Package ‘bacistool’

August 24, 2018

Type Package
Title Bayesian Classification and Information Sharing (BaCIS) Tool for the Design of Multi-Group Phase II Clinical Trials
Version 0.9.8
Author Nan Chen and J. Jack Lee
Maintainer Nan Chen <nchen2@mdanderson.org>
Description Provides the design of multi-group phase II clinical trials with binary outcomes using the hierarchical Bayesian classification and information sharing (BaCIS) model. Subgroups are classified into two clusters on the basis of their outcomes mimicking the hypothesis testing framework. Subsequently, information sharing takes place within subgroups in the same cluster, rather than across all subgroups. This method can be applied to the design and analysis of multi-group clinical trials with binary outcomes.
Depends R (>= 3.3.0)
SystemRequirements JAGS (>= 4.3.0)
Imports rjags
License GNU General Public License (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2018-08-24 20:54:28 UTC

R topics documented:

bacisCheckDIC .. 2
bacisClassification ... 3
bacisOneTrial .. 4
bacisPlotClassification 6
bacisCheckDIC

Compute the DIC value for the classification model.

Description

In this function, the classification model is applied using the input parameter values and the DIC value is calculated.

Usage

```r
caxisCheckDIC(numGroup, tau1, tau2, phi1, phi2,
               MCNum, nDat, xDat, seed)
```

Arguments

- `numGroup`: Number of subgroups in the trial.
- `tau1`: The precision parameter of subgroups clustering for the classification model.
- `tau2`: The precision prior for the latent variable for the classification.
- `phi1`: Center for the low response rate cluster.
- `phi2`: Center for the high response rate cluster.
- `MCNum`: The number of MCMC sampling iterations.
- `nDat`: The vector of total sample sizes of all subgroups.
- `xDat`: The vector of the response numbers of all subgroups.
- `seed`: Random seed value. If its value is NA, a time dependent random seed is generated and applied.

Value

The classification model is applied using the input parameter values and the DIC value is returned.

Author(s)

Nan Chen and J. Jack Lee / Department of Biostatistics UT MD Anderson Cancer Center
Examples

```r
# An example to compute the DIC value.
library(bacistool)
result<-bacisCheckDIC(numGroup=5,
    tau1=NA,
    tau2=.001,
    phi1=0.1, phi2=0.3,
    MCNum=5000,
    nDat=c(25,25,25,25,25),
    xDat=c(3,4,3,8,7),
    seed=100
)
```

bacisClassification
Conduct classification for subgroups.

Description

The classification model is conducted based on the BaCIS method and the subgroups are classified into two clusters: high response rate cluster and low response rate cluster.

Usage

```r
bacisClassification(numGroup, tau1, tau2, phi1, phi2,
    clusterCutoff, MCNum, nDat, xDat, seed)
```

Arguments

- `numGroup` Number of subgroups in the trial.
- `tau1` The precision parameter of subgroups clustering for the classification model.
- `tau2` The precision prior for the latent variable for the classification.
- `phi1` Center for the low response rate cluster.
- `phi2` Center for the high response rate cluster.
- `clusterCutoff` The cutoff value of the cluster classification. If its value is NA, adaptive classification is applied.
- `MCNum` The number of MCMC sampling iterations.
- `nDat` The vector of total sample sizes of all subgroups.
- `xDat` The vector of the response numbers of all subgroups.
- `seed` Random seed value. If its value is NA, a time dependent random seed is generated and applied.
Value

The classification model is applied using the input parameter values and subgroup outcomes. The classification results are returned. The return list includes highResponseGroup and lowResponseGroup index values.

Author(s)

Nan Chen and J. Jack Lee / Department of Biostatistics UT MD Anderson Cancer Center

Examples

```r
## An example to conduct subgroup classification.
library(bacistool)
result<-bacisClassification(numGroup=5,
                           tau1=NA,
                           tau2=.001,
                           phi1=0.1, phi2=0.3,
                           clusterCutoff = NA,
                           MCNum=5000,
                           nDat=c(25,25,25,25,25),
                           xDat=c(3,4,3,8,7),seed=100)
```

Description

The bacisOneTrial function takes data and parameter values as input. It conducts a trial computation based on the BaCIS model. It calls the JAGS for the Bayesian MCMC sampling for the subgroup classification and hierarchical model information borrowing. It illustrates plots of the classification results and the posterior response distributions of subgroups, and returns the inference results.

