# Package ‘bayesGARCH’

April 20, 2020

**Version** 2.1.5  
**Date** 2020-04-20  
**Title** Bayesian Estimation of the GARCH(1,1) Model with Student-t Innovations  
**Maintainer** David Ardia <david.ardia.ch@gmail.com>  
**Imports** mvtnorm, coda  
**Description** Provides the bayesGARCH() function which performs the Bayesian estimation of the GARCH(1,1) model with Student’s t innovations as described in Ardia (2008) (<doi:10.1007/978-3-540-78657-3>).  
**BugReports** https://github.com/ArdiaD/bayesGARCH/issues  
**URL** https://github.com/ArdiaD/bayesGARCH  
**License** GPL (>= 2)  
**RoxygenNote** 5.0.1  
**NeedsCompilation** yes  
**Author** David Ardia [aut, cre, cph] (<https://orcid.org/0000-0003-2823-782X>)  
**Repository** CRAN  
**Date/Publication** 2020-04-20 21:50:02 UTC

## R topics documented:

- `bayesGARCH` ................................................. 2  
- `dem2gbp` .................................................. 6  
- `formSmpl` .................................................. 7

**Index** 9
Description

Performs the Bayesian estimation of the GARCH(1,1) model with Student-t innovations.

Usage

bayesGARCH(y, mu.alpha = c(0,0), Sigma.alpha = 1000 * diag(1,2),
mu.beta = 0, Sigma.beta = 1000,
lambda = 0.01, delta = 2, control = list())

Arguments

y
vector of observations of size $T$. NA values are not allowed.

mu.alpha
hyper-parameter $\mu_\alpha$ (prior mean) for the truncated Normal prior on parameter $\alpha := (\alpha_0 \alpha_1)'$. Default: a $2 \times 1$ vector of zeros.

Sigma.alpha
hyper-parameter $\Sigma_\alpha$ (prior covariance matrix) for the truncated Normal prior on parameter $\alpha$. Default: a $2 \times 2$ diagonal matrix whose variances are set to 1’000, i.e., a diffuse prior. Note that the matrix must be symmetric positive definite.

mu.beta
hyper-parameter $\mu_\beta$ (prior mean) for the truncated Normal prior on parameter $\beta$. Default: zero.

Sigma.beta
hyper-parameter $\Sigma_\beta > 0$ (prior variance) for the truncated Normal prior on parameter $\beta$. Default: 1’000, i.e., a diffuse prior.

lambda
hyper-parameter $\lambda$ for the translated Exponential distribution on parameter $\nu$. Default: 0.01.

delta
hyper-parameter $\delta \geq 2$ for the translated Exponential distribution on parameter $\nu$. Default: 2 (to ensure the existence of the conditional variance).

control
list of control parameters (See *Details*).

Details

The function bayesGARCH performs the Bayesian estimation of the GARCH(1,1) model with Student-t innovations. The underlying algorithm is based on Nakatsuma (1998, 2000) for generating the parameters of the GARCH(1,1) scedastic function $\alpha := (\alpha_0 \alpha_1)'$ and $\beta$ and on Geweke (1993) and Deschamps (2006) for generating the degrees of freedom parameter $\nu$. Further details and examples can be found in Ardia (2008) and Ardia and Hoogerheide (2010). See also the package vignette by typing vignette("bayesGARCH"). Finally, we refer to Ardia (2009) for an extension of the algorithm to Markov-switching GARCH models.

The control argument is a list that can supply any of the following components:

n.chain number of MCMC chain(s) to be generated. Default: n.chain=1.
1. chain  length of each MCMC chain. Default: 1.chain=10000.
start.val  vector of starting values of chain(s). Default: start.val=c(0.01,0.1,0.7,20). A
matrix of size n×4 containing starting values in rows can also be provided. This will generate
n chains starting at the different row values.
addPriorConditions  function which allows the user to add constraints on the model parameters.
 Default: NULL, i.e. not additional constraints are imposed (see below).
refresh  frequency of reports. Default: refresh=10 iterations.
digits  number of printed digits in the reports. Default: digits=4.

Value
A list of class mcmc.list (R package coda).

