Package ‘bayesm’

July 30, 2019

Version 3.1-3
Type Package
Title Bayesian Inference for Marketing/Micro-Econometrics
Depends R (>= 3.2.0)
Date 2019-07-29
Author Peter Rossi <perossichi@gmail.com>
Maintainer Peter Rossi <perossichi@gmail.com>
License GPL (>= 2)
Imports Rcpp (>= 0.12.0), utils, stats, graphics, grDevices
LinkingTo Rcpp, RcppArmadillo
Suggests knitr, rmarkdown
VignetteBuilder knitr
URL http://www.perossi.org/home/bsm-1

Description Covers many important models used in marketing and micro-econometrics applications. The package includes:
Bayes Regression (univariate or multivariate dep var),
Bayes Seemingly Unrelated Regression (SUR),
Binary and Ordinal Probit,
Multinomial Logit (MNL) and Multinomial Probit (MNP),
Multivariate Probit,
Negative Binomial (Poisson) Regression,
Multivariate Mixtures of Normals (including clustering),
Dirichlet Process Prior Density Estimation with normal base,
Hierarchical Linear Models with normal prior and covariates,
Hierarchical Linear Models with a mixture of normals prior and covariates,
Hierarchical Multinomial Logits with a mixture of normals prior and covariates,
Hierarchical Multinomial Logits with a Dirichlet Process prior and covariates,
Hierarchical Negative Binomial Regression Models,
Bayesian analysis of choice-based conjoint data,
Bayesian treatment of linear instrumental variables models,
Analysis of Multivariate Ordinal survey data with scale usage heterogeneity (as in Rossi et al, JASA (01)), Bayesian Analysis of Aggregate Random Coefficient Logit Models as in BLP (see Jiang, Manchanda, Rossi 2009)

RoxygenNote 6.0.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-07-29 22:50:02 UTC

R topics documented:

bank .. 2
breg ... 4
camera .. 6
cgetC ... 7
cheese ... 8
clusterMix .. 9
condMom ... 11
createX .. 13
customerSat .. 14
detailing .. 15
eMixMargDen ... 17
gkhvec ... 19
llmnl ... 21
llmnp ... 22
llnhlogit .. 24
lndChiSq .. 25
lndIWishart .. 26
lndMvn ... 27
lndMvst ... 28
logMargDenNR ... 29
margarine .. 30
mixDen ... 33
mixDenBi .. 34
mnHess .. 35
mnpProb .. 36
momMix .. 37
nmat ... 38
numEff ... 39
orangeJuice ... 40
plot.bayesm.hcoef 43
plot.bayesm.mat 44
Description

A panel dataset from a conjoint experiment in which two partial profiles of credit cards were presented to 946 respondents from a regional bank wanting to offer credit cards to customers outside of its normal operating region. Each respondent was presented with between 13 and 17 paired comparisons. The bank and attribute levels are disguised to protect the proprietary interests of the cooperating firm.
Usage

data(bank)

Format

The `bank` object is a list containing two data frames. The first, `choiceAtt`, provides choice attributes for the partial credit card profiles. The second, `demo`, provides demographic information on the respondents.

Details

In the `choiceAtt` data frame:

- `$id`: respondent id
- `$choice`: profile chosen
- `$Med_FInt`: medium fixed interest rate
- `$Low_FInt`: low fixed interest rate
- `$Med_VInt`: variable interest rate
- `$Rewrd_2`: reward level 2
- `$Rewrd_3`: reward level 3
- `$Rewrd_4`: reward level 4
- `$Med_Fee`: medium annual fee level
- `$Low_Fee`: low annual fee level
- `$Bank_B`: bank offering the credit card
- `$Out_State`: location of the bank offering the credit card
- `$Med_Rebate`: medium rebate level
- `$High_Rebate`: high rebate level
- `$High_CredLine`: high credit line level
- `$Long_Grace`: grace period

The profiles are coded as the difference in attribute levels. Thus, that a "-1" means the profile coded as a choice of "0" has the attribute. A value of 0 means that the attribute was not present in the comparison.

In the `demo` data frame:

- `$id`: respondent id
- `$age`: respondent age in years
- `$income`: respondent income category
- `$gender`: female=1

Source

bank

References

Appendix A, Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

Examples

data(bank)
cat(" table of Binary Dep Var", fill=TRUE)
print(table(bank$choiceAtt[,2]))
cat(" table of Attribute Variables", fill=TRUE)
mat = apply(as.matrix(bank$choiceAtt[,3:16]), 2, table)
print(mat)
cat(" means of Demographic Variables", fill=TRUE)
mat=apply(as.matrix(bank$demo[,2:3]), 2, mean)
print(mat)

example of processing for use with rhierBinLogit
if(0) {

choiceAtt = bank$choiceAtt
Z = bank$demo

center demo data so that mean of random-effects
distribution can be interpreted as the average respondent
Z[,1] = rep(1,nrow(Z))
Z[,2] = Z[,2] - mean(Z[,2])
Z[,3] = Z[,3] - mean(Z[,3])
Z[,4] = Z[,4] - mean(Z[,4])
Z = as.matrix(Z)

hh = levels(factor(choiceAtt$id))
nhh = length(hh)
lgtdata = NULL
for (i in 1:nhh) {
 y = choiceAtt[choiceAtt[,1]==hh[i], 2]
nobs = length(y)
 X = as.matrix(choiceAtt[choiceAtt[,1]==hh[i], c(3:16)])
lgtdata[[i]] = list(y=y, X=X)
}
cat("Finished Reading data", fill=TRUE)

Data = list(lgtdata=lgtdata, Z=Z)
Mcmc = list(R=10000, sbeta=0.2, keep=20)
set.seed(66)
out = rhierBinLogit(Data=Data, Mcmc=Mcmc)
begin = 5000/20
summary(out$Deltadraw, burnin=begin)
summary(out$Vbetadraw, burnin=begin)

plotting examples
if(0) {

plot grand means of random effects distribution (first row of Delta)
index = 4+c(0:13)+1
matplot(out$Deltadraw[,index], type="l", xlab="Iterations/20", ylab="", main="Average Respondent Part-Worths")

plot hierarchical coefs
plot(out$betadraw)

plot log-likelihood
plot(out$llike, type="l", xlab="Iterations/20", ylab="", main="Log Likelihood")
}

breg

Posterior Draws from a Univariate Regression with Unit Error Vari-

ance

Description

breg makes one draw from the posterior of a univariate regression (scalar dependent variable) given the error variance = 1.0. A natural conjugate (normal) prior is used.

Usage

breg(y, X, betabar, A)

Arguments

y
nx1 vector of values of dep variable

X
nxk design matrix

betabar
px1 vector for the prior mean of the regression coefficients

A
pxp prior precision matrix

Details

model: \(y = X'\beta + e \) with \(e \sim N(0, 1) \).
prior: \(\beta \sim N(\text{betabar}, A^{-1}) \).

Value

px1 vector containing a draw from the posterior distribution

Warning

This routine is a utility routine that does not check the input arguments for proper dimensions and type. In particular, \(X \) must be a matrix. If you have a vector for \(X \), coerce it into a matrix with one column.
Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch. http://www.perossi.org/home/bsm-1

Examples

```r
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=1000} else {R=10}

## simulate data
set.seed(66)
n = 100
X = cbind(rep(1,n), runif(n)); beta = c(1,2)
y = X %*% beta + rnorm(n)

## set prior
betabar = c(0,0)
A = diag(c(0.05, 0.05))

## make draws from posterior
betadraw = matrix(double(R*2), ncol = 2)
for (rep in 1:R) {betadraw[rep,] = breg(y,X,betabar,A)}

## summarize draws
mat = apply(betadraw, 2, quantile, probs=c(0.01, 0.05, 0.50, 0.95, 0.99))
mat = rbind(beta,mat); rownames(mat)[1] = "beta"
print(mat)
```

camera

Conjoint Survey Data for Digital Cameras

Description

Panel dataset from a conjoint survey for digital cameras with 332 respondents. Data exclude respondents that always answered none, always picked the same brand, always selected the highest priced offering, or who appeared to be answering randomly.

