Package ‘autostats’

October 12, 2022

Type Package
Title Auto Stats
Version 0.3.1
Maintainer Harrison Tietze <harrison4192@gmail.com>
Description Automatically do statistical exploration. Create formulas using 'tidyselect' syntax, and then determine cross-validated model accuracy and variable contributions using 'glm' and 'xgboost'. Contains additional helper functions to create and modify formulas. Has a flagship function to quickly determine relationships between categorical and continuous variables in the data set.
Encoding UTF-8
Imports dplyr, stringr, tidyselect, purrr, janitor, tibble, rlang,
 stats, rlist, broom, magrittr, ggeasy, ggplot2, jtools, gtools,
 gghthemes, patchwork, tidyr, xgboost, flextable, parsnip,
 recipes, rsample, tune, workflows, forcats, framecleaner,
 presenter, yardstick, dials, readr, lubridate, party,
 data.table, FOCI, XICOR, agtboost, mnet, recosystem, doParallel
RoxygenNote 7.2.1
URL https://harrison4192.github.io/autostats/,
 https://github.com/Harrison4192/autostats
BugReports https://github.com/Harrison4192/autostats/issues
Suggests knitr, rmarkdown, parallel, igraph, moreparty, broom.mixed,
 hardhat, glmnet, Ckmeans.1d.dp, ggstance, Matrix, BBmisc
VignetteBuilder knitr
License MIT + file LICENSE
NeedsCompilation no
Author Harrison Tietze [aut, cre]
Depends R (>= 3.5.0)
Repository CRAN
Date/Publication 2022-08-19 13:10:06 UTC
Description

A wrapper around lm and anova to run a regression of a continuous variable against categorical variables. Used for determining the whether the mean of a continuous variable is statistically significant amongst different levels of a categorical variable.

Usage

```r
auto_anova(
  data, ...
  baseline = c("mean", "median", "first_level", "user_supplied"),
  user_supplied_baseline = NULL,
  sparse = FALSE,
  pval_thresh = 0.1
)
```
Arguments

data a data frame
...tidyselect specification or cols
baseline choose from "mean", "median", "first_level", "user_supplied". what is the baseline to compare each category to? can use the mean and median of the target variable as a global baseline
user_supplied_baseline if intercept is "user_supplied", can enter a numeric value
sparse default FALSE; if true returns a truncated output with only significant results
pval_thresh control significance level for sparse output filtering

Details

Columns can be inputted as unquoted names or tidyselect. Continuous and categorical variables are automatically determined. If no character or factor column is present, the column with the lowest amount of unique values will be considered the categorical variable.

Description of columns in the output

- target continuous variables
- predictor categorical variables
- level levels in the categorical variables
- estimate difference between level target mean and baseline
- target_mean target mean per level
- n rows in predictor level
- std.error standard error of target in predictor level
- level_p.value p.value for t.test of whether target mean differs significantly between level and baseline
- level_significance level p.value represented by stars
- predictor_p.value p.value for significance of entire predictor given by F test
- predictor_significance predictor p.value represented by stars
- conclusion text interpretation of tests

Value
data frame

Examples

```r
iris %>%
auto_anova(tidyselect::everything()) -> iris_anova1
```

```r
iris_anova1 %>%
print(width = Inf)
```
Description

Wraps `geom_boxplot` to simplify creating boxplots.

Usage

```r
auto_boxplot(  
  .data,  
  continuous_outcome,  
  categorical_variable,  
  categorical_facets = NULL,  
  alpha = 0.3,  
  width = 0.15,  
  color_dots = "black",  
  color_box = "red"  
)
```

Arguments

- `.data`: data
- `continuous_outcome`: continuous y variable. unquoted column name
- `categorical_variable`: categorical x variable. unquoted column name
- `categorical_facets`: categorical facet variable. unquoted column name
- `alpha`: alpha points
- `width`: width of jitter
- `color_dots`: dot color
- `color_box`: box color

Value

`ggplot`

Examples

```r
iris %>%  
  auto_boxplot(continuous_outcome = Petal.Width, categorical_variable = Species)
```
auto_cor

auto_cor

Description

Finds the correlation between numeric variables in a data frame, chosen using tidyselect. Additional parameters for the correlation test can be specified as in `cor.test`.

