Package ‘backbone’

May 15, 2020

Type Package
Title Extracts the Backbone from Weighted Graphs
Version 1.2.0
Description Provides methods for extracting from a weighted graph
a binary or signed backbone that retains only the significant edges.
The user may input a weighted graph, or a bipartite graph
from which a weighted graph is first constructed via projection.
Backbone extraction methods include the stochastic degree se-
011-0021-0>),
as well as a universal threshold method.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
Depends R (>= 2.10)
Imports Matrix, methods, stats, utils, CVXR, igraph, network
Suggests knitr, rmarkdown, speedglm, testthat
VignetteBuilder knitr
URL https://github.com/domagal9/backbone,
https://www.zacharyneal.com/backbone
BugReports https://github.com/domagal9/backbone/issues
NeedsCompilation no
Author Rachel Domagalski [aut, cre],
Zachary Neal [aut],
Bruce Sagan [aut]
Maintainer Rachel Domagalski <domagal9@msu.edu>
Repository CRAN
Date/Publication 2020-05-15 19:30:02 UTC
Description

Provides methods for extracting from a weighted graph a binary or signed backbone that retains only the significant edges. The user may input a weighted graph, or a bipartite graph from which a weighted graph is first constructed via projection. Backbone extraction methods include:

- as well as a universal threshold method.

Details

Some features of the package are:

- `universal`: returns a backbone graph in which edge weights are set to 1 if above the given upper parameter threshold, and set to -1 if below the given lower parameter threshold, and are 0 otherwise.
- `sdsm`: computes the probability of edge weights being above or below the observed edge weights in a bipartite projection using the stochastic degree sequence model. Once computed, use `backbone.extract` to return the backbone matrix for a given alpha value.
- `hyperg`: computes the probability of edge weights being above or below the observed edge weights in a bipartite projection using the hypergeometric model. Once computed, use `backbone.extract` to return the backbone matrix for a given alpha value.
backbone.extract

- 'fdsm': computes the proportion of edge weights above or below the observed edge weights in a bipartite projection using the fixed degree sequence model. Once computed, use backbone.extract to return the backbone matrix for a given alpha value.
- 'backbone.extract': returns a backbone graph object that retains only the significant edges.

Additional functions that aid in the use of the above models are exported:
- 'polytope': finds a matrix that maximizes the entropy function, used in sdsm.
- 'curveball': generates a random 0/1 matrix with the same row and column sums as the input, used in sdsm and fdsm.

For additional documentation and background on the package functions, see vignette("backbone", package = "backbone").

backbone.extract Extracts the backbone of a weighted network using results from a null model

Description

‘backbone.extract’ returns a binary or signed adjacency matrix containing the backbone that retains only the significant edges.

Usage

backbone.extract(
 backbone,
 signed = TRUE,
 alpha = 0.05,
 fwer = "none",
 class = "original"
)

Arguments

backbone backbone: backbone S3 class object, as returned by sdsm, fdsm, or hyperg.
signed Boolean: TRUE if signed backbone is to be returned, FALSE if binary backbone is to be returned
alpha Real: Precision of significance test
fwer string: type of familywise error rate correction to be applied; c("none", "bonferroni", holm"). If "holm", Holm Bonferroni Family-wise Error Rate test is used, if "bonferroni", Bonferroni Family-wise Error Rate test should be used. By default, the given 'alpha' value is used for all tests with no correction for family-wise error rates.
class string: the class of the returned backbone graph, one of c("original", "matrix", "sparseMatrix", "igraph", "network", "edgelist"), converted via class.convert. If "original", the backbone graph returned is of the same class as the data inputted in one of sdsm, fdsm, or hyperg.
Details

The "backbone" S3 class object is composed of two matrices, a summary dataframe and (optionally, if generated by using `fdsm`) a 'dyad_values' vector.

The Holm Bonferroni correction was originally a port from python code written by Dr. Samin Aref. The authors thank Dr. Aref greatly for his contribution to this package!

Value

backbone graph: Binary or signed backbone graph of class given in parameter ‘class’.