Usage

data(camera)

Format

A list of lists. Each inner list corresponds to one survey respondent and contains a numeric vector (y) of choice indicators and a numeric matrix (X) of covariates. Each respondent participated in 16 choice scenarios each including 4 camera options (and an outside option) for a total of 80 rows per respondent.
Details

The covariates included in each X matrix are:

- `$canon` an indicator for brand Canon
- `$sony` an indicator for brand Sony
- `$nikon` an indicator for brand Nikon
- `$panasonic` an indicator for brand Panasonic
- `$pixels` an indicator for a higher pixel count
- `$zoom` an indicator for a higher level of zoom
- `$video` an indicator for the ability to capture video
- `$swivel` an indicator for a swivel video display
- `$wifi` an indicator for wifi capability
- `$price` in hundreds of U.S. dollars

Source

References

For analysis of a similar dataset, see Case Study 4, *Bayesian Statistics and Marketing* Rossi, Allenby, and McCulloch http://www.perossi.org/home/bsm-1

cgetC

Obtain A List of Cut-offs for Scale Usage Problems

Description

cgetC obtains a list of censoring points, or cut-offs, used in the ordinal multivariate probit model of Rossi et al (2001). This approach uses a quadratic parameterization of the cut-offs. The model is useful for modeling correlated ordinal data on a scale from 1 to k with different scale usage patterns.

Usage

cgetC(e, k)

Arguments

e
quadric parameter ($0 < e < 1$)

k
items are on a scale from 1, \ldots, k

Value

A vector of $k + 1$ cut-offs.
Warning

This is a utility function which implements no error-checking.

Author(s)

Rob McCulloch and Peter Rossi, Anderson School, UCLA. `<perossichi@gmail.com>`.

References

See Also

rscaleUsage

Examples

```r
cgetC(0.1, 10)
```

cheese
Sliced Cheese Data

Description

Panel data with sales volume for a package of Borden Sliced Cheese as well as a measure of display activity and price. Weekly data aggregated to the "key" account or retailer/market level.

Usage

```r
data(cheese)
```

Format

A data frame with 5555 observations on the following 4 variables:

- `...$RETAILER` a list of 88 retailers
- `...$VOLUME` unit sales
- `...$DISP` percent ACV on display (a measure of advertising display activity)
- `...$PRICE` in U.S. dollars

Source

Examples

```r
# load data
data(cheese)

cat(" Quantiles of the Variables ", fill=TRUE)
mat = apply(as.matrix(cheese[,2:4]), 2, quantile)
print(mat)

## example of processing for use with rhierLinearModel
if(0) {
  retailer = levels(cheese$RETAILER)
nreg = length(retailer)
nvar = 3
regdata = NULL
for (reg in 1:nreg) {
  y = log(cheese$VOLUME[cheese$RETAILER==retailer[reg]])
  iota = c(rep(1, length(y)))
  X = cbind(iota, cheese$DISP[cheese$RETAILER==retailer[reg]],
            log(cheese$PRICE[cheese$RETAILER==retailer[reg]]))
  regdata[[reg]] = list(y=y, X=X)
}
Z = matrix(c(rep(1,nreg)), ncol=1)
nz = ncol(Z)

## run each individual regression and store results
lscoef = matrix(double(nreg*nvar), ncol=nvar)
for (reg in 1:nreg) {
  coef = lsfit(regdata[[reg]]$X, regdata[[reg]]$y, intercept=FALSE)$coef
  if (var(regdata[[reg]]$X[,2])==0) {
    lscoef[reg,1]=coef[1]
    lscoef[reg,3]=coef[2]
  } else {lscoef[reg,]=coef}
}

R = 2000
Data = list(regdata=regdata, Z=Z)
Mcmc = list(R=R, keep=1)
set.seed(66)
out = rhierLinearModel(Data=Data, Mcmc=Mcmc)

cat("Summary of Delta Draws", fill=TRUE)
summary(out$Deltadraw)
cat("Summary of Vbeta Draws", fill=TRUE)
summary(out$Vbetadraw)
```
clusterMix

Cluster Observations Based on Indicator MCMC Draws

Description

clusterMix uses MCMC draws of indicator variables from a normal component mixture model to cluster observations based on a similarity matrix.

Usage

clusterMix(zdraw, cutoff=0.9, SILENT=FALSE, nprint=BayesmConstant.nprint)

Arguments

zdraw

Rxnobs array of draws of indicators
cutoff
cutoff probability for similarity (def: 0.9)
SILENT
logical flag for silent operation (def: FALSE)
nprint
print every nprint’th draw (def: 100)

Details

Define a similarity matrix, Sim with Sim[i, j]=1 if observations i and j are in same component. Compute the posterior mean of Sim over indicator draws.

Clustering is achieved by two means:

Method A: Find the indicator draw whose similarity matrix minimizes loss(E[Sim] − Sim(z)), where loss is absolute deviation.

Method B: Define a Similarity matrix by setting any element of E[Sim] = 1 if E[Sim] > cutoff. Compute the clustering scheme associated with this “windsorized” Similarity matrix.

Value

A list containing:

clastera: indicator function for clustering based on method A above
clasterb: indicator function for clustering based on method B above

Warning

This routine is a utility routine that does not check the input arguments for proper dimensions and type.
Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch Chapter 3.
http://www.perossi.org/home/bsm-1

See Also

rnmixGibbs

Examples

if(nchar(Sys.getenv("LONG_TEST")) != 0) {
 ## simulate data from mixture of normals
 n = 500
 pvec = c(.5,.5)
 mu1 = c(2,2)
 mu2 = c(-2,-2)
 Sigma1 = matrix(c(1,0.5,0.5,1), ncol=2)
 Sigma2 = matrix(c(1,0.5,0.5,1), ncol=2)
 comps = NULL
 comps[[1]] = list(mu1, backsolve(chol(Sigma1),diag(2)))
 comps[[2]] = list(mu2, backsolve(chol(Sigma2),diag(2)))
 dm = rmixture(n, pvec, comps)

 ## run MCMC on normal mixture
 Data = list(y=dm$x)
 ncomp = 2
 Prior = list(ncomp=ncomp, a=c(rep(100,ncomp)))
 R = 2000
 Mcmc = list(R=R, keep=1)
 out = rnmixGibbs(Data=Data, Prior=Prior, Mcmc=Mcmc)

 ## find clusters
 begin = 500
 end = R
 outclusterMix = clusterMix(out$nmix$zdraw[begin:end,])

 ## check on clustering versus "truth"
 ## note: there could be switched labels
 table(outclusterMix$clustera, dm$z)
 table(outclusterMix$clusterb, dm$z)
}
\textit{condMom} \hspace{1cm} \textit{Computes Conditional Mean/Var of One Element of MVN given All Others}

\textbf{Description}

\textit{condMom} compute moments of conditional distribution of the ith element of a multivariate normal given all others.

\textbf{Usage}

\texttt{condMom(x, mu, sigi, i)}

\textbf{Arguments}

- \texttt{x} \hspace{1cm} vector of values to condition on; ith element not used
- \texttt{mu} \hspace{1cm} mean vector with $\text{length}(x) = n$
- \texttt{sigi} \hspace{1cm} inverse of covariance matrix; dimension $n \times n$
- \texttt{i} \hspace{1cm} conditional distribution of ith element

\textbf{Details}

$x \sim \text{MVN}(\mu, \Sigma^{-1})$.
\texttt{condMom} computes moments of x_i given x_{-i}.

\textbf{Value}

A list containing:

- \texttt{cmean} \hspace{1cm} conditional mean
- \texttt{cvar} \hspace{1cm} conditional variance

\textbf{Warning}

This routine is a utility routine that does not check the input arguments for proper dimensions and type.

\textbf{Author(s)}

Peter Rossi, Anderson School, UCLA, \texttt{<perossichi@gmail.com>}

\textbf{References}

For further discussion, see \textit{Bayesian Statistics and Marketing} by Rossi, Allenby, and McCulloch. http://www.perossi.org/home/bsm-1
createX

Create X Matrix for Use in Multinomial Logit and Probit Routines

Examples

```r
sig = matrix(c(1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1), ncol=3)
sigi = chol2inv(chol(sig))
mu = c(1,2,3)
x = c(1,1,1)
condMom(x, mu, sigi, 2)
```

Description

createX makes up an X matrix in the form expected by Multinomial Logit (rmnlIndepMetrop and rhierMnlRwMixture) and Probit (rmnpGibbs and rmvpGibbs) routines. Requires an array of alternative-specific variables and/or an array of “demographics” (or variables constant across alternatives) which may vary across choice occasions.

