Package ‘basicspace’
January 10, 2020

Version 0.24
Date 2020-01-09
Title Recovering a Basic Space from Issue Scales
Author Keith Poole <ktpoole@uga.edu>, Howard Rosenthal
<hr31@nyu.edu>, Jeffrey Lewis <jblewis@ucla.edu>,
James Lo <lojames@usc.edu> and Royce Carroll
<rcarroll@rice.edu>
Maintainer James Lo <lojames@usc.edu>
Depends R (>= 3.0.0), tools (>= 2.0.0)
Description Conducts Aldrich-McKelvey and Blackbox Scaling (Poole et al 2016)
<doi:10.18637/jss.v069.i07> to recover latent dimensions of judgment.
License GPL-2
Repository CRAN
NeedsCompilation yes
Date/Publication 2020-01-10 16:50:15 UTC

R topics documented:

aldmck .. 2
blackbox .. 4
blackbox_transpose 7
bootbbt ... 9
boot_aldmck ... 10
boot_blackbt .. 12
colombia ... 13
fit ... 15
individuals .. 16
Issues1980 .. 17
Issues1980_bb 18
LC1980 ... 20
LC1980_bbt ... 21
plot.aldmck .. 23
Description

`aldmck` is a function that takes a matrix of perceptual data, such as liberal-conservative rankings of various stimuli, and recovers the true location of those stimuli in a spatial model. It differs from procedures such as `wnominate`, which instead use preference data to estimate candidate and citizen positions. The procedure here, developed by John Aldrich and Richard McKelvey in 1977, is restricted to estimating data with no missing values and only in one dimension. Please refer to the `blackbox` and `blackbox_transpose` functions in this package for procedures that accommodate missing data and multidimensionality estimates.

Usage

`aldmck(data, respondent = 0, missing=NULL, polarity, verbose=FALSE)`

Arguments

data
matrix of numeric values, containing the perceptual data. Respondents should be organized on rows, and stimuli on columns. It is helpful, though not necessary, to include row names and column names.

respondent
integer, specifies the column in the data matrix of the stimuli that contains the respondent’s self-placement on the scale. Setting respondent = 0 specifies that the self-placement data is not available. Self-placement data is not required to estimate the locations of the stimuli, but is required if recovery of the respondent ideal points, or distortion parameters is desired. Note that no distortion parameters are estimated in AM without self-placements because they are not needed, see equation (24) in Aldrich and McKelvey (1977) for proof.
missing vector or matrix of numeric values, sets the missing values for the data. NA values are always treated as missing regardless of what is set here. Observations with missing data are discarded before analysis. If input is a vector, then the vector is assumed to contain the missing value codes for all the data. If the input is a matrix, it must be of dimension p x q, where p is the maximum number of missing values and q is the number of columns in the data. Each column of the inputted matrix then specifies the missing data values for the respective variables in data. If null (default), no missing values are in the data other than the standard NA value.

polarity integer, specifies the column in the data matrix of the stimuli that is to be set on the left side (generally this means a liberal)

verbose logical, indicates whether aldmcck should print out detailed output when scaling the data.

Value

An object of class aldmcck.

legislators vector, containing the recovered locations of the stimuli. The names of the stimuli are attached if provided as column names in the argument data, otherwise they are generated sequential as ‘stim1’, ‘stim2’, etc.

respondents matrix, containing the information estimated for each respondent. Observations which were discarded in the estimation for missing data purposes have been NA’d out:

 • intercept Intercept of perceptual distortion for respondent.
 • weight Weight of perceptual distortion for respondent.
 • idealpt Estimated location of the respondent. Note that these positions are still calculated for individuals with negative weights, so these may need to be discarded. Note that this will not be calculated if self-placements are not provided in the data.
 • selfplace The self-reported location of the individual, copied from the data argument if respondent is not set to 0.
 • polinfo Estimated political information of respondent, calculated as the correlation between the true and reported stimulus locations. The validation of this measure is provided in the article by Palfrey and Poole in the references. Note that this measure is included even for respondents that were not used in the estimation. Individuals with negative weights have also been assigned a political information score of 0, rather than negative scores.

eigenvalues A vector of the eigenvalues from the estimation.

AMfit Ratio of overall variance to perceptions in scaled data divided by average variance. This measure of fit, described by Aldrich and McKelvey, measures the amount of reduction of the variance of the scaled over unscaled data.

N Number of respondents used in the estimation (i.e. had no missing data)

N.neg Number of cases with negative weights. Only calculated if respondent selfplacements are specified, will equal 0 if not.
Loads and scales the Liberal-Conservative scales from the 1980 NES.

data(LC1980)
result <- aldmck(data=LC1980, polarity=2, respondent=1, missing=c(0,8,9), verbose=TRUE)
summary(result)
plot.aldmck(result)
Usage

blackbox(data, missing=NULL, verbose=FALSE, dims=1, minscale)

Arguments

- **data**: matrix of numeric values containing the issue scale data. Respondents should be organized on rows, and stimuli on columns. It is helpful, though not necessary, to include row names and column names.
- **missing**: vector or matrix of numeric values, sets the missing values for the data. NA values are always treated as missing regardless of what is set here. Observations with missing data are discarded before analysis. If input is a vector, then the vector is assumed to contain the missing value codes for all the data. If the input is a matrix, it must be of dimension p x q, where p is the maximum number of missing values and q is the number of columns in the data. Each column of the inputted matrix then specifies the missing data values for the respective variables in data. If null (default), no missing values are in the data other than the standard NA value.
- **verbose**: logical, indicates whether aldmcx should print out detailed output when scaling the data.
- **dims**: integer, specifies the number of dimensions to be estimated.
- **minsacle**: integer, specifies the minimum number of responses a respondent needs needs to provide to be used in the scaling.

Value

An object of class blackbox.

- **stimuli**: vector of data frames of length dims. Each data frame presents results for estimates from that dimension (i.e. x$stimuli[[2]] presents results for dimension 2). Each row contains data on a separate stimulus, and each data frame includes the following variables:
 - N: Number of respondents who provided a response to this stimulus.
 - c: Stimulus intercept.
 - w1: Estimate of the stimulus weight on the first dimension. If viewing the results for a higher dimension, higher dimension results will appear as w2, w3, etc.
 - R2: The percent variance explained for the stimulus. This increases as more dimensions are estimated.

