Package ‘bartMachine’

October 26, 2022

Type Package
Title Bayesian Additive Regression Trees
Version 1.3.2
Date 2022-10-25
Author Adam Kapelner and Justin Bleich (R package)
Maintainer Adam Kapelner <kapelner@qc.cuny.edu>
Description An advanced implementation of Bayesian Additive Regression Trees with expanded features for data analysis and visualization.
License GPL-3
Depends R (>= 2.14.0), rJava (>= 0.9-8), bartMachineJARs (>= 1.2.1),
        randomForest, missForest
Imports graphics, grDevices, stats
SystemRequirements Java (>= 8.0)
NeedsCompilation no
Repository CRAN
Date/Publication 2022-10-25 23:05:05 UTC

R topics documented:

  automobile .......................................................... 2
  bartMachine ......................................................... 3
  bartMachineArr .................................................... 8
  bartMachineCV ...................................................... 9
  bart_machine_get_posterior ....................................... 11
  bart_machine_num_cores .......................................... 13
  bart_predict_for_test_data ..................................... 14
  benchmark_datasets ................................................ 15
  calc_credible_intervals .......................................... 16
  calc_prediction_intervals ....................................... 17
  check_bart_error_assumptions ................................... 19
  cov_importance_test .............................................. 20
### automobile

Data concerning automobile prices.

#### Description

The automobile data frame has 201 rows and 25 columns and concerns automobiles in the 1985 Auto Imports Database. The response variable, price, is the log selling price of the automobile. There are 7 categorical predictors and 17 continuous / integer predictors which are features of the automobiles. 41 automobiles have missing data in one or more of the feature entries. This dataset is true to the original except with a few of the predictors dropped.

#### Usage

```r
data(automobile)
```

#### Source

**bartMachine**

**Build a BART Model**

**Description**

Builds a BART model for regression or classification.

**Usage**

```r
bartMachine(X = NULL, y = NULL, Xy = NULL, 
num_trees = 50, 
num_burn_in = 250, 
num_iterations_after_burn_in = 1000, 
alpha = 0.95, beta = 2, k = 2, q = 0.9, nu = 3, 
prob_rule_class = 0.5, 
mh_prob_steps = c(2.5, 2.5, 4)/9, 
debug_log = FALSE, 
run_in_sample = TRUE, 
s_sq_y = "mse", 
sig_sq_est = NULL, 
print_tree_illustrations = FALSE, 
cov_prior_vec = NULL, 
interaction_constraints = NULL, 
use_missing_data = FALSE, 
covariates_to_permute = NULL, 
um_rand_samps_in_library = 10000, 
use_missing_data_dummies_as_covars = FALSE, 
replace_missing_data_with_x_j_bar = FALSE, 
impute_missingness_with_rf_impute = FALSE, 
impute_missingness_with_x_j_bar_for_lm = TRUE, 
mem_cache_for_speed = TRUE, 
flush_indices_to_save_RAM = TRUE, 
serialize = FALSE, 
seed = NULL, 
verbose = TRUE)

build_bart_machine(X = NULL, y = NULL, Xy = NULL, 
num_trees = 50, 
num_burn_in = 250, 
num_iterations_after_burn_in = 1000, 
alpha = 0.95, beta = 2, k = 2, q = 0.9, nu = 3, 
prob_rule_class = 0.5, 
mh_prob_steps = c(2.5, 2.5, 4)/9, 
debug_log = FALSE, 
run_in_sample = TRUE, 
s_sq_y = "mse", 
sig_sq_est = NULL, 
```
print_tree_illustrations = FALSE,
cov_prior_vec = NULL,
interaction_constraints = NULL,
use_missing_data = FALSE,
covariates_to_permute = NULL,
um_rand_samps_in_library = 10000,
use_missing_data_dummies_as_covars = FALSE,
replace_missing_data_with_x_j_bar = FALSE,
impute_missingness_with_rf_impute = FALSE,
impute_missingness_with_x_j_bar_for_lm = TRUE,
mem_cache_for_speed = TRUE,
flush_indices_to_save_RAM = TRUE,
serialize = FALSE,
seed = NULL,
verbose = TRUE)

Arguments

X  Data frame of predictors. Factors are automatically converted to dummies internally.

y  Vector of response variable. If y is numeric or integer, a BART model for regression is built. If y is a factor with two levels, a BART model for classification is built.

Xy  A data frame of predictors and the response. The response column must be named “y”.

num_trees  The number of trees to be grown in the sum-of-trees model.

num_burn_in  Number of MCMC samples to be discarded as “burn-in”.

num_iterations_after_burn_in  Number of MCMC samples to draw from the posterior distribution of \( \hat{f}(x) \).

alpha  Base hyperparameter in tree prior for whether a node is nonterminal or not.

beta  Power hyperparameter in tree prior for whether a node is nonterminal or not.

k  For regression, k determines the prior probability that \( E(Y|X) \) is contained in the interval \((y_{min}, y_{max})\), based on a normal distribution. For example, when \( k = 2 \), the prior probability is 95%. For classification, k determines the prior probability that \( E(Y|X) \) is between \((-3, 3)\). Note that a larger value of k results in more shrinkage and a more conservative fit.

q  Quantile of the prior on the error variance at which the data-based estimate is placed. Note that the larger the value of q, the more aggressive the fit as you are placing more prior weight on values lower than the data-based estimate. Not used for classification.

nu  Degrees of freedom for the inverse \( \chi^2 \) prior. Not used for classification.

prob_rule_class  Threshold for classification. Any observation with a conditional probability greater than prob_class_rule is assigned the “positive” outcome. Note that the first level of the response is treated as the “negative” outcome and the second is treated as the “positive” outcome.
bh prob_steps: Vector of prior probabilities for proposing changes to the tree structures: (GROW, PRUNE, CHANGE)

debuge: If TRUE, additional information about the model construction are printed to a file in the working directory.

run_in_sample: If TRUE, in-sample statistics such as \( \hat{f}(x) \), Pseudo-\( R^2 \), and RMSE are computed. Setting this to FALSE when not needed can decrease computation time.

s_sq_y: If “mse”, a data-based estimated of the error variance is computed as the MSE from ordinary least squares regression. If “var”, the data-based estimate is computed as the variance of the response. Not used in classification.

sig_sq_est: Pass in an estimate of the maximum sig_sq of the model. This is useful to cache somewhere and then pass in during cross-validation since the default method of estimation is a linear model. In large dimensions, linear model estimation is slow.

print_tree_illustrations: For every Gibbs iteration, print out an illustration of the trees side-by-side. This is excruciatingly SLOW!

cov_prior_vec: Vector assigning relative weights to how often a particular variable should be proposed as a candidate for a split. The vector is internally normalized so that the weights sum to 1. Note that the length of this vector must equal the length of the design matrix after dummification and augmentation of indicators of missingness (if used). To see what the dummified matrix looks like, use dummify_data. See Bleich et al. (2013) for more details on when this feature is most appropriate.

interaction_constraints: A list of vectors indicating where the vectors are sets of elements allowed to interact with one another. The elements in each vector correspond to features in the data frame X specified by either the column number as a numeric value or the column name as a string e.g. list(c(1, 2), c("nox", "rm")) The elements of the vectors can be reused among components for any level of interaction complexity you wish. Default is NULL which corresponds to the vanilla modeling procedure where all interactions are legal. For a pure generalized added model, use as.list(seq(1 : p)) where p is the number of columns in the design matrix X.

use_missing_data: If TRUE, the missing data feature is used to automatically handle missing data without imputation. See Kapelner and Bleich (2013) for details.

covariates_to_permute: Private argument for cov_importance_test. Not needed by user.

num_rand_samps_in_library: Before building a BART model, samples from the Standard Normal and \( \chi^2(\nu) \) are drawn to be used in the MCMC steps. This parameter determines the number of samples to be taken.

use_missing_data_dummies_as_covars: If TRUE, additional indicator variables for whether or not an observation in a particular column is missing are included. See Kapelner and Bleich (2013) for details.
replace_missing_data_with_x_j_bar
If TRUE, missing entries in \( X \) are imputed with average value or modal category.

impute_missingness_with_rf_impute
If TRUE, missing entries are filled in using the \( \text{rf.impute() function} \) from the \text{randomForest} library.

impute_missingness_with_x_j_bar_for_lm
If TRUE, when computing the data-based estimate of \( \sigma^2 \), missing entries are imputed with average value or modal category.

mem_cache_for_speed
Speed enhancement that caches the predictors and the split values that are available at each node for selecting new rules. If the number of predictors is large, the memory requirements become large. We recommend keeping this on (default) and turning it off if you experience out-of-memory errors.

flush_indices_to_save_RAM
Setting this flag to TRUE saves memory with the downside that you cannot use the functions \( \text{node_prediction_training_data_indices} \) nor \( \text{get_projection_weights} \).

serialize
Setting this option to TRUE will allow serialization of \text{bartMachine} objects which allows for persistence between R sessions if the object is saved and reloaded. Note that serialized objects can take up a large amount of memory. Thus, the default is FALSE.

seed
Optional: sets the seed in both R and Java. Default is NULL which does not set the seed in R nor Java. Setting the seed enforces deterministic behavior only in the case when one core is used (the default before \text{set_bart_machine_num_cores()} was invoked).

verbose
Prints information about progress of the algorithm to the screen.