Usage

```r
createX(p, na, nd, Xa, Xd, INT = TRUE, DIFF = FALSE, base=p)
```

Arguments

- `p` integer number of choice alternatives
- `na` integer number of alternative-specific vars in `Xa`
- `nd` integer number of non-alternative specific vars
- `Xa` `n x p x na` matrix of alternative-specific vars
- `Xd` `n x nd` matrix of non-alternative specific vars
- `INT` logical flag for inclusion of intercepts
- `DIFF` logical flag for differencing wrt to base alternative
- `base` integer index of base choice alternative Note: `na`, `nd`, `Xa`, `Xd` can be NULL to indicate lack of `Xa` or `Xd` variables.

Value

X matrix of dimension `n * (p - DIFF) x [(INT + nd) * (p - 1) + na]`

Note

rmnpGibbs assumes that the base alternative is the default.

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.
References

For further discussion, see *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch. http://www.perossi.org/home/bsm-1

See Also

rmnlIndepMetrop, rmnpGibbs

Examples

```r
na=2; nd=1; p=3
vec = c(1, 1.5, 0.5, 2, 3, 1, 3, 4.5, 1.5)
Xa = matrix(vec, byrow=TRUE, ncol=3)
Xa = cbind(Xa,-Xa)
Xd = matrix(c(-1,-2,-3), ncol=1)
createX(p=p, na=na, nd=nd, Xa=Xa, Xd=Xd)
createX(p=p, na=na, nd=nd, Xa=Xa, Xd=Xd, base=1)
createX(p=p, na=na, nd=nd, Xa=Xa, Xd=Xd, DIFF=TRUE)
createX(p=p, na=na, nd=nd, Xa=Xa, Xd=Xd, DIFF=TRUE, base=2)
createX(p=p, na=NULL, nd=nd, Xa=Xa, Xd=NULL)
createX(p=p, na=NULL, nd=nd, Xa=NULL, Xd=Xd)
```

customerSat

Customer Satisfaction Data

Description

Responses to a satisfaction survey for a Yellow Pages advertising product. All responses are on a 10 point scale from 1 to 10 (1 is "Poor" and 10 is "Excellent").

Usage

data(customerSat)

Format

A data frame with 1811 observations on the following 10 variables:

- `...$q1` Overall Satisfaction
- `...$q2` Setting Competitive Prices
- `...$q3` Holding Price Increase to a Minimum
- `...$q4` Appropriate Pricing given Volume
- `...$q5` Demonstrating Effectiveness of Purchase
- `...$q6` Reach a Large Number of Customers
- `...$q7` Reach of Advertising
- `...$q8` Long-term Exposure
- `...$q9` Distribution
- `...$q10` Distribution to Right Geographic Areas
Source

References
Case Study 3, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

Examples
data(customerSat)
apply(as.matrix(customerSat),2,table)
see also examples for 'rscaleUsage'

detailing Physician Detailing Data

Description
Monthly data on physician detailing (sales calls). 23 months of data for each of 1000 physicians; includes physician covariates.

Usage
data(detailing)

Format
The detailing object is a list containing two data frames, counts and demo.

Details
In the counts data frame:

...$id identifies the physician
...$scrips the number of new presecriptions ordered by the physician for the drug detailed
...$detailing the number of sales called made to each physician per month
...$lagged_scripts scrips value for prior month

In the demo data frame:

...$id identifies the physician
...$generalphys dummy for if doctor is a "general practitioner"
...$specialist dummy for if the physician is a specialist in the therputic class for which the drug is intended
...$mean_samples the mean number of free drug samples given the doctor over the sample period
Source

Examples

```r
data(detailing)

cat(" table of Counts Dep Var", fill=TRUE)
print(table(detailing$counts[,2]))

cat(" means of Demographic Variables", fill=TRUE)
mat = apply(as.matrix(detailing$demo[,2:4]), 2, mean)
print(mat)

## example of processing for use with 'rhierNegbinRw'
if(0) {
  data(detailing)
counts = detailing$counts
Z = detailing$demo

# Construct the Z matrix
Z[,1] = 1
Z[,2] = Z[,2] - mean(Z[,2])
Z[,3] = Z[,3] - mean(Z[,3])
Z[,4] = Z[,4] - mean(Z[,4])
Z = as.matrix(Z)
id = levels(factor(counts$id))
nreg = length(id)
nobs = nrow(counts$id)

regdata = NULL
for (i in 1:nreg) {
  X = counts[counts[,1] == id[i], c(3:4)]
  X = cbind(rep(1, nrow(X)), X)
y = counts[counts[,1] == id[i], 2]
  X = as.matrix(X)
  regdata[[i]] = list(X=X, y=y)
}
rm(detailing, counts)
}

Data = list(regdata=regdata, Z=Z)
nvar = ncol(X) # Number of X variables
nz = ncol(Z) # Number of Z variables
deltabar = matrix(rep(0, nvar*nz), nrow=nz)
Vdelta = 0.01*diag(nz)
nu = nvar+3
V = 0.01*diag(nvar)
a = 0.5
```
eMixMargDen

Compute Marginal Densities of A Normal Mixture Averaged over MCMC Draws

Description

eMixMargDen assumes that a multivariate mixture of normals has been fitted via MCMC (using rnmixGibbs). For each MCMC draw, eMixMargDen computes the marginal densities for each component in the multivariate mixture on a user-supplied grid and then averages over the MCMC draws.

Usage

eMixMargDen(grid, probdraw, compdraw)
Arguments

grid array of grid points, grid[,i] are ordinates for ith dimension of the density
probdraw array where each row contains a draw of probabilities of the mixture component
compdraw list of lists of draws of mixture component moments

Details

length(compdraw) is the number of MCMC draws.
compdraw[[i]] is a list draws of mu and of the inverse Cholesky root for each of mixture components.
compdraw[[i]][[j]] is jth component.
compdraw[[i]][[j]]$mu is mean vector.
compdraw[[i]][[j]]$rooti is the UL decomp of \(\Sigma^{-1} \).

Value

An array of the same dimension as grid with density values.

Warning

This routine is a utility routine that does not check the input arguments for proper dimensions and type. To avoid errors, call with output from rnmixGibbs.

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

See Also

rnmixGibbs

ghkvec Compute GHK approximation to Multivariate Normal Integrals

Description

ghkvec computes the GHK approximation to the integral of a multivariate normal density over a half plane defined by a set of truncation points.
Usage

ghkvec(L, trunpt, above, r, HALTON=TRUE, pn)

Arguments

- **L**: lower triangular Cholesky root of covariance matrix
- **trunpt**: vector of truncation points
- **above**: vector of indicators for truncation above(1) or below(0) on an element by element basis
- **r**: number of draws to use in GHK
- **HALTON**: if TRUE, uses Halton sequence. If FALSE, uses \texttt{R::runif} random number generator (default: TRUE)
- **pn**: prime number used for Halton sequence (default: the smallest prime numbers, i.e. 2, 3, 5, ...)

Value

Approximation to integral

Note

\texttt{ghkvec} can accept a vector of truncations and compute more than one integral. That is, \texttt{length(trunpt)/length(above)} number of different integrals, each with the same variance and mean 0 but different truncation points. See 'examples' below for an example with two integrals at different truncation points. The above argument specifies truncation from above (1) or below (0) on an element by element basis. Only one vector of above is allowed but multiple truncation points are allowed.

The user can choose between two random number generators for the numerical integration: psuedo-random numbers by \texttt{R::runif} or quasi-random numbers by a Halton sequence. Generally, the quasi-random (Halton) sequence is more uniformly distributed within domain, so it shows lower error and improved convergence than the psuedo-random (\texttt{runif}) sequence (Morokoff and Caflisch, 1995).

For the prime numbers generating Halton sequence, we suggest to use the first smallest prime numbers. Halton (1960) and Kocis and Whiten (1997) prove that their discrepancy measures (how uniformly the sample points are distributed) have the upper bounds, which decrease as the generating prime number decreases.

Note: For a high dimensional integration (10 or more dimension), we suggest use of the psuedo-random number generator (\texttt{R::runif}) because, according to Kocis and Whiten (1997), Halton sequences may be highly correlated when the dimension is 10 or more.

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.
Keunwoo Kim, Anderson School, UCLA, <keunwoo.kim@gmail.com>.
References

For further discussion, see Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch, Chapter 2.
http://www.perossi.org/home/bsm-1

Examples

Sigma = matrix(c(1, 0.5, 0.5, 1), ncol=2)
L = t(chol(Sigma))
trunpt = c(0,0,1,1)
above = c(1,1)
here we have a two dimensional integral with two different truncation points
(0,0) and (1,1)
however, there is only one vector of "above" indicators for each integral
above=c(1,1) is applied to both integrals.

drawn by Halton sequence
ghkvec(L, trunpt, above, r=100)

use prime number 11 and 13
ghkvec(L, trunpt, above, r=100, HALTON=TRUE, pn=c(11,13))

drawn by R::runif
ghkvec(L, trunpt, above, r=100, HALTON=FALSE)

llmnl

Evaluate Log Likelihood for Multinomial Logit Model

description

llmnl evaluates log-likelihood for the multinomial logit model.

