list with model’s event start times.
end_time A list with model’s event end times.
fitness A fitness score of all candidate models.
n_events Number of events in the model.
mutation_factor The mutation factor in the genetic algorithm.
mutation_rate The mutation rate in the genetic algorithm.
current_model The constraints of the current model.
allow_overlap Whether to allow overlap between events.

Value

A new generation of candidate models.
create_spm_hrf

Description

A helper function for creating a SPM HRF.

Usage

```r
create_spm_hrf(tr, t = 32, p = c(6, 16, 1, 1, 6, 0))
```

Arguments

- `tr`: MRI's repetition time.
- `t`: The t parameter for Boynton or SPM HRF generation.
- `p`: Parameters for the SPM HRF.

Value

Returns a SPM HRF function.

downsample

Description

A helper function for downsampling a given signal.

Usage

```r
downsample(y, f = 100)
```

Arguments

- `y`: The signal.
- `f`: Upsampling factor.

Value

Returns the downsampled signal.
evaluate_model

Description

A function for evaluating the model against the data.

Usage

```r
evaluate_model(
  d,
  model,
  tr,
  roi_weights = NULL,
  hrf = "spm",
  t = 32,
  p_boynton = c(2.25, 1.25, 2),
  p_spm = c(6, 16, 1, 1, 6, 0),
  f = 100,
  verbose = TRUE
)
```

Arguments

- `d`: A dataframe with the signal data: roi, t and y. ROI is the name of the region, t is the timestamp and y the value of the signal.
- `model`: A data frame containing information about the model to use and its events (event, start_time and duration).
- `tr`: MRI's repetition time.
- `roi_weights`: A data frame with ROI weights: roi, weight. ROI is the name of the region, weight a number that defines the importance of that roi, the default weight for a ROI is 1. If set to 2 for a particular ROI that ROI will be twice as important.
- `hrf`: Method to use for HRF generation, can be "boynton" or "spm".
- `t`: The t parameter for Boynton or SPM HRF generation.
- `p_boynton`: Parameters for the Boynton's HRF.
- `p_spm`: Parameters for the SPM HRF.
- `f`: Upsampling factor.
- `verbose`: Whether to print a report of the evaluation results.

Value

Returns a list that contains the model, fits of events for each ROI, convolved events, TR and R2 score for each ROI.
Examples

create the model
m <- data.frame(event = c("encoding", "delay", "response"),
start_time = c(0, 2.5, 12.5), duration = c(2.5, 10, 5))

evaluate
df <- swm
res <- evaluate_model(df, m, tr = 2.5)

Description

A helper function for fitting a model to constraints.

Usage

```
fit_to_constraints(model_id, d, model_constraints, tr, roi_weights, allow_overlap, population, iter, mutation_rate, mutation_factor, elitism, hrf, t, p_boynton, p_spm, f, autohrf = NULL, verbose = TRUE)
```

Arguments

- `model_id` ID of the model.
- `d` A dataframe with the signal data: roi, t and y. ROI is the name of the region, t is the timestamp and y the value of the signal.
Description

Returns and prints the best fitted model for each of the specs used in autohrf.

Usage

```r
get_best_models(autofit, return_fitness = FALSE, verbose = TRUE)
```

Arguments

- `autofit`: Output of the autohrf function.
- `return_fitness`: Whether to return models or fitness.
- `verbose`: Whether to print information or only return the result.
get_parents

Value

Returns a list containing the best models for each of the provided constraints.

Examples

prepare model specs
model3 <- data.frame(
 event = c("encoding", "delay", "response"),
 start_time = c(0, 2.65, 12.5),
 end_time = c(3, 12.5, 16)
)

model4 <- data.frame(
 event = c("fixation", "target", "delay", "response"),
 start_time = c(0, 2.5, 2.65, 12.5),
 end_time = c(2.5, 3, 12.5, 15.5)
)

model_constraints <- list(model3, model4)

run autohrf
df <- swm
autofit <- autohrf(df, model_constraints, tr = 2.5,
 population = 2, iter = 2, cores = 1)

print best models
get_best_models(autofit)

get_parents

Description

A helper function for getting parents for the child model.