Value
Returns an object of class “bartMachine”. The “bartMachine” object contains a list of the following components:

\text{java_bart_machine}
A pointer to the BART Java object.

\text{train_data_features}
The names of the variables used in the training data.

\text{training_data_features_with_missing_features}
The names of the variables used in the training data. If \text{use_missing_data_dummies_as_covars = TRUE}, this also includes dummies for any predictors that contain at least one missing entry (named “M_<feature>”).

\text{y}
The values of the response for the training data.

\text{y_levels}
The levels of the response (for classification only).

\text{pred_type}
Whether the model was build for regression of classification.

\text{model_matrix_training_data}
The training data with factors converted to dummies.

\text{num_cores}
The number of cores used to build the BART model.
The data-based estimate of $\sigma^2$ used to create the prior on the error variance for the BART model.

Total time to build the BART model.

The posterior means of $\hat{f}(x)$ for each observation. Only returned if run_in_sample = TRUE.

The model residuals given by $y - \hat{y}_{\text{train}}$. Only returned if run_in_sample = TRUE.

L1 error on the training set. Only returned if run_in_sample = TRUE.

L2 error on the training set. Only returned if run_in_sample = TRUE.

Calculated as $1 - \text{SSE} / \text{SST}$ where SSE is the sum of square errors in the training data and SST is the sample variance of the response times $n - 1$. Only returned if run_in_sample = TRUE.

Root mean square error on the training set. Only returned if run_in_sample = TRUE.

Additionally, the parameters passed to the function bartMachine are also components of the list.

This function is parallelized by the number of cores set by set_bart_machine_num_cores. Each core will create an independent MCMC chain of size $\text{num\_burn\_in} + \text{num\_iterations\_after\_burn\_in} / \text{bart\_machine\_num\_cores}$.

Adam Kapelner and Justin Bleich


Examples

```r
## Not run:
##regression example

##generate Friedman data
set.seed(11)
n = 200
p = 5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi * X[,1] * X[,2]) + 20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y)
summary(bart_machine)

##Build another BART regression model
bart_machine = bartMachine(X, y, num_trees = 200, num_burn_in = 500, num_iterations_after_burn_in = 1000)

##Classification example

#get data and only use 2 factors
data(iris)
iris2 = iris[51:150,]
iris2$Species = factor(iris2$Species)

#build BART classification model
bart_machine = build_bart_machine(iris2[,1:4], iris2$Species)

##get estimated probabilities
phat = bart_machine$p_hat_train
##look at in-sample confusion matrix
bart_machine$confusion_matrix

## End(Not run)
```

---

**bartMachineArr**

Create an array of BART models for the same data.

**Description**

If BART creates models that are variable, running many on the same dataset and averaging is a good strategy. This function is a convenience method for this procedure.

**Usage**

```
bartMachineArr(bart_machine, R = 10)
```
**Arguments**

- **bart_machine**: An object of class “bartMachine”.
- **R**: The number of replicated BART models in the array.

**Value**

A `bartMachineArr` object which is just a list of the R `bartMachine` models.

**Author(s)**

Adam Kapelner

**Examples**

```r
#Regression example
## Not run:
genrate Friedman data
set.seed(11)
n = 200
p = 5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi * X[,1] * X[,2]) + 20 * (X[,3] - .5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

#build BART regression model
bart_machine = bartMachine(X, y)
bart_machine_arr = bartMachineArr(bart_machine)

#Classification example
data(iris)
iris2 = iris[51:150,] #do not include the third type of flower for this example
iris2$Species = factor(iris2$Species)
bart_machine = bartMachine(iris2[,1:4], iris2$Species)
bart_machine_arr = bartMachineArr(bart_machine)

## End(Not run)
```

**Description**

Builds a BART-CV model by cross-validating over a grid of hyperparameter choices.
Usage

`bartMachineCV(X = NULL, y = NULL, Xy = NULL, num_tree_cvs = c(50, 200), k_cvs = c(2, 3, 5), nu_q_cvs = NULL, k_folds = 5, folds_vec = NULL, verbose = FALSE, ...)

build_bart_machine_cv(X = NULL, y = NULL, Xy = NULL, num_tree_cvs = c(50, 200), k_cvs = c(2, 3, 5), nu_q_cvs = NULL, k_folds = 5, folds_vec = NULL, verbose = FALSE, ...)

Arguments

- **X**: Data frame of predictors. Factors are automatically converted to dummies internally.
- **y**: Vector of response variable. If `y` is numeric or integer, a BART model for regression is built. If `y` is a factor with two levels, a BART model for classification is built.
- **Xy**: A data frame of predictors and the response. The response column must be named “y”.
- **num_tree_cvs**: Vector of sizes for the sum-of-trees models to cross-validate over.
- **k_cvs**: Vector of choices for the hyperparameter k to cross-validate over.
- **nu_q_cvs**: Only for regression. List of vectors containing (nu, q) ordered pair choices to cross-validate over. If NULL, then it defaults to the three values `list(c(3, 0.9), c(3, 0.99), c(10, 0.75))`.
- **k_folds**: Number of folds for cross-validation.
- **folds_vec**: An integer vector of indices specifying which fold each observation belongs to.
- **verbose**: Prints information about progress of the algorithm to the screen.
- **...**: Additional arguments to be passed to `bartMachine`.

Value

Returns an object of class “bartMachine” with the set of hyperparameters chosen via cross-validation. We also return a matrix “cv_stats” which contains the out-of-sample RMSE for each hyperparameter set tried and “folds” which gives the fold in which each observation fell across the k-folds.

Note

This function may require significant run-time. This function is parallelized by the number of cores set in `set_bart_machine_num_cores` via calling `bartMachine`.

Author(s)

Adam Kapelner and Justin Bleich

References

bart_machine_get_posterior

See Also

bartMachine

Examples

```r
## Not run:
#generate Friedman data
set.seed(11)
N = 200
p = 5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi * X[,1] * X[,2]) + 20 * (X[,3] - .5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

#build BART regression model
bart_machine_cv = bartMachineCV(X, y)

#information about cross-validated model
summary(bart_machine_cv)

## End(Not run)
```

bart_machine_get_posterior

*Get Full Posterior Distribution*

Description

Generates draws from posterior distribution of $\hat{f}(x)$ for a specified set of observations.

Usage

```r
bart_machine_get_posterior(bart_machine, new_data)
```

Arguments

- `bart_machine`: An object of class “bartMachine”.
- `new_data`: A data frame containing observations at which draws from posterior distribution of $\hat{f}(x)$ are to be obtained.

Value

Returns a list with the following components:

- `y_hat`: Posterior mean estimates. For regression, the estimates have the same units as the response. For classification, the estimates are probabilities.
- `new_data`: The data frame with rows at which the posterior draws are to be generated. Column names should match that of the training data.
y_hat_posterior_samples

The full set of posterior samples of size num_iterations_after_burn_in for each observation. For regression, the estimates have the same units as the response. For classification, the estimates are probabilities.

Note

This function is parallelized by the number of cores set in set_bart_machine_num_cores.