Usage

llmnl(beta, y, X)

Arguments

beta kx1 coefficient vector
y nx1 vector of obs on y (1,..., p)
X n * pxk design matrix (use createX to create X)
Let \(\mu_i = X_i \beta \), then \(\Pr(y_i = j) = \exp(\mu_{i,j}) / \sum_k \exp(\mu_{i,k}) \).

\(X_i \) is the submatrix of \(X \) corresponding to the \(i \)th observation. \(X \) has \(n \times p \) rows.

Use \texttt{createX} to create \(X \).

Value

Value of log-likelihood (sum of log prob of observed multinomial outcomes).

Warning

This routine is a utility routine that does not check the input arguments for proper dimensions and type.

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

See Also

\texttt{createX, rmnlIndepMetrop}

Examples

```R
## Not run: ll=llmnl(beta,y,X)
```

\texttt{llmnp} \hspace{1cm} \textit{Evaluate Log Likelihood for Multinomial Probit Model}

Description

\texttt{llmnp} evaluates the log-likelihood for the multinomial probit model.

Usage

\texttt{llmnp(beta, Sigma, X, y, r)}

Arguments

- \texttt{beta}: \(k \times 1 \) vector of coefficients
- \texttt{Sigma}: \((p-1) \times (p-1)\) covariance matrix of errors
- \texttt{X}: \(n \times (p-1) \times k \) array where \(X \) is from differenced system
- \texttt{y}: vector of \(n \) indicators of multinomial response \((1, \ldots, p)\)
- \texttt{r}: number of draws used in GHK
Details

\(X \) is \((p - 1) \times nxk\) matrix. Use \texttt{createX} with \texttt{DIFF=TRUE} to create \(X \).

Model for each obs: \(w = X\beta + e \) with \(e \sim N(0, \Sigma) \).

Censoring mechanism:
- if \(y = j (j < p) \), \(w_j > \max(w_{-j}) \) and \(w_j > 0 \)
- if \(y = p \), \(w < 0 \)

To use GHK, we must transform so that these are rectangular regions e.g. if \(y = 1, w_1 > 0 \) and \(w_1 - w_{-1} > 0 \).

Define \(A_j \) such that if \(j = 1, \ldots, p - 1 \) then \(A_jw = A_j\mu + A_je > 0 \) is equivalent to \(y = j \).
Thus, if \(y = j \), we have \(A_j e > -A_j\mu \). Lower truncation is \(-A_j\mu \) and \(\text{cov} = A_j\Sigma \text{mat}(A_j) \).
For \(j = p \), \(e < -\mu \).

Value

Value of log-likelihood (sum of log prob of observed multinomial outcomes)

Warning

This routine is a utility routine that does not check the input arguments for proper dimensions and type.

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see Chapters 2 and 4, \textit{Bayesian Statistics and Marketing} by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

See Also

\texttt{createX}, \texttt{rmnpGibbs}

Examples

```r
## Not run: ll=llmnp(beta, Sigma, X, y, r)
```
llnhlogit Evaluate Log Likelihood for non-homothetic Logit Model

Description

llnhlogit evaluates log-likelihood for the Non-homothetic Logit model.

Usage

llnhlogit(theta, choice, lnprices, Xexpend)

Arguments

theta parameter vector (see details section)
choice nx1 vector of choice (1,...,p)
lnprices nxp array of log-prices
Xexpend nxd array of vars predicting expenditure

Details

Non-homothetic logit model, \(Pr(i) = \exp(\tau v_i) / \sum_j \exp(\tau v_j) \)

\[v_i = \alpha_i - \kappa^i - \ln p_i \]

tau is the scale parameter of extreme value error distribution.

\[u^i \text{ solves } u^i = \psi_i(u_i) E / p_i. \]

\[\ln(\psi_i(U)) = \alpha_i - \kappa^i U. \]

\[\ln(E) = \gamma' Xexpend. \]

Structure of theta vector:

alpha: px1 vector of utility intercepts.
kappaStar: px1 vector of utility rotation parms expressed on natural log scale.
gamma: kx1 – expenditure variable coefs.
tau: 1x1 – logit scale parameter.

Value

Value of log-likelihood (sum of log prob of observed multinomial outcomes).

Warning

This routine is a utility routine that does not check the input arguments for proper dimensions and type.

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.
References

For further discussion, see Chapter 4, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

See Also

simnhlogit

Examples

```r
N=1000; p=3; k=1
theta = c(rep(1,p), seq(from=-1,to=1,length=p), rep(2,k), 0.5)
lnprices = matrix(runif(N*p), ncol=p)
Xexpend = matrix(runif(N*k), ncol=k)
simdata = simnhlogit(theta, lnprices, Xexpend)

## evaluate likelihood at true theta
llstar = llnhlogit(theta, simdata$y, simdata$lnprices, simdata$Xexpend)
```

lndIChisq
Compute Log of Inverted Chi-Squared Density

Description

lndIChisq computes the log of an Inverted Chi-Squared Density.

Usage

```r
lndIChisq(nu, ssq, X)
```

Arguments

- **nu**: d.f. parameter
- **ssq**: scale parameter
- **X**: ordinate for density evaluation (this must be a matrix)

Details

\[Z = \nu \ast \frac{ssq}{\chi^2_{nu}} \]
with \(Z \sim \text{Inverted Chi-Squared}. \n
lndIChisq computes the complete log-density, including normalizing constants.

Value

Log density value
Warning

This routine is a utility routine that does **not** check the input arguments for proper dimensions and type.

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see Chapter 2, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

See Also

dchisq

Examples

```r
indIWishart(3, 1, matrix(2))
```

IndIWishart

Compute Log of Inverted Wishart Density

Description

`IndIWishart` computes the log of an Inverted Wishart density.

Usage

```r
IndIWishart(nu, V, IW)
```

Arguments

- `nu`: d.f. parameter
- `V`: "location" parameter
- `IW`: ordinate for density evaluation

Details

\(Z \sim \text{Inverted Wishart}(nu, V) \).

In this parameterization, \(E[Z] = 1/(nu - k - 1)V \), where \(V \) is a \(k \times k \) matrix

`IndIWishart` computes the complete log-density, including normalizing constants.

Value

Log density value
IndMvn

Description

IndMvn computes the log of a Multivariate Normal Density.

Usage

\[\text{IndMvn}(x, \mu, \text{rooti}) \]

Arguments

- \(x \) density ordinate
- \(\mu \) mu vector
- \(\text{rooti} \) inv of upper triangular Cholesky root of \(\Sigma \)

Details

\(z \sim N(\mu, \Sigma) \)

Value

Log density value
Warning

This routine is a utility routine that does not check the input arguments for proper dimensions and type.

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see Chapter 2, Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

See Also

lndMvst

Examples

Sigma = matrix(c(1, 0.5, 0.5, 1), ncol=2)
indMvn(x=c(rep(0,2)), mu=c(rep(0,2)), rooti=backsolve(chol(Sigma),diag(2)))

lndMvst

Compute Log of Multivariate Student-t Density

Description

lndMvst computes the log of a Multivariate Student-t Density.

Usage

lndMvst(x, nu, mu, rooti, NORMC)

Arguments

x density ordinate
nu d.f. parameter
mu mu vector
rooti inv of Cholesky root of Σ
NORMC include normalizing constant (def: FALSE)

Details

z ∼ MVst(μ, ν, Σ)
logMargDenNR

Value

Log density value

Warning

This routine is a utility routine that does **not** check the input arguments for proper dimensions and type.

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see Chapter 2, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.

http://www.perossi.org/home/bsm-1

See Also

lndMvn

Examples

```r
Sigma = matrix(c(1, 0.5, 0.5, 1), ncol=2)
lndMvst(x=c(rep(0,2)), nu=4,mu=c(rep(0,2)), rooti=backsolve(chol(Sigma),diag(2)))
```

Description

logMargDenNR computes log marginal density using the Newton-Raftery approximation.

Usage

```r
logMargDenNR(ll)
```

Arguments

- `ll` vector of log-likelihoods evaluated at `length(ll)` MCMC draws

Value

Approximation to log marginal density value.
Warning

This approximation can be influenced by outliers in the vector of log-likelihoods; use with care. This routine is a utility routine that does not check the input arguments for proper dimensions and type.

