Package ‘autostats’

June 7, 2024

Type Package
Title Auto Stats
Version 0.4.1
Maintainer Harrison Tietze <harrison4192@gmail.com>
Description Automatically do statistical exploration. Create formulas using 'tidyselect' syntax, and then determine cross-validated model accuracy and variable contributions using 'glm' and 'xgboost'. Contains additional helper functions to create and modify formulas. Has a flagship function to quickly determine relationships between categorical and continuous variables in the data set.
Encoding UTF-8
Imports dplyr, stringr, tidyselect, purrr, janitor, tibble, rlang, stats, rlist, broom, magrittr, ggeasy, ggplot2, jtools, gtools, ggthemes, patchwork, tidyr, xgboost, parsnip, recipes, rsample, tune, workflows, framecleaner, presenter, yardstick, dials, party, data.table, nnet, recosystem, Ckmeans.1d.dp, broomixed, igraph
RoxygenNote 7.3.1
BugReports https://github.com/Harrison4192/autostats/issues
Suggests knitr, rmarkdown, forcats, parallel, doParallel, hardhat, flextable, glmnet, ggstance, Matrix, BBmisc, readr, lubridate, ranger, XICOR
VignetteBuilder knitr
License MIT + file LICENSE
NeedsCompilation no
Author Harrison Tietze [aut, cre]
Depends R (>= 3.5.0)
Repository CRAN
Date/Publication 2024-06-04 09:44:44 UTC
auto_anova

Description

A wrapper around lm and anova to run a regression of a continuous variable against categorical variables. Used for determining the whether the mean of a continuous variable is statistically significant amongst different levels of a categorical variable.

Usage

auto_anova(
 data,
 ...,
 baseline = c("mean", "median", "first_level", "user_supplied"),
 user_supplied_baseline = NULL,
 sparse = FALSE,
 pval_thresh = 0.1
)
auto_anova

Arguments

- **data**: a data frame
- **baseline**: choose from "mean", "median", "first_level", "user_supplied". what is the baseline to compare each category to? can use the mean and median of the target variable as a global baseline
- **user_supplied_baseline**: if intercept is "user_supplied", can enter a numeric value
- **sparse**: default FALSE; if true returns a truncated output with only significant results
- **pval_thresh**: control significance level for sparse output filtering

Details

Columns can be inputted as unquoted names or tidyselect. Continuous and categorical variables are automatically determined. If no character or factor column is present, the column with the lowest amount of unique values will be considered the categorical variable.

Description of columns in the output

- **target**: continuous variables
- **predictor**: categorical variables
- **level**: levels in the categorical variables
- **estimate**: difference between level target mean and baseline
- **target_mean**: target mean per level
- **n**: rows in predictor level
- **std.error**: standard error of target in predictor level
- **level_p.value**: p.value for t.test of whether target mean differs significantly between level and baseline
- **level_significance**: level p.value represented by stars
- **predictor_p.value**: p.value for significance of entire predictor given by F test
- **predictor_significance**: predictor p.value represented by stars
- **conclusion**: text interpretation of tests

Value

- data frame

Examples

```r
iris %>%
auto_anova(tidyselect::everything()) -> iris_anova1

iris_anova1 %>%
print(width = Inf)
```
auto_boxplot

Description
Wraps geom_boxplot to simplify creating boxplots.

Usage
auto_boxplot(
 .data,
 continuous_outcome,
 categorical_variable,
 categorical_facets = NULL,
 alpha = 0.3,
 width = 0.15,
 color_dots = "black",
 color_box = "red"
)

Arguments
.data data
continuous_outcome continuous y variable. unquoted column name
categorical_variable categorical x variable. unquoted column name
categorical_facets categorical facet variable. unquoted column name
alpha alpha points
width width of jitter
color_dots dot color
color_box box color

Value
ggplot

Examples
iris %>%
auto_boxplot(continuous_outcome = Petal.Width, categorical_variable = Species)
Description

Finds the correlation between numeric variables in a data frame, chosen using tidyselect. Additional parameters for the correlation test can be specified as in `cor.test`.