Author(s)

Adam Kapelner and Justin Bleich

See Also

calc_credible_intervals, calc_prediction_intervals

Examples

## Not run:
#Regression example

generate Friedman data
set.seed(11)
n = 200
p = 5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi * X[,1] * X[,2]) + 20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

#build BART regression model
bart_machine = bartMachine(X, y)

#get posterior distribution
posterior = bart_machine_get_posterior(bart_machine, X)
print(posterior$y_hat)

#Classification example

#get data and only use 2 factors
data(iris)
iris2 = iris[51:150,]
iris2$Species = factor(iris2$Species)

#build BART classification model
bart_machine = bartMachine(iris2[,1:4], iris2$Species)

#get posterior distribution
posterior = bart_machine_get_posterior(bart_machine, iris2[,1:4])
print(posterior$y_hat)

## End(Not run)
### Description

Returns number of cores used by BART

### Usage

bart_machine_num_cores()

### Details

Returns the number of cores currently being used by parallelized BART functions

### Value

Number of cores currently being used by parallelized BART functions.

### Author(s)

Adam Kapelner and Justin Bleich

### See Also

set_bart_machine_num_cores

### Examples

```r
## Not run:
bart_machine_num_cores()
## End(Not run)
```
**bart_predict_for_test_data**

*Predict for Test Data with Known Outcomes*

**Description**

Utility wrapper function for computing out-of-sample metrics for a BART model when the test set outcomes are known.

**Usage**

```r
bart_predict_for_test_data(bart_machine, Xtest, ytest, prob_rule_class = NULL)
```

**Arguments**

- `bart_machine`: An object of class “bartMachine”.
- `Xtest`: Data frame for test data containing rows at which predictions are to be made. Colnames should match that of the training data.
- `ytest`: Actual outcomes for test data.
- `prob_rule_class`: Threshold for classification.

**Value**

For regression models, a list with the following components is returned:

- `y_hat`: Predictions (as posterior means) for the test observations.
- `L1_err`: L1 error for predictions.
- `L2_err`: L2 error for predictions.
- `rmse`: RMSE for predictions.

For classification models, a list with the following components is returned:

- `y_hat`: Class predictions for the test observations.
- `p_hat`: Probability estimates for the test observations.
- `confusion_matrix`: A confusion matrix for the test observations.

**Author(s)**

Adam Kapelner and Justin Bleich

**See Also**

`predict`
## Examples

```r
# Not run:
# generate Friedman data
set.seed(11)
n = 250
p = 5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi * X[,1] * X[,2]) + 20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

## split into train and test
train_X = X[1 : 200, ]
test_X = X[201 : 250, ]
train_y = y[1 : 200]
test_y = y[201 : 250]

## build BART regression model
bart_machine = bartMachine(train_X, train_y)

# explore performance on test data
oos_perf = bart_predict_for_test_data(bart_machine, test_X, test_y)
print(oos_perf$rmse)
```

```r
# End(Not run)
```

### Description

Nine diverse datasets which were used for benchmarking bartMachine’s out of sample performance in the vignette for this package.

### Usage

```r
data(benchmark_datasets)
```

### Source

See vignette for details.
calc_credible_intervals

Calculate Credible Intervals

Description

Generates credible intervals for \( \hat{f}(x) \) for a specified set of observations.

Usage

\[
calc_credible_intervals(bart_machine, new_data, 
  ci_conf = 0.95)
\]

Arguments

- **bart_machine**: An object of class “bartMachine”.
- **new_data**: A data frame containing observations at which credible intervals for \( \hat{f}(x) \) are to be computed.
- **ci_conf**: Confidence level for the credible intervals. The default is 95%.

Details

This interval is the appropriate quantiles based on the confidence level, \( ci\_conf \), of the predictions for each of the Gibbs samples post-burn in.

Value

Returns a matrix of the lower and upper bounds of the credible intervals for each observation in new_data.

Note

This function is parallelized by the number of cores set in set_bart_machine_num_cores.

Author(s)

Adam Kapelner and Justin Bleich

See Also

calc_prediction_intervals, bart_machine_get_posterior
Examples

```r
## Not run:
#generate Friedman data
set.seed(11)
1 = 200
p = 5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi* X[,1] * X[,2]) +20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y)

#get credible interval
cred_int = calc_credible_intervals(bart_machine, X)
print(head(cred_int))
## End(Not run)
```
response and the \( \hat{\sigma}^2 \) estimate of the noise variance. We then sample \( \text{normal_samples_per_gibbs_sample} \) times from a \( N(\hat{y},\hat{\sigma}^2) \) random variable to simulate many possible disturbances for that Gibbs sample. Then, all \( \text{normal_samples_per_gibbs_sample} \) times the number of Gibbs sample post burn-in are collected and the appropriate quantiles are taken based on the confidence level, \( \text{pi_conf} \).

**Value**

Returns a matrix of the lower and upper bounds of the prediction intervals for each observation in \( \text{new_data} \).

**Note**

This function is parallelized by the number of cores set in \( \text{set_bart_machine_num_cores} \).

**Author(s)**

Adam Kapelner and Justin Bleich

**References**


**See Also**

\( \text{calc_credible_intervals, bart_machine_get_posterior} \)

**Examples**

```r
## Not run:
#generate Friedman data
set.seed(11)
n = 200
p = 5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi* X[,1] * X[,2]) +20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

#build BART regression model
bart_machine = bartMachine(X, y)

#get prediction interval
pred_int = calc_prediction_intervals(bart_machine, X)
print(head(pred_int))

## End(Not run)
```
Description

Diagnostic tools to assess whether the errors of the BART model for regression are normally distributed and homoskedastic, as assumed by the model. This function generates a normal quantile plot of the residuals with a Shapiro-Wilks p-value as well as a residual plot.

Usage

check_bart_error_assumptions(bart_machine, hetero_plot = "yhats")

Arguments

- **bart_machine**: An object of class “bartMachine”.
- **hetero_plot**: If “yhats”, the residuals are plotted against the fitted values of the response. If “ys”, the residuals are plotted against the actual values of the response.

Value

None.

Author(s)

Adam Kapelner and Justin Bleich

See Also

plot_convergence_diagnostics

Examples

```r
## Not run:
#generate Friedman data
set.seed(11)
n = 300
p = 5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi* X[,1] * X[,2]) +20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

#build BART regression model
bart_machine = bartMachine(X, y)

#check error diagnostics
check_bart_error_assumptions(bart_machine)

## End(Not run)
```
Description

This function tests the null hypothesis $H_0$: These covariates of interest do not affect the response under the assumptions of the BART model.

Usage

```r
cov_importance_test(bart_machine, covariates = NULL, num_permutation_samples = 100, plot = TRUE)
```

Arguments

- `bart_machine`: An object of class “bart_machine”.
- `covariates`: A vector of names of covariates of interest to be tested for having an effect on the response. A value of NULL indicates an omnibus test for all covariates having an effect on the response. If the name of a covariate is a factor, the entire factor will be permuted. We do not recommend entering the names of factor covariate dummies.
- `num_permutation_samples`: The number of times to permute the covariates of interest and create a corresponding new BART model (see details).
- `plot`: If `TRUE`, this produces a histogram of the Pseudo-Rsq’s / total misclassification error rates from the `num_permutations` BART models created with the covariates permuted. The plot also illustrates the observed Pseudo-Rsq’s / total misclassification error rate from the original training data and indicates the test’s p-value.

Details

To test the importance of a covariate or a set of covariates of interest on the response, this function generates `num_permutations` BART models with the covariate(s) of interest permuted (differently each time). On each run, a measure of fit is recorded. For regression, the metric is Pseudo-Rsq; for classification, it is total misclassification error.

A p-value can then be generated as follows. For regression, the p-value is the number of permutation-sampled Pseudo-Rsq’s greater than the observed Pseudo-Rsq divided by `num_permutations + 1`. For classification, the p-value is the number of permutation-sampled total misclassification errors less than the observed total misclassification error divided by `num_permutations + 1`.

Value

- `permutation_samples_of_error`: A vector which records the error metric of the BART models with the covariates permuted (see details).
observed_error_estimate
   For regression, this is the Pseudo-Rsq on the original training data set. For
classification, this is the observed total misclassification error on the original
training data set.

pval         The approximate p-value for this test (see details).

Note
   This function is parallelized by the number of cores set in set_bart_machine_num_cores.