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see Chapter 6, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

margarine

Household Panel Data on Margarine Purchases

Description

Panel data on purchases of margarine by 516 households. Demographic variables are included.

Usage

data(margarine)

Format

The detailing object is a list containing two data frames, choicePrice and demos.

Details

In the choicePrice data frame:

...$hhid household ID
...$choice multinomial indicator of one of the 10 products

The products are indicated by brand and type.

Brands:

...$Pk Parkay
...$BB BlueBonnett
...$Fl Fleischmanns
...$Hse house
...$Gen generic
...$Imp Imperial
...$SS Shed Spread
margarine

Product type:

...$_Stk stick
...$_Tub tub

In the demos data frame:

...$_Fs3_4 dummy for family size 3-4
...$_Fs5 dummy for family size >= 5
...$college dummy for education status
...$whtcollar dummy for job status
...$retired dummy for retirement status

All prices are in U.S. dollars.

Source

References
Chapter 5, Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

Examples

data(margarine)
cat(" Table of Choice Variable ", fill=TRUE)
print(table(margarine$choicePrice[,2]))
cat(" Means of Prices", fill=TRUE)
mat=apply(as.matrix(margarine$choicePrice[,3:12]), 2, mean)
print(mat)
cat(" Quantiles of Demographic Variables", fill=TRUE)
mat=apply(as.matrix(margarine$demos[,c(1,2,5)]), 2, quantile)
print(mat)

example of processing for use with 'rhierMnlRwMixture'
if(0) {
 select = c(1:5,7) ## select brands
 chPr = as.matrix(margarine$choicePrice)

 ## make sure to log prices
 chPr = cbind(chPr[,1], chPr[,2], log(chPr[,2+select]))
 demos = as.matrix(margarine$demos[,c(1,2,5)])

 ## remove obs for other alts
 chPr = chPr[chPr[,2] <= 7,]
chPr = chPr[chPr[,2] != 6,]

recode choice
chPr[chPr[,2] == 7,2] = 6

hhid1 = levels(as.factor(chPr[,1]))
lgtdata = NULL
nlgt = length(hhid1)
p = length(select) ## number of choice alts

ind = 1
for (i in 1:nlgt) {
 nobs = sum(chPr[,1]==hhid1[i])
 if(nobs >=5) {
 data = chPr[chPr[,1]==hhid1[i],]
 y = data[,2]
 names(y) = NULL
 X = createX(p=p, na=1, Xa=data[,3:8], nd=NULL, Xd=NULL, INT=TRUE, base=1)
 lgtdata[[ind]] = list(y=y, X=X, hhid=hhid1[i])
 ind = ind+1
 }
}
nlgt = length(lgtdata)

now extract demos corresponding to hhs in lgtdata
Z = NULL
nlgt = length(lgtdata)
for(i in 1:nlgt){
 Z = rbind(Z, demos[demos[,1]==lgtdata[[i]]$hhid, 2:3])
}

take log of income and family size and demean
Z = log(Z)
Z[,1] = Z[,1] - mean(Z[,1])
Z[,2] = Z[,2] - mean(Z[,2])

keep = 5
R = 20000
mcmc1 = list(keep=keep, R=R)

out = rhierMnlRwMixture(Data=list(p=p, lgtdata=lgtdata, Z=Z),
 Prior=list(ncomp=1), Mcmc=mcmc1)

summary(out$Deltadraw)
summary(out$nmix)

plotting examples
if(0){
 plot(out$nmix)
 plot(out$Deltadraw)
}
}
mixDen

Compute Marginal Density for Multivariate Normal Mixture

Description

mixDen computes the marginal density for each dimension of a normal mixture at each of the points on a user-specified grid.

Usage

mixDen(x, pvec, comps)

Arguments

- `x`: array where ith column gives grid points for ith variable
- `pvec`: vector of mixture component probabilities
- `comps`: list of lists of components for normal mixture

Details

- `length(comps)` is the number of mixture components
- `comps[[j]]` is a list of parameters of the jth component
- `comps[[j]]$mu` is mean vector
- `comps[[j]]$rooti` is the UL decomp of Σ^{-1}

Value

An array of the same dimension as grid with density values

Warning

This routine is a utility routine that does **not** check the input arguments for proper dimensions and type.

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

- For further discussion, see Chapter 3, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
 http://www.perossi.org/home/bsm-1
See Also
rnmixGibbs

mixDenBi

Compute Bivariate Marginal Density for a Normal Mixture

Description
mixDenBi computes the implied bivariate marginal density from a mixture of normals with specified mixture probabilities and component parameters.

Usage
mixDenBi(i, j, xi, xj, pvec, comps)

Arguments
i index of first variable
j index of second variable
xi grid of values of first variable
xj grid of values of second variable
pvec normal mixture probabilities
comps list of lists of components

Details
length(comps) is the number of mixture components
comps[[j]] is a list of parameters of the jth component
comps[[j]]$mu is mean vector
comps[[j]]$rooti is the UL decomp of $^{-1}$

Value
An array (length(xi)=length(xj) x 2) with density value

Warning
This routine is a utility routine that does not check the input arguments for proper dimensions and type.

Author(s)
Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.
References

For further discussion, see Chapter 3, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

See Also

rnmixGibbs, mixDen

mnlHess Computes –Expected Hessian for Multinomial Logit

Description

mnlHess computes expected Hessian ($E[H]$) for Multinomial Logit Model.

Usage

```r
mnlHess(beta, y, X)
```

Arguments

- `beta` $k 	imes 1$ vector of coefficients
- `y` $n 	imes 1$ vector of choices, $(1, \ldots, p)$
- `X` $n \times p \times k$ Design matrix

Details

See `llmnl` for information on structure of `X` array. Use `createX` to make `X`.

Value

$k \times k$ matrix

Warning

This routine is a utility routine that does **not** check the input arguments for proper dimensions and type.

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see Chapter 3, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1
See Also

llmnl, createX, rmnlIndepMetrop

Examples

```r
## Not run: mnlHess(beta, y, X)
```

mnpProb

mnpProb

Compute MNP Probabilities

Description

mnpProb computes MNP probabilities for a given *X* matrix corresponding to one observation. This function can be used with output from *rmnpGibbs* to simulate the posterior distribution of market shares or fitted probabilities.

Usage

```r
mnpProb(beta, Sigma, X, r)
```

Arguments

- **beta**: MNP coefficients
- **Sigma**: Covariance matrix of latents
- **X**: *X* array for one observation – use *createX* to make
- **r**: number of draws used in GHK (def: 100)

Details

See *rmnpGibbs* for definition of the model and the interpretation of the beta and Sigma parameters. Uses the GHK method to compute choice probabilities. To simulate a distribution of probabilities, loop over the beta and Sigma draws from *rmnpGibbs* output.

Value

- *px1* vector of choice probabilities

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>

References

For further discussion, see Chapters 2 and 4, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.

http://www.perossi.org/home/bsm-1
momMix

Compute Posterior Expectation of Normal Mixture Model Moments

Description

momMix averages the moments of a normal mixture model over MCMC draws.

Usage

momMix(probdraw, compdraw)

Arguments

probdraw \(R \times ncomp \) list of draws of mixture probs

compdraw list of length \(R \) of draws of mixture component moments

Details

\(R \)

is the number of MCMC draws in argument list above.

ncomp

is the number of mixture components fitted.

compdraw\([i]\)

is a list of lists with mixture components.

compdraw\([i]\)[[j]][[1]]

is the mean parameter vector for the \(j \)th component, \(i \)th MCMC draw.

compdraw\([i]\)[[j]][[2]]

is the UL decomposition of \(\Sigma^{-1} \) for the \(j \)th component, \(i \)th MCMC draw.

Value

A list containing:

mu posterior expectation of mean

Examples

```r
## example of computing MNP probabilities
## here Xa has the prices of each of the 3 alternatives
Xa = matrix(c(1,.5,1.5), nrow=1)
X = createX(p=3, na=1, nd=NULL, Xa=Xa, Xd=NULL, DIFF=TRUE)
betac = c(1,-1,-2)  # beta contains two intercepts and the price coefficient
Sigma = matrix(c(1, 0.5, 0.5, 1), ncol=2)
mnpProb(beta, Sigma, X)
```
sigma posterior expectation of covariance matrix
sd posterior expectation of vector of standard deviations
corr posterior expectation of correlation matrix

Warning
This routine is a utility routine that does not check the input arguments for proper dimensions and type.

