bayesloglin: Bayesian Analysis of Contingency Table Data

The function MC3() searches for log-linear models with the highest posterior probability. The function gibbsSampler() is a blocked Gibbs sampler for sampling from the posterior distribution of the log-linear parameters. The functions findPostMean() and findPostCov() compute the posterior mean and covariance matrix for decomposable models which, for these models, is available in closed form.

Version: 1.0.1
Depends: igraph
Published: 2016-12-27
Author: Matthew Friedlander
Maintainer: Matthew Friedlander <friedla at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
In views: Bayesian
CRAN checks: bayesloglin results


Reference manual: bayesloglin.pdf
Vignettes: bayesloglin-R-package


Package source: bayesloglin_1.0.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): bayesloglin_1.0.1.tgz, r-oldrel (arm64): bayesloglin_1.0.1.tgz, r-release (x86_64): bayesloglin_1.0.1.tgz, r-oldrel (x86_64): bayesloglin_1.0.1.tgz
Old sources: bayesloglin archive


Please use the canonical form to link to this page.