Package ‘bRacatus’

October 12, 2022

Title A Method to Estimate the Accuracy and Biogeographical Status of Georeferenced Biological Data

Version 1.0.9

Language en-GB

Description Automated assessment of accuracy and geographical status of georeferenced biological data. The methods rely on reference regions, namely checklists and range maps. Includes functions to obtain data from the Global Biodiversity Information Facility <https://www.gbif.org/> and from the Global Inventory of Floras and Traits <https://gift.uni-goettingen.de/home>. Alternatively, the user can input their own data. Furthermore, provides easy visualisation of the data and the results through the plotting functions. Especially suited for large datasets. The reference for the methodology is: Arlé et al. (under review).

Depends R (>= 3.5.0)

Imports data.table, geojsonio, graphics, grDevices, jsonlite, maptools, methods, plotfunctions, raster, rgbif, rgdal, rgeos, rworldmap, sp, stats

License GPL (>= 2)

Encoding UTF-8

URL https://github.com/EduardoArle/bRacatus

BugReports https://github.com/EduardoArle/bRacatus/issues

LazyData true

RoxygenNote 7.1.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Eduardo Arlé [aut, cre], Alexander Zizka [aut], Patrick Weigelt [ctb], Sam Levin [ctb], Carsten Meyer [ths]
Maintainer Eduardo Arlé <eduardo.arle@idiv.de>
Repository CRAN
Date/Publication 2022-09-16 10:06:09 UTC

R topics documented:

accuracy .. 2
availableCountries ... 3
biogeoStatus ... 3
countryChecklist ... 4
getOcc ... 4
giftRegions ... 5
giveOcc ... 5
giveRegions ... 6
glonafRegions ... 7
H_mirandae_sp ... 8
ID_raster .. 8
Model_accuracy ... 8
Model_biogeo ... 9
occSpatialPoints ... 9
plotAccuracy ... 10
plotBiogeoStatus ... 11
plotOcc ... 12
plotRefReg .. 13
pts ... 13
pts2 ... 14
rangeMaps .. 14
Range_Phalanger_orientalis 15
signalCalculation .. 15
signals ... 16
signals_2 .. 16
signals_3 .. 16

Index 17

| accuracy | accuracy |

Description
Estimates the Accuracy of Each Point Record.

Usage
accuracy(signals)
availableCountries

Arguments

signals output of the function "signalCalculation". A data.frame including the original point data and the signals sent by the reference regions.

Value

The data.frame with the species occurrence information and an extra column indicating the estimated accuracy of each point.

availableCountries

Description

List of countries and entities names for checklists

Usage

availableCountries()

Value

This function provides a list of countries and entities names available with rworldmaps for checklists

Examples

```r
country_list <- availableCountries()
```

biogeoStatus

Description

Estimates the biogeographic status of each point record.

Usage

biogeoStatus(signals)

Arguments

signals output of the function signalCalculation. A dataFrame including the original point data and the signals sent by the reference regions.

Value

The dataFrame with the species occurrence information and an extra column indicating the estimated biogeographic status of each point.
countryChecklist

Description
Prepares user provided reference regions on a country level

Usage
countryChecklist(countries, biogeo_status)

Arguments
countries vector with one or more country names
biogeo_status vector informing the status of each country: alien, native or unknown

Value
This function provides shapefiles of countries with the correspondent biogeographic status of the species.

Examples
country_checklist <- countryChecklist(
 c("Brazil","Argentina","Uruguay","Paraguay"),
 c("native","alien","unknown","native"))

getOcc

description
Downloads GBIF records iterating when necessary to overcome the limitation of 200,000 records

Usage
getOcc(species)

Arguments
species character, species binomial name

Value
This function downloads all records for a species from GBIF that have coordinates info. If necessary it loops several times to overcome the limit of 200,000 occurrences imposed by occ_search function. It returns a data table.
giftRegions

Examples

```r
sps_occurrence <- getOcc("Babiana tubulosa")
```

Description

Gets regions listed by GIFT for plant species

Usage

```r
giftRegions(species, min_size = 1000, max_size = 1e+11)
```

Arguments

- `species` character, species binomial name
- `min_size` numeric, minimum size of checklists (in km2) to be included in the analysis.
- `max_size` numeric, maximum size of checklists (in km2) to be included in the analysis.

