Package ‘b6e6rl’

February 19, 2015

Type Package
Title Adaptive differential evolution, b6e6rl variant
Version 1.1
Date 2013-06-27
Author Marek Spruzina
Maintainer Marek Spruzina <spruzin@gmail.com>
Description This package contains b6e6rl algorithm, adaptive differential evolution for global optimization.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2013-06-27 06:51:33

R topics documented:

b6e6rl .. 1
f_dejong .. 3
f_rastrigin ... 3
f_rosenbrock .. 3

Index

b6e6rl Adaptive differential evolution, b6e6rl algorithm

Description

This function searches for the global minimum using b6e6rl variant of adaptive differential evolution.

Usage

b6e6rl(fn_name, a, b, N, my_eps, max_evals, n0, delta)
Arguments

fn_name Name of function which minimum is to find
a Vector of lower bounds of the search space (length=dimension of the search space)
b Vector of upper bounds of the search space (length=dimension of the search space)
N Size of population
my_eps Small positive value, the algorithm stops when fmax-fmin < my_eps
max_evals Maximum count of function evaluations per one dimension of the problem
n0 Input parameter controlling the competition of the strategies, usually n0=2
delta Input parameter (critical probability), usually delta=1/60

Value

x_star Approximation of the global minimum point found by search (vector of length=d)
fn_star Functional value at x_star
func_evals Count of function evaluations
success Count of successful generations of the trial point
nrst Count of resets, when any probability value is less than delta
cni Counts of successful selection of each strategy (vector of length=12)

Author(s)

Marek Spruzina, University of Ostrava

References

Examples

```r
# Example of the b6e6r1 call

fn_name <- "f_dejong"
a <- c(-30, -30, -30)
b <- c(30, 30, 30)
N <- 60
max_evals <- 20000
my_eps <- 0.000001
n0 <- 2
delta <- 1/(5*12)
b6e6r1(fn_name, a, b, N, my_eps, max_evals, n0, delta)
```
f_dejong
Test function

Description
First deJong problem (sphere). The global minimum: \(f(x) = 0 \), \(x(i) = 0 \), \(i = 1:n \); \(n \) is dimension of the search space.

f_rastrigin
Test function

Description
Rastring (multimodal separable). The global minimum: \(f(x) = 0 \); \(x(i) = 0 \), \(i = 1:n \); \(n \) is dimension of the search space.

f_rosenbrock
Test function

Description
Rosenbrock (nonseparable). The global minimum: \(f(x) = 0 \); \(x(i) = 1 \), \(i = 1:n \); \(n \) is dimension of the search space.
Index

*Topic adaptive
 b6e6rl, 1
*Topic b6e6rl
 b6e6rl, 1
*Topic differential
 b6e6rl, 1
*Topic evolution
 b6e6rl, 1

b6e6rl, 1

f_dejong, 3
f_rastrigin, 3
f_rosenbrock, 3