Usage

```r
auto_cor(
  .data, 
  ..., 
  use = c("pairwise.complete.obs", "all.obs", "complete.obs", "everything", "na.or.complete"),
  method = c("pearson", "kendall", "spearman", "xicor"),
  include_nominals = TRUE,
  max_levels = 5L,
  sparse = TRUE,
  pval_thresh = 0.1
)
```

Arguments

- `.data`
data frame
- `...`
tidyselect cols
- `use`
method to deal with na. Default is to remove rows with NA
- `method`
correlation method. default is pearson, but also supports xicor.
- `include_nominals`
logicals, default TRUE. Dummify nominal variables?
- `max_levels`
maximum numbers of dummies to be created from nominal variables
- `sparse`
logical, default TRUE. Filters and arranges cor table
- `pval_thresh`
threshold to filter out weak correlations

Details

includes the asymmetric correlation coefficient xi from `xicor`

Value

data frame of correlations
Examples

```
iris %>%
  auto_cor()
```

don't use sparse if you're interested in only one target variable

```
iris %>%
  auto_cor(sparse = FALSE) %>%
  dplyr::filter(x == "Petal.Length")
```

Description

Runs a cross validated xgboost and regularized linear regression, and reports accuracy metrics. Automatically determines whether the provided formula is a regression or classification.

Usage

```
auto_model_accuracy(
  data,
  formula,
  ..., 
  n_folds = 4,
  as_flextable = TRUE,
  include_linear = FALSE,
  theme = "tron",
  seed = 1,
  mtry = 1,
  trees = 15L,
  min_n = 1L,
  tree_depth = 6L,
  learn_rate = 0.3,
  loss_reduction = 0,
  sample_size = 1,
  stop_iter = 10L,
  counts = FALSE,
  penalty = 0.015,
  mixture = 0.35
)
```

Arguments

- `data` : data frame
- `formula` : formula
- `...` : any other params for xgboost
auto_tune_xgboost

Description

Automatically tunes an xgboost model using grid or bayesian optimization.
auto_tune_xgboost

Usage

auto_tune_xgboost(
 .data,
 formula,
 tune_method = c("grid", "bayes"),
 event_level = c("first", "second"),
 n_fold = 5L,
 n_iter = 100L,
 seed = 1,
 save_output = FALSE,
 parallel = TRUE,
 trees = tune::tune(),
 min_n = tune::tune(),
 mtry = tune::tune(),
 tree_depth = tune::tune(),
 learn_rate = tune::tune(),
 loss_reduction = tune::tune(),
 sample_size = tune::tune(),
 stop_iter = tune::tune(),
 counts = FALSE,
 tree_method = c("auto", "exact", "approx", "hist", "gpu_hist"),
 monotone_constraints = 0L,
 num_parallel_tree = 1L,
 lambda = 1,
 alpha = 0,
 scale_pos_weight = 1,
 verbosity = 0L
)

Arguments

.data: dataframe

formula: formula

tune_method: method of tuning. defaults to grid

event_level: for binary classification, which factor level is the positive class. specify "second" for second level

n_fold: integer. n folds in resamples

n_iter: n iterations for tuning (bayes); parameter grid size (grid)

seed: seed

save_output: FALSE. If set to TRUE will write the output as an rds file

parallel: default TRUE; If set to TRUE, will enable parallel processing on resamples for grid tuning

trees: # Trees (xgboost: nrounds) (type: integer, default: 500L)

min_n: Minimal Node Size (xgboost: min_child_weight) (type: integer, default: 2L); [typical range: 2-10] Keep small value for highly imbalanced class data where
leaf nodes can have smaller size groups. Otherwise increase size to prevent overfitting outliers.