Value

This function returns a list containing three shapefiles derived by information supplied by GIFT. "regs" includes all the features corresponding to regions where the species has been listed as present. "regs_native" includes all the features corresponding to regions where the species has been listed as native. And "regs_alien" includes all the features corresponding to regions where the species has been listed as alien.

Examples

```r
gift_reference_regions <- giftRegions("Babiana tubulosa")
```

giveOcc

Input occurrence data

Description

Prepares user provided georeferenced biological data for the models

Usage

```r
giveOcc(
  occ_data,
  species = "species",
  longitude = "longitude",
  latitude = "latitude"
)
```
Arguments

oc_data: table containing latitude and longitude
species: col.name containing the species information
longitude: col.name containing the longitude information
latitude: col.name containing the latitude information

Value

This function standardises the user provided georeferenced biological data to be fed into the models.

Examples

Create a data.frame containing species names and coordinates
test_data <- data.frame(sps=rep("Equus acephalus",10),
lon=c(-43.2,-58.4,-56,-44,-54.5,-57.4,-60.1,-68.5,-71.3,-47.5),
lat=c(-22.9,-34.6,-34.8,-20,-25.5,-25.2,-3,-32.5,-41.1,-15.5),
gender=rep("female",10),head_size=rep("headless individual"))
sps_occurrence <- giveOcc(test_data,"sps","lon","lat")

giveRegions(regs, regs_native, regs_alien)

Arguments

regs: shapefile containing all regions of occurrence.
regs_native: shapefile containing regions where the species is native.
regs_alien: shapefile containing regions where the species is alien.

Value

This function returns a list containing three shapefiles derived by information supplied by GIFT. "regs" includes all the features corresponding to regions where the species has been listed as present. "regs_native" includes all the features corresponding to regions where the species has been listed as native. And "regs_alien" includes all the features corresponding to regions where the species has been listed as alien.
Examples

```r
library(rworldmap)
world <- getMap()
regs <- world[c("Brazil","Argentina","Uruguay","Paraguay"),]
regs_native <- world[c("Brazil","Paraguay"),]
regs_alien <- world[c("Argentina"),]
regs_list <- giveRegions(regs,regs_native,regs_alien)
```

glonafRegions
glonafRegions

Description

Gets regions listed by GloNAF for plant species

Usage

```r
glonafRegions(species, native = "gift", nat_ref_reg = NULL)
```

Arguments

- **species**: character, species binomial name
- **native**: character, source for the native reference regions. Options are "gift", "range map", or "checklist". If "gift" is chosen, the function will automatically download native regions listed by GIFT for the species. If "range map" or "checklist" is chosen, the user must provide a shapefile with either the species range map, or the features representing regions where it has been listed as native. Default is "gift".
- **nat_ref_reg**: shapefile containing either the species native range map or checklist. The user must inform which reference region data type is being provided in the parameter "native".

Value

This function returns a list containing three shapefiles derived by information supplied by GloNAF for the alien reference regions, and the chosen source for the native reference regions. "regs" includes all the features corresponding to regions where the species has been listed as present. "regs_native" includes all the features corresponding to regions where the species has been listed as native. And "regs_alien" includes all the features corresponding to regions where the species has been listed as alien.