Author(s)
   Adam Kapelner and Justin Bleich

References
   Adam Kapelner, Justin Bleich (2016). bartMachine: Machine Learning with Bayesian Additive

Examples
   ## Not run:
   ##regression example
   ##generate Friedman data
   set.seed(11)
   n = 200
   p = 5
   X = data.frame(matrix(runif(n * p), ncol = p))
   y = 10 * sin(pi * X[,1] * X[,2]) + 20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)
   #build BART regression model
   bart_machine = bartMachine(X, y)
   #now test if X[, 1] affects Y nonparametrically under the BART model assumptions
   cov_importance_test(bart_machine, covariates = c(1))
   ## note the plot and the printed p-value

   ## End(Not run)
Usage

`destroy_bart_machine(bart_machine)`

Arguments

- `bart_machine`  deprecated — do not use!

Details

Removing a “bart_machine” object from R previously did not free heap space from Java. Since BART objects can consume a large amount of RAM, it is important to remove these objects by calling this function if they are no longer needed or many BART objects are being created. This operation is now taken care of by R’s garbage collection. This function is deprecated and should not be used. However, running it is harmless.

Value

None.

Author(s)

Adam Kapelner and Justin Bleich

Examples

```r
# None
```

---

**dummify_data**

_Dummify Design Matrix_

Description

Create a data frame with factors converted to dummies.

Usage

`dummify_data(data)`

Arguments

- `data`  Data frame to be dummified.

Details

The column names of the dummy variables are given by the “FactorName_LevelName” and are augmented to the end of the design matrix. See the example below.
extract_raw_node_data

Value

Returns a data frame with factors converted to dummy indicator variables.

Note

BART handles dummification internally. This function is provided as a utility function.

Author(s)

Adam Kapelner and Justin Bleich

Examples

```r
## Not run:
#generate data
set.seed(11)
x1 = rnorm(20)
x2 = as.factor(ifelse(x1 > 0, "A", "B"))
x3 = runif(20)
X = data.frame(x1,x2,x3)
#dummify data
X_dummified = dummify_data(X)
print(X_dummified)
## End(Not run)
```

Description

Returns a list object that contains all the information for all trees in a given Gibbs sample. Daughter nodes are nested in the list structure recursively.

Usage

```r
extract_raw_node_data(bart_machine, g = 1)
```

Arguments

- **bart_machine**: An object of class “bartMachine”.
- **g**: The gibbs sample number. It must be a natural number between 1 and the number of iterations after burn in. Default is 1.

Value

Returns a list object that contains all the information for all trees in a given Gibbs sample.
## get_projection_weights

### Description

Returns the matrix \( H \) where \( \hat{y} \) is approximately equal to \( H \ y \) where \( \hat{y} \) is the predicted values for \( \text{new\_data} \). If \( \text{new\_data} \) is unspecified, \( \hat{y} \) will be the in-sample fits. If BART was the same as OLS, \( H \) would be an orthogonal projection matrix. Here it is a projection matrix, but clearly non-orthogonal. Unfortunately, I cannot get this function to work correctly because of three possible reasons (1) BART does not work by averaging tree predictions: it is a sum of trees model where each tree sees the residuals via backfitting (2) the prediction in each node is a bayesian posterior draw which is close to ybar of the observations contained in the node if noise is gauged to be small and (3) there are transformations of the original \( y \) variable. I believe I got close and I think I’m off by a constant multiple which is a function of the number of trees. I can use regression to estimate the constant multiple and correct for it. Turn \text{regression\_kludge} to \text{TRUE} for this. Note that the weights do not add up to one here. The intuition is because due to the backfitting there is multiple counting. But I’m not entirely sure.

### Usage

\[
\text{get\_projection\_weights(bart\_machine, new\_data = NULL, regression\_kludge = FALSE)}
\]
get_projection_weights

Arguments

- bart_machine: An object of class “bartMachine”.
- new_data: Data that you wish to investigate the training sample projection / weights. If NULL, the original training data is used.
- regression_kludge: See explanation in the description. Default is FALSE.

Value

Returns a matrix of proportions with number of rows equal to the number of rows of new_data and number of columns equal to the number of rows of the original training data, n.

Examples

```r
## Not run:
options(java.parameters = "-Xmx10g")
pacman::p_load(bartMachine, tidyverse)

seed = 1984
set.seed(seed)
n = 100
x = rnorm(n, 0, 1)
sigma = 0.1
y = x + rnorm(n, 0, sigma)

num_trees = 200
num_iterations_after_burn_in = 1000
bart_mod = bartMachine(data.frame(x = x), y, flush_indices_to_save_RAM = FALSE, num_trees = num_trees, num_iterations_after_burn_in = num_iterations_after_burn_in, seed = seed)
bart_mod

n_star = 100
x_star = rnorm(n_star)
y_star = as.numeric(x_star + rnorm(n_star, 0, sigma))
yhat_star_bart = predict(bart_mod, data.frame(x = x_star))

Hstar = get_projection_weights(bart_mod, data.frame(x = x_star))
rowSums(Hstar)
yhat_star_projection = as.numeric(Hstar)

ggplot(data.frame(yhat_star = yhat_star_bart, yhat_star_projection = yhat_star_projection, y_star = y_star)) +
  geom_point(aes(x = yhat_star_bart, y = yhat_star_projection), col = "green") +
  geom_abline(slope = 1, intercept = 0)

Hstar = get_projection_weights(bart_mod, data.frame(x = x_star), regression_kludge = TRUE)
```
get_sigsqs

rowSums(Hstar)
yhat_star_projection = as.numeric(Hstar)

ggplot(data.frame(
  yhat_star = yhat_star_bart,
  yhat_star_projection = yhat_star_projection,
  y_star = y_star)) +
  geom_point(aes(x = yhat_star_bart, y = yhat_star_projection), col = "green") +
  geom_abline(slope = 1, intercept = 0)

## End(Not run)

get_sigsqs

Get Posterior Error Variance Estimates

Description

Returns the posterior estimates of the error variance from the Gibbs samples with an option to create a histogram of the posterior estimates of the error variance with a credible interval overlaid.

Usage

get_sigsqs(bart_machine, after_burn_in = T,
plot_hist = F, plot_CI = .95, plot_sigma = F)

Arguments

- **bart_machine**: An object of class “bartMachine”.
- **after_burn_in**: If TRUE, only the $\sigma^2$ draws after the burn-in period are returned.
- **plot_hist**: If TRUE, a histogram of the posterior $\sigma^2$ draws is generated.
- **plot_CI**: Confidence level for credible interval on histogram.
- **plot_sigma**: If TRUE, plots $\sigma$ instead of $\sigma^2$.

Value

Returns a vector of posterior $\sigma^2$ draws (with or without the burn-in samples).

Author(s)

Adam Kapelner and Justin Bleich

See Also

get_sigsqs
Examples

```r
## Not run:
# generate Friedman data
set.seed(11)
n = 300
p = 5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi * X[,1] * X[,2]) + 20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

# build BART regression model
bart_machine = bartMachine(X, y)

# get posterior sigma^2’s after burn-in and plot
sigsqs = get_sigsqs(bart_machine, plot_hist = TRUE)

## End(Not run)
```

---

get_var_counts_over_chain

*Get the Variable Inclusion Counts*

Description

Computes the variable inclusion counts for a BART model.

Usage

```r
get_var_counts_over_chain(bart_machine, type = "splits")
```

Arguments

- `bart_machine`: An object of class “bartMachine”.
- `type`: If “splits”, then the number of times each variable is chosen for a splitting rule is computed. If “trees”, then the number of times each variable appears in a tree is computed.

Value

Returns a matrix of counts of each predictor across all trees by Gibbs sample. Thus, the dimension is `num_interations_after_burn_in` by `p` (where `p` is the number of predictors after dummifying factors and adding missingness dummies if specified by `use_missing_data_dummies_as_covars`).

Author(s)

Adam Kapelner and Justin Bleich
See Also

get_var_props_over_chain

Examples

```r
## Not run:

#generate Friedman data
set.seed(11)
n = 200
p = 10
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi * X[,1] * X[,2]) + 20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y, num_trees = 20)

##get variable inclusion counts
var_counts = get_var_counts_over_chain(bart_machine)
print(var_counts)
```

---

**get_var_props_over_chain**

*Get the Variable Inclusion Proportions*

**Description**

Computes the variable inclusion proportions for a BART model.

