Package ‘backShift’

October 12, 2022

Type Package

Title Learning Causal Cyclic Graphs from Unknown Shift Interventions

Version 0.1.4.3

Date 2020-05-06

Author Christina Heinze-Deml <heinzedeml@stat.math.ethz.ch>

Depends R (>= 3.1.0)

Imports methods, clue, matrixcalc, reshape2, ggplot2, MASS

Maintainer Christina Heinze-Deml <heinzedeml@stat.math.ethz.ch>

Description Code for ‘backShift’, an algorithm to estimate the connectivity
matrix of a directed (possibly cyclic) graph with hidden variables. The
underlying system is required to be linear and we assume that observations
under different shift interventions are available. For more details,
see <arXiv:1506.02494>.

License GPL

LazyData true

Suggests knitr, pander, fields, testthat, pcalg, rmarkdown

VignetteBuilder knitr

URL https://github.com/christinaheinze/backShift

BugReports https://github.com/christinaheinze/backShift/issues

RoxygenNote 7.0.2

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-05-06 11:30:03 UTC

R topics documented:

backShift .. 2
bootstrapBackShift 5
computeDiagonalization 6
backShift

Estimate connectivity matrix of a directed graph with linear effects and hidden variables.

Description

This function estimates the connectivity matrix of a directed (possibly cyclic) graph with hidden variables. The underlying system is required to be linear and we assume that observations under different shift interventions are available. More precisely, the function takes as an input an (nxp) data matrix, where n is the sample size and p the number of variables. In each environment \(j (j \in \{1, \ldots, J\}) \) we have observed \(n_j \) samples generated from

\[
X_j = X_j \ast A + c_j + e_j
\]

(in case of cycles this should be understood as an equilibrium distribution). The \(c_j \) is a p-dimensional random vector that is assumed to have a diagonal covariance matrix. The noise vector \(e_j \) is assumed to have the same distribution in all environments \(j \) but is allowed to have an arbitrary covariance matrix. The different intervention settings are provided to the method with the help of the vector \(\text{ExpInd} \) of length \(n = (n_1 + \ldots + n_j + \ldots + n_J) \). The goal is to estimate the connectivity matrix \(A \).

Usage

\[
\text{backShift}(X, \text{ExpInd}, \text{covariance}=\text{TRUE}, \text{ev}=0, \text{threshold} =0.75, \text{nsim}=100, \\
\text{sampleSettings}=1/\text{sqrt}(2), \text{sampleObservations}=1/\text{sqrt}(2), \\
\text{nodewise}=\text{TRUE}, \text{tolerance} = 10^{-4}, \text{baseSettingEnv} = 1, \\
\text{verbose} = \text{FALSE})
\]

Arguments

- \(X \) A (nxp)-dimensional matrix (or data frame) with \(n \) observations of \(p \) variables.
- \(\text{ExpInd} \) Indicator of the experiment or the intervention type an observation belongs to. A numeric vector of length \(n \). Has to contain at least three different unique values.
- \(\text{covariance} \) A boolean variable. If \(\text{TRUE} \), use only shift in covariance matrix; otherwise use shift in Gram matrix. Set only to \(\text{FALSE} \) if at most one variable has a non-zero shift in mean in the same setting (default is \(\text{TRUE} \)).
- \(\text{ev} \) The expected number of false selections for stability selection. No stability selection computed if \(\text{ev}=0 \). Defaults to \(\text{ev}=0 \).
threshold: The selection threshold for stability selection (has to be between 0.5 and 1). Edges which are selected with empirical proportion higher than threshold will be retained.
	nsim: Number of resamples taken (if using stability selection).
	sampleSettings: The proportion of unique settings to resample for each resample; has to be in [0,1].
	sampleObservations: The fraction of all samples to retain when subsampling (no replacement); has to be in [0,1].

nodewise: If FALSE, stability selection retains for each subsample the largest overall entries in the connectivity matrix. If TRUE, values are ordered row- and node-wise first and then the largest entries in each row and column are retained. Error control is valid (under exchangeability assumption) in both cases. The latter setting TRUE is perhaps more robust and is the default.

tolerance: Precision parameter for ffdiag: the algorithm stops when the criterium difference between two iterations is less than tolerance. Default is 10^(-4).

baseSettingEnv: Index for baseline environment against which the intervention variances are measured. Defaults to 1.

verbose: If FALSE, most messages are supressed.

