Package ‘autostats’

February 9, 2022

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Auto Stats</td>
</tr>
<tr>
<td>Version</td>
<td>0.3.0</td>
</tr>
<tr>
<td>Maintainer</td>
<td>Harrison Tietze harrison4192@gmail.com</td>
</tr>
<tr>
<td>Description</td>
<td>Automatically do statistical exploration. Create formulas using 'tidyselect' syntax, and then determine cross-validated model accuracy and variable contributions using 'glm' and 'xgboost'. Contains additional helper functions to create and modify formulas. Has a flagship function to quickly determine relationships between categorical and continuous variables in the data set.</td>
</tr>
<tr>
<td>Encoding</td>
<td>UTF-8</td>
</tr>
<tr>
<td>Imports</td>
<td>dplyr, stringr, tidyselect, purrr, janitor, tibble, rlang, stats, rlist, broom, broom.mixed, magrittr, Matrix, ggeasy, ggplot2, jtools, gtools, ggthemes, patchwork, tidyr, xgboost, flextable, parsnip, recipes, rsample, hardhat, tune, workflows, forcats, ggstance, framecleaner, presenter, yardstick, BBmisc, dials, readr, lubridate, party, data.table, FOCI, XICOR, agtboost, Ckmeans.1d.dp, glmnet, nnet</td>
</tr>
<tr>
<td>RoxygenNote</td>
<td>7.1.2</td>
</tr>
<tr>
<td>BugReports</td>
<td>https://github.com/Harrison4192/autostats/issues</td>
</tr>
<tr>
<td>Suggests</td>
<td>knitr, rmarkdown, markdown, moreparty, parallel, doParallel, igraph</td>
</tr>
<tr>
<td>VignetteBuilder</td>
<td>knitr</td>
</tr>
<tr>
<td>License</td>
<td>MIT + file LICENSE</td>
</tr>
<tr>
<td>NeedsCompilation</td>
<td>no</td>
</tr>
<tr>
<td>Author</td>
<td>Harrison Tietze [aut, cre]</td>
</tr>
<tr>
<td>Depends</td>
<td>R (>= 3.5.0)</td>
</tr>
<tr>
<td>Repository</td>
<td>CRAN</td>
</tr>
<tr>
<td>Date/Publication</td>
<td>2022-02-09 08:50:02 UTC</td>
</tr>
</tbody>
</table>
auto_anova

Description

A wrapper around lm and anova to run a regression of a continuous variable against categorical variables. Used for determining the whether the mean of a continuous variable is statistically significant amongst different levels of a categorical variable.

Usage

```r
auto_anova(
  data, ...,
  baseline = c("mean", "median", "first_level", "user_supplied"),
  user_supplied_baseline = NULL,
  sparse = FALSE,
  pval_thresh = 0.1
)
```
auto_anova

Arguments

data: a data frame
...tidyselect specification or cols
baseline: choose from "mean", "median", "first_level", "user_supplied". what is the baseline to compare each category to? can use the mean and median of the target variable as a global baseline
user_supplied_baseline: if intercept is "user_supplied", can enter a numeric value
sparse: default FALSE; if true returns a truncated output with only significant results
pval_thresh: control significance level for sparse output filtering

Details

Columns can be inputted as unquoted names or tidyselect. Continuous and categorical variables are automatically determined. If no character or factor column is present, the column with the lowest amount of unique values will be considered the categorical variable.

Description of columns in the output

• target continuous variables
• predictor categorical variables
• level levels in the categorical variables
• estimate difference between level target mean and baseline
• target_mean target mean per level
• n rows in predictor level
• std.error standard error of target in predictor level
• level_p.value p.value for t.test of whether target mean differs significantly between level and baseline
• level_significance level p.value represented by stars
• predictor_p.value p.value for significance of entire predictor given by F test
• predictor_significance predictor p.value represented by stars
• conclusion text interpretation of tests

Value

data frame

Examples

iris %>%
auto_anova(tidyselect::everything()) -> iris_anova

iris_anova %>%
print(width = Inf)
Description

Wraps `geom_boxplot` to simplify creating boxplots.