Usage

```r
bacisOneTrial(numGroup, tau1, tau2, phi1, phi2, tau4, alpha, beta,
               clusterCutoff, finalCutoff, MCNum, nDat, xDat, cols,
               clusterCols, ylim, seed)
```
Arguments

numGroup Number of subgroups in the trial.
tau1 The precision parameter of subgroups clustering for the classification model.
tau2 The precision prior for the latent variable for the classification.
phi1 Center for the low response rate cluster.
phi2 Center for the high response rate cluster.
tau4 The precision prior for the center of the cluster in the information borrowing model.
alpha Hyperprior parameters alpha to control the magnitude of information borrowing model.
beta Hyperprior parameters beta to control the magnitude of the information borrowing model.
clusterCutoff The cutoff value of the cluster classification. If its value is NA, adaptive classification is applied.
finalCutoff The posterior cutoff value of the final inference for each subgroup.
MCNum The number of MCMC sampling iterations.
ndat The vector of total sample sizes of all subgroups.
xdat The vector of the response numbers of all subgroups.
cols The color vector of all subgroups in the illustration.
clusterCols The color vector of all clusters in the illustration.
ylim The maximum Y-axis value in the illustration.
seed Random seed value. If its value is NA, a time dependent random seed is generated and applied.

Value

The trial simulation illustrates the plot of posterior distribution of classification, posterior response rates of all subgroups, and the posterior response distributions of two clusters.

It also return a matrix including the following information of all subgroups:

\[
\text{Prob}(p_i > \phi_1)
\]
\[
\text{Prob}(p_i > \phi_2)
\]
\[
\theta > 0
\]
\[
\text{Classified to high response cluster}
\]
\[
\text{The treatment is effective}
\]
\[
\text{Posterior Resp.}
\]
bacisPlotClassification

Plot the posterior density of θ in the classification model.

Description

The classification model is conducted based on the BaCIS method and the posterior density of θ is plotted.
bacisPlotClassification

Usage

bacisPlotClassification(numGroup, tau1, tau2, phi1, phi2,
 clusterCutoff, MCNum, nDat, xDat, cols, seed)

Arguments

numGroup Number of subgroups in the trial.
tau1 The precision parameter of subgroups clustering for the classification model.
tau2 The precision prior for the latent variable for the classification.
phi1 Center for the low response rate cluster.
phi2 Center for the high response rate cluster.
clusterCutoff The cutoff value of the cluster classification. If its value is NA, adaptive classification is applied.
MCNum The number of MCMC sampling iterations.
nDat The vector of total sample sizes of all subgroups.
xDat The vector of the response numbers of all subgroups.
cols The color vector of all subgroups in the illustration.
seed Random seed value. If its value is NA, a time dependent random seed is generated and applied.

Value

The classification model is conducted using the input parameter values and subgroup outcomes. The posterior density of θ is plotted.

Author(s)

Nan Chen and J. Jack Lee / Department of Biostatistics UT MD Anderson Cancer Center

Examples

Compute the posterior distribution of θ.
library(bacisTool)
bacisPlotClassification(numGroup=5,
 tau1=NA,
 tau2=.001,
 phi1=0.1, phi2=0.3,
 clusterCutoff=NA,
 MCNum=5000,
 nDat=c(25,25,25,25,25),
 xDat=c(3,4,3,8,7),
 cols = c("brown", "red", "orange", "blue", "green")
)
bacisSubgroupPosterior

Description

In this function, a trial computation is conducted based on the BaCIS model. It calls the JAGS for the Bayesian MCMC sampling for the subgroup classification and hierarchical model information borrowing. The response rate posterior distributions of subgroups are returned from this function.