**Usage**

```r
get_var_props_over_chain(bart_machine, type = "splits")
```

**Arguments**

- `bart_machine`: An object of class “bartMachine”.
- `type`: If “splits”, then the proportion of times each variable is chosen for a splitting rule versus all splitting rules is computed. If “trees”, then the proportion of times each variable appears in a tree versus all appearances of variables in trees is computed.

**Value**

Returns a vector of the variable inclusion proportions.
Author(s)

Adam Kapelner and Justin Bleich

See Also

get_var_counts_over_chain

Examples

```r
## Not run:
#generate Friedman data
set.seed(11)
n = 200
p = 10
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi * X[,1] * X[,2]) + 20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y, num_trees = 20)

#Get variable inclusion proportions
var_props = get_var_props_over_chain(bart_machine)
print(var_props)
## End(Not run)
```

interaction_investigator

Explore Pairwise Interactions in BART Model

Description

Explore the pairwise interaction counts for a BART model to learn about interactions fit by the model. This function includes an option to generate a plot of the pairwise interaction counts.

Usage

```r
interaction_investigator(bart_machine, plot = TRUE,
num_replicates_for_avg = 5, num_trees_bottleneck = 20,
num_var_plot = 50, cut_bottom = NULL, bottom_margin = 10)
```

Arguments

- **bart_machine**: An object of class "bartMachine".
- **plot**: If TRUE, a plot of the pairwise interaction counts is generated.
- **num_replicates_for_avg**: The number of replicates of BART to be used to generate pairwise interaction inclusion counts. Averaging across multiple BART models improves stability of the estimates.
interaction_investigator

num_trees_bottleneck
Number of trees to be used in the sum-of-trees model for computing pairwise interactions counts. A small number of trees should be used to force the variables to compete for entry into the model.

num_var_plot
Number of variables to be shown on the plot. If “Inf,” all variables are plotted (not recommended if the number of predictors is large). Default is 50.

cut_bottom
A display parameter between 0 and 1 that controls where the y-axis is plotted. A value of 0 would begin the y-axis at 0; a value of 1 begins the y-axis at the minimum of the average pairwise interaction inclusion count (the smallest bar in the bar plot). Values between 0 and 1 begin the y-axis as a percentage of that minimum.

bottom_margin
A display parameter that adjusts the bottom margin of the graph if labels are clipped. The scale of this parameter is the same as set with `par(mar = c(....))` in R. Higher values allow for more space if the crossed covariate names are long. Note that making this parameter too large will prevent plotting and the plot function in R will throw an error.

Details
An interaction between two variables is considered to occur whenever a path from any node of a tree to any of its terminal node contains splits using those two variables. See Kapelner and Bleich, 2013, Section 4.11.

Value
interaction_counts_avg
For each of the $p \times p$ interactions, what is the average count across all num_replicates_for_avg BART model replicates' post burn-in Gibbs samples in all trees.

interaction_counts_sd
For each of the $p \times p$ interactions, what is the average sd of the interaction counts across the num_replicates_for_avg BART models replicates.

Note
In the plot, the red bars correspond to the standard error of the variable inclusion proportion estimates (since multiple replicates were used).

Author(s)
Adam Kapelner and Justin Bleich

References

See Also
investigate_var_importance
Examples

```r
## Not run:
#generate Friedman data
set.seed(11)
n = 200
p = 10
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi* X[,1] * X[,2]) +20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y, num_trees = 20)

#investigate interactions
interaction_investigator(bart_machine)
## End(Not run)
```

---

**investigate_var_importance**

*Explore Variable Inclusion Proportions in BART Model*

**Description**

Explore the variable inclusion proportions for a BART model to learn about the relative influence of the different covariates. This function includes an option to generate a plot of the variable inclusion proportions.

**Usage**

```r
investigate_var_importance(bart_machine, type = "splits", plot = TRUE, num_replicates_for_avg = 5, num_trees_bottleneck = 20, num_var_plot = Inf, bottom_margin = 10)
```

**Arguments**

- **bart_machine**: An object of class “bartMachine”.
- **type**: If “splits”, then the proportion of times each variable is chosen for a splitting rule is computed. If “trees”, then the proportion of times each variable appears in a tree is computed.
- **plot**: If TRUE, a plot of the variable inclusion proportions is generated.
- **num_replicates_for_avg**: The number of replicates of BART to be used to generate variable inclusion proportions. Averaging across multiple BART models improves stability of the estimates. See Bleich et al. (2013) for more details.
investigate_var_importance

num_trees_bottleneck
Number of trees to be used in the sum-of-trees for computing the variable inclusion proportions. A small number of trees should be used to force the variables to compete for entry into the model. Chipman et al. (2010) recommend 20. See this reference for more details.

num_var_plot
Number of variables to be shown on the plot. If “Inf”, all variables are plotted.

bottom_margin
A display parameter that adjusts the bottom margin of the graph if labels are clipped. The scale of this parameter is the same as set with \texttt{par(mar = c(....))} in R. Higher values allow for more space if the covariate names are long. Note that making this parameter too large will prevent plotting and the plot function in R will throw an error.

Details

In the plot, the red bars correspond to the standard error of the variable inclusion proportion estimates.

Value

Invisibly, returns a list with the following components:

\begin{itemize}
  \item \texttt{avg_var_props}  The average variable inclusion proportions for each variable (across \texttt{num_replicates_for_avg})
  \item \texttt{sd_var_props}  The standard deviation of the variable inclusion proportions for each variable (across \texttt{num_replicates_for_avg})
\end{itemize}

Note

This function is parallelized by the number of cores set in \texttt{set_bart_machine_num_cores}.

Author(s)

Adam Kapelner and Justin Bleich

References


See Also

interaction_investigator
### Not run:
```
#generate Friedman data
set.seed(11)
n = 200
p = 10
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi * X[,1] * X[,2]) +20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y, num_trees = 20)

#investigate variable inclusion proportions
investigate_var_importance(bart_machine)
```

## End(Not run)

### Description

Builds a BART model using a specified set of arguments to build_bart_machine and estimates the out-of-sample performance by using k-fold cross validation.

### Usage

```
k_fold_cv(X, y, k_folds = 5, folds_vec = NULL, verbose = FALSE, ...)
```

### Arguments

- **X**: Data frame of predictors. Factors are automatically converted to dummies internally.
- **y**: Vector of response variable. If `y` is numeric or integer, a BART model for regression is built. If `y` is a factor with two levels, a BART model for classification is built.
- **k_folds**: Number of folds to cross-validate over. This argument is ignored if `folds_vec` is non-null.
- **folds_vec**: An integer vector of indices specifying which fold each observation belongs to.
- **verbose**: Prints information about progress of the algorithm to the screen.
- **...**: Additional arguments to be passed to build_bart_machine.

### Details

For each fold, a new BART model is trained (using the same set of arguments) and its performance is evaluated on the holdout piece of that fold.
Value

For regression models, a list with the following components is returned:

- `y_hat` Predictions for the observations computed on the fold for which the observation was omitted from the training set.
- `L1_err` Aggregate L1 error across the folds.
- `L2_err` Aggregate L1 error across the folds.
- `rmse` Aggregate RMSE across the folds.
- `folds` Vector of indices specifying which fold each observation belonged to.

For classification models, a list with the following components is returned:

- `y_hat` Class predictions for the observations computed on the fold for which the observation was omitted from the training set.
- `p_hat` Probability estimates for the observations computed on the fold for which the observation was omitted from the training set.
- `confusion_matrix` Aggregate confusion matrix across the folds.
- `misclassification_error` Total misclassification error across the folds.
- `folds` Vector of indices specifying which fold each observation belonged to.

Note

This function is parallelized by the number of cores set in `set_bart_machine_num_cores`.