Usage

get_parents(fitness)

Arguments

fitness A fitness score of all candidate models.

Value

Parents for the child model.
Description

Plots the best fitted model for each of the specs in autohrf.

Usage

plot_best_models(autofit, ncol = NULL, nrow = NULL)

Arguments

autofit Output of the autohrf function.
ncol Number of columns in the plot.
nrow Number of rows in the plot.

Value

Plots the grid containing a visualization of the best models for each of the provided constraints.

Examples

```r
# prepare model specs
model3 <- data.frame(
  event = c("encoding", "delay", "response"),
  start_time = c(0, 2.65, 12.5),
  end_time = c(3, 12.5, 16)
)

model4 <- data.frame(
  event = c("fixation", "target", "delay", "response"),
  start_time = c(0, 2.5, 2.65, 12.5),
  end_time = c(2.5, 3, 12.5, 15.5)
)

model_constraints <- list(model3, model4)

# run autohrf
df <- swm
autofit <- autohrf(df, model_constraints, tr = 2.5,
  population = 2, iter = 2, cores = 1)

# plot best models
plot_best_models(autofit)
```
plot_events

Description
A helper function for plotting events of a fitted model.

Usage
plot_events(af, i = NULL)

Arguments
af The output from the autohrf function.
i Model index.

Value
Returns a plot of the events.

plot_fitness

Description
Plots how fitness changed through iterations of autohrf. Use this to investigate whether your solution converged.

Usage
plot_fitness(autofit)

Arguments
autofit Output of the autohrf function.

Value
A ggplot visualization of fitness through time.
Examples

prepare model specs
model3 <- data.frame(
 event = c("encoding", "delay", "response"),
 start_time = c(0, 2.65, 12.5),
 end_time = c(3, 12.5, 16)
)
model4 <- data.frame(
 event = c("fixation", "target", "delay", "response"),
 start_time = c(0, 2.5, 2.65, 12.5),
 end_time = c(2.5, 3, 12.5, 15.5)
)
model_constraints <- list(model3, model4)

run autohrf
df <- swm
autofit <- autohrf(df, model_constraints, tr = 2.5,
 population = 2, iter = 2, cores = 1)

plot fitness
plot_fitness(autofit)

plot_model

Description

Plots a manually constructed model.

Usage

plot_model(
 model_evaluation,
 by_roi = FALSE,
 ncol = NULL,
 nrow = NULL,
 scales = "free_y",
 rois = NULL
)

Arguments

model_evaluation
 The output from the evaluate_model function.

by_roi
 Whether to plot the fit for each ROI independently.
Description
A helper function for evaluating a model.

Usage
run_model(d, ce, model, roi_weights = NULL)

Arguments
d A dataframe with the signal data: roi, t and y. ROI is the name of the region, t is the timestamp and y the value of the signal.

ce Result of the convolve_events function.

model A data frame containing information about the model to use and its events (event, start_time and duration).

roi_weights A data frame with ROI weights: roi, weight. ROI is the name of the region, weight a number that defines the importance of that roi, the default weight for a ROI is 1. If set to 2 for a particular ROI that ROI will be twice as important.

Value
Returns the model’s evaluation.
Index

autohrf, 3
autohrf-datasets, 5

convolve_events, 5
convolve_hrf, 6
create_boynton_hrf, 7
create_child, 7
create_first_generation, 8
create_new_generation, 9
create_spm_hrf, 10

downsmaple, 10

evaluate_model, 11

fit_to_constraints, 12

get_best_models, 13
get_parents, 14

plot_best_models, 15
plot_events, 16
plot_fitness, 16
plot_model, 17

run_model, 18

swm (autohrf-datasets), 5
swm Autofit (autohrf-datasets), 5