Package ‘basket’

October 23, 2019

Title Basket Trial Analysis

Version 0.9.10

Depends R (>= 3.5.0)

License LGPL-2

Maintainer Michael J. Kane <michael.kane@yale.edu>

Imports GenSA, foreach, ggplot2, stats, tibble, tidyr, dplyr, igraph, gridExtra, itertools, crayon, cli, RColorBrewer

LazyData true

Encoding UTF-8

RoxygenNote 6.1.1

URL https://github.com/kaneplusplus/basket

BugReports https://github.com/kaneplusplus/basket/issues

Suggests knitr, rmarkdown, testthat, doParallel

VignetteBuilder knitr
NeedsCompilation: no

Author: Nan Chen [aut], Brian Hobbs [aut], Alex Kaizer [aut], Michael J. Kane [aut, cre] (<https://orcid.org/0000-0003-1899-6662>)

Repository: CRAN

Date/Publication: 2019-10-23 07:40:02 UTC

R topics documented:

- basket-package .. 2
- basket ... 3
- basket_map ... 5
- basket_name ... 6
- basket_pep ... 6
- cluster_baskets .. 7
- cluster_map .. 8
- cluster_membership .. 8
- cluster_pep ... 9
- mem_exact .. 10
- mem_mcmc .. 11
- plot_density .. 12
- plot_map ... 13
- plot_mem .. 14
- plot_pep ... 14
- sample_posterior .. 15
- update_p0 .. 16
- vemu ... 17

Index: 18

basket-package

Basket Trial Analysis

Description

The R basket package provides for the designs and analysis of basket trials for multi-source exchangeability models (MEM) (https://doi.org/10.1093/biostatistics/kxx031) allowing arms to "share" power with similar arms in a trial. The package is intended to perform the exact or MCMC computation of the operating characteristics of different scenarios. Calculations derived from these analyses include the posterior probabilities, HPD boundaries, effective sample sizes (ESS), mean and median estimations can be calculated with this package using the MEM method. Along with providing "basketwise" analyses, the package includes similar calculations for "clusterwise" analyses where a cluster a set of similar baskets. In addition plotting tools are provided to visualize basket and cluster density as well as their exchangeability. The package includes the following main functions:
- [basket_name()] Get the basket names in an analysis
- [basket_pep()] Get the Posterior Exchangeability Probability (PEP) matrix for the arms in a trial.
- [basket_map()] Get the Maximum A Posteriori (MAP) matrix for the arms in a trial.
- [cluster_pep()] Get the Posterior Exchangeability Probability (PEP) matrix for the arms in a trial.
- [cluster_map()] Get the Maximum A Posteriori (MAP) matrix for the arms in a trial.
- [sample_posterior()] Sample from the posterior distribution of the arms in the trial.
- [mem_exact()] Create a basket analysis using the exact method.
- [mem_mcmc()] Create a basket analysis using the exact method.
- [summary()] Summarize the results of an analysis.
- [update_p0()] Update the null that a basket response rate is above a specified value.
- [plot_density()] Plot the estimated densities of arms or clusters.
- [plot_pep()] Show the exchangeogram of the PEP matrix.
- [plot_mem()] Plot the arm prior, MAP, and PEP of a basket trial.

References

Bayesian basket trial design with exchangeability monitoring BP Hobbs, R Landin Statistics in medicine 37 (25), 3557-357. <doi:10.1002/sim.7893>

Bayesian hierarchical modeling based on multisource exchangeability AM Kaizer, JS Koopmeiners, BP Hobbs Biostatistics 19 (2), 169-184. <doi:10.1093/biostatistics/kxx031>

Create a Basket Trial Analysis

Description

This function creates an analysis modeling the exchangeability and distribution characteristics of cohorts in a basket trial, where a single therapy is given to multiple cohorts. The model is based on the multi-source exchangeability model. This is a generalization of the Bayesian hierarchical model and it accommodates multiple sets of latent factors shared combinations of cohorts.
Usage

```
basket(responses, size, name, p0 = 0.15, shape1 = 0.5, shape2 = 0.5,
prior = diag(length(responses))/2 + matrix(0.5, nrow = length(responses), ncol = length(responses)), hpd_alpha = 0.05,
alternative = "greater", call = NULL,
cluster_function = cluster_membership, method = "mcmc",
mcmc_iter = 2e+05, mcmc_burnin = 50000, initial_mem = round(prior - 0.001), seed = 1000)
```