Usage

```r
auto_cor(
  .data,
  ...,
  use = c("pairwise.complete.obs", "all.obs", "complete.obs", "everything", "na.or.complete"),
  method = c("pearson", "kendall", "spearman", "xicor"),
  include_nominals = TRUE,
  max_levels = 5L,
  sparse = TRUE,
  pval_thresh = 0.1
)
```

Arguments

- `.data` - data frame
- `...` - tidyselect cols
- `use` - method to deal with na. Default is to remove rows with NA
- `method` - correlation method. default is pearson, but also supports xicor.
- `include_nominals` - logicals, default TRUE. Dummify nominal variables?
- `max_levels` - maximum numbers of dummies to be created from nominal variables
- `sparse` - logical, default TRUE. Filters and arranges cor table
- `pval_thresh` - threshold to filter out weak correlations

Details

includes the asymmetric correlation coefficient ξ from `xicor`

Value

data frame of correlations
Examples

```r
iris %>%
  auto_cor()
```

don't use sparse if you're interested in only one target variable
```r
iris %>%
  auto_cor(sparse = FALSE) %>%
  dplyr::filter(x == "Petal.Length")
```

Description

Runs a cross validated xgboost and regularized linear regression, and reports accuracy metrics. Automatically determines whether the provided formula is a regression or classification.

Usage

```r
auto_model_accuracy(
  data,  # data frame
  formula,  # formula
  ...,  # any other params for xgboost
  n_folds = 4,
  as_flextab = TRUE,
  include_linear = FALSE,
  theme = "tron",
  seed = 1,
  mtry = 1,
  trees = 15L,
  min_n = 1L,
  tree_depth = 6L,
  learn_rate = 0.3,
  loss_reduction = 0,
  sample_size = 1,
  stop_iter = 10L,
  counts = FALSE,
  penalty = 0.015,
  mixture = 0.35
)
```

Arguments

- `data` (data frame)
- `formula` (formula)
- `...` (any other params for xgboost)
auto_tune_xgboost

- n_folds: number of cross validation folds
- as_flextable: if FALSE, returns a tibble
- include_linear: if TRUE includes a regularized linear model
- theme: make_flextable theme
- seed: seed
- mtry: # Randomly Selected Predictors (xgboost: colsample_bynode) (type: numeric, range 0 - 1) (or type: integer if count = TRUE)
- trees: # Trees (xgboost: nrounds) (type: integer, default: 15L)
- min_n: Minimal Node Size (xgboost: min_child_weight) (type: integer, default: 1L); [typical range: 2-10] Keep small value for highly imbalanced class data where leaf nodes can have smaller size groups. Otherwise increase size to prevent overfitting outliers.
- tree_depth: Tree Depth (xgboost: max_depth) (type: integer, default: 6L); Typical values: 3-10
- learn_rate: Learning Rate (xgboost: eta) (type: double, default: 0.3); Typical values: 0.01-0.3
- loss_reduction: Minimum Loss Reduction (xgboost: gamma) (type: double, default: 0.0); range: 0 to Inf; typical value: 0 - 20 assuming low-mid tree depth
- sample_size: Proportion Observations Sampled (xgboost: subsample) (type: double, default: 1.0); Typical values: 0.5 - 1
- stop_iter: # Iterations Before Stopping (xgboost: early_stop) (type: integer, default: 15L) only enabled if validation set is provided
- counts: if TRUE specify mtry as an integer number of cols. Default FALSE to specify mtry as fraction of cols from 0 to 1
- penalty: linear regularization parameter
- mixture: linear model parameter, combines l1 and l2 regularization

Value

a table

Description

Automatically tunes an xgboost model using grid or bayesian optimization
auto_tune_xgboost

Usage

auto_tune_xgboost(
 .data,
 formula,
 tune_method = c("grid", "bayes"),
 event_level = c("first", "second"),
 n_fold = 5L,
 seed = 1,
 n_iter = 100L,
 save_output = FALSE,
 parallel = TRUE,
 trees = tune::tune(),
 min_n = tune::tune(),
 mtry = tune::tune(),
 tree_depth = tune::tune(),
 learn_rate = tune::tune(),
 loss_reduction = tune::tune(),
 sample_size = tune::tune(),
 stop_iter = tune::tune(),
 counts = FALSE,
 tree_method = c("auto", "exact", "approx", "hist", "gpu_hist"),
 monotone_constraints = 0L,
 num_parallel_tree = 1L,
 lambda = 1,
 alpha = 0,
 scale_pos_weight = 1,
 verbosity = 0L
)