Usage

```r
auto_boxplot(
  .data,  
  continuous_outcome,  
  categorical_variable,  
  categorical_facets = NULL,  
  alpha = 0.3,  
  width = 0.15,  
  color_dots = "black",  
  color_box = "red"
)
```

Arguments

- `.data` data
- `continuous_outcome` continuous y variable. unquoted column name
- `categorical_variable` categorical x variable. unquoted column name
- `categorical_facets` categorical facet variable. unquoted column name
- `alpha` alpha points
- `width` width of jitter
- `color_dots` dot color
- `color_box` box color

Value

`ggplot`

Examples

```r
iris %>%
auto_boxplot(continuous_outcome = Petal.Width, categorical_variable = Species)
```
auto_cor

auto_cor

auto correlation

Description

Finds the correlation between numeric variables in a data frame, chosen using tidyselect. Additional parameters for the correlation test can be specified as in cor.test

Usage

auto_cor(
 .data,
 ...,
 use = c("pairwise.complete.obs", "all.obs", "complete.obs", "everything", "na.or.complete"),
 method = c("pearson", "kendall", "spearman", "xicor"),
 include_nominals = TRUE,
 max_levels = 5L,
 sparse = TRUE,
 pval_thresh = 0.1
)

Arguments

.data data frame
... tidyselect cols
use method to deal with na. Default is to remove rows with NA
method correlation method. default is pearson, but also supports xicor.
include_nominals
max_levels maximum numbers of dummies to be created from nominal variables
sparse logical, default TRUE. Filters and arranges cor table
pval_thresh threshold to filter out weak correlations

Details

includes the asymmetric correlation coefficient xi from xicor

Value

data frame of correlations
Examples

```r
iris %>%
  auto_cor()

# don't use sparse if you're interested in only one target variable
iris %>%
  auto_cor(sparse = FALSE) %>%
  dplyr::filter(x == "Petal.Length")
```

Description

Runs a cross validated xgboost and regularized linear regression, and reports accuracy metrics. Automatically determines whether the provided formula is a regression or classification.

Usage

```r
auto_model_accuracy(
  data, formula, ...
  n_folds = 4,
  as_flextable = TRUE,
  include_linear = FALSE,
  theme = "tron",
  seed = 1,
  mtry = 1,
  trees = 15L,
  min_n = 1L,
  tree_depth = 6L,
  learn_rate = 0.3,
  loss_reduction = 0,
  sample_size = 1,
  stop_iter = 10L,
  counts = FALSE,
  penalty = 0.015,
  mixture = 0.35
)
```

Arguments

- `data` : data frame
- `formula` : formula
- `...` : any other params for xgboost
<table>
<thead>
<tr>
<th>auto_tune_xgboost</th>
<th></th>
</tr>
</thead>
</table>

- **n_folds**: number of cross validation folds
- **as_flextable**: if FALSE, returns a tibble
- **include_linear**: if TRUE includes a regularized linear model
- **theme**: make_flextable theme
- **seed**: seed
- **mtry**: # Randomly Selected Predictors (xgboost: colsample_bynode) (type: numeric, range 0 - 1) (or type: integer if count = TRUE)
- **trees**: # Trees (xgboost: nrounds) (type: integer, default: 15L)
- **min_n**: Minimal Node Size (xgboost: min_child_weight) (type: integer, default: 1L); [typical range: 2-10] Keep small value for highly imbalanced class data where leaf nodes can have smaller size groups. Otherwise increase size to prevent overfitting outliers.
- **tree_depth**: Tree Depth (xgboost: max_depth) (type: integer, default: 6L); Typical values: 3-10
- **learn_rate**: Learning Rate (xgboost: eta) (type: double, default: 0.3); Typical values: 0.01-0.3
- **loss_reduction**: Minimum Loss Reduction (xgboost: gamma) (type: double, default: 0.0); range: 0 to Inf; typical value: 0 - 20 assuming low-mid tree depth
- **sample_size**: Proportion Observations Sampled (xgboost: subsample) (type: double, default: 1.0); Typical values: 0.5 - 1
- **stop_iter**: # Iterations Before Stopping (xgboost: early_stop) (type: integer, default: 15L) only enabled if validation set is provided
- **counts**: if TRUE specify mtry as an integer number of cols. Default FALSE to specify mtry as fraction of cols from 0 to 1
- **penalty**: linear regularization parameter
- **mixture**: linear model parameter, combines l1 and l2 regularization