Arguments

- `responses` the number of responses in each basket.
- `size` the size of each basket.
- `name` the name of each basket.
- `p0` the null response rate for the posterior probability calculation. (default 0.15)
- `shape1` the first shape parameter(s) for the prior of each basket. (default 0.5)
- `shape2` the second shape parameter(s) for the prior of each basket. (default 0.5)
- `prior` the matrix giving the prior inclusion probability for each pair of baskets. The default is on the main diagonal and 0.5 elsewhere.
- `hpd_alpha` the highest posterior density trial significance. (default 0.05)
- `alternative` the alternative case definition (default "greater").
- `call` the call of the function. (default NULL)
- `cluster_function` a function to cluster baskets.
- `method` "mcmc" or "exact". See details for an explanation. (default "mcmc")
- `mcmc_iter` if the method is "mcmc" then this specifies the number of MCMC iterations. Otherwise, it is ignored. (default 200000)
- `mcmc_burnin` if the method is "mcmc" then this specifies the number of burn-in iterations. (default 50000)
- `initial_mem` if the method is "mcmc" then this specifies the initial MEM matrix. Otherwise, it is ignored.
- `seed` if the method is "mcmc" then this the random number seed. Otherwise, it is ignored.

Details

The model may be fit using either an exact calculation or via mcmc. The former conducts posterior inference through the entire set of exchangeability relationships in the sample domain. This approach is computationally feasible only when the number of cohorts is relatively small. As a rule of thumb this option should be used with a maximum of 20 cohorts. By default, the latter (mcmc) is used and it is based on the Metropolis algorithm and it extends the model’s implementation to larger collections of subpopulations. The algorithm initiates with a burn-in period (see mcmc_burnin), which are discarded from the analysis.
Examples

3 baskets, each with enrollement size 5
trial_sizes <- rep(5, 3)

The response rates for the baskets.
resp_rate <- 0.15

The trials: a column of the number of responses and a column of the
the size of each trial.
trials <- data.frame(
 responses = rbinom(trial_sizes, trial_sizes, resp_rate),
 size = trial_sizes,
 name = letters[1:3]
)

summary(basket(trials$responses, trials$size, trials$name))

basket_map

Get the Basketwise Maximum A Posteriori Probability Matrix

Description

MEM analyses include the maximum a posterior exchangeability probability (MAP) of included arms indicating whether two arms in the trial are exchangeable. This function returns the matrix of those relationships.

Usage

basket_map(x)

Arguments

x either an exchangeability model or basket object.

Examples

Create an MEM analysis of the Vemurafenib trial data.
data(vemu_wide)

mem_analysis <- mem_exact(vemu_wide$responders,
 vemu_wide$evaluable,
 vemu_wide$baskets)

Get basket MAPs.
basket_map(mem_analysis)
basket_name
The Names of the Baskets

Description
Retrieve the basket names in an exchangeability model.

Usage
basket_name(model)

Arguments
model
the model to retrieve the basket names of

Examples

```r
# 3 baskets, each with enrollement size 5
trial_sizes <- rep(5, 3)

# The response rates for the baskets.
resp_rate <- 0.15

# The trials: a column of the number of responses and a column of the # the size of each trial.
trials <- data.frame(
    responses = rbinom(trial_sizes, trial_sizes, resp_rate),
    size = trial_sizes,
    name = paste("Basket", seq_len(3))
)

basket_name(mem_mcmc(trials$responses, trials$size, trials$basket))
```

basket_pep
The Basketwise Posterior Exchangeability Probability Matrix

Description
MEM analyses include the posterior exchangeability probability (PEP) of included arms giving the probability that any two arms are exchangeable. This function returns the matrix of those probabilities.

Usage
basket_pep(x)

```r
```
cluster_baskets

Arguments

x either an exchangeability model or basket object.