Author(s)

Adam Kapelner and Justin Bleich

See Also

`bartMachine`

Examples

```r
## Not run:
#generate Friedman data
set.seed(11)
n = 200
p = 5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi * X[,1] * X[,2]) + 20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

#evaluate default BART on 5 folds
k_fold_val = k_fold_cv(X, y)
print(k_fold_val$rmse)

## End(Not run)
```
**linearity_test**  
*Test of Linearity*

**Description**
Test to investigate $H_0$ : the functional relationship between the response and the regressors is linear. We fit a linear model and then test if the residuals are a function of the regressors using the

**Usage**
```r
linearity_test(lin_mod = NULL, X = NULL, y = NULL,
num_permutation_samples = 100, plot = TRUE, ...)
```

**Arguments**
- `lin_mod` A linear model you can pass in if you do not want to use the default which is `lm(y ~ X)`. Default is NULL which should be used if you pass in X and y.
- `X` Data frame of predictors. Factors are automatically converted to dummies internally. Default is NULL which should be used if you pass in lin_mod.
- `y` Vector of response variable. If y is numeric or integer, a BART model for regression is built. If y is a factor with two levels, a BART model for classification is built. Default is NULL which should be used if you pass in lin_mode.
- `num_permutation_samples` This function relies on `cov_importance_test` (see documentation there for details).
- `plot` This function relies on `cov_importance_test` (see documentation there for details).
- `...` Additional parameters to be passed to bartMachine, the model constructed on the residuals of the linear model.

**Value**
- `permutation_samples_of_error` This function relies on `cov_importance_test` (see documentation there for details).
- `observed_error_estimate` This function relies on `cov_importance_test` (see documentation there for details).
- `pval` The approximate p-value for this test. See the documentation at `cov_importance_test`.

**Author(s)**
Adam Kapelner

**See Also**
- `cov_importance_test`
Examples

```r
## Not run:
##regression example

generate Friedman data i.e. a nonlinear response model
set.seed(11)
n = 200
p = 5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi * X[,1] * X[,2]) + 20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

#linearity test if there is a nonlinear relationship between X1, ..., X5 and y.
linearity_test(X = X, y = y)
## note the plot and the printed p-value.. should be approx 0

#generate a linear response model
linearity_test(X = X, y = y)
## note the plot and the printed p-value.. should be > 0.05
```

## End(Not run)

---

**node_prediction_training_data_indices**

*Gets node predictions indices of the training data for new data.*

Description

This returns a binary tensor for all gibbs samples after burn-in for all trees and for all training observations.

Usage

```r
node_prediction_training_data_indices(bart_machine, new_data = NULL)
```

Arguments

- **bart_machine**: An object of class “bartMachine”.
- **new_data**: Data that you wish to investigate the training sample weights. If NULL, the original training data is used.

Value

Returns a binary tensor indicating whether the prediction node contained a training datum or not. For each observation in new data, the size of this tensor is number of gibbs sample after burn-in times the number of trees times the number of training data observations. This the size of the
full tensor is the number of observations in the new data times the three dimensional object just explained.

---

### pd_plot

**Partial Dependence Plot**

#### Description

Creates a partial dependence plot for a BART model for regression or classification.

#### Usage

```r
pd_plot(bart_machine, j,
levs = c(0.05, seq(from = 0.1, to = 0.9, by = 0.1), 0.95),
lower_ci = 0.025, upper_ci = 0.975, prop_data = 1)
```

#### Arguments

- `bart_machine`: An object of class “bartMachine”.
- `j`: The number or name of the column in the design matrix for which the partial dependence plot is to be created.
- `levs`: Quantiles at which the partial dependence function should be evaluated. Linear extrapolation is performed between these points.
- `lower_ci`: Lower limit for credible interval
- `upper_ci`: Upper limit for credible interval
- `prop_data`: The proportion of the training data to use. Default is 1. Use a lower proportion for speedier pd_plots. The closer to 1, the more resolution the PD plot will have; the closer to 0, the lower but faster.

#### Details

For regression models, the units on the y-axis are the same as the units of the response. For classification models, the units on the y-axis are probits.

#### Value

Invisibly, returns a list with the following components:

- `x_j_quants`: Quantiles at which the partial dependence function is evaluated
- `bart_avg_predictions_by_quantile_by_gibbs`: All samples of $\hat{f}(x)$
- `bart_avg_predictions_by_quantile`: Posterior means for $\hat{f}(x)$ at `x_j_quants`
- `bart_avg_predictions_lower`: Lower bound of the desired confidence of the credible interval of $\hat{f}(x)$
Upper bound of the desired confidence of the credible interval of \(\hat{f}(x)\)

The proportion of the training data to use as specified when this function was executed

**Note**

This function is parallelized by the number of cores set in `set_bart_machine_num_cores`.

**Author(s)**

Adam Kapelner and Justin Bleich

**References**


**Examples**

```r
## Not run:
#Regression example
#generate Friedman data
set.seed(11)
n = 200
p = 5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi * X[,1] * X[,2]) + 20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

#build BART regression model
bart_machine = bartMachine(X, y)

#partial dependence plot for quadratic term
pd_plot(bart_machine, "X3")

#Classification example
#get data and only use 2 factors
data(iris)
iris2 = iris[51:150,]
iris2$Species = factor(iris2$Species)

#build BART classification model
bart_machine = bartMachine(iris2[,1:4], iris2$Species)

#partial dependence plot
pd_plot(bart_machine, "Petal.Width")
```
## End(Not run)

---

**plot_convergence_diagnostics**

*Plot Convergence Diagnostics*

### Description

A suite of plots to assess convergence diagnostics and features of the BART model.

### Usage

```r
plot_convergence_diagnostics(bart_machine,
plots = c("sigsqs", "mh_acceptance", "num_nodes", "tree_depths"))
```

### Arguments

- **bart_machine**: An object of class `bartMachine`.
- **plots**: The list of plots to be displayed. The four options are: "sigsqs", "mh_acceptance", "num_nodes", "tree_depths".

### Details

The "sigsqs" option plots the posterior error variance estimates by the Gibbs sample number. This is a standard tool to assess convergence of MCMC algorithms. This option is not applicable to classification BART models.

The "mh_acceptance" option plots the proportion of Metropolis-Hastings steps accepted for each Gibbs sample (number accepted divided by number of trees).

The "num_nodes" option plots the average number of nodes across each tree in the sum-of-trees model by the Gibbs sample number (for post burn-in only). The blue line is the average number of nodes over all trees.

The "tree_depths" option plots the average tree depth across each tree in the sum-of-trees model by the Gibbs sample number (for post burn-in only). The blue line is the average number of nodes over all trees.

### Value

None.

### Note

The "sigsqs" plot separates the burn-in $\sigma^2$'s for the first core by post burn-in $\sigma^2$'s estimates for all cores by grey vertical lines. The "mh_acceptance" plot separates burn-in from post-burn-in by a grey vertical line. Post burn-in, the different core proportions plot in different colors. The "num_nodes" plot separates different core estimates by vertical lines (post burn-in only). The "tree_depths" plot separates different core estimates by vertical lines (post burn-in only).
**Author(s)**

Adam Kapelner and Justin Bleich

**Examples**

```r
## Not run:
#generate Friedman data
set.seed(11)
n = 200
p = 5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi* X[,1] * X[,2]) +20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y)

#plot convergence diagnostics
plot_convergence_diagnostics(bart_machine)
## End(Not run)
```

---

**plot_y_vs_yhat**

*Plot the fitted Versus Actual Response*

**Description**

Generates a plot actual versus fitted values and corresponding credible intervals or prediction intervals for the fitted values.

**Usage**

```r
plot_y_vs_yhat(bart_machine, Xtest = NULL, ytest = NULL, credible_intervals = FALSE, prediction_intervals = FALSE, interval_confidence_level = 0.95)
```

**Arguments**

- **bart_machine**
  - An object of class “bartMachine”.

- **Xtest**
  - Optional argument for test data. If included, BART computes fitted values at the rows of Xtest. Else, the fitted values from the training data are used.

- **ytest**
  - Optional argument for test data. Vector of observed values corresponding to the rows of Xtest to be plotted against the predictions for the rows of Xtest.

- **credible_intervals**
  - If TRUE, Bayesian credible intervals are computed using the quantiles of the posterior distribution of \( \hat{f}(x) \). See `calc_credible_intervals` for details.
plot_y_vs_yhat

**prediction_intervals**
If TRUE, Bayesian predictive intervals are computed using the a draw of from \( \hat{f}(x) \). See `calc_prediction_intervals` for details.