mtry

Randomly Selected Predictors; defaults to .75; (xgboost: colsample_bynode) (type: numeric, range 0 - 1) (or type: integer if count = TRUE)

tree_depth

Tree Depth (xgboost: max_depth) (type: integer, default: 7L); Typical values: 3-10

learn_rate

Learning Rate (xgboost: eta) (type: double, default: 0.05); Typical values: 0.01-0.3

loss_reduction

Minimum Loss Reduction (xgboost: gamma) (type: double, default: 1.0); range: 0 to Inf; typical value: 0 - 20 assuming low-mid tree depth

sample_size

Proportion Observations Sampled (xgboost: subsample) (type: double, default: .75); Typical values: 0.5 - 1

stop_iter

Iterations Before Stopping (xgboost: early_stop) (type: integer, default: 15L) only enabled if validation set is provided

counts

if TRUE specify mtry as an integer number of cols. Default FALSE to specify mtry as fraction of cols from 0 to 1

tree_method

xgboost tree_method. default is auto. reference: tree method docs

monotone_constraints

an integer vector with length of the predictor cols, of -1, 1, 0 corresponding to decreasing, increasing, and no constraint respectively for the index of the predictor col. reference: monotonicity docs.

num_parallel_tree

should be set to the size of the forest being trained. default 1L

lambda

[default=.5] L2 regularization term on weights. Increasing this value will make model more conservative.

alpha

[default=.1] L1 regularization term on weights. Increasing this value will make model more conservative.

scale_pos_weight

[default=1] Control the balance of positive and negative weights, useful for unbalanced classes. If set to TRUE, calculates sum(negative instances) / sum(positive instances). If first level is majority class, use values < 1, otherwise normally values >1 are used to balance the class distribution.

verbosity

[default=1] Verbosity of printing messages. Valid values are 0 (silent), 1 (warning), 2 (info), 3 (debug).

Details

Default is to tune all 7 xgboost parameters. Individual parameter values can be optionally fixed to reduce tuning complexity.

Value

workflow object
Examples

```r
iris %>% framecleaner::create_dummies() -> iris1
iris1 %>% tidy_formula(target = Petal.Length) -> petal_form
iris1 %>% rsample::initial_split() -> iris_split
iris_split %>% rsample::analysis() -> iris_train
iris_split %>% rsample::assessment() -> iris_val
## Not run:
iris_train %>% auto_tune_xgboost(formula = petal_form, n_iter = 10,
parallel = FALSE, tune_method = "grid", mtry = .5) -> xgb_tuned
xgb_tuned %>% parsnip::fit(iris_train) %>%
parsnip::extract_fit_engine() -> xgb_tuned_fit
xgb_tuned_fit %>% tidy_predict(newdata = iris_val, form = petal_form) -> iris_val1
## End(Not run)
```

Description

Performs a t.test on 2 populations for numeric variables.

Usage

```r
auto_t_test(data, col, ..., var_equal = FALSE, abbrv = TRUE)
```

Arguments

- `data`: dataframe

- `col`: variable(s) on which to perform the t.test.
auto_variable_contributions

- col: a column with 2 categories representing the 2 populations
- ...: numeric variables to perform t.test on. Default is to select all numeric variables
- var_equal: default FALSE; t.test parameter
- abbrv: default TRUE; remove some extra columns from output

Value
dataframe

Examples

```r
iris %>%
  dplyr::filter(Species != "setosa") %>%
  auto_t_test(col = Species)
```

Description

Return a variable importance plot and coefficient plot from a linear model. Used to easily visualize the contributions of explanatory variables in a supervised model.

Usage

`auto_variable_contributions(data, formula, scale = TRUE)`

Arguments

data: dataframe
formula: formula
scale: logical. If FALSE puts coefficients on original scale

Value

a ggplot object
Examples

```r
iris %>%
framecleaner::create_dummies() %>%
auto_variable_contributions(
  tidy_formula(., target = Petal.Width)
)

iris %>%
auto_variable_contributions(
  tidy_formula(., target = Species)
)
```

cap_outliers
cap_outliers
cap_outliers
cap_outliers

description

caps the outliers of a numeric vector by percentiles. also outputs a plot of the capped distribution

usage

cap_outliers(x, q = 0.05, type = c("both", "upper", "lower"))

arguments

<table>
<thead>
<tr>
<th>x</th>
<th>numeric vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>decimal input to the quantile function to set cap. default .05 caps at the 95 and 5th percentile</td>
</tr>
<tr>
<td>type</td>
<td>chr vector. where to cap: both, upper, or lower</td>
</tr>
</tbody>
</table>

value

numeric vector

examples

cap_outliers(iris$Petal.Width)
create_monotone_constraints

create monotone constraints

Description

helper function to create the integer vector to pass to the monotone_constraints argument in xgboost