Examples

Create an MEM analysis of the Vemurafenib trial data.
data(vemu_wide)

mem_analysis <- mem_exact(vemu_wide$responders,
 vemu_wide$evaluable,
 vemu_wide$baskets)

Get the PEP for baskets.
basket_pep(mem_analysis)

cluster_baskets Get the Cluster Members of MEM Models

Description

Object returned by the ‘mem_mcmc()’ and ‘mem_exact()’ include information about the arms in
the trials and the cluster composed of sets of similar arms. This function returns the name of each
arm in a cluster.

Usage

cluster_baskets(x)

Arguments

x either an exchangeability model or basket object.

Value

A named list is returned where the name is the cluster name and each element of the list is comprise
do a character vector of the baskets in each cluster.

Examples

Create an MEM analysis of the Vemurafenib trial data.
data(vemu_wide)

mem_analysis <- mem_exact(vemu_wide$responders,
 vemu_wide$evaluable,
 vemu_wide$baskets)
Get the baskets in the clusters.
corner_baskets(mem_analysis)

cluster_map

Get the Clusterwise Maximum A Posteriori Probability Matrix

Description

MEM analyses include the maximum a posterior exchangeability probability (MAP) of included arms indicating whether two arms in the trial are exchangeable. This function returns the matrix of those relationships.

Usage

`cluster_map(x)`

Arguments

`x`
either an exchangeability model or basket object.

Examples

```r
# Create an MEM analysis of the Vemurafenib trial data.
data(vemu_wide)
mem_analysis <- mem_exact(vemu_wide$responders,
                          vemu_wide$evaluable,
                          vemu_wide$baskets)

# Get the cluster MAPs.
corner_map(mem_analysis)
```

cluster_membership

Cluster Baskets Base on the matrix's

Description

This is the default function used to cluster cohorts in the basket, `mem_mcmc`, and `mem_exact` functions. The approach creates a graph where each vertex is a cohort and the weight between two cohorts is determined by their posterior exchangeability probability. The graph is then clustered using `igraph`'s `louvain` function, which determines the number of clusters and the cluster memberships, and has been shown to perform well with real clinical data.
cluster_pep

Usage

cluster_membership(m)

Arguments

m the adjacency matrix.

Value

A factor variable with cluster memberships for each cohort in the study.

See Also

basket mem_mcmc mem_exact

Description

MEM analyses include the posterior exchangeability probability (PEP) of clusters of arms giving the probability that any two arms are exchangeable. This function returns the matrix of those probabilities.

Usage

cluster_pep(x)

Arguments

x either an exchangeability model or basket object.

Examples

Create an MEM analysis of the Vemurafenib trial data.
data(vemu_wide)
mem_analysis <- mem_exact(vemu_wide$responders,
 vemu_wide$evaluable,
 vemu_wide$baskets)

Get cluster PEPs.
basket_pep(mem_analysis)
mem_exact
Fit the Exact MEM Model

Description
Fit the MEM model using full Bayesian inference.

Usage

```r
mem_exact(responses, size, name, p0 = 0.15, shape1 = 0.5, 
shape2 = 0.5, prior = diag(length(responses))/2 + matrix(0.5, nrow = 
length(responses), ncol = length(responses)), hpd_alpha = 0.05, 
alternative = "greater", seed = 1000, call = NULL, 
cluster_function = cluster_membership)
```

Arguments
- `responses` the number of responses in each basket.
- `size` the size of each basket.
- `name` the name of each basket.
- `p0` the null response rate for the posterior probability calculation (default 0.15).
- `shape1` the first shape parameter(s) for the prior of each basket (default 0.5).
- `shape2` the second shape parameter(s) for the prior of each basket (default 0.5).
- `prior` the matrix giving the prior inclusion probability for each pair of baskets. The default is on the main diagonal and 0.5 elsewhere.
- `hpd_alpha` the highest posterior density trial significance.
- `alternative` the alternative case definition (default greater)
- `seed` the random number seed.
- `call` the call of the function (default NULL).
- `cluster_function` a function to cluster baskets

See Also
- `cluster_membership`

Examples

```r
# 3 baskets, each with enrollment size 5
trial_sizes <- rep(5, 3)

# The response rates for the baskets.
resp_rate <- 0.15
```
mem_mcmc

The trials: a column of the number of responses and a column of the # the size of each trial.
trials <- data.frame(
 responses = rbinom(trial_sizes, trial_sizes, resp_rate),
 size = trial_sizes,
 name = letters[1:3]
)

summary(mem_exact(trials$responses, trials$size, trials$name))

mem_mcmc

Fit the MEM Model using MCMC

Description

Fit the MEM model using Bayesian Metropolis-Hasting MCMC inference.