Note
The GARCH(1,1) model with Student-t innovations may be written as follows:
\[ y_t = \epsilon_t (\varrho h_t)^{1/2} \]
for \( t = 1, \ldots, T \), where the conditional variance equation is defined as:
\[ h_t := \alpha_0 + \alpha_1 y_{t-1}^2 + \beta h_{t-1} \]
where \( \alpha_0 > 0, \alpha_1 \geq 0, \beta \geq 0 \) to ensure a positive conditional variance. We set the initial variance to \( h_0 := 0 \) for convenience. The parameter \( \varrho := (\nu - 2)/\nu \) is a scaling factor which ensures the
conditional variance of \( y_t \) to be \( h_t \). Finally, \( \epsilon_t \) follows a Student-t distribution with \( \nu \) degrees of
freedom.
The prior distributions on \( \alpha \) is a bivariate truncated Normal distribution:
\[ p(\alpha) \propto N_2(\alpha | \mu_\alpha, \Sigma_\alpha) I_{[\alpha > 0]} \]
where \( \mu_\alpha \) is the prior mean vector, \( \Sigma_\alpha \) is the prior covariance matrix and \( I_{[\cdot]} \) is the indicator function.
The prior distribution on \( \beta \) is a univariate truncated Normal distribution:
\[ p(\beta) \propto N(\beta | \mu_\beta, \Sigma_\beta) I_{[\beta > 0]} \]
where \( \mu_\beta \) is the prior mean and \( \Sigma_\beta \) is the prior variance.
The prior distribution on \( \nu \) is a translated Exponential distribution:
\[ p(\nu) = \lambda \exp[-\lambda (\nu - \delta)] I_{[\nu > \delta]} \]
where \( \lambda > 0 \) and \( \delta \geq 2 \). The prior mean for \( \nu \) is \( \delta + 1/\lambda \).
The joint prior on parameter \( \psi := (\alpha, \beta, \nu) \) is obtained by assuming prior independence:
\[ p(\psi) = p(\alpha)p(\beta)p(\nu). \]
The default hyperparameters \( \mu_\alpha, \Sigma_\alpha, \mu_\beta, \Sigma_\beta \) and \( \lambda \) define a rather vague prior. The hyper-parameter \( \delta \geq 2 \) ensures the existence of the conditional variance. The \( k \)th conditional moment for \( \epsilon_t \) is
guaranteed by setting \( \delta \geq k \).
The Bayesian estimation of the GARCH(1,1) model with Normal innovations is obtained as a special case by setting $\lambda=100$ and $\delta=500$. In this case, the generated values for $\nu$ are centered around 500 which ensure approximate Normality for the innovations.

The function `addPriorConditions` allows to add prior conditions on the model parameters $\psi := (\alpha_0, \alpha_1, \beta, \nu)'$. The function must return `TRUE` if the constraint holds and `FALSE` otherwise.

By default, the function is:

```r
addPriorConditions <- function(psi)
{
    TRUE
}
```

and therefore does not add any other constraint than the positivity of the parameters which are obtained through the prior distribution for $\psi$.

You simply need to modify `addPriorConditions` in order to add constraints on the model parameters $\psi$. For instance, to impose the covariance-stationary conditions to hold, i.e. $\alpha_1 + \beta < 1$, just define the function `addPriorConditions` as follows:

```r
addPriorConditions <- function(psi)
{
}
```

Note that adding prior constraints on the model parameters can diminish the acceptance rate and therefore lead to a very inefficient sampler. This would however indicate that the condition is not supported by the data.

The estimation strategy implemented in `bayesGARCH` is fully automatic and does not require any tuning of the MCMC sampler. The generation of the Markov chains is however time consuming and estimating the model over several datasets on a daily basis can therefore take a significant amount of time. In this case, the algorithm can be easily parallelized, by running a single chain on several processors. Also, when the estimation is repeated over updated time series (i.e. time series with more recent observations), it is wise to start the algorithm using the posterior mean or median of the parameters obtained at the previous estimation step. The impact of the starting values (burn-in phase) is likely to be smaller and thus the convergence faster.