**interval_confidence_level**
Desired level of confidence for credible or prediction intervals.

**Value**
None.

**Note**
This function is parallelized by the number of cores set in `set_bart_machine_num_cores`.

**Author(s)**
Adam Kapelner and Justin Bleich

**See Also**
`bart_machine_get_posterior`, `calc_credible_intervals`, `calc_prediction_intervals`

**Examples**

```r
## Not run:
#generate linear data
set.seed(11)
N = 500
p = 3
X = data.frame(matrix(runif(n * p), ncol = p))
y = 3*X[,1] + 2*X[,2] +X[,3] + rnorm(n)

#build BART regression model
bart_machine = bartMachine(X, y)

#generate plot
plot_y_vs_yhat(bart_machine)

#generate plot with prediction bands
plot_y_vs_yhat(bart_machine, prediction_intervals = TRUE)

## End(Not run)
```
predict.bartMachine

*Make a prediction on data using a BART object*

**Description**

Makes a prediction on new data given a fitted BART model for regression or classification.

**Usage**

```r
## S3 method for class 'bartMachine'
predict(object, new_data, type = "prob", prob_rule_class = NULL, verbose = TRUE, ...)
```

**Arguments**

- `object`: An object of class “bartMachine”.
- `new_data`: A data frame where each row is an observation to predict. The column names should be the same as the column names of the training data.
- `type`: Only relevant if the bartMachine model is classification. The type can be “prob” which will return the estimate of \( P(Y = 1) \) (the “positive” class) or “class” which will return the best guess as to the class of the object, in the original label, based on if the probability estimate is greater than `prob_rule_class`. Default is “prob.”
- `prob_rule_class`: The rule to determine when the class estimate is \( Y = 1 \) (the “positive” class) based on the probability estimate. This defaults to what was originally specified in the `bart_machine` object.
- `verbose`: Prints out prediction-related messages. Currently in use only for probability predictions to let the user know which class is being predicted. Default is `TRUE`.
- `...`: Parameters that are ignored.

**Value**

If regression, a numeric vector of \( y\_hat \), the best guess as to the response. If classification and `type = "prob"`, a numeric vector of \( p\_hat \), the best guess as to the probability of the response class being the “positive” class. If classification and `type = "class"`, a character vector of the best guess of the response’s class labels.

**Author(s)**

Adam Kapelner and Justin Bleich

**See Also**

`bart_predict_for_test_data`
Examples

#Regression example
## Not run:
#generate Friedman data
set.seed(11)
n = 200
p = 5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi* X[,1] * X[,2]) +20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y)

##make predictions on the training data
y_hat = predict(bart_machine, X)

#Classification example
data(iris)
iris2 = iris[51 : 150, ] #do not include the third type of flower for this example
iris2$Species = factor(iris2$Species)
bart_machine = bartMachine(iris2[,1:4], iris2$Species)

##make probability predictions on the training data
p_hat = predict(bart_machine, X)

##make class predictions on test data
y_hat_class = predict(bart_machine, X, type = "class")

##make class predictions on test data conservatively for "versicolor"
y_hat_class_conservative = predict(bart_machine, X, type = "class", prob_rule_class = 0.9)

## End(Not run)

predict_bartMachineArr

Make a prediction on data using a BART array object

Description

Makes a prediction on new data given an array of fitted BART model for regression or classification. If BART creates models that are variable, running many and averaging is a good strategy. It is well known that the Gibbs sampler gets locked into local modes at times. This is a way to average over many chains.

Usage

predict_bartMachineArr(object, new_data, ...)


Arguments

object
   An object of class "bartMachineArr".
new_data
   A data frame where each row is an observation to predict. The column names should be the same as the column names of the training data.

Value

If regression, a numeric vector of \( y_{\text{hat}} \), the best guess as to the response. If classification and type = `'prob'`, a numeric vector of \( p_{\text{hat}} \), the best guess as to the probability of the response class being the "positive" class. If classification and type = `'class'`, a character vector of the best guess of the response’s class labels.

Author(s)
Adam Kapelner

See Also

predict.bartMachine

Examples

#Regression example
## Not run:
genreate Friedman data
cset.seed(11)
n = 200
p = 5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi * X[,1] * X[,2]) +20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y)
bart_machine_arr = bartMachineArr(bart_machine)

##make predictions on the training data
y_hat = predict(bart_machine_arr, X)

#Classification example
data(iris)
iris2 = iris[51 : 150, ] #do not include the third type of flower for this example
iris2$Species = factor(iris2$Species)
bart_machine = bartMachine(iris2[,1:4], iris2$Species)
bart_machine_arr = bartMachineArr(bart_machine)

##make probability predictions on the training data
p_hat = predict_bartMachineArr(bart_machine_arr, iris2[,1:4])
print.bartMachine

## End(Not run)

Summary of information about a bartMachine object.

Description

This is an alias for the summary.bartMachine function. See description in that section.

Usage

## S3 method for class 'bartMachine'
print(x, ...)

Arguments

x
An object of class “bartMachine”.

... Parameters that are ignored.

Value

None.

Author(s)

Adam Kapelner and Justin Bleich

Examples

## Not run:
#Regression example

generate Friedman data
set.seed(11)
n = 200
p = 5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi * X[,1] * X[,2]) + 20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y)

##print out details
print(bart_machine)

##Also, the default print works too
Assess the Out-of-sample RMSE by Number of Trees

Description

Assess out-of-sample RMSE of a BART model for varying numbers of trees in the sum-of-trees model.

Usage

```r
rmse_by_num_trees(bart_machine, tree_list = c(5, seq(10, 50, 10), 100, 150, 200), in_sample = FALSE, plot = TRUE, holdout_pctg = 0.3, num_replicates = 4, ...)
```

Arguments

- `bart_machine`: An object of class “bartMachine”.
- `tree_list`: List of sizes for the sum-of-trees models.
- `in_sample`: If TRUE, the RMSE is computed on in-sample data rather than an out-of-sample holdout.
- `plot`: If TRUE, a plot of the RMSE by the number of trees in the ensemble is created.
- `holdout_pctg`: Percentage of the data to be treated as an out-of-sample holdout.
- `num_replicates`: Number of replicates to average the results over. Each replicate uses a randomly sampled holdout of the data, (which could have overlap).
- `...`: Other arguments to be passed to the plot function.

Value

Invisibly, returns the out-of-sample average RMSEs for each tree size.

Note

Since using a large number of trees can substantially increase computation time, this plot can help assess whether a smaller ensemble size is sufficient to obtain desirable predictive performance. This function is parallelized by the number of cores set in `set_bart_machine_num_cores`.

Author(s)

Adam Kapelner and Justin Bleich
Examples

```r
## Not run:
#generate Friedman data
set.seed(11)
n = 200
p = 10
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi * X[,1] * X[,2]) + 20 * (X[,3] - .5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

#build BART regression model
bartMachine = bartMachine(X, y, num_trees = 20)

#explore RMSE by number of trees
rmse_by_num_trees(bartMachine)

## End(Not run)
```

---

**set_bart_machine_num_cores**

*Set the Number of Cores for BART*

**Description**

Sets the number of cores to be used for all parallelized BART functions.

**Usage**

```r
set_bart_machine_num_cores(num_cores)
```

**Arguments**

- `num_cores`: Number of cores to use. If the number of cores is more than 1, setting the seed during model construction cannot be deterministic.

**Value**

None.

**Author(s)**

Adam Kapelner and Justin Bleich

**See Also**

- `bart_machine_num_cores`
Examples

```r
# Not run:
set_bart_machine_num_cores(4)
```

## Not run:

### Examples

- ```R
  #set all parallelized functions to use 4 cores
  set_bart_machine_num_cores(4)
  ```

## End(Not run)

---

**summary.bartMachine**  
_Summarizes information about a bartMachine object._

### Description

Provides a quick summary of the BART model.

### Usage

- ```R
  ## S3 method for class 'bartMachine'
  summary(object, ...)
  ```

### Arguments

- `object`  
  An object of class “bartMachine”.
- `...`  
  Parameters that are ignored.

### Details

Gives the version number of the bartMachine package used to build this additiveBartMachine object and if the object models either “regression” or “classification.” Gives the amount of training data and the dimension of feature space. Prints the amount of time it took to build the model, how many processor cores were used during its construction, as well as the number of burn-in and posterior Gibbs samples were used.

If the model is for regression, it prints the estimate of \( \sigma^2 \) before the model was constructed as well as after so the user can inspect how much variance was explained.