Value

* a table

Description

Automatically tunes an xgboost model using grid or bayesian optimization
Usage

```r
auto_tune_xgboost(
  .data,
  formula,
  tune_method = c("grid", "bayes"),
  event_level = c("first", "second"),
  n_fold = 5L,
  seed = 1,
  n_iter = 100L,
  save_output = FALSE,
  parallel = TRUE,
  trees = tune::tune(),
  min_n = tune::tune(),
  mtry = tune::tune(),
  tree_depth = tune::tune(),
  learn_rate = tune::tune(),
  loss_reduction = tune::tune(),
  sample_size = tune::tune(),
  stop_iter = tune::tune(),
  counts = FALSE,
  tree_method = c("auto", "exact", "approx", "hist", "gpu_hist"),
  monotone_constraints = 0L,
  num_parallel_tree = 1L,
  lambda = 1,
  alpha = 0,
  scale_pos_weight = 1,
  verbosity = 0L
)
```

Arguments

- `.data` dataframe
- `formula` formula
- `tune_method` method of tuning. defaults to grid
- `event_level` for binary classification, which factor level is the positive class. specify "second" for second level
- `n_fold` integer. n folds in resamples
- `seed` seed
- `n_iter` n iterations for tuning (bayes); parameter grid size (grid)
- `save_output` FALSE. If set to TRUE will write the output as an rds file
- `parallel` default TRUE; If set to TRUE, will enable parallel processing on resamples for grid tuning
- `trees` # Trees (xgboost: nrounds) (type: integer, default: 15L)
- `min_n` Minimal Node Size (xgboost: min_child_weight) (type: integer, default: 1L); [typical range: 2-10] Keep small value for highly imbalanced class data where
leaf nodes can have smaller size groups. Otherwise increase size to prevent overfitting outliers.

mtry
Randomly Selected Predictors (xgboost: colsample_bynode) (type: numeric, range 0 - 1) (or type: integer if count = TRUE)

tree_depth
Tree Depth (xgboost: max_depth) (type: integer, default: 6L); Typical values: 3-10

learn_rate
Learning Rate (xgboost: eta) (type: double, default: 0.3); Typical values: 0.01-0.3

loss_reduction
Minimum Loss Reduction (xgboost: gamma) (type: double, default: 0.0); range: 0 to Inf; typical value: 0 - 20 assuming low-mid tree depth

sample_size
Proportion Observations Sampled (xgboost: subsample) (type: double, default: 1.0); Typical values: 0.5 - 1

stop_iter
Iterations Before Stopping (xgboost: early_stop) (type: integer, default: 15L) only enabled if validation set is provided

counts
if TRUE specify mtry as an integer number of cols. Default FALSE to specify mtry as fraction of cols from 0 to 1

tree_method
xgboost tree_method. default is auto. reference: tree method docs

monotone_constraints
an integer vector with length of the predictor cols, of -1,1,0 corresponding to decreasing, increasing, and no constraint respectively for the index of the predictor col. reference: monotonicity docs.

num_parallel_tree
should be set to the size of the forest being trained. default 1L

lambda
[default=1] L2 regularization term on weights. Increasing this value will make model more conservative.

alpha
[default=0] L1 regularization term on weights. Increasing this value will make model more conservative.

scale_pos_weight
[default=1] Control the balance of positive and negative weights, useful for unbalanced classes. if set to TRUE, calculates sum(negative instances) / sum(positive instances)

verbosity
[default=1] Verbosity of printing messages. Valid values are 0 (silent), 1 (warning), 2 (info), 3 (debug).

Details

Default is to tune all 7 xgboost parameters. Individual parameter values can be optionally fixed to reduce tuning complexity.

Value

workflow object
Examples

```r
if(FALSE){

iris %>%
  framecleaner::create_dummies() -> iris1

iris1 %>%
  tidy_formula(target = Petal.Length) -> petal_form

iris1 %>%
  rsample::initial_split() -> iris_split

iris_split %>%
  rsample::analysis() -> iris_train

iris_split %>%
  rsample::assessment() -> iris_val

iris_train %>%
  auto_tune_xgboost(formula = petal_form, n_iter = 10,
  parallel = TRUE, method = "bayes") -> xgb_tuned

xgb_tuned %>%
  fit(iris_train) %>%
  parsnip::extract_fit_engine() -> xgb_tuned_fit

xgb_tuned_fit %>%
  tidy_predict(newdata = iris_val, form = petal_form) -> iris_val1

}
```

Description

Performs a t.test on 2 populations for numeric variables.