Author(s)
Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References
For further discussion, see Chapter 5, Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

See Also
rmixGibbs

nmat
Convert Covariance Matrix to a Correlation Matrix

Description
nmat converts a covariance matrix (stored as a vector, col by col) to a correlation matrix (also stored as a vector).

Usage
nmat(vec)

Arguments
vec kxk Cov matrix stored as a k * kx1 vector (col by col)

Details
This routine is often used with apply to convert an Rx(k * k) array of covariance MCMC draws to correlations. As in corrdraws = apply(vardraws,1,nmat).

Value
k * kx1 vector with correlation matrix
numEff

Warning

This routine is a utility routine that does **not** check the input arguments for proper dimensions and type.

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

Examples

```r
set.seed(66)
X = matrix(rnorm(200,4), ncol=2)
Varmat = var(X)
nmat(as.vector(Varmat))
```

numEff
Compute Numerical Standard Error and Relative Numerical Efficiency

Description

`numEff` computes the numerical standard error for the mean of a vector of draws as well as the relative numerical efficiency (ratio of variance of mean of this time series process relative to iid sequence).

Usage

```r
numEff(x, m = as.integer(min(length(x),(100/sqrt(5000))*sqrt(length(x)))))
```

Arguments

- `x`
 Rx1 vector of draws

- `m`
 number of lags for autocorrelations

Details

default for number of lags is chosen so that if \(R = 5000 \), \(m = 100 \) and increases as the \(\sqrt{R} \).

Value

A list containing:

- `stderr`
 standard error of the mean of \(x \)

- `f`
 variance ratio (relative numerical efficiency)

Warning

This routine is a utility routine that does **not** check the input arguments for proper dimensions and type.
Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see Chapter 3, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

Examples

```r
numEff(rnorm(1000), m=20)
numEff(rnorm(1000))
```

orangeJuice

Store-level Panel Data on Orange Juice Sales

Description

Weekly sales of refrigerated orange juice at 83 stores. Contains demographic information on those stores.

Usage

```r
data(orangeJuice)
```

Format

The **orangeJuice** object is a list containing two data frames, **yx** and **storedemo**.

Details

In the **yx** data frame:

```r
...$store store number
...$brand brand indicator
...$week week number
...$logmove log of the number of units sold
...$constant a vector of 1s
...$price# price of brand #
...$deal in-store coupon activity
...$feature feature advertisement
...$profit profit
```

The price variables correspond to the following brands:

```r
1 Tropicana Premium 64 oz
```
<table>
<thead>
<tr>
<th></th>
<th>Orange Juice Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Tropicana Premium 96 oz</td>
</tr>
<tr>
<td>3</td>
<td>Florida’s Natural 64 oz</td>
</tr>
<tr>
<td>4</td>
<td>Tropicana 64 oz</td>
</tr>
<tr>
<td>5</td>
<td>Minute Maid 64 oz</td>
</tr>
<tr>
<td>6</td>
<td>Minute Maid 96 oz</td>
</tr>
<tr>
<td>7</td>
<td>Citrus Hill 64 oz</td>
</tr>
<tr>
<td>8</td>
<td>Tree Fresh 64 oz</td>
</tr>
<tr>
<td>9</td>
<td>Florida Gold 64 oz</td>
</tr>
<tr>
<td>10</td>
<td>Dominicks 64 oz</td>
</tr>
<tr>
<td>11</td>
<td>Dominicks 128 oz</td>
</tr>
</tbody>
</table>

In the `storedemo` data frame:

- `$STORE` store number
- `$AGE60` percentage of the population that is aged 60 or older
- `$EDUC` percentage of the population that has a college degree
- `$ETHNIC` percent of the population that is black or Hispanic
- `$INCOME` median income
- `$HHLARGE` percentage of households with 5 or more persons
- `$WORKWOM` percentage of women with full-time jobs
- `$HVAL150` percentage of households worth more than $150,000
- `$SSTRDIST` distance to the nearest warehouse store
- `$SSTRVOL` ratio of sales of this store to the nearest warehouse store
- `$CPDIST5` average distance in miles to the nearest 5 supermarkets
- `$CPWVOL5` ratio of sales of this store to the average of the nearest five stores

Source

References

Chapter 5, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch

http://www.perossi.org/home/bsm-1

Examples

```r
## load data
data(orangeJuice)

## print some quantiles of yx data
cat("Quantiles of the Variables in yx data",fill=TRUE)
mat = apply(as.matrix(orangeJuice$yx), 2, quantile)
print(mat)

## print some quantiles of storedemo data
cat("Quantiles of the Variables in storedemo data",fill=TRUE)
mat = apply(as.matrix(orangeJuice$storedemo), 2, quantile)
print(mat)
```
processing for use with rhierLinearModel

```r
if(0) {

## select brand 1 for analysis
brand1 = orangeJuice$yx[(orangeJuice$yx$brand==1),]

store = sort(unique(brand1$store))
nreg = length(store)
nvar = 14

regdata=NULL
for (reg in 1:nreg) {
  y = brand1$logmove[brand1$store==store[reg]]
iota = c(rep(1,length(y)))
  X = cbind(iota, log(brand1$price1[brand1$store==store[reg]]),
           log(brand1$price2[brand1$store==store[reg]]),
           log(brand1$price3[brand1$store==store[reg]]),
           log(brand1$price4[brand1$store==store[reg]]),
           log(brand1$price5[brand1$store==store[reg]]),
           log(brand1$price6[brand1$store==store[reg]]),
           log(brand1$price7[brand1$store==store[reg]]),
           log(brand1$price8[brand1$store==store[reg]]),
           log(brand1$price9[brand1$store==store[reg]]),
           log(brand1$price10[brand1$store==store[reg]]),
           log(brand1$price11[brand1$store==store[reg]]),
           brand1$deal[brand1$store==store[reg]],
           brand1$feat[brand1$store==store[reg]])
  regdata[[reg]] = list(y=y, X=X)
}

## storedemo is standardized to zero mean.
Z = as.matrix(orangeJuice$storedemo[,2:12])
dmean = apply(Z, 2, mean)
for (s in 1:nreg) {Z[s,] = Z[s,] - dmean}
iotaz = c(rep(1,nrow(Z)))
Z = cbind(iotaz, Z)
nz = ncol(Z)

Data = list(regdata=regdata, Z=Z)
Mcmc = list(R=R, keep=1)

out = rhierLinearModel(Data=Data, Mcmc=Mcmc)

summary(out$Deltadraw)
summary(out$Vbetadraw)

## plotting examples
if(0){ plot(out$betadraw) }
}
```
plot.bayesm.hcoef
Plot Method for Hierarchical Model Coefs

Description

`plot.bayesm.hcoef` is an S3 method to plot 3 dim arrays of hierarchical coefficients. Arrays are of class `bayesm.hcoef` with dimensions: cross-sectional unit x coef x MCMC draw.

Usage

```r
## S3 method for class 'bayesm.hcoef'
plot(x, names, burnin, ...)
```

Arguments

- `x` An object of S3 class, `bayesm.hcoef`
- `names` a list of names for the variables in the hierarchical model
- `burnin` no draws to burnin (def: 0.1 * R)
- `...` standard graphics parameters

Details

Typically, `plot.bayesm.hcoef` will be invoked by a call to the generic plot function as in `plot(object)` where object is of class `bayesm.hcoef`. All of the `bayesm` hierarchical routines return draws of hierarchical coefficients in this class (see example below). One can also simply invoke `plot.bayesm.hcoef` on any valid 3-dim array as in `plot.bayesm.hcoef(betadraws)`.

`plot.bayesm.hcoef` is also exported for use as a standard function, as in `plot.bayesm.hcoef(array)`.

Author(s)

Peter Rossi, Anderson School, UCLA, `<perossichi@gmail.com>`.

See Also

`rhierMnlRwMixture`, `rhierLinearModel`, `rhierLinearMixture`, `rhierNegbinRw`

Examples

```r
## Not run: out=rhierLinearModel(Data,Prior,Mcmc); plot(out$betadraws)
```
plot.bayesm.mat

Plot Method for Arrays of MCMC Draws

Description

plot.bayesm.mat is an S3 method to plot arrays of MCMC draws. The columns in the array correspond to parameters and the rows to MCMC draws.

Usage

S3 method for class 'bayesm.mat'
plot(x, names, burnin, tvalues, TRACEPLOT, DEN, INT, CHECK_NDRAWS, ...)