If the model was built using the `run_in_sample = TRUE` parameter in `build_bart_machine` and is for regression, the summary L1, L2, rmse, Pseudo-\(R^2\) are printed as well as the p-value for the tests of normality and zero-mean noise. If the model is for classification, a confusion matrix is printed.

### Value

None.

### Author(s)

Adam Kapelner
## var_selection_by_permute

### Description

Performs variable selection using the three thresholding methods introduced in Bleich et al. (2013).

### Usage

```r
var_selection_by_permute(bart_machine, 
num_reps_for_avg = 10, num_permute_samples = 100, 
num_trees_for_permute = 20, alpha = 0.05, 
plot = TRUE, num_var_plot = Inf, bottom_margin = 10)
```

### Arguments

- `bart_machine`: An object of class “bartMachine”.
- `num_reps_for_avg`: Number of replicates to over over to for the BART model’s variable inclusion proportions.
- `num_permute_samples`: Number of permutations of the response to be made to generate the “null” permutation distribution.

## Examples

```r
## Not run:
# Regression example

# generate Friedman data
set.seed(11)
n  = 200
p = 5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi* X[,1] * X[,2]) + 20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

# build BART regression model
bart_machine = bartMachine(X, y)

# print out details
summary(bart_machine)

# Also, the default print works too
bart_machine

## End(Not run)
```
var_selection_by_permute

num_trees_for_permute
Number of trees to use in the variable selection procedure. As with investigate_var_importance, a small number of trees should be used to force variables to compete for entry into the model. Note that this number is used to estimate both the “true” and “null” variable inclusion proportions.

alpha
Cut-off level for the thresholds.

plot
If TRUE, a plot showing which variables are selected by each of the procedures is generated.

num_var_plot
Number of variables (in order of decreasing variable inclusion proportion) to be plotted.

bottom_margin
A display parameter that adjusts the bottom margin of the graph if labels are clipped. The scale of this parameter is the same as set with par(mar = c(....)) in R. Higher values allow for more space if the crossed covariate names are long. Note that making this parameter too large will prevent plotting and the plot function in R will throw an error.

Details
See Bleich et al. (2013) for a complete description of the procedures outlined above as well as the corresponding vignette for a brief summary with examples.

Value
Invisibly, returns a list with the following components:

important_vars_local_names
Names of the variables chosen by the Local procedure.

important_vars_global_max_names
Names of the variables chosen by the Global Max procedure.

important_vars_global_se_names
Names of the variables chosen by the Global SE procedure.

important_vars_local_col_nums
Column numbers of the variables chosen by the Local procedure.

important_vars_global_max_col_nums
Column numbers of the variables chosen by the Global Max procedure.

important_vars_global_se_col_nums
Column numbers of the variables chosen by the Global SE procedure.

var_true_props_avg
The variable inclusion proportions for the actual data.

permute_mat
The permutation distribution generated by permuting the response vector.

Note
Although the reference only explores regression settings, this procedure is applicable to both regression and classification problems. This function is parallelized by the number of cores set in set_bart_machine_num_cores.
var_selection_by_permute_cv

Author(s)
Adam Kapelner and Justin Bleich

References

See Also
var_selection_by_permute, investigate_var_importance

Examples
```r
## Not run:
# generate Friedman data
set.seed(11)
n = 300
p = 20 ##15 useless predictors
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi* X[,1] * X[,2]) +20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)
## build BART regression model (not actually used in variable selection)
bart_machine = bartMachine(X, y)
# variable selection
var_sel = var_selection_by_permute(bart_machine)
print(var_sel$important_vars_local_names)
print(var_sel$important_vars_global_max_names)
## End(Not run)
```

---

var_selection_by_permute_cv

Perform Variable Selection Using Cross-validation Procedure

Description
Performs variable selection by cross-validating over the three threshold-based procedures outlined in Bleich et al. (2013) and selecting the single procedure that returns the lowest cross-validation RMSE.

Usage
```r
var_selection_by_permute_cv(bart_machine, k_folds = 5, folds_vec = NULL, num_reps_for_avg = 5, num_permute_samples = 100, num_trees_for_permute = 20, alpha = 0.05, num_trees_pred_cv = 50)
```
Arguments

- **bart_machine**: An object of class “bartMachine”.
- **k_folds**: Number of folds to be used in cross-validation.
- **folds_vec**: An integer vector of indices specifying which fold each observation belongs to.
- **num_reps_for_avg**: Number of replicates to over over to for the BART model’s variable inclusion proportions.
- **num_permute_samples**: Number of permutations of the response to be made to generate the “null” permutation distribution.
- **num_trees_for_permute**: Number of trees to use in the variable selection procedure. As with `investigate_var_importance`, a small number of trees should be used to force variables to compete for entry into the model. Note that this number is used to estimate both the “true” and “null” variable inclusion proportions.
- **alpha**: Cut-off level for the thresholds.
- **num_trees_pred_cv**: Number of trees to use for prediction on the hold-out portion of each fold. Once variables have been selected using the training portion of each fold, a new model is built using only those variables with `num_trees_pred_cv` trees in the sum-of-trees model. Forecasts for the holdout sample are made using this model. A larger number of trees is recommended to exploit the full forecasting power of BART.

Details

See Bleich et al. (2013) for a complete description of the procedures outlined above as well as the corresponding vignette for a brief summary with examples.

Value

Returns a list with the following components:

- **best_method**: The name of the best variable selection procedure, as chosen via cross-validation.
- **important_vars_cv**: The variables chosen by the best_method above.

Note

This function can have substantial run-time. This function is parallelized by the number of cores set in `set_bart_machine_num_cores`.

Author(s)

Adam Kapelner and Justin Bleich
References


See Also

var_selection_by_permute, investigate_var_importance

Examples

```r
## Not run:
#generate Friedman data
set.seed(11)
 n = 150
 p = 100 ##95 useless predictors
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi* X[,1] * X[,2]) +20 * (X[,3] -.5)^2 + 10 * X[,4] + 5 * X[,5] + rnorm(n)

##build BART regression model (not actually used in variable selection)
bart_machine = bartMachine(X, y)

#variable selection via cross-validation
var_sel_cv = var_selection_by_permute_cv(bart_machine, k_folds = 3)
print(var_sel_cv$best_method)
print(var_sel_cv$important_vars_cv)

## End(Not run)
```
Index

* datasets
  automobile, 2
  benchmark_datasets, 15
  ankara (benchmark_datasets), 15
  automobile, 2
  bart_machine_get_posterior, 11, 16, 18, 41
  bart_machine_num_cores, 13, 47
  bart_predict_for_test_data, 14, 42
  bartMachine, 3, 10, 11, 34
  bartMachineArr, 8
  bartMachineCV, 7, 9
  baseball (benchmark_datasets), 15
  benchmark_datasets, 15
  boston (benchmark_datasets), 15
  build_bart_machine, 48
  build_bart_machine (bartMachine), 3
  build_bart_machine_cv (bartMachineCV), 9
  calc_credible_intervals, 12, 16, 17, 18, 40, 41
  calc_prediction_intervals, 12, 16, 17, 41
  check_bart_error_assumptions, 19
  compactiv (benchmark_datasets), 15
  cov_importance_test, 5, 20, 35
  destroy_bart_machine, 21
  dummify_data, 5, 22
  extract_raw_node_data, 23
  get_projection_weights, 24
  get_sigsqs, 26, 26
  get_var_counts_over_chain, 27, 29
  get_var_props_over_chain, 28, 28
  interaction_investigator, 29, 32
  investigate_var_importance, 30, 31, 50–53
  k_fold_cv, 33
  linearity_test, 35
  node_prediction_training_data_indices, 36
  ozone (benchmark_datasets), 15
  pd_plot, 37
  plot_convergence_diagnostics, 19, 39
  plot_y_vs_yhat, 40
  pole (benchmark_datasets), 15
  predict, 14
  predict.bartMachine, 42, 44
  predict_bartMachineArr, 43
  print.bartMachine, 45
  rmse_by_num_trees, 46
  set_bart_machine_num_cores, 7, 10, 12, 13, 16, 18, 21, 32, 34, 38, 41, 46, 47, 50, 52
  summary.bartMachine, 45, 48
  triazine (benchmark_datasets), 15
  var_selection_by_permute, 49, 51, 53
  var_selection_by_permute_cv, 51
  wine.red (benchmark_datasets), 15
  wine.white (benchmark_datasets), 15