Arguments

.data dataframe
formula formula

tune_method method of tuning. defaults to grid

tune_method method of tuning. defaults to grid

event_level for binary classification, which factor level is the positive class. specify "second" for second level

n_fold integer. n folds in resamples

n_iter n iterations for tuning (bayes); parameter grid size (grid)

save_output FASLE. If set to TRUE will write the output as an rds file

parallel default TRUE; If set to TRUE, will enable parallel processing on resamples for grid tuning

trees # Trees (xgboost: nrounds) (type: integer, default: 15L)

min_n Minimal Node Size (xgboost: min_child_weight) (type: integer, default: 1L); [typical range: 2-10] Keep small value for highly imbalanced class data where
leaf nodes can have smaller size groups. Otherwise increase size to prevent overfitting outliers.

mtry

Randomly Selected Predictors (xgboost: colsample_bynode) (type: numeric, range 0 - 1) (or type: integer if count = TRUE)

tree_depth

Tree Depth (xgboost: max_depth) (type: integer, default: 6L); Typical values: 3-10

learn_rate

Learning Rate (xgboost: eta) (type: double, default: 0.3); Typical values: 0.01-0.3

loss_reduction

Minimum Loss Reduction (xgboost: gamma) (type: double, default: 0.0); range: 0 to Inf; typical value: 0 - 20 assuming low-mid tree depth

sample_size

Proportion Observations Sampled (xgboost: subsample) (type: double, default: 1.0); Typical values: 0.5 - 1

stop_iter

Iterations Before Stopping (xgboost: early_stop) (type: integer, default: 15L) only enabled if validation set is provided

counts

if TRUE specify mtry as an integer number of cols. Default FALSE to specify mtry as fraction of cols from 0 to 1

tree_method

xgboost tree_method. default is auto. reference: tree method docs

monotone_constraints

an integer vector with length of the predictor cols, of -1, 1, 0 corresponding to decreasing, increasing, and no constraint respectively for the index of the predictor col. reference: monotonicity docs.

num_parallel_tree

should be set to the size of the forest being trained. default 1L

lambda

[default=1] L2 regularization term on weights. Increasing this value will make model more conservative.

alpha

[default=0] L1 regularization term on weights. Increasing this value will make model more conservative.

scale_pos_weight

[default=1] Control the balance of positive and negative weights, useful for unbalanced classes. if set to TRUE, calculates sum(negative instances) / sum(positive instances)

verbosity

[default=1] Verbosity of printing messages. Valid values are 0 (silent), 1 (warning), 2 (info), 3 (debug).

Details

Default is to tune all 7 xgboost parameters. Individual parameter values can be optionally fixed to reduce tuning complexity.

Value

workflow object
Examples

```
if(FALSE){
  iris %>%
    framecleaner::create_dummies() -> iris1
  iris1 %>%
    tidy_formula(target = Petal.Length) -> petal_form
  iris1 %>%
    rsample::initial_split() -> iris_split
  iris_split %>%
    rsample::analysis() -> iris_train
  iris_split %>%
    rsample::assessment() -> iris_val
  iris_train %>%
    auto_tune_xgboost(formula = petal_form, n_iter = 10, 
    parallel = TRUE, method = "bayes") -> xgb_tuned
  xgb_tuned %>%
    fit(iris_train) %>%
    parsnip::extract_fit_engine() -> xgb_tuned_fit
  xgb_tuned_fit %>%
    tidy_predict(newdata = iris_val, form = petal_form) -> iris_val1
}
```

auto_t_test

Description

Performs a t.test on 2 populations for numeric variables.