Examples

```r
probs <- sdsm(davis)
b <- backbone.extract(probs, alpha = .2, signed = TRUE, fwer = "none")
```

Description

curveball algorithm

Usage

curveball(M)

Arguments

M matrix

Value

rm, a matrix with same row sums and column sums as M, but randomized 0/1 entries.

References

Examples

curveball(davis)
davis

Davis Southern Women Data Set

Description

A two mode matrix of 18 women and attendance of 14 social events.

Usage

```r
data(davis)
```

Format

An object of class `matrix` (inherits from `array`) with 18 rows and 14 columns.

Source

UCI Network Data Repository

References

fdsm

The fixed degree sequence model (fdsm) for backbone probabilities

Description

`fdsm` computes the proportion of generated edges above or below the observed value using the fixed degree sequence model. Once computed, use `backbone.extract` to return the backbone matrix for a given alpha value.

Usage

```r
fdsm(B, trials = 1000, dyad = NULL, progress = FALSE)
```

Arguments

- **B**
 - graph: Bipartite graph object of class matrix, sparse matrix, igraph, edgelist, or network object.
- **trials**
 - Integer: Number of random bipartite graphs generated
- **dyad**
 - vector length 2: two row entries i,j. Saves each value of the i-th row and j-th column in each projected B* matrix. This is useful for visualizing an example of the empirical null edge weight distribution generated by the model. These correspond to the row and column indices of a cell in the projected matrix, and can be written as their string row names or as numeric values.
- **progress**
 - Boolean: If `txtProgressBar` should be used to measure progress
Details

During each iteration, fdsm computes a new B* matrix using the curveball algorithm. This is a random bipartite matrix with the same row and column sums as the original matrix B. If a value is supplied for the dyad parameter, when the B* matrix is projected (multiplied by its transpose), the value in the corresponding row and column will be saved. This allows the user to see the distribution of the edge weights for desired row and column.

The "backbone" S3 class object returned is composed of two matrices, a summary dataframe and (optionally, if generated by using fdsm) a 'dyad_values' vector.

Value

backbone, a list(positive, negative, dyad_values, summary). Here 'positive' is a matrix of proportion of times each entry of the projected matrix B is above the corresponding entry in the generated projection, ‘negative’ is a matrix of proportion of times each entry of the projected matrix B is below the corresponding entry in the generated projection, ‘dyad_values’ is a list of edge weight for i,j in each generated projection, and ‘summary’ is a data frame summary of the inputted matrix and the model used including: model name, number of rows, skew of row sums, number of columns, skew of column sums, and running time.

References

Examples

fdsm_props <- fdsm(davis, trials = 100, dyad=c(3,6))

hyperg

Compute hypergeometric backbone probabilities

Description

‘hyperg’ computes the probability of observing a higher or lower edge weight using the hypergeometric distribution. Once computed, use backbone.extract to return the backbone matrix for a given alpha value.

Usage

hyperg(B)
Arguments

B

graph: Bipartite graph object of class matrix, sparse matrix, igraph, edgelist, or network object.

Details

Specifically, this function compares an edge's observed weight in the projection $B * t(B)$ to the distribution of weights expected in a projection obtained from a random bipartite graph where the row vertex degrees are fixed but the column vertex degrees are allowed to vary. The "backbone" S3 class object returned is composed of two matrices, a summary dataframe and (optionally, if generated by using fdsm) a 'dyad_values' vector.

Value

backbone, a list(positive, negative, summary). Here 'positive' is a matrix of probabilities of edge weights being equal to or above the observed value in the projection, 'negative' is a matrix of probabilities of edge weights being equal to or below the observed value in the projection, and 'summary' is a data frame summary of the inputted matrix and the model used including: model name, number of rows, skew of row sums, number of columns, skew of column sums, and running time.

References

Examples

```r
hyperg_probs <- hyperg(davis)
```

polytope

Polytope method for finding a matrix that maximizes entropy function

Description

Polytope method for finding a matrix that maximizes entropy function

Usage

polytope(G)

Arguments

G

matrix, an adjacency matrix representing a graph
Details

Uses convex optimization via the **CVXR-package** to find a matrix M that maximizes the entropy function where M satisfies the following constraints: (1) the values of M are between 0 & 1, (2) the row sums of the matrix are equal to the row sums of the original matrix, (3) the column sums of the matrix are equal to the column sums of the original matrix.