Examples

```r
glonaf_reference_regions <- glonafRegions("Ambrosia grayi")
```
H_mirandae_sp	*Hemitriccus mirandae spatialPoints exemplary file*

Description

A `SpatialPointsDataFrame` containing the occurrences of *Hemitriccus mirandae* downloaded from GBIF

Examples

```r
data("H_mirandae_sp")
```

ID_raster	*Cell ID raster*

Description

A `Raster` half-degree raster of the world with unique IDs per cell

Examples

```r
data("ID_raster")
```

Model_accuracy	*Accuracy model*

Description

A `glm` accuracy model

Examples

```r
data("Model_accuracy")
```
Biogeographical model

Description
A glm biogeographical model

Examples

data("Model_biogeo")

occSpatialPoints

Description
Downloads gbif records iterating when necessary to overcome the limitation of 200,000 records

Usage
occSpatialPoints(occ)

Arguments
occ table

Value
This function creates spatialPoints from tables containing coordinates.

Examples
Create a data.frame containing species names and coordinates
test_data <- data.frame(sps=rep("Equus acephalus",10),
lon=c(-43.2,-58.4,-56,-44,-54.5,-57.4,-60.1,-68.5,-71.3,-47.5),
lat=c(-22.9,-34.6,-34.8,-20,-25.5,-25.2,-3,-32.5,-41.1,-15.5),
gender=rep("female",10),head_size=rep("headless individual"))
sps_occurrence <- giveOcc(test_data,"sps","lon","lat")
sps_sp <- occSpatialPoints(sps_occurrence)
plotAccuracy

Description

Plot the species occurrences showing the estimated accuracy of points.

Usage

```r
plotAccuracy(
  acc,
  regional = TRUE,
  reg.by = "country",
  borders = TRUE,
  col.features = "khaki",
  col.bg = "azure2",
  plot.range = FALSE,
  range = NULL,
  box = FALSE
)
```

Arguments

- **acc**: dataTable of the species occurrence including a column with the estimated accuracy of points.
- **regional**: logical, whether the whole world should be plotted as the background or only the region adjacent to the species countries of occurrence.
- **reg.by**: character, by countries where there are points or by area where the points are located.
- **borders**: logical, whether country limits should be plotted.
- **col.features**: colour for plotting features.
- **col.bg**: colour for plotting the background.
- **plot.range**: logical, if TRUE, range maps should be provided as a shapefile in argument range.
- **range**: shapefile, species range map.
- **box**: logical, includes frame with coordinates locations.

Value

This function plots the species occurrence with estimated accuracy of all points.
Description

Plot the species occurrences showing the estimated biogeographical status of points.

Usage

```r
plotBiogeoStatus(
  biogeo,
  regional = TRUE,
  reg.by = "country",
  borders = TRUE,
  col.features = "khaki",
  col.bg = "azure2",
  plot.range = FALSE,
  range = NULL,
  box = FALSE
)
```

Arguments

- `biogeo` `dataTable` of the species occurrence including a column with the estimated biogeographical status of points.
- `regional` `logical`, whether the whole world should be plotted as the background or only the region adjacent to the species countries of occurrence.
- `reg.by` `character`, by countries where there are points or by area where the points are located.
- `borders` `logical`, whether country limits should be plotted.
- `col.features` `colour` for plotting features.
- `col.bg` `colour` for plotting the background.
- `plot.range` `logical`, if `TRUE`, range maps should be provided as a shapefile in argument `range`.
- `range` `shapefile`, species range map.
- `box` `logical`, includes frame with coordinates locations.

Value

This function plots the species occurrence with estimated biogeographical status of all points.
Description

Plot the species occurrences with map background for visualisation.

Usage

plotOcc(occ, regional = TRUE)

Arguments

occ dataTable of the species occurrence.
regional logical, whether the whole world should be plotted as the background or only the region adjacent to the species countries of occurrence.