Arguments

- **x**: An object of either S3 class, bayesm.mat, or S3 class, mcmc
- **names**: optional character vector of names for coefficients
- **burnin**: number of draws to discard for burn-in (def: 0.1 * nrow(X))
- **tvalues**: vector of true values
- **TRACEPLOT**: logical, TRUE provide sequence plots of draws and acfs (def: TRUE)
- **DEN**: logical, TRUE use density scale on histograms (def: TRUE)
- **INT**: logical, TRUE put various intervals and points on graph (def: TRUE)
- **CHECK_NDRAWS**: logical, TRUE check that there are at least 100 draws (def: TRUE)
- **...**: standard graphics parameters

Details

Typically, plot.bayesm.mat will be invoked by a call to the generic plot function as in plot(object) where object is of class bayesm.mat. All of the bayesm MCMC routines return draws in this class (see example below). One can also simply invoke plot.bayesm.mat on any valid 2-dim array as in plot.bayesm.mat(betadraws).

plot.bayesm.mat paints (by default) on the histogram:

- green "[]" delimiting 95% Bayesian Credibility Interval
- yellow "()" showing +/- 2 numerical standard errors
- red "|" showing posterior mean

plot.bayesm.mat is also exported for use as a standard function, as in plot.bayesm.mat(matrix)

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.
Examples

```r
## Not run: out=runiregGibbs(Data,Prior,Mcmc); plot(out$betadraw)
```

plot.bayesm.nmix
Plot Method for MCMC Draws of Normal Mixtures

Description

`plot.bayesm.nmix` is an S3 method to plot aspects of the fitted density from a list of MCMC draws of normal mixture components. Plots of marginal univariate and bivariate densities are produced.

Usage

```r
## S3 method for class 'bayesm.nmix'
plot(x, names, burnin, Grid, bi.sel, nstd, marg, Data, ngrid, ndraw, ...)
```

Arguments

- `x` : An object of S3 class `bayesm.nmix`
- `names` : optional character vector of names for each of the dimensions
- `burnin` : number of draws to discard for burn-in (def: 0.1 * `nrow(X)`)
- `Grid` : matrix of grid points for densities, def: mean +/- nstd std deviations (if Data no supplied), range of Data if supplied
- `bi.sel` : list of vectors, each giving pairs for bivariate distributions (def: list(c(1,2))
- `nstd` : number of standard deviations for default Grid (def: 2)
- `marg` : logical, if TRUE display marginals (def: TRUE)
- `Data` : matrix of data points, used to paint histograms on marginals and for grid
- `ngrid` : number of grid points for density estimates (def: 50)
- `ndraw` : number of draws to average Mcmc estimates over (def: 200)
- `...` : standard graphics parameters

Details

Typically, `plot.bayesm.nmix` will be invoked by a call to the generic plot function as in `plot(object)` where object is of class `bayesm.nmix`. These objects are lists of three components. The first component is an array of draws of mixture component probabilities. The second component is not used. The third is a lists of lists of lists with draws of each of the normal components.

`plot.bayesm.nmix` can also be used as a standard function, as in `plot.bayesm.nmix(list)`.

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.
See Also

rnmixGibbs, rhierMnlRwMixture, rhierLinearMixture, rDPGibbs

Examples

not run
out = rnmixGibbs(Data, Prior, Mcmc)

plot bivariate distributions for dimension 1,2; 3,4; and 1,3
plot(out,bi.sel=list(c(1,2),c(3,4),c(1,3)))

rbayesBLP

Bayesian Analysis of Random Coefficient Logit Models Using Aggregate Data

Description

rbayesBLP implements a hybrid MCMC algorithm for aggregate level sales data in a market with differentiated products. bayesm version 3.1-0 and prior versions contain an error when using instruments with this function; this will be fixed in a future version.

Usage

rbayesBLP(Data, Prior, Mcmc)

Arguments

Data

list(X, share, J, Z)

Prior

list(sigmasqR, theta_hat, A, deltabar, Ad, nu0, s0_sq, VOmega)

Mcmc

list(R, keep, nprint, H, initial_theta_bar, initial_r, initial_tau_sq, initial_Omega, initial_delta, s, cand_cov, tol)

Value

A list containing:

thetabardraw $K \times R/keep$ matrix of random coefficient mean draws

Sigmadraw $K \times K \times R/keep$ matrix of random coefficient variance draws

rdraw $K \times K \times R/keep$ matrix of r draws (same information as in Sigmadraw)

tausqdraw $R/keep \times 1$ vector of aggregate demand shock variance draws

Omegadraw $2 \times 2 \times R/keep$ matrix of correlated endogenous shock variance draws

deltadraw $I \times R/keep$ matrix of endogenous structural equation coefficient draws

acceptrate scalar of acceptance rate of Metropolis-Hasting

s scale parameter used for Metropolis-Hasting

cand_cov var-cov matrix used for Metropolis-Hasting
Argument Details

Data = list (X, share, J, Z) [Z optional]

J: number of alternatives, excluding an outside option
X: \(J \times T K \) matrix (no outside option, which is normalized to 0).
If IV is used, the last column of \(X \) is the endogeneous variable.

share: \(J \times T \) vector (no outside option).
Note that both the share vector and the \(X \) matrix are organized by the \(j t \) index.
\(j \) varies faster than \(t \), i.e. \((j = 1, t = 1), (j = 2, t = 1), ..., (j = J, T = 1), ..., (j = J, t = T)\)

Z: \(J \times T I \) matrix of instrumental variables (optional)

Prior = list (sigmasqR, theta_hat, A, deltabar, Ad, nu0, s0_sq, VOmega) [optional]

sigmasqR: \(K \times (K + 1)/2 \) vector for \(r \) prior variance (def: diffuse prior for \(\Sigma \))
theta_hat: \(K \) vector for \(\theta_{bar} \) prior mean (def: 0 vector)
A: \(K \times K \) matrix for \(\theta_{bar} \) prior precision (def: 0.01*diag(K))
deltabar: \(I \) vector for \(\delta \) prior mean (def: 0 vector)
Ad: \(I \times I \) matrix for \(\delta \) prior precision (def: 0.01*diag(I))
nu0: d.f. parameter for \(\tau_{sq} \) and \(\Omega \) prior (def: K+1)
s0_sq: scale parameter for \(\tau_{sq} \) prior (def: 1)
VOmega: 2x2 matrix parameter for \(\Omega \) prior (def: matrix(c(1,0.5,0.5,1),2,2))

Mcmc = list (R, keep, nprint, H, initial_theta_bar, initial_r, initial_tau_sq,
initial_Omega, initial_delta, s, cand_cov, tol) [only R and H required]

R: number of MCMC draws
keep: MCMC thinning parameter – keep every keepth draw (def: 1)
nprint: print the estimated time remaining for every nprint’th draw (def: 100, set to 0 for no print)
H: number of random draws used for Monte-Carlo integration
initial_theta_bar: initial value of \(\theta_{bar} \) (def: 0 vector)
initial_r: initial value of \(r \) (def: 0 vector)
initial_tau_sq: initial value of \(\tau_{sq} \) (def: 0.1)
initial_Omega: initial value of \(\Omega \) (def: diag(2))
initial_delta: initial value of \(\delta \) (def: 0 vector)
s: scale parameter of Metropolis-Hasting increment (def: automatically tuned)
cand_cov: var-cov matrix of Metropolis-Hasting increment (def: automatically tuned)
tol: convergence tolerance for the contraction mapping (def: 1e-6)

Model Details

Model and Priors (without IV):

\(u_{jt} \sim X_{jt} \theta_i + \eta_{jt} + \epsilon_{jt} \)
\(\epsilon_{jt} \sim \text{type I Extreme Value (logit)} \)
\(\theta_i \sim N(\theta_{bar}, \Sigma) \)
\(\eta_{jt} \sim N(0, \tau_{sq}) \)
This structure implies a logit model for each consumer (θ). Aggregate shares (share) are produced by integrating this consumer level logit model over the assumed normal distribution of θ.

\[r \sim N(0, \text{diag}(\text{sigmasqR})) \]
\[\theta_{\text{bar}} \sim N(\theta_{\text{hat}}, A^{-1}) \]
\[\tau_{sq} \sim nu0 + s0_{sq}/\chi^2(nu0) \]

Note: we observe the aggregate level market share, not individual level choices.

Note: r is the vector of nonzero elements of cholesky root of Σ. Instead of Σ we draw r, which is one-to-one correspondence with the positive-definite Σ.