Finally, note that as any MH algorithm, the sampler can get stuck to a given value, so that the chain does not move anymore. However, the sampler uses Taylor-made candidate densities that are especially ‘constructed’ at each step, so it is almost impossible for this MCMC sampler to get stuck at a given value for many subsequent draws. In the unlikely case that such ill behavior would occur, one could scale the data (to have standard deviation 1), or run the algorithm with different initial values or a different random seed.

**Note**

By using `bayesGARCH` you agree to the following rules:
You must cite Ardia and Hoogerheide (2010) in working papers and published papers that use bayesGARCH. Use citation("bayesGARCH").

You must place the following URL in a footnote to help others find bayesGARCH: https://CRAN.R-project.org/package=bayesGARCH.

You assume all risk for the use of bayesGARCH.

Author(s)
David Ardia <david.ardia.ch@gmail.com>

References

See Also
garchFit (R package fGarch) for the classical Maximum Likelihood estimation of GARCH models.

Examples

```r
## !!! INCREASE THE NUMBER OF MCMC ITERATIONS !!!

## LOAD DATA
data(dem2gbp)
y <- dem2gbp[1:750]

## RUN THE SAMPLER (2 chains)
MCMC <- bayesGARCH(y, control = list(n.chain = 2, l.chain = 200))

## MCMC ANALYSIS (using coda)
plot(MCMC)
```
## FORM THE POSTERIOR SAMPLE

```r
smpl <- formSmpl(MCMC, l.bi = 50)
```

## POSTERIOR STATISTICS

```r
summary(smpl)
smpl <- as.matrix(smpl)
pairs(smpl)
```

## GARCH(1,1) WITH NORMAL INNOVATIONS

```r
MCMC <- bayesGARCH(y, lambda = 100, delta = 500,
                     control = list(n.chain = 2, l.chain = 200))
```

## GARCH(1,1) WITH NORMAL INNOVATIONS AND COVARIANCE STATIONARITY CONDITION

```r
MCMC <- bayesGARCH(y, lambda = 100, delta = 500,
                     control = list(n.chain = 2, l.chain = 200,
                                  addPriorConditions = addPriorConditions))
```

dem2gbp  

DE/GBP exchange rate log-returns

dem2gbp

Description

The vector dem2gbp contains daily observations of the Deutschmark vs British Pound foreign exchange rate log-returns. This data set has been promoted as an informal benchmark for GARCH time-series software validation. See McCullough and Renfro (1999), and Brooks, Burke, and Persand (2001) for details. The nominal returns are expressed in percent as in Bollerslev and Ghysels (1996). The sample period is from January 3, 1984, to December 31, 1991, for a total of 1974 observations.

Usage

```r
data(dem2gbp)
```

Format

A vector of size 1974.

Source

Journal of Business and Economic Statistics
References


---

**formSmpl** *Form the Posterior Sample*

**Description**

Form the joint posterior sampler from the MCMC output.

**Usage**

```r
tiformSmpl(MCMC, l.bi = 0, batch.size = 1)
```

**Arguments**

- **MCMC**: object of the class `mcmc.list` (R package `coda`) or a list of matrices or a matrix.
- **l.bi**: length of the burn-in phase.
- **batch.size**: batching size used to diminish the autocorrelation within the chains.

**Value**

The joint posterior sample as an `mcmc` object (R package `coda`).

**Note**

Please cite the package in publications. Use `citation("bayesGARCH")`.

**See Also**

`bayesGARCH` for the Bayesian estimation of the GARCH(1,1) model with Student-t innovations.

**Examples**

```r
## !!! INCREASE THE NUMBER OF MCMC ITERATIONS !!!
## LOAD DATA SET
data(dem2gbp)
y <- dem2gbp[1:750]
## RUN THE ESTIMATION
```
MCMC <- bayesGARCH(y, control = list(n.chain = 2, l.chain = 100))

## FORM THE SAMPLE FROM THE MCMC OUTPUT
smpl <- formSmpl(MCMC, l.bi = 50, batch.size = 2)

## POSTERIOR STATISTICS
summary(smpl)
Index

*Topic datasets
dem2gbp, 6

*Topic misc
formSmpl, 7

*Topic models
bayesGARCH, 2

bayesGARCH, 2, 7
dem2gbp, 6
formSmpl, 7
garchFit, 5