Usage

create_monotone_constraints(
 .data,
 formula,
 decreasing = NULL,
 increasing = NULL
)

Arguments

.data dataframe, training data for tidy_xgboost
formula formula used for tidy_xgboost
decreasing character vector or tidyselect regular expression to designate decreasing cols
increasing character vector or tidyselect regular expression to designate increasing cols

Value

a named integer vector with entries of 0, 1, -1

Examples

iris %>%
framecleaner::create_dummies(Species) -> iris_dummy

iris_dummy %>%
tidy_formula(target= Petal.Length) -> petal_form

iris_dummy %>%
create_monotone_constraints(petal_form,
 decreasing = tidyselect::matches("Petal|Species"),
 increasing = "Sepal.Width")
eval_preds

description
Automatically evaluates predictions created by tidy_predict. No need to supply column names.

Usage
eval_preds(.data, ..., softprob_model = NULL)

Arguments
.data dataframe as a result of tidy_predict
... additional metrics from yarstick to be calculated
softprob_model character name of the model used to create multiclass probabilities

Value
tibble of summarized metrics

f_charvec_to_formula

description
takes the lhs and rhs of a formula as character vectors and outputs a formula

Usage
f_charvec_to_formula(lhs, rhs)

Arguments
lhs lhs atomic chr vec
rhs rhs chr vec

Value
formula

Examples
lhs <- "Species"
rhs <- c("Petal.Width", "Custom_Var")

f_charvec_to_formula(lhs, rhs)
f_formula_to_charvec
Formula rhs to chr vec

Description
Accepts a formula and returns the rhs as a character vector.

Usage
f_formula_to_charvec(f, include_lhs = FALSE, .data = NULL)

Arguments
f
formula
include_lhs
FALSE. If TRUE, appends lhs to beginning of vector
.data
dataframe for names if necessary

Value
chr vector

Examples
iris %>%
tidy_formula(target = Species, tidyselect::everything()) -> f

f

f %>%
f_formula_to_charvec()

f_modify_formula
Modify Formula

Description
Modify components of a formula by adding / removing vars from the rhs or replacing the lhs.

Usage
f_modify_formula(f, rhs_remove = NULL, rhs_add = NULL, lhs_replace = NULL, negate = TRUE)

```r
iris %>%
tidy_formula(target = Species, tidyselect::everything()) -> f

f

f %>%
f_modify_formula(rhs_remove = NULL, rhs_add = NULL, lhs_replace = NULL, negate = TRUE)
```
Arguments

- `f` formula
- `rhs_remove` regex or character vector for dropping variables from the rhs
- `rhs_add` character vector for adding variables to rhs
- `lhs_replace` string to replace formula lhs if supplied
- `negate` should `rhs_remove` keep or remove the specified vars. Set to `FALSE` to keep

Value

- `formula`

Examples

```
iris %>%
tidy_formula(target = Species, tidyselect::everything()) -> f

f

f %>%
  f_modify_formula(
    rhs_remove = c("Petal.Width", "Sepal.Length"),
    rhs_add = "Custom_Variable"
  )

f %>%
  f_modify_formula(
    rhs_remove = "Petal",
    lhs_replace = "Petal.Length"
  )
```

Description

s3 method to extract params of a model with names consistent for use in the `autostats` package

Usage

```r
get_params(model, ...)

## S3 method for class 'xgb.Booster'
get_params(model, ...)

## S3 method for class 'workflow'
get_params(model, ...)
```
Arguments

model a model
... additional arguments

Value

list of params

Examples

```r
iris %>%
  framecleaner::create_dummies() -> iris_dummies

iris_dummies %>%
  tidy_formula(target = Petal.Length) -> p_form

iris_dummies %>%
  tidy_xgboost(p_form, mtry = .5, trees = 5L, loss_reduction = 2, sample_size = .7) -> xgb

## reuse these parameters to find the cross validated error
rlang::exec(auto_model_accuracy, data = iris_dummies, formula = p_form, !!!get_params(xgb))
```