Usage

mem_mcmc(responses, size, name, p0 = 0.15, shape1 = 0.5,
 shape2 = 0.5, prior = diag(length(responses))/2 + matrix(0.5, nrow =
 length(responses), ncol = length(responses)), hpd_alpha = 0.05,
 alternative = "greater", mcmc_iter = 2e+05, mcmc_burnin = 50000,
 initial_mem = round(prior - 0.001), seed = 1000, call = NULL,
 cluster_function = cluster_membership)

Arguments

responses the number of responses in each basket.
size the size of each basket.
name the name of each basket.
p0 the null response rate for the posterior probability calculation (default 0.15).
shape1 the first shape parameter(s) for the prior of each basket (default 0.5).
shape2 the second shape parameter(s) for the prior of each basket (default 0.5).
prior the matrix giving the prior inclusion probability for each pair of baskets. The
default is on on the main diagonal and 0.5 elsewhere.
hpd_alpha the highest posterior density trial significance.
alternative the alternative case definition (default greater)
mcmc_iter the number of MCMC iterations.
mcmc_burnin the number of MCMC burn-in iterations.
initial_mem the initial MEM matrix.
seed the random number seed.
call the call of the function.
cluster_function a function to cluster baskets
Examples

```r
# 3 baskets, each with enrollement size 5
trial_sizes <- rep(5, 3)

# The response rates for the baskets.
resp_rate <- 0.15

# The trials: a column of the number of responses and a column of the
# the size of each trial.
trials <- data.frame(
  responses = rbinom(trial_sizes, trial_sizes, resp_rate),
  size = trial_sizes,
  name = letters[1:3]
)
res <- mem_mcmc(trials$responses, trials$size)
```

plot_density

Plot the Response Densities in Basket Trials

Description

The MEM analysis calculates the probability of exchangeability of baskets and clusters in a basket trial. This function creates density plots of the response rates of each basket or each cluster under the MEM design taking into account the extent to which power can be borrowed from similar trials.

Usage

```r
plot_density(x, ...)
```

Arguments

- `x` the exchangeability model.
- `...` other options. See Details for more information.

Details

The `...` options can be used to specify the colors of the response density plot or, when plotting an object of class `exchangeability_model` the type can be specified. In this case, the default is `type = c("both", "basket", "cluster")`.

Examples

```r
# Create an MEM analysis of the Vemurafenib trial data.
data(vemu_wide)
```
mem_analysis <- mem_exact(vemu_wide$responders,
 vemu_wide$evaluable,
 vemu_wide$baskets)

plot_density(mem_analysis)

##
plot_map
Plot the Map Exchangeability of a Basket Trial
Description

The Maximum A Posteriori Probability (MAP) of an MEM is the estimate of the exchangeability structure of a basket trial. This function visualizes this matrix as an exchangeogram.

Usage

plot_map(x, ...)

Arguments

- **x**: the exchangeability model.
- **...**: other options passed to ggplot2 to alter the visual

Details

The `plot_pep` attempts to place the basket names to the left of the main diagonal in a way that makes it easy to read. However, for especially long basket names options are provided to “fine tune” the visualizations. These auxiliary options include:

- [low]: The color corresponding to a low degree of exchangeability. (Default "black")
- [high]: The color corresponding to a high degree of exchangeability. (Default "red")
- [mid]: The color corresponding to 50% exchangeability. (Default "orange")
- [expand]: The proportion to expand the viewport (Default expand = c(0.3, 0.3))
- [text_size]: The text size. (Default 4)
- [legend_position]: The legend position. (Default legend_position = c(0.25, 0.8))
- [draw_legend]: Should the legend be drawn? (Default TRUE)
- [basket_name_hoffset]: The horizontal offset of the basket names. (Default 0)
- [basket_name_hjust]: The basket name justification. (Default 1 - right justified)
Examples

```r
# Create an MEM analysis of the Vemurafenib trial data.
data(vemu_wide)

mem_analysis <- mem_exact(vemu_wide$response, vemu_wide$evaluable, vemu_wide$baskets)

plot_map(mem_analysis)
```

plot_mem

Plot the Prior, MAP, and PEP of a Basket Trial

Description

: Plot the Prior, MAP, and PEP Matrices

Usage

```r
plot_mem(x, type = c("prior", "map", "pep"), ...)
```

Arguments

- `x`: the exchangeability model.
- `type`: the plot type that will be plotted.
- `...`: other options. See Details for more information.

plot_pep

Plot the Posterior Exchangeability of a Basket Trial

Description

The posterior exchangeability of the baskets in an an MEM analysis can be visualized via an exchangeogram using this function.

Usage

```r
plot_pep(x, ...)
```

Arguments

- `x`: the exchangeability model.
- `...`: other options passed to ggplot2 to alter the visual characteristics of the plot. See Details for more information.
Sample Posterior Samples from a Basket Trial

Description

Sample Posterior Samples from a Basket Trial

Usage

sample_posterior(model, num_samples = 10000)

Arguments

model the exchangeability model
num_samples the number of samples to draw. Default 10000
Examples

3 baskets, each with enrollement size 5
trial_sizes <- rep(5, 3)

The response rates for the baskets.
resp_rate <- 0.15

The trials: a column of the number of responses and a column of the
the size of each trial.
trials <- data.frame(
 responses = rbinom(trial_sizes, trial_sizes, resp_rate),
 size = trial_sizes,
 name = paste("Basket", seq_len(3))
)

Update Full Bayes results with different p0 values
update_p0(res, p0 = 0.20)

Description

After running either ‘mem_mcmc’ or ‘mem_exact’, the test can be updated without rerunning the entire analysis. This function provides updating of both the null response rate along with the alternative rerunning relevant test.

Usage

update_p0(res, p0 = 0.15, alternative = "greater")

Arguments

res the result of an mem analysis.
p0 the null response rate for the posterior probability calculation (default 0.15).
alternative the alternative case definition (default greater)

Examples

Not run:
Create an MEM analysis of the Vemurafenib trial data.
data(vemu_wide)

mem_analysis <- mem_exact(vemu_wide$responders,
 vemu_wide$evaluable,
 vemu_wide$baskets)

Update the null from p0 = 0.15 the default, to p = 0.25.
update_p0(mem_analysis, 0.20)

End(Not run)
Summary Data from the Vemurafenib Study

Description

The ‘vemu’ and ‘vemu_wide’ data sets provide response information taken from the “Vemurafenib in multiple nonmelanoma cancers with BRAF v600 mutations” study where, in total, 18 responders were observed among the 84 patients contributing evaluable outcomes for statistical estimation. Observed response rates varied from 42% and 43% for baskets of NSCLC and ECD or LCH to 0 and 4%, for CRC with vemurafenib mono and combination therapies, respectively. Two responders of seven patients, ATC was associated with a 29% response rate, while one responder of eight patients was observed in the cholangiocarcinoma basket. Contrasting favorable results for preliminary vemurafenib activity among NSCLC and ECD or LCH patients with less favorable results for CRC patients, the authors concluded that nonmelanoma tumor types harboring $BRAF^V600$ mutations failed to respond uniformly to BRAF-targeted therapy giving credence to more conventional organ-specific nosology when compared to molecular tumor nosology.

Later, in the “Statistical challenges posed by basket trials: sensitivity analysis of the Vemurafenib study” it was shown that patient-enrollment types we likely drove the negative results for several targets, rather than Vemurafenib itself.

References

Index

basket, 3
basket-package, 2
basket_map, 5
basket_name, 6
basket_pep, 6

cluster_baskets, 7
cluster_map, 8
cluster_membership, 8
cluster_pep, 9

mem_exact, 10
cmem, 11

plot_density, 12
plot_map, 13
plot_mem, 14
plot_pep, 14

sample_posterior, 15

update_p0, 16

vemu, 17
vemu_wide (vemu), 17