Value

A list with elements

- Ahat: The connectivity matrix where entry (i,j) is the effect pointing from variable i to variable j.
- AhatAdjacency: If ev>0, the connectivity matrix retained by stability selection. Entries give the rounded percentage of times the edge has been retained (and 0 if below the critical threshold).
- varianceEnv: The estimated interventions variances up to an offset. varianceEnv is a (Gxp)-dimensional matrix where G is the number of unique environments. The jth entry contains the difference between the estimated intervention variance of variable j in environment i and the estimated intervention variance of variable j in the base setting (given by input parameter baseSettingEnv).

Author(s)

Christina Heinze-Deml <heinzedeml@stat.math.ethz.ch>

References

See Also

ICP and hiddenICP for reconstructing the parents of a variable under interventions on all other variables. getParents and getParentsStable from the package CompareCausalNetworks to estimate the connectivity matrix of a directed causal graph, using various possible methods (including backShift).

Examples

```r
## Simulate data with connectivity matrix A

seed <- 1
# sample size n
n <- 10000
# 3 predictor variables
p <- 3
A <- diag(p)*0
A[1,2] <- 0.8
A[2,3] <- -0.8
A[3,1] <- 0.8

# divide data into 10 different environments
G <- 10

# simulate
simulation.res <- simulateInterventions(
  n, p, A, G, intervMultiplier = 2,
  noiseMult = 1, nonGauss = FALSE,
  fracVarInt = 0.5, hidden = TRUE,
  knownInterventions = FALSE,
  simulateObs = TRUE, seed)

environment <- simulation.res$environment
X <- simulation.res$X

## Compute feedback estimator with stability selection

network <- backShift(X, environment, ev = 1)

## Print point estimates and stable edges

# true connectivity matrix
print(A)
# point estimate
print(network$Ahat)
# shows empirical selection probability for stable edges
print(network$AhatAdjacency)
```
Computes a simple model-based bootstrap confidence interval for success of joint diagonalization procedure. The model-based bootstrap approach assumes normally distributed error terms; the parameters of the noise distribution are estimated with maximum likelihood.

Usage

```r
bootstrapBackShift(
  Ahat, X, ExpInd, nrep,
  alpha = 0.05, covariance = TRUE, baseInd = 1,
  tolerance = 0.001, verbose = FALSE
)
```

Arguments

- `Ahat`: Estimated connectivity matrix returned by `backShift`.
- `X`: A (nxp)-dimensional matrix (or data frame) with n observations of p variables.
- `ExpInd`: Indicator of the experiment or the intervention type an observation belongs to. A numeric vector of length n. Has to contain at least three different unique values.
- `nrep`: Number of bootstrap samples.
- `alpha`: Significance level for confidence interval.
- `covariance`: A boolean variable. If TRUE, use only shift in covariance matrix; otherwise use shift in Gram matrix. Set only to FALSE if at most one variable has a non-zero shift in mean in the same setting (default is TRUE).
- `baseInd`: Index for baseline environment against which the intervention variances are measured. Defaults to 1.
- `tolerance`: Precision parameter for `ffdiag`: the algorithm stops when the criterium difference between two iterations is less than `tolerance`. Default is 10^{-4}.
- `verbose`: If FALSE, messages are supressed.
computeDiagonalization

Description

Computes the matrix $\Delta \Sigma_{c,j}$ resulting from the joint diagonalization for a given environment (cf. Eq.(7) in the paper). If the joint diagonalization was successful the matrix should be diagonal for all environments $\forall j$.

Usage

computeDiagonalization(estConnectivity, X, env, whichEnv, main = NULL)

Arguments

estConnectivity
 Estimate for connectivity matrix returned by backShift.

X
 Data matrix

env
 Indicator of the experiment or the intervention type an observation belongs to (a numeric vector of length n).

whichEnv
 Indicator for the environment for which the matrix $\Delta \Sigma_{c,j}$ should be computed.

main
 Optional title for plot; defaults to paste("Env.", whichEnv)
exampleAdjacencyMatrix

Example adjacency matrix

Description

An example for an adjacency matrix A to be used as input to simulateInterventions. The entry A_{ij} contains the edge from node i to node j.

Usage

data("exampleAdjacencyMatrix")

Format

A matrix with 10 rows and 10 columns.

References

Used in simulations in:

Examples

data("exampleAdjacencyMatrix")
plotGraphEdgeAttr(estimate = exampleAdjacencyMatrix, plotStabSelec = FALSE,
labels = colnames(exampleAdjacencyMatrix),
thres.point = 0, thres.stab = NULL, main = "True graph")

generateA

Generates a connectivity matrix A.