- **individuals**: vector of data frames of length dims. Each data frame presents results for estimates from that dimension (i.e. x$stimuli[[2]] presents results for dimension 2). Individuals that are discarded from analysis due to the minsacle constraint are NA'd out. Each row contains data on a separate stimulus, and each data frame includes the following variables:
 - c1: Estimate of the individual intercept on the first dimension. If viewing the results for a higher dimension, higher dimension results will appear as c2, c3, etc.
fits A data frame of fit results, with elements listed as follows:

- **SSE** Sum of squared errors.
- **SSE.explained** Explained sum of squared error.
- **percent** Percentage of total variance explained.
- **SStandard error of the estimate, with formula provided on pg. 973 of the article cited below.**
- **singular** Singular value for the dimension.

Nrow Number of rows/stimuli.

Ncol Number of columns used in estimation. This may differ from the data set due to columns discarded due to the minscale constraint.

Ndata Total number of data entries.

Nmiss Number of missing entries.

SS_mean Sum of squares grand mean.

dims Number of dimensions estimated.

Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

References

See Also

'Issues1980', 'summary.blackbox', 'plot.blackbox'.

Examples

```r
### Loads issue scales from the 1980 NES.
data(Issues1980)
Issues1980[Issues1980[,"abortion1"]==7,"abortion1"] <- 8 #missing recode
Issues1980[Issues1980[,"abortion2"]==7,"abortion2"] <- 8 #missing recode

### This command conducts estimates, which we instead load using data()
# Issues1980_bb <- blackbox(Issues1980,missing=c(0,8,9),verbose=FALSE,dims=3,minscale=8)
data(Issues1980_bb)
```
blackbox_transpose

summary(Issues1980_bb)

blackbox_transpose
Blackbox transpose Scaling

Description

blackbox_transpose is a function that takes a matrix of perceptual data, such as liberal-conservative rankings of various stimuli, and recovers the true location of those stimuli in a spatial model. It differs from procedures such as wnominate, which instead use preference data to estimate candidate and citizen positions. The procedure here generalizes the technique developed by John Aldrich and Richard McKelvey in 1977, which is also included in this package as the aldmck function.

Usage

```r
blackbox_transpose(data, missing=NULL, verbose=FALSE, dims=1, minscale)
```

Arguments

- `data`
 matrix of numeric values, containing the perceptual data. Respondents should be organized on rows, and stimuli on columns. It is helpful, though not necessary, to include row names and column names.

- `missing`
 vector or matrix of numeric values, sets the missing values for the data. NA values are always treated as missing regardless of what is set here. Observations with missing data are discarded before analysis. If input is a vector, then the vector is assumed to contain the missing value codes for all the data. If the input is a matrix, it must be of dimension p x q, where p is the maximum number of missing values and q is the number of columns in the data. Each column of the inputted matrix then specifies the missing data values for the respective variables in data. If null (default), no missing values are in the data other than the standard NA value.

- `verbose`
 logical, indicates whether aldmck should print out detailed output when scaling the data.

- `dims`
 integer, specifies the number of dimensions to be estimated.

- `minscale`
 integer, specifies the minimum number of responses a respondent needs needs to provide to be used in the scaling.

Value

An object of class blackbt.

- `stimuli`
 vector of data frames of length dims. Each data frame presents results for estimates from that dimension (i.e. x$stimuli[[2]] presents results for dimension 2). Each row contains data on a separate stimulus, and each data frame includes the following variables:
• Number of respondents who ranked this stimulus.
• Location of the stimulus in the first dimension. If viewing the results for a higher dimension, higher dimension results will appear as coord2D, coord3D, etc.
• R² The percent variance explained for the stimulus. This increases as more dimensions are estimated.

individuals vector of data frames of length dims. Each data frame presents results for estimates from that dimension (i.e. x$stimuli[[2]] presents results for dimension 2). Individuals that are discarded from analysis due to the minscale constraint are NA’d out. Each row contains data on a separate stimulus, and each data frame includes the following variables:
• c Estimate of the individual intercept.
• w1 Estimate of the individual slope. If viewing the results for a higher dimension, higher dimension results will appear as w2, w3, etc.
• R² The percent variance explained for the respondent. This increases as more dimensions are estimated.

fits A data frame of fit results, with elements listed as follows:
• SSE Sum of squared errors.
• SSE.explained Explained sum of squared error.
• percent Percentage of total variance explained.
• SE Standard error of the estimate, with formula provided in the article cited below.
• singular Singular value for the dimension.

Nrow Number of rows/stimuli.
Ncol Number of columns used in estimation. This may differ from the data set due to columns discarded due to the minscale constraint.
Ndata Total number of data entries.
Nmiss Number of missing entries.
SS_mean Sum of squares grand mean.
dims Number of dimensions estimated.

Author(s)
Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

References
'plotcdf.blackbt', 'LC1980', 'plot.blackbt', 'summary.blackbt', 'LC1980_bbt'.

Loads and scales the Liberal-Conservative scales from the 1980 NES.
data(LC1980)
LCdat=LC1980[, -1] # Dump the column of self-placements

This command conducts estimates, which we instead load using data()
#LC1980_bbt <- blackbox_transpose(LCdat, missing=c(0, 8, 9), dims=3, minscale=5, verbose=TRUE)
data(LC1980_bbt)
plot(LC1980_bbt)
par(ask=TRUE)
plotcdf.blackbt(LC1980_bbt)
summary(LC1980_bbt)

boottbbt

Blackbox Transpose Bootstrap of 1980 Liberal-Conservative Scales.

Description

Output from 10 bootstrap trials of LC1980 data. Included to allow the example to run sufficiently quickly to pass CRAN guidelines.

Usage

data(boottbbt)

Value

See 'boot_blackbt'.

Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

See Also

'LC1980', 'boot_blackbt', 'plot.boot_blackbt'.

Examples

data(LC1980)
data=LC1980[,-1]

Not run to save time, but loaded object is the output
bootbbt <- boot_blackbt(data, missing=c(0,8,9), dims=1, minscale=8, iter=10)
data("bootbbt")

plot.boot_blackbt(bootbbt)

boot_aldmck

Bootstrap of Aldrich-McKelvey Scaling

Description

boot_aldmck is a function automates the non-parametric bootstrapping of aldmck. The original function takes a matrix of perceptual data, such as liberal-conservative rankings of various stimuli, and recovers the true location of those stimuli in a spatial model. The bootstrap simply applies this estimator across multiple resampled data sets and stores the results of each iteration in a matrix. These results can be used to estimate uncertainty for various parameters of interest, and can be plotted using the plot.boot_aldmck function.

