Package ‘bastah’

June 2, 2016

Type Package
Title Big Data Statistical Analysis for High-Dimensional Models
Version 1.0.7
Date 2016-05-22
Author Ehsan Ullah [aut, cre], Reda Rawi [aut], Lukas Meier [ctb], Ruben Dezeure [ctb], Nicolai Meinshausen [ctb], Martin Maechler [ctb], Peter Buehlmann [ctb], Tingni Sun [ctb]
Maintainer Ehsan Ullah <eullah@qf.org.qa>
Repository CRAN
Description Big data statistical analysis for high-dimensional models is made possible by modifying lasso.proj() in 'hdi' package by replacing its nodewise-regression with sparse precision matrix computation using 'BigQUIC'.
License GPL (== 2)
LazyData TRUE
Enhances doMC, rPython
Imports BigQuic, foreach, glmnet, lars, MASS, stats, Matrix, scalreg
Depends R (>= 3.2.0)
NeedsCompilation no
Date/Publication 2016-06-02 14:44:01

R topics documented:

bastah ... 2
snps ... 4

Index 5
Description

Big data statistical analysis for high-dimensional models is made possible by modifying lasso.proj() in 'hdi' package by replacing its nodewise-regression with sparse precision matrix computation using 'BigQUIC'.

Usage

bstah (X, y, categorical = FALSE, family = "gaussian", mcorr = "holm", N = 10000, ncores = 4, verbose = FALSE)

Arguments

X
An n by p numeric design matrix with p columns for p predictor variables and n rows corresponding to n observations.

y
A numeric response variable of length n.

categorical
Type of data in the design matrix. (default = FALSE)

family
Family of the response variable. It should be either "gaussian" or "binomial". (default = "gaussian")

mcorr
Multiple correction method. It can be either "WY" or any of p.adjust.methods. (default = "holm")

N
It is the number of samples to take for the empirical distribution which is used to correct the pvalues if multiple correction method is "WY" (Westfall-Young). (default = 10000)

ncores
Maximum number of cores to be used for parallel execution. (default = 4)

verbose
Prints more information if this is set to TRUE. (default = FALSE)

Details

In this package lasso.proj function of hdi package is updated for application on big data. The original lasso.proj is updated by replacing node-wise regression with scaled lasso. BigQUIC is used for sparse precision matrix calculation. Data is always normalized before processing. Normalization technique used by Vlaming and Groenen (2014) is used. The method has been successfully used on large SNP (Single Nucleotide Polymorphism) datasets for GWAS (Genomewide Association Study).

The package can use scikit-learn (http://scikit-learn.org) for a better performance. It is advised to install doMC, rPython, python, numpy and scikit-learn. The package uses scikit-learn at runtime, therefore, python, numpy and scikit-learn are not required for package installation and can be installed after installation of the package.

NOTE: We have noticed that lars package in R crashes, so it is recommended to use scikit-learn.

NOTE: In preprocessing step, variables having a constant value are not considered. The list of variables used is returned in selection variable of the result.
Value

An object with Class "bastah"

- **pval**: Calculated p-values
- **pval.corr**: Corrected p-values
- **sigmahat**: Estimated standard deviation
- **bhat**: Estimated coefficients
- **selection**: Indicies of variables selected for analysis

Author(s)

Ehsan Ullah [aut, cre], Reda Rawi [aut], Lukas Meier [ctb], Ruben Dezeure [ctb], Nicolai Meinshausen [ctb], Martin Maechler [ctb], Peter Buehlmann [ctb], Tingni Sun [ctb]

Maintainer: Ehsan Ullah <eullah@qf.org.qa>

References

Examples

```r
# The package is accompanied with a simulated genome-wide association
# study dataset "snps" containing n=100 observations of p=500 predictors
data(snps)
# The association of SNPs to the phenotype can be identified using bastah
# NOTE: We have noticed that lars package in R crashes,
# so it is recommended to use scikit-learn (see package details).
## Not run:
result = bastah(X = snps$X, y = snps$y, family = "binomial", verbose = TRUE)
## End(Not run)
```
Description

Simulated Single Polymorphism Nucleotide (SNP) dataset containing \(n = 100 \) observations of \(p = 500 \) predictors (SNPs, 1=Homozygote1, 0=Heterozygote, -1=Homozygote2) and a one-dimensional response (1=case, 0=control). The dataset is generated using GWAsimulator.

Usage

data(snps)

Format

y Phenotype (1=case, 0=control) of 100 individuals.
x SNP genotype data (SNPs, 1=Homozygote1, 0=Heterozygote, -1=Homozygote2) of 500 simulated SNPs.

References

Examples

data(snps)
Index

*Topic BigQUIC
 bastah, 2

*Topic GWAS
 bastah, 2

*Topic datasets
 snps, 4

*Topic lasso.proj
 bastah, 2

*Topic lasso
 bastah, 2

*Topic p-values
 bastah, 2

*Topic package
 bastah, 2

*Topic projection
 bastah, 2

bastah, 2

snps, 4