Description

Imputes missing values of a numeric matrix using stochastic gradient descent. `recosystem`

Usage

```r
impute_recosystem(
  .data,
  lrate = c(0.05, 0.1),
  costp_l1 = c(0, 0.05),
  costq_l1 = c(0, 0.05),
  costp_l2 = c(0, 0.05),
  costq_l2 = c(0, 0.05),
  nthread = 8,
  loss = "l2",
  niter = 15,
  verbose = FALSE,
  nfold = 4,
  seed = 1
)
```
Arguments

- `.data` : long format data frame
- `lrate` : learning rate
- `costp_l1` : l1 cost p
- `costq_l1` : l1 cost q
- `costp_l2` : l2 cost p
- `costq_l2` : l2 cost q
- `nthread` : nthreads
- `loss` : loss function. also can use “l1”
- `niter` : training iterations for tune
- `verbose` : show training loss?
- `nfold` : folds for tune validation
- `seed` : seed for randomness

Details

Input is a long data frame with 3 columns: ID col, Item col (the column names from pivoting longer), and the ratings (values from pivoting longer).

Pre-processing generally requires pivoting a wide user x item matrix to long format. The missing values from the matrix must be retained as NA values in the rating column. The values will be predicted and filled in by the algorithm. Output is a long data frame with the same number of rows as input, but no missing values.

This function automatically tunes the recosystem learner before applying. Parameter values can be supplied for tuning. To avoid tuning, use single values for the parameters.

Value

- long format data frame

tidy_cforest

tidy conditional inference forest

Description

Runs a conditional inference forest.

Usage

```r
tidy_cforest(data, formula, seed = 1)
```
Arguments

- **data**: dataframe
- **formula**: formula
- **seed**: seed integer

Value

A cforest model

Examples

```r
iris %>%
tidy_cforest(
  tidy_formula(., Petal.Width)
) -> iris_cfor

iris_cfor

iris_cfor %>%
visualize_model()
```

Description

`tidy` conditional inference tree. Creates easily interpretable decision tree models that be shown with the `visualize_model` function. Statistical significance required for a split, and minimum necessary samples in a terminal leaf can be controlled to create the desired tree visual.

Usage

```r
tidy_ctree(.data, formula, minbucket = 7L, mincriterion = 0.95, ...)
```

Arguments

- **.data**: dataframe
- **formula**: formula
- **minbucket**: minimum amount of samples in terminal leaves, default is 7
- **mincriterion**: (1 - alpha) value between 0 and 1, default is .95. Lowering this value creates more splits, but less significant

- **...**: optional parameters to `ctree_control`

Value

A ctree object
Examples

```r
iris %>%
tidy_formula(., Sepal.Length) -> sepal_form

iris %>%
tidy_ctree(sepal_form) %>%
visualize_model()

iris %>%
tidy_ctree(sepal_form, minbucket = 30) %>%
visualize_model(plot_type = "box")
```

tidy_formula tidy formula construction

Description

Takes a dataframe and allows for use of tidyselect to construct a formula.

Usage

```r
tidy_formula(data, target, ...)
```

Arguments

- `data`: dataframe
- `target`: lhs
- `...`: tidyselect. rhs

Value

a formula

Examples

```r
iris %>%
tidy_formula(Species, tidyselect::everything())
```
Description

Runs either a linear regression, logistic regression, or multinomial classification. The model is automatically determined based on the nature of the target variable.