Usage

```
boot_aldmck(data, respondent = 0, missing=NULL, polarity, iter=100)
```

Arguments

data matrix of numeric values, containing the perceptual data. Respondents should be organized on rows, and stimuli on columns. It is helpful, though not necessary, to include row names and column names.

respondent integer, specifies the column in the data matrix of the stimuli that contains the respondent’s self-placement on the scale. Setting respondent = 0 specifies that the self-placement data is not available. Self-placement data is not required to estimate the locations of the stimuli, but is required if recovery of the respondent ideal points, or distortion parameters is desired. Note that no distortion parameters are estimated in AM without self-placements because they are not needed, see equation (24) in Aldrich and McKelvey (1977) for proof.

missing vector or matrix of numeric values, sets the missing values for the data. NA values are always treated as missing regardless of what is set here. Observations with missing data are discarded before analysis. If input is a vector, then the
vector is assumed to contain the missing value codes for all the data. If the input is a matrix, it must be of dimension p x q, where p is the maximum number of missing values and q is the number of columns in the data. Each column of the inputted matrix then specifies the missing data values for the respective variables in data. If null (default), no missing values are in the data other than the standard NA value.

polarity
integer, specifies the column in the data matrix of the stimuli that is to be set on the left side (generally this means a liberal)

iter
integer, is the number of iterations the bootstrap should run for.

Value
An object of class `boot_aldmck`. This is simply a matrix of dimensions iter x number of stimuli. Each row stores the estimated stimuli locations for each iteration.

Author(s)
Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <rosenthal@princeton.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

References

Keith Poole. http://voteview.com

See Also
'LC1980', 'summary.aldmck', 'plot.aldmck', 'plot.cdf'.

Examples

```r
data(LC1980)
result <- boot_aldmck(data=LC1980, polarity=2, respondent=1, missing=c(0,8,9), iter=30)
plot(result)
```
Description

`boot_blackbt` is a function automates the non-parametric bootstrapping of `blackbox_transpose`. The original function takes a matrix of perceptual data, such as liberal-conservative rankings of various stimuli, and recovers the true location of those stimuli in a spatial model. The bootstrap simply applies this estimator across multiple resampled data sets and stores the results of each iteration in a matrix. These results can be used to estimate uncertainty for various parameters of interest, and can be plotted using the `plot.boot_blackbt` function.

Usage

```r
boot_blackbt(data, missing=NULL, dims=1, dim.extract=dims, minscale, iter=100)
```

Arguments

- **data**: matrix of numeric values, containing the perceptual data. Respondents should be organized on rows, and stimuli on columns. It is helpful, though not necessary, to include row names and column names.
- **missing**: vector or matrix of numeric values, sets the missing values for the data. NA values are always treated as missing regardless of what is set here. Observations with missing data are discarded before analysis. If input is a vector, then the vector is assumed to contain the missing value codes for all the data. If the input is a matrix, it must be of dimension p x q, where p is the maximum number of missing values and q is the number of columns in the data. Each column of the inputted matrix then specifies the missing data values for the respective variables in data. If null (default), no missing values are in the data other than the standard NA value.
- **dims**: integer, specifies the number of dimensions to be estimated.
- **dim.extract**: integer, specifies which dimension to extract results for the bootstrap from.
- **minscale**: integer, specifies the minimum number of responses a respondent needs needs to provide to be used in the scaling.
- **iter**: integer, number of iterations the bootstrap should run for.

Value

An object of class `boot_blackbt`. This is simply a matrix of dimensions iter x number of stimuli. Each row stores the estimated stimuli locations for each iteration.

Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

See Also
'blackbox_transpose', 'plot.boot_blackbt'.

Examples

data(LC1980)
data=LC1980[,-1]

Not run to save time, but loaded object is the output
bootbbt <- boot_blackbt(data, missing=c(0,8,9), dims=1, minscale=8, iter=10)
data("bootbbt")

plot.boot_blackbt(bootbbt)

colombia 2004 PELA Liberal-Conservative Scales.

Description
Liberal-Conservative 10-point scales from the University of Salamanca's Parliamentary Elites of Latin America (PELA) survey. Stored as a matrix of integers. The number 99 is a missing value. These data come from Sebastian Saiegh and are used in the paper and book cited below.

Usage
data(colombia)

Value
The data is formatted as an integer matrix with the following elements.
colombia matrix, containing reported placements of various stimuli on a 10 point Liberal-Conservative scale:
 • id Respondent ID.
 • party Respondent party.
 • departam Respondent district.
• entrevy Interviewer ID.
• pl_uribista Placement of “Partido Liberal Uribista” on 10 point scale.
• pl_oficial Placement of “Partido Liberal Oficial” on 10 point scale.
• conservator Placement of “Partido Conservador” on 10 point scale.
• polo Placement of “Polo” on 10 point scale.
• union_cristiana Placement of “Union Cristiana” on 10 point scale.
• salvation Placement of “Salvacion” on 10 point scale.
• urine Placement of Mr. Uribe on 10 point scale.
• antanas Placement of Mr. Antanas on 10 point scale.
• gomez Placement of Mr. Gomez on 10 point scale.
• garzon Placement of Garzon on 10 point scale.
• holgin Placement of Holguin on 10 point scale.
• rivera Placement of Rivera on 10 point scale.
• self Respondent self placement on 10 point scale.

Author(s)
Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

Source

See Also
'aldmck', 'summary.aldmck', 'plot.aldmck', 'plot.cdf'.

Examples
Loads and scales the Liberal-Conservative scales from the 2004 PELA survey
data(colombia)
tmp <- colombia[,c(5:8,12:17)]
result <- aldmck(data=tmp, polarity=7, respondent=10, missing=c(99), verbose=TRUE)
summary(result)
plot.cdf(result)
Description

fit is a convenience function to extract the model fit statistics from an aldmck, blackbox, or blackbt object.

Usage

fit(object)

Arguments

object an aldmck, blackbox, or blackbt output object.