Description

Generates a connectivity matrix A with cycle product smaller than 1.

Usage

generateA(p, expNumNeigh, minCoef, maxCoef, cyclic, verbose = FALSE)
Arguments

- \(p \) Number of variables.
- \(\text{expNumNeigh} \) Expected number of neighbors, to be passed to `randDAG`.
- \(\text{minCoef} \) Minimal edge coefficient. The absolute magnitude of the coefficients will be sampled uniformly at random from the range \([\text{minCoef}, \text{maxCoef}]\).
- \(\text{maxCoef} \) Maximal edge coefficient. The absolute magnitude of the coefficients will be sampled uniformly at random from the range \([\text{minCoef}, \text{maxCoef}]\).
- \(\text{cyclic} \) If TRUE, connectivity matrix will contain at least one cycle.
- \(\text{verbose} \) If TRUE, comments will be printed.

Details

If \(\text{expNumNeigh} \) and \(\text{maxCoef} \) are large, function may fail to find a connectivity matrix with cycle product smaller one. In this case, try to lower these parameters.

Value

A list with two elements

- A Connectivity matrix
- sizeCycle Size of the cycle, if cyclic was set to TRUE.

metricsThreshold

Performance metrics for estimate of connectivity matrix \(A \).

Description

Computes various performance metrics for estimate of connectivity matrix \(A \).

Usage

```r
metricsThreshold(trueA, est, thres = seq(0.01, 1, by = 0.01))
```

Arguments

- \(\text{trueA} \) True connectivity matrix
- \(\text{est} \) Estimated connectivity matrix
- \(\text{thres} \) Value at which the point estimate should be thresholded, i.e. edges with coefficients smaller than thres are discarded. Can be a sequence of values.
Value

A data frame with the following columns:

- **Threshold** Value at which point estimate est was thresholded.
- **SHD** Structural Hamming distance between trueA and est.
- **TPR.Recall** True positive rate / recall value
- **FPR** False positive rate
- **Precision** Precision value

Examples

```r
# true A
p <- 3
A <- diag(p)*0
A[1,2] <- 0.8
A[2,3] <- -0.8
A[3,1] <- 0.8

# say an estimated connectivity matrix is given by:
A.est <- matrix(rnorm(p*p, 1e-3, 1e-3), ncol = p)
diag(A.est) <- 0
A.est[1,2] <- 0.76
A.est[2,3] <- -0.68
A.est[3,1] <- 0.83

# compute metrics with threshold 0.25
metricsThreshold(A, A.est, thres = 0.25)
```

Description

Plots the joint diagonalization. I.e. if it was successful the matrices should all be diagonal.

Usage

`plotDiagonalization(estConnectivity, X, env, whichEnv, main = NULL)`

Arguments

- **estConnectivity** Estimate for connectivity matrix returned by backShift.
- **X** Data matrix
- **env** Indicator of the experiment or the intervention type an observation belongs to (a numeric vector of length n).
whichEnv Indicator for the environment to be plotted.
main Optional title for plot; defaults to paste("Env.", whichEnv)

Description

Given a point estimate of the connectivity matrix or the adjacency matrix, this function visualizes
the directed graph using plot.igraph from the package igraph. If a point estimate is plotted,
the edges’ intensity reflects the magnitude of the coefficients. If the result is an adjacency matrix
estimated by stability selection then the edges’ width reflects how often an edge was selected and
the intensity reflects the magnitude of the coefficients (if this information is also provided).

Usage

plotGraphEdgeAttr(
 estimate,
 plotStabSel, plotStabSel,
 labels, labels,
 thres.point, thres.point,
 edgeWeights = NULL, edgeWeights = NULL,
 thres.stab = 0.75, thres.stab = 0.75,
 main = "", main = "",
 edge.color = "blue", edge.color = "blue",
 ...
)

Arguments

estimate Estimate of connectivity matrix. This can be a point estimate with entry A_{ij}
being the estimated edge weight for the edge from node i to node j. Otherwise,
it can be the estimated adjacency matrix by a stability selection procedure as in
backShift. In this case, the entry A_{ij} indicates how often the edge from node i
to node j was selected.
plotStabSel Set to TRUE if estimate results from the stability selection procedure. Other-
wise, estimate is assumed to be a point estimate.
labels Variable labels to be displayed in plot.
thres.point Value at which the point estimate should be thresholded, i.e. edges with coeffi-
cients smaller than thres.point are not displayed.
edgeWeights If stability selection result should be visualized, provide edgeWeights as a (pxp)-
matrix to display the magnitude of the coefficients as the intensity of the edges.
thres.stab Indicate the threshold value that was used in the stability selection procedure.
 Used to determine the width of the plotted edges.
main Provide the title of the plot.
plotInterventionVars
Plots the estimated intervention variances.