Usage

```
auto_t_test(data, col, ..., var_equal = FALSE, abbrev = TRUE)
```

Arguments

data
dataframe
col
a column with 2 categories representing the 2 populations
auto_variable_contributions

... numeric variables to perform t.test on. Default is to select all numeric variables
var_equal default FALSE; t.test parameter
abbrv default TRUE; remove some extra columns from output

Value
dataframe

Examples

iris %>%
dplyr::filter(Species != "setosa") %>%
auto_t_test(col = Species)

Plot Variable Contributions

Description

Return a variable importance plot and coefficient plot from a linear model. Used to easily visualize the contributions of explanatory variables in a supervised model

Usage

auto_variable_contributions(data, formula, scale = TRUE)

Arguments

data dataframe
formula formula
scale logical. If FALSE puts coefficients on original scale

Value

a ggplot object

Examples

iris %>
framecleaner::create_dummies() %>
auto_variable_contributions(
 tidy_formula(. , target = Petal.Width)
)
iris %>%
auto_variable_contributions(
tidy_formula(., target = Species)
)

cap_outliers

Description
Caps the outliers of a numeric vector by percentiles. Also outputs a plot of the capped distribution.

Usage
cap_outliers(x, q = 0.05, type = c("both", "upper", "lower"))

Arguments
- **x**: numeric vector
- **q**: decimal input to the quantile function to set cap. default .05 caps at the 95 and 5th percentile
- **type**: chr vector. where to cap: both, upper, or lower

Value
numeric vector

Examples
cap_outliers(iris$Petal.Width)

create_monotone_constraints

Description
helper function to create the integer vector to pass to the monotone_constraints argument in xgboost
eval_preds

Usage

```
create_monotone_constraints(
  .data,
  formula,
  decreasing = NULL,
  increasing = NULL
)
```

Arguments

- `.data`: dataframe, training data for tidy_xgboost
- `formula`: formula used for tidy_xgboost
- `decreasing`: character vector or tidyselect regular expression to designate decreasing cols
- `increasing`: character vector or tidyselect regular expression to designate increasing cols

Value

a named integer vector with entries of 0, 1, -1

Examples

```
iris %>%
  framecleaner::create_dummies(Species) -> iris_dummy

iris_dummy %>%
  tidy_formula(target= Petal.Length) -> petal_form

iris_dummy %>%
  create_monotone_constraints(petal_form, 
    decreasing = tidyselect::matches("Petal|Species"),
    increasing = "Sepal.Width")
```

eval_preds eval_preds
eval_preds

description

Automatically evaluates predictions created by `tidy_predict`. No need to supply column names.

Usage

```
eval_preds(.data, ..., softprob_model = NULL)
```
f_charvec_to_formula

Arguments

.data dataframe as a result of tidy_predict
... additional metrics from yarstick to be calculated
softprob_model character name of the model used to create multiclass probabilities

Value
tibble of summarized metrics

Description
takes the lhs and rhs of a formula as character vectors and outputs a formula

Usage

f_charvec_to_formula(lhs, rhs)

Arguments

lhs lhs atomic chr vec
rhs rhs chr vec

Value
formula

Examples

lhs <- "Species"
rhs <- c("Petal.Width", "Custom_Var")
f_charvec_to_formula(lhs, rhs)
Description

Accepts a formula and returns the rhs as a character vector.

Usage

f_formula_to_charvec(f, include_lhs = FALSE, .data = NULL)

Arguments

f formula
include_lhs FALSE. If TRUE, appends lhs to beginning of vector
.data dataframe for names if necessary

Value

chr vector

Examples

iris %>%
tidy_formula(target = Species, tidyselect::everything()) -> f

f

f %>%
f_formula_to_charvec()

f_modify_formula Modify Formula

Description

Modify components of a formula by adding / removing vars from the rhs or replacing the lhs.

Usage

f_modify_formula(
 f,
 rhs_remove = NULL,
 rhs_add = NULL,
 lhs_replace = NULL,
 negate = TRUE
)
Arguments

- `f`: formula
- `rhs_remove`: regex or character vector for dropping variables from the rhs
- `rhs_add`: character vector for adding variables to rhs
- `lhs_replace`: string to replace formula lhs if supplied
- `negate`: should `rhs_remove` keep or remove the specified vars. Set to `FALSE` to keep

Value

- formula

Examples

```
iris %>%
tidy_formula(target = Species, tidyselect::everything()) -> f

f

f %>%
  f_modify_formula(
    rhs_remove = c("Petal.Width", "Sepal.Length"),
    rhs_add = "Custom_Variable"
  )

f %>%
  f_modify_formula(
    rhs_remove = "Petal",
    lhs_replace = "Petal.Length"
  )
```

Description

s3 method to extract params of a model with names consistent for use in the ‘autostats’ package

Usage

```
get_params(model, ...)
```

S3 method for class 'xgb.Booster'
get_params(model, ...)