Value

The model fit statistics of the estimated output, which can also be recovered as object$fits (for blackbox or blackbt objects) or object$AMfit (for aldmck objects). Please refer to the documentation of aldmck, blackbox, or blackbox_transpose for specifics.

Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

See Also

'aldmck', 'blackbox', 'blackbox_transpose'.

Examples

data(Issues1980)
Issues1980[Issues1980[,"abortion1"]==7,"abortion1"] <- 8 #missing recode
Issues1980[Issues1980[,"abortion2"]==7,"abortion2"] <- 8 #missing recode

This command conducts estimates, which we instead load using data()
Issues1980_bb <- blackbox(Issues1980,missing=c(8,9),verbose=FALSE,dims=3,mins=8)
data(Issues1980_bb)

fit(Issues1980_bb)
Description

individuals is a convenience function to extract the individual/respondent parameters from an aldmck, blackbox, or blackbt object.

Usage

individuals(object)

Arguments

object an aldmck, blackbox, or blackbt output object.

Value

The individual parameters of the estimated output, which can also be recovered as object$individuals (for blackbox or blackbt objects) or object$respondents (for aldmck objects). Please refer to the documentation of aldmck, blackbox, or blackbox_transpose for specifics.

Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

See Also

'aldmck', 'blackbox', 'blackbox_transpose'.

Examples

data(Issues1980)
Issues1980[Issues1980[,"abortion1"]==7,"abortion1"] <- 8 #missing recode
Issues1980[Issues1980[,"abortion2"]==7,"abortion2"] <- 8 #missing recode

This command conducts estimates, which we instead load using data()
Issues1980_bb <- blackbox(Issues1980,missing=c(0,8,9),verbose=FALSE,dims=3,mins=8)
data(Issues1980_bb)

individuals(Issues1980_bb)
Description

Issue scales from the 1980 National Election Study. The numbers 0, 8, and 9 are considered to be missing values, except for the two abortion scales, where '7' is also a missing value. Hence, it must be recoded as in the example shown below before scaling. The data is used as an example for blackbox().

Usage

data(LC1980)

Value

The data is formatted as an numeric matrix with the following elements.

<table>
<thead>
<tr>
<th>Issues</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>libcon1</td>
<td>Liberal-conservative self-placement on 7 point scale.</td>
</tr>
<tr>
<td>defense</td>
<td>Defense spending self-placement on 7 point scale.</td>
</tr>
<tr>
<td>govserv</td>
<td>Government service on 7 point scale.</td>
</tr>
<tr>
<td>inflation</td>
<td>Importance of inflation self-placement on 7 point scale.</td>
</tr>
<tr>
<td>abortion1</td>
<td>Attitude on abortion 4 point scale.</td>
</tr>
<tr>
<td>taxcut</td>
<td>Support for tax cut on 7 point scale.</td>
</tr>
<tr>
<td>libcon2</td>
<td>Liberal-conservative self-placement on 7 point scale.</td>
</tr>
<tr>
<td>govhelpmin</td>
<td>Government aid on 7 point scale.</td>
</tr>
<tr>
<td>russia</td>
<td>Attitude towards Russia on 7 point scale.</td>
</tr>
<tr>
<td>womenrole</td>
<td>Role of women on 7 point scale.</td>
</tr>
<tr>
<td>govjobs</td>
<td>Placement of Democrats on 7 point scale.</td>
</tr>
<tr>
<td>equalrights</td>
<td>Support for equal rights on 7 point scale.</td>
</tr>
<tr>
<td>busing</td>
<td>Opinion on busing on 7 point scale.</td>
</tr>
<tr>
<td>abortion2</td>
<td>Another attitude on abortion on 4 point scale.</td>
</tr>
</tbody>
</table>

Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>
Source

Also available from Keith Poole. http://voteview.com/

See Also

`'blackbox', 'summary.blackbox'`.

Examples

```r
### Loads issue scales from the 1980 NES.
data(Issues1980)
Issues1980[Issues1980[, "abortion1"] == 7, "abortion1"] <- 8 # missing recode
Issues1980[Issues1980[, "abortion2"] == 7, "abortion2"] <- 8 # missing recode

### This command conducts estimates, which we instead load using data()
# Issues1980_bb <- blackbox(Issues1980, missing = c(0, 8, 9), verbose = FALSE, dims = 3, minscale = 8)
data(Issues1980_bb)
summary(Issues1980_bb)
```

Issues1980_bb

Blackbox Estimate, 1980 NES Issue Scales.

Description

Blackbox estimates from issues scales from the 1980 National Election Study.

Usage

```r
data(Issues1980_bb)
```

Value

An object of class `blackbox`.

- **stimuli**
 - vector of data frames of length dims. Each data frame presents results for estimates from that dimension (i.e. `x$stimuli[[2]]` presents results for dimension 2). Each row contains data on a separate stimulus, and each data frame includes the following variables:
 - `N` Number of respondents who provided a response to this stimulus.
 - `c` Stimulus intercept.
 - `w1` Estimate of the stimulus weight on the first dimension. If viewing the results for a higher dimension, higher dimension results will appear as `w2`, `w3`, etc.
• R2 The percent variance explained for the stimulus. This increases as more dimensions are estimated.

individuals vector of data frames of length dims. Each data frame presents results for estimates from that dimension (i.e. x$stimuli[[2]] presents results for dimension 2). Individuals that are discarded from analysis due to the minscale constraint are NA'd out. Each row contains data on a separate stimulus, and each data frame includes the following variables:

 • c1 Estimate of the individual intercept on the first dimension. If viewing the results for a higher dimension, higher dimension results will appear as c2, c3, etc.

fits A data frame of fit results, with elements listed as follows:

 • SSE Sum of squared errors.
 • SSE.explained Explained sum of squared error.
 • percent Percentage of total variance explained.
 • SE Standard error of the estimate, with formula provided on pg. 973 of the article cited below.
 • singular Singular value for the dimension.

Nrow Number of rows/stimuli.
Ncol Number of columns used in estimation. This may differ from the data set due to columns discarded due to the minscale constraint.
Ndata Total number of data entries.
Nmiss Number of missing entries.
SS_mean Sum of squares grand mean.
dims Number of dimensions estimated.