Usage

```r
auto_t_test(data, col, ..., var_equal = FALSE, abbrv = TRUE)
```

Arguments

data dataframe

col a column with 2 categories representing the 2 populations
auto_variable_contributions

... numeric variables to perform t.test on. Default is to select all numeric variables

var_equal default FALSE; t.test parameter
abbrv default TRUE; remove some extra columns from output

Value

dataframe

Examples

iris %>%
dplyr::filter(Species != "setosa") %>%
auto_t_test(col = Species)

auto_variable_contributions

Plot Variable Contributions

Description

Return a variable importance plot and coefficient plot from a linear model. Used to easily visualize the contributions of explanatory variables in a supervised model

Usage

auto_variable_contributions(data, formula, scale = TRUE)

Arguments

data dataframe
formula formula
scale logical. If FALSE puts coefficients on original scale

Value

a ggplot object

Examples

iris %>%
framecleaner::create_dummies() %>%
auto_variable_contributions(
 tidy_formula(., target = Petal.Width)
)
create_monotone_constraints

Description

helper function to create the integer vector to pass to the monotone_constraints argument in xgboost

Usage

```r
create_monotone_constraints(
    .data,  
    formula,  
    decreasing = NULL,  
    increasing = NULL  
)
```

Arguments

- `.data` : dataframe, training data for tidy_xgboost
- `formula` : formula used for tidy_xgboost
- `decreasing` : character vector or tidyselect regular expression to designate decreasing cols
- `increasing` : character vector or tidyselect regular expression to designate increasing cols

Value

a named integer vector with entries of 0, 1, -1

Examples

```r
iris %>%
  auto_variable_contributions(
    tidy_formula(., target = Species)
  )
```

```r
iris %>%
  create_dummies(Species) -> iris_dummy

iris_dummy %>%
  tidy_formula(target= Petal.Length) -> petal_form

iris_dummy %>%
  create_monotone_constraints(petal_form,
    decreasing = tidyselect::matches("Petal|Species"),
    increasing = "Sepal.Width")
```
Description

Automatically evaluates predictions created by `tidy_predict`. No need to supply column names.

Usage

```
eval_preds(.data, ..., softprob_model = NULL)
```

Arguments

- `.data` dataframe as a result of `tidy_predict`
- `...` additional metrics from `yarstick` to be calculated
- `softprob_model` character name of the model used to create multiclass probabilities

Value

tibble of summarized metrics

f_charvec_to_formula
charvec to formula

Description

takes the lhs and rhs of a formula as character vectors and outputs a formula

Usage

```
f_charvec_to_formula(lhs, rhs)
```

Arguments

- `lhs` lhs atomic chr vec
- `rhs` rhs chr vec

Value

formula
Examples

```r
lhs <- "Species"
rhs <- c("Petal.Width", "Custom_Var")

f_charvec_to_formula(lhs, rhs)
```

f_formula_to_charvec
Formula rhs to chr vec

Description

Accepts a formula and returns the rhs as a character vector.

Usage

```r
f_formula_to_charvec(f, include_lhs = FALSE, .data = NULL)
```

Arguments

- `f`: formula
- `include_lhs`: FALSE. If TRUE, appends lhs to beginning of vector
- `.data`: dataframe for names if necessary

Value

chr vector

Examples

```r
iris %>%
tidy_formula(target = Species, tidyselect::everything()) -> f

f

f %>%
f_formula_to_charvec()
```
Modify components of a formula by adding / removing vars from the rhs or replacing the lhs.

Usage

f_modify_formula(
 f,
 rhs_remove = NULL,
 rhs_add = NULL,
 lhs_replace = NULL,
 negate = TRUE
)

Arguments

f formula
rhs_remove regex or character vector for dropping variables from the rhs
rhs_add character vector for adding variables to rhs
lhs_replace string to replace formula lhs if supplied
negate should rhs_remove keep or remove the specified vars. Set to FALSE to keep

Value

formula

Examples

iris %>%
tidy_formula(target = Species, tidyselect::everything()) -> f

f

f %>%
 f_modify_formula(
 rhs_remove = c("Petal.Width", "Sepal.Length"),
 rhs_add = "Custom_Variable"
)

f %>%
 f_modify_formula(
 rhs_remove = "Petal",
 lhs_replace = "Petal.Length"
)
get_params

Description

s3 method to extract params of a model with names consistent for use in the 'autostats' package

Usage

get_params(model, ...)