Arguments

model a model
... additional arguments

Value

list of params

Examples

iris %>%
 framecleaner::create_dummies() -> iris_dummies

iris_dummies %>%
 tidy_formula(target = Petal.Length) -> p_form

iris_dummies %>%
 tidy_xgboost(p_form, mtry = .5, trees = 5L, loss_reduction = 2, sample_size = .7) -> xgb

reuse these parameters to find the cross validated error
rlang::exec(auto_model_accuracy, data = iris_dummies, formula = p_form, !!!get_params(xgb))

Description

Imputes missing values of a numeric matrix using stochastic gradient descent. recosystem

Usage

impute_recosystem(
 .data, lrate = c(0.05, 0.1),
 costp_l1 = c(0, 0.05),
 costq_l1 = c(0, 0.05),
 costp_l2 = c(0, 0.05),
 costq_l2 = c(0, 0.05),
 nthread = 8,
 loss = "l2",
 niter = 15,
 verbose = FALSE,
 nfold = 4,
 seed = 1
)
Arguments

- `.data` long format data frame
- `lrate` learning rate
- `costp_l1` l1 cost p
- `costq_l1` l1 cost q
- `costp_l2` l2 cost p
- `costq_l2` l2 cost q
- `nthread` nthreads
- `loss` loss function. also can use “l1”
- `niter` training iterations for tune
- `verbose` show training loss?
- `nfold` folds for tune validation
- `seed` seed for randomness

Details

input is a long data frame with 3 columns: ID col, Item col (the column names from pivoting longer), and the ratings (values from pivoting longer)

pre-processing generally requires pivoting a wide user x item matrix to long format. The missing values from the matrix must be retained as NA values in the rating column. The values will be predicted and filled in by the algorithm. Output is a long data frame with the same number of rows as input, but no missing values.

This function automatically tunes the recosystem learner before applying. Parameter values can be supplied for tuning. To avoid tuning, use single values for the parameters.

Value

long format data frame

Description

Boosted tree regression using the **agtboost** package. Variable importance plot is printed along with returning the model. Noise features are eliminated from the plot.

Usage

tidy_agtboost(.data, formula, ...)

tidy_agtboost

tidy agtboost

tidy_agtboost

tidy agtboost
tidy_cforest

Arguments
.data dataframe
formula formula
... additional parameters to pass to gbt.train

Details

agtboost: Adaptive and Automatic Gradient Tree Boosting Computations

Value

agtboost model of class Rcpp_ENSEMBLE

Examples

iris %>%
tidy_formula(target = Petal.Length) -> f1

iris %>%
tidy_agtboost(f1)

tidy_cforest tidy conditional inference forest

Description

Runs a conditional inference forest.

Usage

tidy_cforest(data, formula, seed = 1)

Arguments

data dataframe
formula formula
seed seed integer

Value

a cforest model
Examples

```r
iris %>%
tidy_cforest(
  tidy_formula(., Petal.Width)
) -> iris_cfor

iris_cfor

iris_cfor %>%
visualize_model()
```

Description

`tidy_cforest` is a tidy conditional inference tree. It creates easily interpretable decision tree models that can be shown with the `visualize_model` function. Statistical significance is required for a split, and the number of necessary samples in a terminal leaf can be controlled to create the desired tree visual.

Usage

```r
tidy_cforest(.data, formula, minbucket = 7L, mincriterion = 0.95, ...)
```

Arguments

- `.data` : dataframe
- `formula` : formula
- `minbucket` : minimum amount of samples in terminal leaves, default is 7
- `mincriterion` : (1 - alpha) value between 0 -1, default is .95. Lowering this value creates more splits, but less significant
- `...` : optional parameters to `ctree_control`

Value

A `ctree` object

Examples

```r
iris %>%
tidy_formula(., Sepal.Length) -> sepal_form

iris %>%
tidy_cforest(sepal_form) %>%
visualize_model()
```
iris %>%
tidy_ctree(sepal_form, minbucket = 30) %>%
visualize_model(plot_type = "box")

tidy_foci
Tidy FOCI

Description

variable selection with FOCI

Usage

```r
tidy_foci(.data, formula, ...)
```

Arguments

- `.data` data
- `formula` formula
- `...` other arguments to FOCI

Value

data frame

Examples

```r
iris %>%
tidy_foci(Species ~ .) -> d1

d1 %>%
tibble::as_tibble()
```
tidy_formula
tidy formula construction

Description
Takes a dataframe and allows for use of tidyselect to construct a formula.