Author(s)
Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

Source

See Also
'Issues1980', 'summary.blackbox', 'plot.blackbox'.
Examples

```r
### Loads issue scales from the 1980 NES.
data(Issues1980)
Issues1980[Issues1980[, "abortion1"] == 7, "abortion1"] <- 8 # missing recode
Issues1980[Issues1980[, "abortion2"] == 7, "abortion2"] <- 8 # missing recode

### This command conducts estimates, which we instead load using data()
# Issues1980_bb <- blackbox(Issues1980, missing = c(0, 8, 9), verbose = FALSE, dims = 3, minscale = 8)
data(Issues1980_bb)
summary(Issues1980_bb)
```

Description

Liberal-Conservative 7-point scales from the 1980 National Election Study. Includes (in order) self-placement, and rankings of Carter, Reagan, Kennedy, Anderson, Republican party, Democratic Party. Stored as a matrix of integers. The numbers 0, 8, and 9 are considered to be missing values.

Usage

data(LC1980)

Value

The data is formatted as an integer matrix with the following elements.

LC1980 matrix, containing reported placements of various stimuli on a 7 point Liberal-Conservative scale:

- Self Placement on 7 point scale.
- Carter Placement of Carter on 7 point scale.
- Reagan Placement of Reagan on 7 point scale.
- Kennedy Placement of Kennedy on 7 point scale.
- Anderson Placement of Anderson on 7 point scale.
- Republicans Placement of Republicans on 7 point scale.
- Democrats Placement of Democrats on 7 point scale.

Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>
Source
Also available from Keith Poole. http://voteview.com

See Also
'aldmck', 'summary.aldmck', 'plot.aldmck', 'plot.cdf'.

Examples
Loads and scales the Liberal-Conservative scales from the 1980 NES.
data(LC1980)
result <- aldmck(data=LC1980, polarity=2, respondent=1, missing=c(0,8,9),verbose=TRUE)
summary(result)
par(ask=TRUE)
plot.AM(result,xlim=c(-1.5,1.5))
plot.cdf(result)

Description
Blackbox-Transpose estimates from Liberal-Conservative 7-point scales from the 1980 National
Election Study. Estimates in 3 dimensions.

Usage
data(LC1980_bbt)

Value
An object of class blackbt.

stimuli vector of data frames of length dims. Each data frame presents results for esti-
mates from that dimension (i.e. x$stimuli[[2]] presents results for dimension 2). Each row contains data on a separate stimulus, and each data frame includes the following variables:
• NNumber of respondents who ranked this stimulus.
• coord1DLocation of the stimulus in the first dimension. If viewing the re-
sults for a higher dimension, higher dimension results will appear as co-
ord2D, coord3D, etc.
• R2The percent variance explained for the stimulus. This increases as more dimensions are estimated.
individuals vector of data frames of length dims. Each data frame presents results for estimates from that dimension (i.e. x$stimuli[[2]] presents results for dimension 2). Individuals that are discarded from analysis due to the minscale constraint are NA'd out. Each row contains data on a separate stimulus, and each data frame includes the following variables:

- c Estimate of the individual intercept.
- w1 Estimate of the individual slope. If viewing the results for a higher dimension, higher dimension results will appear as w2, w3, etc.
- R2 The percent variance explained for the respondent. This increases as more dimensions are estimated.

fits A data frame of fit results, with elements listed as follows:

- SSE Sum of squared errors.
- SSE.explained Explained sum of squared error.
- percent Percentage of total variance explained.
- SE Standard error of the estimate, with formula provided in the article cited below.
- singular Singular value for the dimension.

Nrow Number of rows/stimuli.
Ncol Number of columns used in estimation. This may differ from the data set due to columns discarded due to the minscale constraint.
Ndata Total number of data entries.
Nmiss Number of missing entries.
SS_mean Sum of squares grand mean.
dims Number of dimensions estimated.

Author(s)
Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

Source

See Also
'plotcdf.blackbt', 'LC1980', 'plot.blackbt', 'summary.blackbt', 'blackbox_transpose'.
Examples

```r
### Loads and scales the Liberal-Conservative scales from the 1980 NES.
data(LC1980)
LCdat=LC1980[,,-1] #Dump the column of self-placements

### This command conducts estimates, which we instead load using data()
#LC1980_bbt <- blackbox_transpose(LCdat,missing=c(0,8,9),dims=3,minscale=5,verbose=TRUE)
data(LC1980_bbt)
plot(LC1980_bbt)
par(ask=TRUE)
plotcdf.blackbt(LC1980_bbt)
summary(LC1980_bbt)
```

plot.aldmck

Aldrich-McKelvey Coordinate Distribution Plot

Description

plot.aldmck reads an aldmck object and plots the probability distribution of the respondents and stimuli.

Usage

```r
## S3 method for class 'aldmck'
plot(x, ...)
```

Arguments

- `x` an aldmck output object.
- `...` Other arguments to `plot`.

Value

A plot of the probability distribution of the respondent ideal points, along with the locations of the stimuli. If no self-placements were specified during estimation, no graphical plots will appear.

Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>
See Also

`aldmck`, `LC1980`, `summary.aldmck`, `plot.AM`, `plot.cdf` `plot.aldmck_negative`, `plot.aldmck_positive`.

Examples

Loads and scales the Liberal-Conservative scales from the 1980 NES.
```r
data(LC1980)
result <- aldmck(data=LC1980, polarity=2, respondent=1, missing=c(0,8,9), verbose=TRUE)
summary(result)
plot(result)
```

plot.aldmck_negative
Aldrich-McKelvey Negative Coordinate Distribution Plot

Description

plot.aldmck_negative reads an aldmc object and plots the probability distribution of the respondents and stimuli with negative weights.

Usage

```r
## S3 method for class 'aldmck_negative'
plot(x, xlim=c(-2,2), ...)
```

Arguments

- `x`
an aldmc output object.

- `xlim`
vector of length 2, fed to the plot function as the `xlim` argument, which sets the minimum and maximum range of the x-axis.

- `...`
other arguments to `plot`.

Value

A plot of the probability distribution of the respondent ideal points, along with the locations of the stimuli. If no negative weights exist, either because respondent self-placements are not specified, or because all weights are positive, a plot indicating this in text is given.

Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>
plot.aldmck_positive

See Also

'aldmck', 'LC1980', 'summary.aldmck', 'plot.cdf', 'plot.aldmck'

Examples

Loads and scales the Liberal-Conservative scales from the 1980 NES.
data(LC1980)
result <- aldmck(data=LC1980, polarity=2, respondent=1, missing=c(0,8,9), verbose=TRUE)
summary(result)
plot.aldmck_negative(result,xlim=c(-1.5,1.5))

plot.aldmck_positive Aldrich-McKelvey Positive Coordinate Distribution Plot

Description

plot.aldmck_positive reads an aldmck object and plots the probability distribution of the respondents and stimuli with positive weights.

Usage

S3 method for class 'aldmck_positive'
plot(x, xlim=c(-2,2), ...)

Arguments

x an aldmck output object.
xlim vector of length 2, fed to the plot function as the xlim argument, which sets the minimum and maximum range of the x-axis.
... other arguments to plot.

Value

A plot of the probability distribution of the respondent ideal points, along with the locations of the stimuli. If no weights exist because respondent self-placements are not specified, a plot indicating this in text is given.

Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>
plot.AM

Aldrich-McKelvey Coordinate Distribution Plot

Description

plot.AM reads an aldmcck object and plots the probability distribution of the respondents and stimuli.

Usage

S3 method for class 'AM'
plot(x, xlim=c(-2,2), ...)

Arguments

x
an aldmcck output object.

xlim
vector of length 2, fed to the plot function as the xlim argument, which sets the minimum and maximum range of the x-axis.

... other arguments to plot.

Value

A plot of the probability distribution of the respondent ideal points, along with the locations of the stimuli. If no self-placements were specified during estimation, no graphical plots will appear.

Author(s)

Keith Poole <ktupoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

See Also

'aldmcck', 'LC1980', 'summary.aldmcck', 'plot.cdf', 'plot.aldmcck'
Examples

```r
### Loads and scales the Liberal-Conservative scales from the 1980 NES.
data(LC1980)
result <- aldmck(data=LC1980, polarity=2, respondent=1, missing=c(0,8,9),verbose=TRUE)
summary(result)
par(ask=TRUE)
plot.AM(result,xlim=c(-1.5,1.5))
plot.cdf(result)
```

Description

`plot.blackbox` reads an `blackbox` object and plots a histogram of the estimated intercepts.

Usage

```r
## S3 method for class 'blackbox'
plot(x, ...)  
```

Arguments

- `x` an `blackbox` output object.
- `...` other arguments to `hist`.

Value

A histogram of the estimated intercepts.

Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

See Also

- 'Issues1980', 'summary.blackbox', 'plot.blackbox'.
Examples

```r
### Loads issue scales from the 1980 NES.
data(Issues1980)
Issues1980[Issues1980[,"abortion1"] == 7,"abortion1"] <- 8 # missing recode
Issues1980[Issues1980[,"abortion2"] == 7,"abortion2"] <- 8 # missing recode

### This command conducts estimates, which we instead load using data()
# Issues1980_bb <- blackbox(Issues1980, missing=c(0,8,9), verbose=FALSE, dims=3, minscale=8)
data(Issues1980_bb)
plot(Issues1980_bb)
```

plot.blackbt

Blackbox Transpose Coordinate Distribution Plot

Description

plot.blackbt reads an blackbt object and plots the probability distribution of the respondents and stimuli.

Usage

```r
## S3 method for class 'blackbt'
plot(x, xlim=c(-1,1), ...)
```

Arguments

- `x`: an blackbt output object.
- `xlim`: vector of length 2, fed to the plot function as the `xlim` argument, which sets the minimum and maximum range of the x-axis.
- `...`: other arguments to plot.

Value

A plot of the probability distribution of the respondent ideal points, along with the locations of the stimuli.

Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>
See Also

'blackbox_transpose', 'LC1980', 'plotcdf.blackbt', 'summary.blackbt', 'LC1980_bbt'.

Examples

Loads and scales the Liberal-Conservative scales from the 1980 NES.
data(LC1980)
LCdat=LC1980[,,-1] #Dump the column of self-placements

This command conducts estimates, which we instead load using data()
#LC1980_bbt <- blackbox_transpose(LCdat,missing=c(0,8,9),dims=3,mins=5,verbose=TRUE)
data(LC1980_bbt)

plot(LC1980_bbt)
par(ask=TRUE)
plotcdf.blackbt(LC1980_bbt)
summary(LC1980_bbt)
Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

See Also

'aldmck', 'boot_aldmck'.

Examples

data(LC1980)
result <- boot_aldmck(data=LC1980, polarity=2, respondent=1, missing=c(0,8,9), iter=30)
plot(result)

Description

plot.boot_blackbt reads an boot_blackbt object and plots a dotchart of the stimuli with estimated confidence intervals.

Usage

S3 method for class 'boot_blackbt'
plot(x, ...)

Arguments

x an boot_blackbt output object.
...
other arguments to plot.

Value

A dotchart of estimated stimulus locations, with 95 percent confidence intervals. Point estimates are estimates from the original data set.
plot.cdf

Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

See Also

'blackbox_transpose', 'boot_blackbt'.

Examples

```r
data(LC1980)
data=LC1980[,-1]

# Not run to save time, but loaded object is the output
# bootbbt <- boot_blackbt(data, missing=c(0,8,9), dims=1, minscale=8, iter=10)
data("bootbbt")

plot.boot_blackbt(bootbbt)
```

plot.cdf

Aldrich-McKelvey Coordinate Cumulative Distribution Plot

Description

plot.aldmck reads an aldmck object and plots the cumulative distribution of the respondents and stimuli.

Usage

```r
## S3 method for class 'cdf'
plot(x, align=NULL, xlim=c(-2,2), ...) # S3 method for class 'cdf'
```

Arguments

- `x`: an aldmck output object.
- `align`: integer, the x-axis location that stimuli names should be aligned to. If set to NULL, it will attempt to guess a location.
- `xlim`: vector of length 2, fed to the plot function as the xlim argument, which sets the minimum and maximum range of the x-axis.
- `...`: other arguments to `plot`.
Plot of the empirical cumulative distribution of the respondent ideal points, along with the locations of the stimuli. If no self-placements were specified during estimation, no graphical plots will appear.

Author(s)
Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

See Also
'aldmck', 'LC1980', 'summary.aldmck', 'plot.aldmck'.