S3 method for class 'xgb.Booster'
get_params(model, ...)

Arguments

model a model
... additional arguments

Value

list of params

Examples

iris %>%
 framecleaner::create_dummies() -> iris_dummies

iris_dummies %>%
 tidy_formula(target = Petal.Length) -> p_form

iris_dummies %>%
 tidy_xgboost(p_form, mtry = 0.5, trees = 5L, loss_reduction = 2, sample_size = 0.7) -> xgb

reuse these parameters to find the cross validated error
rlang::exec(auto_model_accuracy, data = iris_dummies, formula = p_form, !!!get_params(xgb))
tidy_agtboost

Description

Boosted tree regression using the agtboost package. Variable importance plot is printed along with returning the model. Noise features are eliminated from the plot.

Usage

tidy_agtboost(.data, formula, ...)

Arguments

.data dataframe
formula formula
... additional parameters to pass to gbt.train

Details

agtboost: Adaptive and Automatic Gradient Tree Boosting Computations

Value

agtboost model of class Rcpp_ENSEMBLE

Examples

iris %>%
tidy_formula(target = Petal.Length) -> f1

iris %>
tidy_agtboost(f1)

tidy_cforest

tidy conditional inference forest

Description

Runs a conditional inference forest.

Usage

tidy_cforest(data, formula, seed = 1)
Arguments

- data: dataframe
- formula: formula
- seed: seed integer

Value

- a cforest model

Examples

```r
iris %>%
tidy_cforest(
  tidy_formula(., Petal.Width)
) -> iris_cfor

iris_cfor

iris_cfor %>%
visualize_model()
```

Description

tidy conditional inference tree. Creates easily interpretable decision tree models that be shown with the `visualize_model` function. Statistical significance required for a split, and minimum necessary samples in a terminal leaf can be controlled to create the desired tree visual.

Usage

tidy_ctree(.data, formula, minbucket = 7L, mincriterion = 0.95, ...)

Arguments

- .data: dataframe
- formula: formula
- minbucket: minimum amount of samples in terminal leaves, default is 7
- mincriterion: (1 - alpha) value between 0 -1, default is .95. lowering this value creates more splits, but less significant
- ...: optional parameters to `ctree_control`

Value

- a ctree object
Examples

```
iris %>%
tidy_formula(., Sepal.Length) -> sepal_form

iris %>%
tidy_ctree(sepal_form) %>%
visualize_model()

iris %>%
tidy_ctree(sepal_form, minbucket = 30) %>%
visualize_model(plot_type = "box")
```

tidy_foci

* Tidy FOCI

Description

variable selection with FOCI

Usage

```
tidy_foci(.data, formula, ...)
```

Arguments

- .data: data
- formula: formula
- ...: other arguments to FOCI

Value

data frame

Examples

```
iris %>%
tidy_foci(Species ~ .) -> d1

d1 %>%
tibble::as_tibble()
```
tidy_formula

Description

Takes a dataframe and allows for use of tidyselect to construct a formula.

Usage

```r
 tidy_formula(data, target, 
```

Arguments

- `data` : dataframe
- `target` : lhs
- `...` : tidyselect. rhs

Value

a formula

Examples

```r
iris %>%
tidy_formula(Species, tidyselect::everything())
```

tidy_glm

Description

Runs either a linear regression, logistic regression, or multinomial classification. The model is automatically determined based off the nature of the target variable.

Usage

```r
 tidy_glm(data, formula)
```

Arguments

- `data` : dataframe
- `formula` : formula
tidy_predict

Value

glm model

Examples

```
# linear regression
iris %>%
tidy_glm(
tidy_formula(., target = Petal.Width)) -> glm1

glm1

glm1 %>%
visualize_model()

# multinomial classification

iris %>%
tidy_glm(species_form) -> glm2

glm2 %>%
visualize_model()

# logistic regression
iris %>%
dplyr::filter(Species != "setosa") %>%
tidy_glm(species_form) -> glm3

suppressWarnings({
glm3 %>%
visualize_model()})
```