Usage
```r
tidy_formula(data, target, ...)
```

Arguments
- `data`
 dataframe
- `target`
 lhs
- `...`
 tidyselect. rhs

Value
a formula

Examples
```r
iris %>%
tidy_formula(Species, tidyselect::everything())
```

tidy_glm
tidy glm

Description
Runs either a linear regression, logistic regression, or multinomial classification. The model is automatically determined based off the nature of the target variable.

Usage
```r
tidy_glm(data, formula)
```

Arguments
- `data`
 dataframe
- `formula`
 formula
tidy_predict

Value
 glm model

Examples

linear regression
iris %>%
tidy_glm(
tidy_formula(., target = Petal.Width)) -> glm1

glm1

glm1 %>%
visualize_model()

multinomial classification

tidy_formula(iris, target = Species) -> species_form

iris %>%
tidy_glm(species_form) -> glm2

glm2 %>%
visualize_model()

logistic regression
iris %>%
dplyr::filter(Species != "setosa") %>%
tidy_glm(species_form) -> glm3

suppressWarnings({
 glm3 %>%
 visualize_model()})

Description
 tidy predict

Usage
 tidy_predict(
 model,
 newdata,
 form = NULL,
S3 method for class 'Rcpp_ENSEMBLE'
tidy_predict(model, newdata, form = NULL, ...)

S3 method for class 'glm'
tidy_predict(model, newdata, form = NULL, ...)

Default S3 method:
tidy_predict(model, newdata, form = NULL, ...)

S3 method for class 'BinaryTree'
tidy_predict(model, newdata, form = NULL, ...)

S3 method for class 'xgb.Booster'
tidy_predict(
 model,
 newdata,
 form = NULL,
 olddata = NULL,
 bind_preds = FALSE,
 ...
)

Arguments

- **model**: model
- **newdata**: dataframe
- **form**: the formula used for the model
- **olddata**: training data set
- **bind_preds**: set to TRUE if newdata is a dataset without any labels, to bind the new and old data with the predictions under the original target name
- **...**: other parameters to pass to predict

Value

dataframe

tidy_shap | tidy shap
Description

plot and summarize shapley values from an xgboost model

Usage

tidy_shap(model, newdata, form = NULL, ..., top_n = 12, aggregate = NULL)

Arguments

model xgboost model
newdata dataframe similar to model input
form formula used for model
... additional parameters for shapley value
top_n top n features
aggregate a character vector. Predictors containing the string will be aggregated, and re- named to that string.

Details

returns a list with the following entries

shap_tbl : table of shaply values

shap_summary : table summarizing shapley values. Includes correlation between shaps and feature values.

swarmplot : one plot showing the relation between shaps and features

scatterplots : returns the top 9 most important features as determined by sum of absolute shapley values, as a faceted scatterplot of feature vs shap

Value

list
tidy_xgboost(c("auto", "exact", "approx", "hist", "gpu_hist")),
monotone_constraints = 0L,
num_parallel_tree = 1L,
lambda = 1,
alpha = 0,
scale_pos_weight = 1,
verbosity = 0L,
validate = TRUE)
tidy_xgboost

if TRUE specify mtry as an integer number of cols. Default FALSE to specify mtry as fraction of cols from 0 to 1

xgboost tree_method. default is auto. reference: tree method docs

an integer vector with length of the predictor cols, of -1, 1, 0 corresponding to decreasing, increasing, and no constraint respectively for the index of the predictor col. reference: monotonicity docs.

should be set to the size of the forest being trained. default 1L

[default=1] L2 regularization term on weights. Increasing this value will make model more conservative.

[default=0] L1 regularization term on weights. Increasing this value will make model more conservative.