Usage

```
bacisSubgroupPosterior(numGroup, tau1, tau2, phi1, phi2, tau4, alpha, beta, clusterCutoff, MCNum, nDat, xDat, seed)
```

Arguments

- **numGroup**: Number of subgroups in the trial.
- **tau1**: The precision parameter of subgroups clustering for the classification model.
- **tau2**: The precision prior for the latent variable for the classification.
- **phi1**: Center for the low response rate cluster.
- **phi2**: Center for the high response rate cluster.
- **tau4**: The precision prior for the center of the cluster in the information borrowing model.
- **alpha**: Hyperprior parameters alpha to control the magnitude of information borrowing model.
- **beta**: Hyperprior parameters beta to control the magnitude of the information borrowing model.
- **clusterCutoff**: The cutoff value of the cluster classification. If its value is NA, adaptive classification is applied.
- **MCNum**: The number of MCMC sampling iterations.
- **nDat**: The vector of total sample sizes of all subgroups.
- **xDat**: The vector of the response numbers of all subgroups.
- **seed**: Random seed value. If its value is NA, a time dependent random seed is generated and applied.

Value

The MCMC sampling data of the response rate posterior distributions of all subgroups is returned as an matrix format. Each column of the return matrix corresponds to the response rate distribution of one subgroup.
Author(s)

Nan Chen and J. Jack Lee / Department of Biostatistics UT MD Anderson Cancer Center

Examples

```r
## Compute the response rate posterior distributioni
## of each subgroup using the BaCIS method
## Not run:
library(bacistool)
result<-bacisSubgroupPosterior(numGroup=5,
    tau1=NA,
    tau2=.001,
    phi1=0.1, phi2=0.3,
    tau4=0.1,
    alpha=50,
    beta=20,
    clusterCutoff=NA,
    MCNum=5000,
    nDat=c(25,25,25,25,25),
    xDat=c(3,4,3,8,7))
```

End(Not run)

bacisThetaPosterior
Compute the posterior distribution of θ in the classification model.

Description

The classification model is conducted based on the BaCIS method and the posterior distribution of θ is returned for further analyses.

Usage

```r
bacisThetaPosterior(numGroup, tau1, tau2, phi1, phi2,
                     MCNum, nDat, xDat, seed)
```

Arguments

- **numGroup**: Number of subgroups in the trial.
- **tau1**: The precision parameter of subgroups clustering for the classification model.
- **tau2**: The precision prior for the latent variable for the classification.
- **phi1**: Center for the low response rate cluster.
phi2 Center for the high response rate cluster.
MCNum The number of MCMC sampling iterations.
ndat The vector of total sample sizes of all subgroups.
xdat The vector of the response numbers of all subgroups.
seed Random seed value. If its value is NA, a time dependent random seed is generated and applied.

Value

The classification model is conducted using the input parameter values and subgroup outcomes. The posterior distribution of \(\theta \) is returned. The returned value is an matrix in which each column corresponds the data of one subgroup.

Author(s)

Nan Chen and J. Jack Lee / Department of Biostatistics UT MD Anderson Cancer Center

Examples

```r
## Conduct subgroup classification and
## compute the posterior distribution of \( \theta \).

library(bacistoolI
result <- bacisThetaPosterior(numGroup=5,
                           tau1=NA,
                           tau2=.001,
                           phi1=0.1, phi2=0.3,
                           MCNum=5000,
                           ndat=c(25,25,25,25,25),
                           xDat=c(3,4,3,8,7)
)
```
Index

*Topic bacistool
 * bacisCheckDIC, 2
 * bacisClassification, 3
 * bacisOneTrial, 4
 * bacisPlotClassification, 6
 * bacisSubgroupPosterior, 8
 * bacisThetaPosterior, 9

bacisCheckDIC, 2
bacisClassification, 3
bacisOneTrial, 4
bacisPlotClassification, 6
bacisSubgroupPosterior, 8
bacisThetaPosterior, 9