tidy_predict

tidy predict

Description

tidy predict

Usage

```
tidy_predict(
  model,
  newdata,
  form = NULL,
  ...)
```
tidy_shap

```r
olddata = NULL,
bind_preds = FALSE,
...
)

## S3 method for class 'Rcpp_ENSEMBLE'
tidy_predict(model, newdata, form = NULL, ...)

## S3 method for class 'glm'
tidy_predict(model, newdata, form = NULL, ...)

## Default S3 method:
tidy_predict(model, newdata, form = NULL, ...)

## S3 method for class 'xgb.Booster'
tidy_predict(
  model,
  newdata,
  form = NULL,
  olddata = NULL,
  bind_preds = FALSE,
  ...
)

Arguments

- `model`:
  - model

- `newdata`:
  - dataframe

- `form`:
  - the formula used for the model

- `olddata`:
  - training data set

- `bind_preds`:
  - set to TRUE if newdata is a dataset without any labels, to bind the new and old data with the predictions under the original target name

- `...`:
  - other parameters to pass to predict

Value

- dataframe

Description

plot and summarize shapley values from an xgboost model
Usage

tidy_shap(model, newdata, form = NULL, ..., top_n = 12, aggregate = NULL)

Arguments

model  xgboost model
newdata dataframe similar to model input
form   formula used for model
...    additional parameters for shapley value
top_n  top n features
aggregate a character vector. Predictors containing the string will be aggregated, and re-
named to that string.

Details

returns a list with the following entries

shap_tbl : table of shaply values
shap_summary : table summarizing shapley values. Includes correlation between shaps and feature values.
swarmplot : one plot showing the relation between shaps and features
scatterplots : returns the top 9 most important features as determined by sum of absolute shapley values, as a facetted scatterplot of feature vs shap

Value

list

tidy_xgboost tidy xgboost

description

Accepts a formula to run an xgboost model. Automatically determines whether the formula is for classification or regression. Returns the xgboost model.

Usage

tidy_xgboost(
  .data,
  formula,
  ..., mtry = 1,
  trees = 15L,
  min_n = 1L,
tidy_xgboost

tree_depth = 6L,
learn_rate = 0.3,
loss_reduction = 0,
sample_size = 1,
stop_iter = 10L,
counts = FALSE,
tree_method = c("auto", "exact", "approx", "hist", "gpu_hist"),
monotone_constraints = 0L,
num_parallel_tree = 1L,
lambda = 1,
alpha = 0,
scale_pos_weight = 1,
verbosity = 0L,
validate = TRUE
)

Arguments

.data          dataframe
formula        formula
...            additional parameters to be passed to \texttt{set_engine}
mtry           # Randomly Selected Predictors (xgboost: colsample_bynode) (type: numeric, range 0 - 1) (or type: integer if \texttt{count} = TRUE)
trees          # Trees (xgboost: nrounds) (type: integer, default: 15L)
min_n          Minimal Node Size (xgboost: min_child_weight) (type: integer, default: 1L); [typical range: 2-10] Keep small value for highly imbalanced class data where leaf nodes can have smaller size groups. Otherwise increase size to prevent overfitting outliers.
tree_depth     Tree Depth (xgboost: max_depth) (type: integer, default: 6L); Typical values: 3-10
learn_rate     Learning Rate (xgboost: eta) (type: double, default: 0.3); Typical values: 0.01-0.3
loss_reduction Minimum Loss Reduction (xgboost: gamma) (type: double, default: 0.0); range: 0 to Inf; typical value: 0 - 20 assuming low-mid tree depth
sample_size    Proportion Observations Sampled (xgboost: subsample) (type: double, default: 1.0); Typical values: 0.5 - 1
stop_iter      # Iterations Before Stopping (xgboost: early_stop) (type: integer, default: 15L) only enabled if validation set is provided
counts         if TRUE specify \texttt{mtry} as an integer number of cols. Default FALSE to specify \texttt{mtry} as fraction of cols from 0 to 1
tree_method    \texttt{xgboost} tree\_method. default is auto. reference: \texttt{tree method docs}
monotone_constraints
an integer vector with length of the predictor cols, of \{-1, 1, 0\} corresponding to decreasing, increasing, and no constraint respectively for the index of the predictor col. reference: \texttt{monotonicity docs}. 
tidy_xgboost

num_parallel_tree
should be set to the size of the forest being trained. default 1L

lambda  [default=1] L2 regularization term on weights. Increasing this value will make
model more conservative.

alpha   [default=0] L1 regularization term on weights. Increasing this value will make
model more conservative.

scale_pos_weight  [default=1] Control the balance of positive and negative weights, useful for un-
balanced classes. if set to TRUE, calculates sum(negative instances) / sum(positive
instances)

verbosity  [default=1] Verbosity of printing messages. Valid values are 0 (silent), 1 (warn-
ing), 2 (info), 3 (debug).

validate  default TRUE. report accuracy metrics on a validation set.

Details
reference for parameters: xgboost docs

Value
xgb.Booster model

Examples

options(rlang_trace_top_env = rlang::current_env())

# regression on numeric variable

iris %>%
  framecleaner::create_dummies(Species) -> iris_dummy

iris_dummy %>%
tidy_formula(target= Petal.Length) -> petal_form

iris_dummy %>%
tidy_xgboost(
  petal_form,
  trees = 500,
  mtry = .5
) -> xg1

xg1 %>%
  visualize_model(top_n = 2)

xg1 %>%
tidy_predict(newdata = iris_dummy, form = petal_form) -> iris_preds

iris_preds %>%
```
eval_preds()