Examples
```r
### Loads and scales the Liberal-Conservative scales from the 1980 NES.
data(LC1980)
result <- aldmck(data=LC1980, polarity=2, respondent=1, missing=c(0,8,9),verbose=TRUE)

summary(result)
par(ask=TRUE)
plot.AM(result,xlim=c(-1,1))
plot.cdf(result)
```

Description
plotcdf.blackbt reads an blackbt object and plots the cumulative distribution of the respondents and stimuli.

Usage
```r
plotcdf.blackbt(x, align=NULL, xlim=c(-1.2,1), ...)  
```

Arguments
- `x`: an blackbt output object.
- `align`: integer, the x-axis location that stimuli names should be aligned to If set to NULL, it will attempt to guess a location.
- `xlim`: vector of length 2, fed to the plot function as the xlim argument, which sets the minimum and maximum range of the x-axis.
- `...`: other arguments to plot.
predict.aldmck

Value

A plot of the empirical cumulative distribution of the respondent ideal points, along with the locations of the stimuli.

Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

See Also

'blackbox_transpose', 'LC1980', 'plot.blackbt', 'summary.blackbt', 'LC1980_bbt'.

Examples

Loads and scales the Liberal-Conservative scales from the 1980 NES.
data(LC1980)
LCdat=LC1980[,-1] #Dump the column of self-placements

This command conducts estimates, which we instead load using data()
#LC1980_bbt <- blackbox_transpose(LCdat,missing=c(0,8,9),dims=3,minscale=5,verbose=TRUE)
data(LC1980_bbt)
plot(LC1980_bbt)
par(ask=TRUE)
plotcdf.blackbt(LC1980_bbt)
summary(LC1980_bbt)

predict.aldmck

Predict method of aldmck objects

Description

predict.aldmck reads an aldmck object and uses the estimates to generate a matrix of predicted values.

Usage

```r
## S3 method for class 'aldmck'
predict(object, caliper=0.2, ...)
```
Arguments

object A aldmck output object.
caliper Caliper tolerance. Any individuals with estimated weights lower than this value are NA'd out for prediction. Since predictions are made by dividing observed values by estimating weights, very small weights will grossly inflate the magnitude of predicted values and lead to extreme predictions.

... Ignored.

Value

A matrix of predicted values generated from the parameters estimated from a aldmck object.

Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

See Also

'aldmck', 'LC1980'

Examples

Estimate an aldmck object from example and call predict function
data(LC1980)
result <- aldmck(data=LC1980, polarity=2, respondent=1, missing=c(0,8,9),verbose=TRUE)
prediction <- predict.aldmck(result)

Examine predicted vs. observed values for first 10 respondents
Note some observations are NA'd in prediction matrix from caliper
First column of LC1980 are self-placements, which are excluded
LC1980[1:10,-1]
prediction[1:10,]

Check correlation across all predicted vs. observed, excluding missing values
prediction[which(LC1980[,1] %in% c(0,8,9))] <- NA
cor(as.numeric(prediction), as.numeric(LC1980[,1]), use="pairwise.complete")
predict.blackbox

Predict method of blackbox objects

Description

predict.blackbox reads an blackbox object and uses the estimates to generate a matrix of predicted values.

Usage

```r
## S3 method for class 'blackbox'
predict(object, dims=1, ...)  
```

Arguments

- `object`: A blackbox output object.
- `dims`: Number of dimensions used in prediction. Must be equal to or less than number of dimensions used in estimation.
- `...`: Ignored.

Value

A matrix of predicted values generated from the parameters estimated from a blackbox object.

Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

See Also

blackbox, Issues1980

Examples

```r
## Estimate blackbox object from example and call predict function
data(Issues1980)
Issues1980[Issues1980[,"abortion1"] == 7,"abortion1"] <- 8 # missing recode
Issues1980[Issues1980[,"abortion2"] == 7,"abortion2"] <- 8 # missing recode  

### This command conducts estimates, which we instead load using data()
# Issues1980_bb <- blackbox(Issues1980,missing=c(0,8,9),verbose=FALSE,dims=3,mins=8)
data(Issues1980_bb)
prediciton <- predict.blackbox(Issues1980_bb,dims=3)
```
Examine predicted vs. observed values for first 10 respondents
Note that 4th and 6th respondents are NA because of missing data
Issues1980[1:10,]
prediction[1:10,]

Check correlation across all predicted vs. observed, excluding missing values
prediction[which(Issues1980 %in% c(0,8,9))] <- NA
cor(as.numeric(prediction), as.numeric(Issues1980), use="pairwise.complete")

predict.blackbt

Predict method of blackbt objects

Description

`predict.blackbt` reads a blackbt object and uses the estimates to generate a matrix of predicted values.

Usage

```r
## S3 method for class 'blackbt'
predict(object, dims=1, ...)
```

Arguments

- `object`: A blackbox output object.
- `dims`: Number of dimensions used in prediction. Must be equal to or less than number of dimensions used in estimation.
- `...`: Ignored.

Value

A matrix of predicted values generated from the parameters estimated from a blackbt object.

Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

See Also

'blackbox_transpose', 'LC1980', 'LC1980_bbt'
Examples

```r
## Estimate blackbt object from example and call predict function
data(LC1980)
data(LC1980_bbt)
prediction <- predict.blackbt(LC1980_bbt, dims=2)

## Examine predicted vs. observed values for first 10 respondents
## First column of LC1980 are self-placements, which are excluded
LC1980[1:10,-1]
prediction[1:10,]

## Check correlation across all predicted vs. observed, excluding missing values
prediction[which(LC1980[, -1] %in% c(0,8,9))] <- NA
cor(as.numeric(prediction), as.numeric(LC1980[, -1]), use="pairwise.complete")
```

stimuli

Stimulus extraction function

stimuli is a convenience function to extract the stimulus parameters from an aldmck, blackbox, or blackbt object.

Usage

```r
stimuli(object)
```

Arguments

- **object**: an aldmck, blackbox, or blackbt output object.

Value

The stimuli of the estimated output, which can also be recovered as `object$stimuli`. Please refer to the documentation of aldmck, blackbox, or blackbox_transpose for specifics.

Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

See Also

'aldmck', 'blackbox', 'blackbox_transpose'.
Examples

data(Issues1980)
Issues1980[Issues1980[, "abortion1"] == 7, "abortion1"] <- 8 # missing recode
Issues1980[Issues1980[, "abortion2"] == 7, "abortion2"] <- 8 # missing recode

This command conducts estimates, which we instead load using data()
Issues1980_bb <- blackbox(Issues1980, missing=c(0, 8, 9), verbose=FALSE, dims=3, minscale=8)
data(Issues1980_bb)
stimuli(Issues1980_bb)

summary.aldmck

Aldrich-McKelvey Summary

Description

summary.aldmck reads an aldmck object and prints a summary.

Usage

S3 method for class 'aldmck'
summary(object, ...)

Arguments

object an aldmck output object.
... further arguments to print.

Value

A summary of an aldmck object. Reports number of stimuli, respondents scaled, number of respondents with positive and negative weights, R-squared, Reduction of normalized variance of perceptions, and stimuli locations.

Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

See Also

'aldmck', 'LC1980', 'plot.aldmck', 'plot.cdf'.

Examples

```r
data(LC1980)
result <- aldmck(data=LC1980, polarity=2, respondent=1, missing=c(0,8,9),verbose=TRUE)
summary(result)
par(ask=TRUE)
plot.AM(result,xlim=c(-1.5,1.5))
plot.cdf(result)
```

summary.blackbox

Blackbox Summary

Description

`summary.blackbox` reads an `blackbox` object and prints a summary.

Usage

```r
## S3 method for class 'blackbox'
summary(object, ...)
```

Arguments

- `object` a `blackbox` output object.
- `...` further arguments to `print`.

Value

A summary of a `blackbox` object. For each dimension, reports all stimuli with coordinates, individuals used for scaling, and fit. Also summarizes number of rows, columns, total data entries, number of missing entries, percent missing data, and sum of squares.

Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

See Also

- 'blackbox', 'Issues1980'
Examples

```r
### Loads issue scales from the 1980 NES.
data(Issues1980)
Issues1980[Issues1980[,“abortion1”]==7,”abortion1”] <- 8 #missing recode
Issues1980[Issues1980[,“abortion2”]==7,”abortion2”] <- 8 #missing recode

### This command conducts estimates, which we instead load using data()
# Issues1980_bb <- blackbox(Issues1980,missing=c(0,8,9),verbose=FALSE,dims=3,minsclae=8)
data(Issues1980_bb)
summary(Issues1980_bb)
```

summary.blackbt
Blackbox-Transpose Summary

Description

`summary.blackbt` reads an `blackbt` object and prints a summary.

Usage

```r
## S3 method for class ‘blackbt’
summary(object, ...)
```

Arguments

- `object`
a `blackbt` output object.
- `...`
 further arguments to print.

Value

A summary of a `blackbt` object. For each dimension, reports all stimuli with coordinates, individuals used for scaling, and fit. Also summarizes number of rows, columns, total data entries, number of missing entries, percent missing data, and sum of squares.

Author(s)

Keith Poole <ktpoole@uga.edu>
Howard Rosenthal <hr31@nyu.edu>
Jeffrey Lewis <jblewis@ucla.edu>
James Lo <lojames@usc.edu>
Royce Carroll <rcarroll@rice.edu>

See Also

'blackbox_transpose', 'LC1980', 'plot.blackbt', 'plotcdf.blackbt', 'LC1980_bbt'.
Examples

```r
### Loads and scales the Liberal-Conservative scales from the 1980 NES.
data(LC1980)
LCdat=LC1980[,,-1] # Dump the column of self-placements

### This command conducts estimates, which we instead load using data()

# LC1980_bbt <- blackbox_transpose(LCdat,missing=c(0,8,9),dims=3,minscale=5,verbose=TRUE)
data(LC1980_bbt)

plot(LC1980_bbt)
par(ask=TRUE)
plotcdf.blackbt(LC1980_bbt)
summary(LC1980_bbt)
```
Index

*Topic datasets
 bootbbt, 9
 colombia, 13
 Issues1980, 17
 Issues1980_bb, 18
 LC1980, 20
 LC1980_bb, 21

*Topic multivariate
 aldmck, 2
 blackbox, 4
 blackbox_transpose, 7
 boot_aldmck, 10
 boot_blackbt, 12
 fit, 15
 individuals, 16
 plot.aldmck, 23
 plot.aldmck_negative, 24
 plot.aldmck_positive, 25
 plot.AM, 26
 plot.blackbox, 27
 plot.blackbt, 28
 plot.boot_aldmck, 29
 plot.boot_blackbt, 30
 plot.cdf, 31
 plotcdf.blackbt, 32
 predict.aldmck, 33
 predict.blackbox, 35
 predict.blackbt, 36
 stimuli, 37
 summary.aldmck, 38
 summary.blackbox, 39
 summary.blackbt, 40

 bootbbt, 9
 colombia, 13
 fit, 15
 individuals, 16
 Issues1980, 6, 17, 19, 27, 35, 39
 Issues1980_bb, 18
 LC1980, 4, 9, 11, 20, 22, 24–26, 29, 32–34, 36, 38, 40
 LC1980_bb, 9, 21, 29, 33, 36, 40
 plot.aldmck, 4, 11, 14, 21, 23, 25, 26, 32, 38
 plot.aldmck_negative, 24, 24
 plot.aldmck_positive, 24, 25
 plot.AM, 24, 26
 plot.blackbox, 6, 19, 27, 27
 plot.blackbt, 9, 22, 28, 33, 40
 plot.boot_aldmck, 29
 plot.boot_blackbt, 9, 13, 30
 plot.cdf, 4, 11, 14, 21, 24–26, 31, 38
 plotcdf.blackbt, 9, 22, 29, 32, 40
 predict.aldmck, 33
 predict.blackbox, 35
 predict.blackbt, 36
 stimuli, 37
 summary.aldmck, 4, 11, 14, 21, 24–26, 32, 38
 summary.blackbox, 6, 18, 19, 27, 39
 summary.blackbt, 9, 22, 29, 33, 40

aldmck, 2, 14–16, 21, 24–26, 30, 32, 34, 37, 38
blackbox, 4, 15, 16, 18, 35, 37, 39
blackbox_transpose, 7, 13, 15, 16, 22, 29, 31, 33, 36, 37, 40
boot_aldmck, 10, 30
boot_blackbt, 9, 12, 31