Usage

tidy_glm(data, formula)

Arguments

data : dataframe
formula : formula

Value

glm model

Examples

linear regression
iris %>%
tidy_glm(
 tidy_formula(., target = Petal.Width)) -> glm1

glm1

glm1 %>%
visualize_model()

multinomial classification

tidy_formula(iris, target = Species) -> species_form

iris %>%
tidy_glm(species_form) -> glm2

glm2 %>%
visualize_model()

logistic regression

iris %>%
dplyr::filter(Species != "setosa") %>%
tidy_glm(species_form) -> glm3
tidy_predict

Description

tidy predict

Usage

tidy_predict(
 model,
 newdata,
 form = NULL,
 olddata = NULL,
 bind_preds = FALSE,
 ...
)

S3 method for class 'Rcpp_ENSEMBLE'
tidy_predict(model, newdata, form = NULL, ...)

S3 method for class 'glm'
tidy_predict(model, newdata, form = NULL, ...)

Default S3 method:
tidy_predict(model, newdata, form = NULL, ...)

S3 method for class 'BinaryTree'
tidy_predict(model, newdata, form = NULL, ...)

S3 method for class 'xgb.Booster'
tidy_predict(
 model,
 newdata,
 form = NULL,
 olddata = NULL,
 bind_preds = FALSE,
 ...
)

S3 method for class 'lgb.Booster'
tidy_predict(
 model,
tidy_predict

```r
newdata,
form = NULL,
olddata = NULL,
bind_preds = FALSE,
...
)
```

Arguments

- `model`: model
- `newdata`: dataframe
- `form`: the formula used for the model
- `olddata`: training data set
- `bind_preds`: set to TRUE if newdata is a dataset without any labels, to bind the new and old data with the predictions under the original target name
- `...`: other parameters to pass to predict

Value

dataframe

Examples

```r
iris %>%
  framecleaner::create_dummies(Species) -> iris_dummy

iris_dummy %>%
  tidy_formula(target = Petal.Length) -> petal_form

iris_dummy %>%
  tidy_xgboost(
    petal_form,
    trees = 20,
    mtry = .5
  ) -> xg1

xg1 %>%
  tidy_predict(newdata = iris_dummy, form = petal_form) %>%
  head()
```
Description

plot and summarize shapley values from an xgboost model

Usage

```
tidy_shap(model, newdata, form = NULL, ..., top_n = 12, aggregate = NULL)
```

Arguments

- `model`: xgboost model
- `newdata`: dataframe similar to model input
- `form`: formula used for model
- `...`: additional parameters for shapley value
- `top_n`: top n features
- `aggregate`: a character vector. Predictors containing the string will be aggregated, and re-named to that string.

Details

returns a list with the following entries

- `shap_tbl`: table of shaply values
- `shap_summary`: table summarizing shapley values. Includes correlation between shaps and feature values.
- `swarmplot`: one plot showing the relation between shaps and features
- `scatterplots`: returns the top 9 most important features as determined by sum of absolute shapley values, as a facetted scatterplot of feature vs shap

Value

list
Description

Accepts a formula to run an xgboost model. Automatically determines whether the formula is for classification or regression. Returns the xgboost model.

Usage

```r
tidy_xgboost(
  .data, 
  formula, 
  ..., 
  mtry = 0.75, 
  trees = 500L, 
  min_n = 2L, 
  tree_depth = 7L, 
  learn_rate = 0.05, 
  loss_reduction = 1, 
  sample_size = 0.75, 
  stop_iter = 15L, 
  counts = FALSE, 
  tree_method = c("auto", "exact", "approx", "hist", "gpu_hist"), 
  monotone_constraints = 0L, 
  num_parallel_tree = 1L, 
  lambda = 0.5, 
  alpha = 0.1, 
  scale_pos_weight = 1, 
  verbosity = 0L, 
  validate = TRUE, 
  booster = c("gbtree", "gblinear")
)
```