binary classification
returns probability and labels
iris %>%
tidy_formula(Species) -> species_form

iris %>%
dplyr::filter(Species != "versicolor") %>%
dplyr::mutate(Species = forcats::fct_drop(Species)) -> iris_binary

iris_binary %>%
tidy_xgboost(formula = species_form, trees = 50L, mtry = 0.2) -> xgb_bin

xgb_bin %>%
tidy_predict(newdata = iris_binary, form = species_form) -> iris_binary1

iris_binary1 %>%
eval_preds()

eval_preds()

multiclass classification that returns labels

iris %>%
tidy_xgboost(species_form,
 objective = "multi:softmax",
 trees = 100,
 tree_depth = 3L,
 loss_reduction = 0.5) -> xgb2

xgb2 %>%
tidy_predict(newdata = iris, form = species_form) -> iris_preds

additional yardstick metrics can be supplied to the dots in eval_preds
iris_preds %>%
eval_preds(yardstick::j_index)

multiclass classification that returns probabilities

iris %>%
tidy_xgboost(species_form,
 objective = "multi:softprob",
 trees = 50L,
```
```
sample_size = .2,
mtry = .5,
tree_depth = 2L,
loss_reduction = 3) -> xgb2_prob

predict on the data that already has the class labels, so the resulting data frame
has class and prob predictions

xgb2_prob %>%
tidy_predict(newdata = iris_preds, form = species_form) -> iris_preds1

also requires the labels in the dataframe to evaluate preds
the model name must be supplied as well. Then roc metrics can be calculated
iris_preds1 %>%
eval_preds(yardstick::average_precision, softprob_model = "xgb2_prob"
)
```

---

### Description

s3 method to automatically visualize the output of a model object. Additional arguments can be supplied for the original function. Check the corresponding plot function documentation for any custom arguments.

### Usage

```r
visualize_model(model, ..., method = NULL)
```

### S3 method for class 'RandomForest'

```r
visualize_model(model, ..., method)
```

### S3 method for class 'BinaryTree'

```r
visualize_model(model, ..., method)
```

### S3 method for class 'glm'

```r
visualize_model(model, ..., method)
```

### S3 method for class 'multinom'

```r
visualize_model(model, ..., method)
```

### S3 method for class 'xgb.Booster'

```r
visualize_model(model, ..., method)
```

### Default S3 method:

```r
visualize_model(model, ..., method)
```
Arguments
  model  a model
  ...    additional arguments
  method choose amongst different visualization methods

Value
  a plot
Index

auto_anova, 2
auto_boxplot, 4
auto_cor, 5
auto_model_accuracy, 6
auto_t_test, 10
auto_tune_xgboost, 7
auto_variable_contributions, 11

cor.test, 5
create_monotone_constraints, 12
ctree_control, 18
eval_preds, 13

f_charvec_to_formula, 13
f_formula_to_charvec, 14
f_modify_formula, 15
gbt.train, 17
geom_boxplot, 4
get_params, 16

set_engine, 24
tidy_agtboost, 17
tidy_cforest, 17
tidy_ctree, 18
tidy_foci, 19
tidy_formula, 20
tidy_glm, 20
tidy_predict, 13, 21
tidy_shap, 22
tidy_xgboost, 23

visualize_model, 18, 27

xicor, 5