Description

Plots the estimated intervention variances.

Usage

`plotInterventionVars(estIntVars, trueIntVars = NULL, scales_facet = "free")`

Arguments

- **estIntVars**
 A (Gxp)-dimensional matrix with the estimated intervention variances returned by `backShift` (as `varianceEnv`). G is the number of unique environments, p is the number of variables.

- **trueIntVars**
 A (Gxp)-dimensional matrix with the true intervention variances if these are known (for simulations). By default this parameter is set to NULL.

- **scales_facet**
 scales argument passed to ggplot’s `facet_wrap`.

simulateInterventions
Simulate data of a causal cyclic model under shift interventions.

Description

Simulate data of a causal cyclic model under shift interventions.

edge.color
Color of the edges. Defaults to blue.

...
Optional arguments passed to the plotting function. Consists of igraph-type options like `vertex.label.cex`, `vertex.label.color`, `edge.arrow.size` or `vertex.size` etc.

@examples

```r
# create a matrix A to be visualized
p <- 3
A <- diag(p) * 0
A[1, 2] <- 0.8
A[2, 3] <- -0.8
A[3, 1] <- 0.8

# add column names to use as labels for nodes
colnames(A) <- c("1", "2", "3")

# plot
plotGraphEdgeAttr(estimate = A, plotStabSelEc = FALSE, labels = colnames(A), thres.point = 0, thres.stab = NULL, main = "True graph")
```

Details

Currently not all options of `igraph` are used; additional arguments are ignored.
Usage

```r
simulateInterventions(
  n,
  p,
  A,
  G,
  intervMultiplier,
  noiseMult,
  nonGauss,
  hiddenVars,
  knownInterventions,
  fracVarInt,
  simulateObs,
  seed = 1
)
```

Arguments

- `n` Number of observations.
- `p` Number of variables.
- `A` Connectivity matrix A. The entry A_{ij} contains the edge from node i to node j.
- `G` Number of environments, has to be larger than two for backShift.
- `intervMultiplier` Regulates the strength of the interventions.
- `noiseMult` Regulates the noise variance.
- `nonGauss` Set to TRUE to generate non-Gaussian noise.
- `hiddenVars` Set to TRUE to include hidden variables.
- `knownInterventions` Set to TRUE if location of interventions should be known.
- `fracVarInt` If `knownInterventions` is TRUE, fraction of variables that are intervened on in each environment.
- `simulateObs` If TRUE, also generate observational data.
- `seed` Random seed.

Value

A list with the following elements:

- `X` (nxp)-dimensional data matrix
- `environment` Indicator of the experiment or the intervention type an observation belongs to. A numeric vector of length n.
- `interventionVar` (Gxp)-dimensional matrix with intervention variances.
- `interventions` Location of interventions if `knownInterventions` was set to TRUE.
- `configs` A list with the following elements:
- trueA True connectivity matrix used to generate the data.
- G Number of environments.
- indexObservationalData Index of observational data
- intervMultiplier Multiplier steering the intervention strength
- noiseMult Multiplier steering the noise level
- fracVarInt If knownInterventions was set to TRUE, fraction of variables that were intervened on in each environment.
- hiddenVars If TRUE, hidden variables exist.
- knownInterventions If TRUE, location of interventions is known.
- simulateObs If TRUE, environment 1 contains observational data.

References

Index

* Causality
 backShift, 2
* Feedback
 backShift, 2
* Hidden Variables
 backShift, 2
* Regression
 backShift, 2
* datasets
 exampleAdjacencyMatrix, 7
 backShift, 2, 10
 bootstrapBackShift, 5
 CompareCausalNetworks, 4
 computeDiagonalization, 6
 exampleAdjacencyMatrix, 7
 generateA, 7
 getParents, 4
 getParentsStable, 4
 hiddenICP, 4
 ICP, 4
 igraph, 10, 11
 metricsThreshold, 8
 plot.igraph, 10
 plotDiagonalization, 9
 plotGraphEdgeAttr, 10
 plotInterventionVars, 11
 randDAG, 8
 simulateInterventions, 7, 11