[default=1] Control the balance of positive and negative weights, useful for unbalanced classes. if set to TRUE, calculates sum(negative instances) / sum(positive instances)

[default=1] Verbosity of printing messages. Valid values are 0 (silent), 1 (warning), 2 (info), 3 (debug).

default TRUE. report accuracy metrics on a validation set.

details reference for parameters: xgboost docs

xgb.Booster model

regression on numeric variable

iris %>%
framecleaner::create_dummies(Species) -> iris_dummy

iris_dummy %>%
tidy_formula(target= Petal.Length) -> petal_form

iris_dummy %>%
tidy_xgboost(
 petal_form,
trees = 500,
mtry = .5
) -> xg1
tidy_xgboost

```r
xg1 %>%
  visualize_model(top_n = 2)

xg1 %>%
  tidy_predict(newdata = iris_dummy, form = petal_form) -> iris_preds

iris_preds %>%
  eval_preds()

# binary classification
# returns probability and labels
iris %>%
  tidy_formula(Species) -> species_form

iris %>%
  dplyr::filter(Species != "versicolor") %>%
  dplyr::mutate(Species = forcats::fct_drop(Species)) -> iris_binary

iris_binary %>%
  tidy_xgboost(formula = species_form, trees = 50L, mtry = 0.2) -> xgb_bin

xgb_bin %>%
  tidy_predict(newdata = iris_binary, form = species_form) -> iris_binary1

iris_binary1 %>%
  eval_preds()

# multiclass classification that returns labels
iris %>%
  tidy_xgboost(species_form,
               objective = "multi:softmax",
               trees = 100,
               tree_depth = 3L,
               loss_reduction = 0.5) -> xgb2

xgb2 %>%
  tidy_predict(newdata = iris, form = species_form) -> iris_preds

# additional yardstick metrics can be supplied to the dots in eval_preds
iris_preds %>%
  eval_preds(yardstick::j_index)
```
multiclass classification that returns probabilities

iris %>%
tidy_xgboost(species_form,
 objective = "multi:softprob",
 trees = 50L,
 sample_size = .2,
 mtry = .5,
 tree_depth = 2L,
 loss_reduction = 3) -> xgb2_prob

predict on the data that already has the class labels, so the resulting data frame
has class and prob predictions

xgb2_prob %>%
tidy_predict(newdata = iris_preds, form = species_form) -> iris_preds1

also requires the labels in the dataframe to evaluate preds
the model name must be supplied as well. Then roc metrics can be calculated
#iris_preds1 %>%
eval_preds(yardstick::average_precision, softprob_model = "xgb2_prob"
)

visualize_model

visualize model

Description

s3 method to automatically visualize the output of of a model object. Additional arguments can be supplied for the original function. Check the corresponding plot function documentation for any custom arguments.

Usage

```r
visualize_model(model, ..., method = NULL)
```

S3 method for class 'RandomForest'
```
visualize_model(model, ..., method)
```

S3 method for class 'BinaryTree'
```
visualize_model(model, ..., method)
```

S3 method for class 'glm'
```
visualize_model(model, ..., method)
```
S3 method for class 'multinom'
visualize_model(model, ..., method)

S3 method for class 'xgb.Booster'
visualize_model(model, ..., method)

Default S3 method:
visualize_model(model, ..., method)

Arguments

- `model` a model
- `...` additional arguments
- `method` choose amongst different visualization methods

Value

a plot
Index

auto_anova, 2
auto_boxplot, 4
auto_cor, 5
auto_model_accuracy, 6
auto_t_test, 10
auto_tune_xgboost, 7
auto_variable_contributions, 11

cap_outliers, 12
cor.test, 5
create_monotone_constraints, 12
ctree_control, 20

eval_preds, 13

f_charvec_to_formula, 14
f_formula_to_charvec, 15
f_modify_formula, 15

gbt.train, 19
geom_boxplot, 4
get_params, 16

impute_recosystem, 17

set_engine, 26

tidy_agtboost, 18
tidy_cforest, 19
tidy_ctree, 20
tidy_foci, 21
tidy_formula, 22
tidy_glm, 22
tidy_predict, 13, 14, 23
tidy_shap, 24
tidy_xgboost, 25

visualize_model, 20, 29

xicor, 5