This method is utilized in the function `sdsm` to compute probabilities of an edge existing in a graph. Method is called polytope as it is optimizing over the convex hull of the set of matrices (thought of as vectors) with the same row and column sums as the input.

Value

matrix containing optimal solution to entropy function under constraints

Examples

```
polytope(davis)
```

sdsm

The stochastic degree sequence model (sdsm) for backbone probabilities

Description

'sdsm' computes the probability of edge weights being above or below the observed edge weights in a bipartite projection using the stochastic degree sequence model. Once computed, use `backbone.extract` to return the backbone matrix for a given alpha value.

Usage

```
sdsm(B, model = "polytope", trials = 1000)
```

Arguments

- **B**
 - graph: Bipartite graph object of class matrix, sparse matrix, igraph, edgelist, or network object.

- **model**

- **trials**
 - Integer: If 'model' = 'curveball', number of random bipartite graphs generated using curveball to compute probabilities. Default is 1000.
Details

Specifically, the sdsm function compares an edge’s observed weight in the projection B^tB to the distribution of weights expected in a projection obtained from a random bipartite network where both the row vertex degrees and column vertex degrees are approximately fixed.

If the ‘model’ parameter is one of c("logit", "probit", "cauchit", "log", "cloglog"), then this model is used as a ‘link’ function for a binary outcome model conditioned on the row degrees and column degrees, as described by glm and family. If the ‘model’ parameter is "oldlogit", then a logit link function is used but the model is conditioned on the row degrees, column degrees, and their product. If 'model = lpm', a linear probability model is used. If 'model = chi2', a chi-squared model is used. If 'model' = 'curveball' and 'trials' > 0, the probabilities are computed by using curveball function ‘trials’ times. The proportion of each cell being 1 is used as its probability. If 'model = polytope', the polytope function is used to find a matrix of probabilities that maximizes the entropy function, with same row and column sums.

The "backbone" S3 class object returned is composed of two matrices, a summary dataframe and (optionally, if generated by using fdsm) a 'dyad_values' vector.

Value

backbone, a list(positive, negative, dyad_values, summary). Here ‘positive’ is a matrix of probabilities of edge weights being equal to or above the observed value in the projection, ‘negative’ is a matrix of probabilities of edge weights being equal to or below the observed value in the projection, and ‘summary’ is a data frame summary of the inputted matrix and the model used including: model name, number of rows, skew of row sums, number of columns, skew of column sums, and running time.

References

Examples

sdsm_probs <- sdsm(davis)
Not run: sdsm_probs2 <- sdsm(davis, model = "curveball", trials = 1000)

universal(M, upper = 0, lower = NULL, bipartite = FALSE)
Arguments

- **M**: Bipartite graph object of class matrix, sparse matrix, igraph, edgelist, or network object.
- **upper**: Real or FUN: upper threshold value or function to be applied to the edge weights. Default is 0.
- **lower**: Real or FUN: lower threshold value or function to be applied to the edge weights. Default is NULL.
- **bipartite**: Boolean: TRUE if bipartite matrix, FALSE if weighted matrix. Default is FALSE.

Value

- backbone, a list(backbone, summary). The ‘backbone’ object is a graph object of the same class as M. The ‘summary’ contains a data frame summary of the inputted matrix and the model used including: model name, number of rows, skew of row sums, number of columns, skew of column sums, and running time.

Examples

test <- universal(davis%*%t(davis), upper = function(x)mean(x)+sd(x), lower=function(x)mean(x))
test2 <- universal(davis, upper = function(x)mean(x)+2*sd(x), lower = 2, bipartite = TRUE)
test3 <- universal(davis, upper = 4, lower = 2, bipartite = TRUE)
Index

*Topic datasets
 davis, 5

backbone, 2
backbone.extract, 2, 3, 5, 6, 8

class.convert, 3
curveball, 3, 4, 6, 9
CVXR-package, 8
davis, 5
family, 9
fdsm, 3, 4, 5, 6, 7, 9
glm, 9
hyerg, 2, 3, 6
polytope, 3, 7, 9
sdsm, 2, 3, 8, 8
txtProgressBar, 5
universal, 2, 9