Value

This function plots the species occurrence

Examples

occ <- getOcc("Hemitriccus mirandae")
plotOcc(occ)

test_data <- data.frame(sps=rep("Equus acericeps",10),
lon=c(-43.2,-58.4,-56,-44,-54.5,-57.4,-60.1,-68.5,-71.3,-47.5),
lat=c(-22.9,-34.6,-34.8,-20,-25.5,-25.2,-3,-32.5,-41.1,-15.5),
gender=rep("female",10),head_size=rep("headless individual"))

occ <- giveOcc(test_data,"sps","lon","lat")
plotOcc(occ)
Plot occurrences with the whole world as background

plotOcc(occ,regional=FALSE)
plotRefReg

Description

Plot the species reference regions with map background for visualisation.

Usage

```r
plotRefReg(ref_reg)
```

Arguments

- `ref_reg` list containing three shapefiles derived by information supplied by GIFT. "regs" includes all the features corresponding to regions where the species has been listed as present. "regs_native" includes all the features corresponding to regions where the species has been listed as native. And "regs_alien" includes all the features corresponding to regions where the species has been listed as alien.

Value

This function plots three maps of the species occurrence, showing the regions where it is present, native and alien.

pts

pts example 1

Description

A DataFrame pts example 1

Examples

```r
data("pts")
```
Description

A DataFrame pts example 2

Examples

```r
data("pts2")
```

Usage

```r
rangeMaps(
  range,
  biogeo = "legend",
  native = "Extant (resident)",
  alien = "Introduced"
)
```

Arguments

- `range`: SpatialPolygonsDataFrame
- `biogeo`: character, name of the column containing information on biogeographic status of features
- `native`: character, entries in biogeo column representing the native range of the species
- `alien`: character, entries in biogeo column representing the alien range of the species

Value

This function returns a list containing three shapefiles derived from information supplied by the species range map in a shapefile format. "regs" includes all the features corresponding to regions where the species has been listed as present. "regs_native" includes all the features corresponding to regions where the species has been listed as native. And "regs_alien" includes all the features corresponding to regions where the species has been listed as alien.
Range_Phalanger_orientalis

Examples

```
range_map_reference_regions <- rangeMaps(Range_Phalanger_orientalis)
```

Description

A SpatialPolygonsDataFrame Range Phalanger orientalis

Examples

```
data("Range_Phalanger_orientalis")
```

signalCalculation signalCalculation

Description

Calculates signals sent from reference regions to point records.

Usage

```
signalCalculation(ref_reg, pts, biogeo = TRUE)
```

Arguments

- `ref_reg`: a list of shapefiles containing checklist regions as "presence", "native", and "alien" categories. These can be original checklists, or checklists derived from range maps.
- `pts`: data.frame containing the point records and their coordinates.
- `biogeo`: logical, whether the biogeographical status indices should be calculated or not. Default is true, however at least the native reference regions must be included in the data.

Value

The data.frame of species occurrences with extra columns containing the location ID and presence signals for each point. If biogeo=TRUE, the data.frame also includes the nativeness and alienness indices.
signals example 1

Description

A `SpatialPolygonsDataFrame`

Examples

```r
data("signals")
```

signals example 2

Description

A `SpatialPolygonsDataFrame`

Examples

```r
data("signals_2")
```

signals example 3

Description

A `SpatialPolygonsDataFrame`

Examples

```r
data("signals_3")
```
Index

* exemplary
 H_mirandae_sp, 8
 pts, 13
 pts2, 14
 Range_Phalanger_orientalis, 15
 signals, 16
 signals_2, 16
 signals_3, 16

* model
 Model_accuracy, 8
 Model_biogeo, 9

* object
 H_mirandae_sp, 8
 Model_accuracy, 8
 Model_biogeo, 9
 pts, 13
 pts2, 14
 Range_Phalanger_orientalis, 15
 signals, 16
 signals_2, 16
 signals_3, 16

* reference
 ID_raster, 8

accuracy, 2
availableCountries, 3

biogeoStatus, 3
countryChecklist, 4
getOcc, 4
giftRegions, 5
giveOcc, 5
giveRegions, 6
glonafRegions, 7

H_mirandae_sp, 8
ID_raster, 8