Arguments

```
.data: dataframe
formula: formula
...: additional parameters to be passed to set_engine
mtry: # Randomly Selected Predictors; defaults to .75; (xgboost: colsample_bynode)
      (type: numeric, range 0 - 1) (or type: integer if count = TRUE)
trees: # Trees (xgboost: nrounds) (type: integer, default: 500L)
min_n: Minimal Node Size (xgboost: min_child_weight) (type: integer, default: 2L);
      [typical range: 2-10] Keep small value for highly imbalanced class data where leaf
      nodes can have smaller size groups. Otherwise increase size to prevent overfitting outliers.
```
tidy_xgboost

tree_depth
Tree Depth (xgboost: max_depth) (type: integer, default: 7L); Typical values: 3-10

learn_rate
Learning Rate (xgboost: eta) (type: double, default: 0.05); Typical values: 0.01-0.3

loss_reduction
Minimum Loss Reduction (xgboost: gamma) (type: double, default: 1.0); range: 0 to Inf; typical value: 0 - 20 assuming low-mid tree depth

sample_size
Proportion Observations Sampled (xgboost: subsample) (type: double, default: .75); Typical values: 0.5 - 1

stop_iter
Iterations Before Stopping (xgboost: early_stop) (type: integer, default: 15L) only enabled if validation set is provided

counts
if TRUE specify mtry as an integer number of cols. Default FALSE to specify mtry as fraction of cols from 0 to 1

tree_method
xgboost tree_method. default is auto. reference: tree method docs

monotone_constraints
an integer vector with length of the predictor cols, of -1, 1, 0 corresponding to decreasing, increasing, and no constraint respectively for the index of the predictor col. reference: monotonicity docs.

num_parallel_tree
should be set to the size of the forest being trained. default 1L

lambda
[default=.5] L2 regularization term on weights. Increasing this value will make model more conservative.

alpha
[default=.1] L1 regularization term on weights. Increasing this value will make model more conservative.

scale_pos_weight
[default=1] Control the balance of positive and negative weights, useful for unbalanced classes. if set to TRUE, calculates sum(negative instances) / sum(positive instances). If first level is majority class, use values < 1, otherwise normally values >1 are used to balance the class distribution.

verbosity
[default=1] Verbosity of printing messages. Valid values are 0 (silent), 1 (warning), 2 (info), 3 (debug).

validate
default TRUE. report accuracy metrics on a validation set.

booster
defaults to 'gbtree' for tree boosting but can be set to 'gblinear'

Details
In binary classification the target variable must be a factor with the first level set to the event of interest. A higher probability will predict the first level.

reference for parameters: xgboost docs

Value

xgb.Booster model
Examples

```r
options(rlang_trace_top_env = rlang::current_env())

# regression on numeric variable
iris %>%
  framecleaner::create_dummies(Species) -> iris_dummy

iris_dummy %>%
  tidy_formula(target= Petal.Length) -> petal_form

iris_dummy %>%
  tidy_xgboost(
    petal_form,
    trees = 20,
    mtry = .5
  ) -> xg1

xg1 %>%
  tidy_predict(newdata = iris_dummy, form = petal_form) -> iris_preds

iris_preds %>%
  eval_preds()
```

visualize_model
visualize model

Description

s3 method to automatically visualize the output of a model object. Additional arguments can be supplied for the original function. Check the corresponding plot function documentation for any custom arguments.

Usage

```r
visualize_model(model, ...)
```

S3 method for class 'RandomForest'
visualize_model(model, ..., method)

S3 method for class 'BinaryTree'
visualize_model(model, ..., method)

Arguments

- **model** a model
- **...** additional arguments
- **method** choose amongst different visualization methods
- **top_n** return top n elements
- **aggregate** = summarize
- **as_table** = false, table or graph,
- **formula** = formula,
- **measure** = c("Gain", "Cover", "Frequency")

Value

a plot
Index

auto_anova, 2
auto_boxplot, 4
auto_cor, 5
auto_model_accuracy, 6
auto_t_test, 10
auto_tune_xgboost, 7
auto_variable_contributions, 11

cap_outliers, 12
cor.test, 5
create_monotone_constraints, 13
ctree_control, 19

eval_preds, 14
f_charvec_to_formula, 14
f_formula_to_charvec, 15
f_modify_formula, 15

geom_boxplot, 4
get_params, 16

impute_recosystem, 17

set_engine, 25

tidy_cforest, 18
tidy_ctree, 19
tidy_formula, 20
tidy_glm, 21
tidy_predict, 14, 22
tidy_shap, 24
tidy_xgboost, 25

visualize_model, 19, 27

xicor, 5