MCMC and Tuning Details:

MCMC Algorithm:

Step 1 (Σ): Given θ_{bar} and τ_{sq}, draw r via Metropolis-Hasting.
Covert the drawn r to Σ.

Note: if user does not specify the Metropolis-Hasting increment parameters (s and cand_cov), rbayesBLP automatically tunes the parameters.

Step 2 without IV ($\theta_{\text{bar}}, \tau_{sq}$): Given Σ, draw θ_{bar} and τ_{sq} via Gibbs sampler.

Step 2 with IV ($\theta_{\text{bar}}, \delta, \Omega$): Given Σ, draw $\theta_{\text{bar}}, \delta$, and Ω via IV Gibbs sampler.

Tuning Metropolis-Hastings algorithm:

$r_{\text{cand}} = r_{\text{old}} + sN(0, \text{cand_cov})$

Fix the candidate covariance matrix as $\text{cand_cov0} = \text{diag}(\text{rep}(0.1, K), \text{rep}(1, K*(K-1)/2))$.
Start from $s0 = 2.38/\sqrt{\text{dim}(r)}$.

Repeat{
Run 500 MCMC chain.
If acceptance rate < 30% => update s1 = s0/5.
If acceptance rate > 50% => update s1 = s0*3.
(Store r draws if acceptance rate is 20~80%.)
s0 = s1
} until acceptance rate is 30~50%
Scale matrix C = s1*sqrt(cand_cov0)
Correlation matrix R = Corr(r draws)
Use C*R*C as s^2*cand_cov.

Author(s)

Keunwoo Kim, Anderson School, UCLA, <keunwoo.kim@gmail.com>.

References

For further discussion, see Bayesian Analysis of Random Coefficient Logit Models Using Aggregate Data by Jiang, Manchanda, and Rossi, Journal of Econometrics, 2009.

Examples

if(nchar(Sys.getenv("LONG_TEST")) != 0) {

Simulate aggregate level data
simulData <- function(para, others, Hbatch) {
 # Hbatch does the integration for computing market shares
 # in batches of size Hbatch

 ## parameters
 theta_bar <- para$theta_bar
 Sigma <- para$Sigma
 tau_sq <- para$tau_sq

 T <- others$T
 J <- others$J
 p <- others$p
 H <- others$H
 K <- J + p

 ## build X
 X <- matrix(runif(T*J*p), T*J, p)
 inter <- NULL
 for (t in 1:T) { inter <- rbind(inter, diag(J)) }
 X <- cbind(inter, X)

 ## draw eta ~ N(0, tau_sq)
 eta <- rnorm(T*J)*sqrt(tau_sq)
 X <- cbind(X, eta)

 share <- rep(0, J*T)
 for (HH in 1:(H/Hbatch)){
 ## draw theta ~ N(theta_bar, Sigma)

cho <- chol(Sigma)
theta <- matrix(rnorm(K*Hbatch), nrow=K, ncol=Hbatch)
theta <- t(cho)%*%theta + theta_bar

utility
V <- X%*%rbind(theta, 1)
expV <- exp(V)
expSum <- matrix(colSums(matrix(expV, J, T*Hbatch)), T, Hbatch)
expSum <- expSum %x% matrix(1, J, 1)
choiceProb <- expV / (1 + expSum)
share <- share + rowSums(choiceProb) / H

the last K+1'th column is eta, which is unobservable.
X <- X[,c(1:K)]
return (list(X=X, share=share))

true parameter
theta_bar_true <- c(-2, -3, -4, -5)
Sigma_true <- rbind(c(3,2,1.5,1), c(2,4,-1,1.5), c(1.5,-1,4,-0.5), c(1,1.5,-0.5,3))
cho <- chol(Sigma_true)
r_true <- c(log(diag(cho)), cho[1,2:4], cho[2,3:4], cho[3,4])
tau_sq_true <- 1

simulate data
set.seed(66)
T <- 300
J <- 3
p <- 1
K <- 4
H <- 1000000
Hbatch <- 5000

dat <- simulData(para=list(theta_bar=theta_bar_true, Sigma=Sigma_true, tau_sq=tau_sq_true),
 others=list(T=T, J=J, p=p, H=H), Hbatch)
X <- dat$X
share <- dat$share

Mcmc run
R <- 2000
H <- 50
Data1 <- list(X=X, share=share, J=J)
Mcmc1 <- list(R=R, H=H, nprint=0)
set.seed(66)
out <- rbayesBLP(Data=Data1, Mcmc=Mcmc1)

acceptance rate
out$acceptrate

summary of draws
summary(out$thetabardraw)
summary(out$Sigmadraw)
rbiNormGibbs

Illustrate Bivariate Normal Gibbs Sampler

Description

rbiNormGibbs implements a Gibbs Sampler for the bivariate normal distribution. Intermediate moves are plotted and the output is contrasted with the iid sampler. This function is designed for illustrative/teaching purposes.

Usage

rbiNormGibbs(initx=2, inity=-2, rho, burnin=100, R=500)

Arguments

initx initial value of parameter on x axis (def: 2)
inity initial value of parameter on y axis (def: -2)
rho correlation for bivariate normals
burnin burn-in number of draws (def: 100)
R number of MCMC draws (def: 500)

Details

\((\theta_1, \theta_2) \sim N((0, 0), \Sigma)\) with \(\Sigma = \text{matrix}(c(1, \rho, \rho, 1), ncol=2)\)

Value

\(R \times 2\) matrix of draws

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see Chapters 2 and 3, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.

http://www.perossi.org/home/bsm-1
Examples

```r
## Not run: out=rbiNormGibbs(rho=0.95)
```

rbprobitGibbs
Gibbs Sampler (Albert and Chib) for Binary Probit

Description

rbprobitGibbs implements the Albert and Chib Gibbs Sampler for the binary probit model.

Usage

```r
rbprobitGibbs(Data, Prior, Mcmc)
```

Arguments

- **Data**: list(y, X)
- **Prior**: list(betabar, A)
- **Mcmc**: list(R, keep, nprint)

Details

- **Model and Priors**: \(z = X\beta + e \) with \(e \sim N(0, I) \)

 \(y = 1 \) if \(z > 0 \)

 \(\beta \sim N(\text{betabar}, A^{-1}) \)

- **Argument Details**: `Data = list(y, X)`

 - `y`: \(nx1 \) vector of 0/1 outcomes
 - `X`: \(nxk \) design matrix

- **Prior = list(betabar, A) [optional]**

 - `betabar`: \(kx1 \) prior mean (def: 0)
 - `A`: \(kxk \) prior precision matrix (def: \(0.01 \times I \))

- **Mcmc = list(R, keep, nprint) [only R required]**

 - `R`: number of MCMC draws
 - `keep`: MCMC thinning parameter – keep every `keep`th draw (def: 1)
 - `nprint`: print the estimated time remaining for every `nprint`th draw (def: 100, set to 0 for no print)

Value

A list containing:
rdirichlet

Description

rdirichlet draws from Dirichlet
Usage

```
rdirichlet(alpha)
```

Arguments

- `alpha`: vector of Dirichlet parms (must be > 0)

Value

Vector of draws from Dirichlet

Warning

This routine is a utility routine that does **not** check the input arguments for proper dimensions and type.

Author(s)

Peter Rossi, Anderson School, UCLA. <perossichi@gmail.com>.

References

For further discussion, see Chapter 2, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.

http://www.perossi.org/home/bsm-1

Examples

```
set.seed(66)
rdirichlet(c(rep(3,5)))
```

rDPGibbs

Density Estimation with Dirichlet Process Prior and Normal Base

Description

rDPGibbs implements a Gibbs Sampler to draw from the posterior for a normal mixture problem with a Dirichlet Process prior. A natural conjugate base prior is used along with priors on the hyper parameters of this distribution. One interpretation of this model is as a normal mixture with a random number of components that can grow with the sample size.

Usage

```
rDPGibbs(Prior, Data, Mcmc)
```
Arguments

- **Data**
 - list(y)

- **Prior**
 - list(Prioralpha, lambda_hyper)

- **Mcmc**
 - list(R, keep, nprint, maxuniq, SCALE, gridsize)

Details

Model and Priors:

\[y_i \sim N(\mu_i, \Sigma_i) \]

\[\theta_i = (\mu_i, \Sigma_i) \sim DP(G_0(\lambda), alpha) \]

\[G_0(\lambda) : \]

\[\mu_i | \Sigma_i \sim N(0, \Sigma_i(x)a^{-1}) \]

\[\Sigma_i \sim IW(nu, nu * v * I) \]

\[\lambda(a, nu, v) : \]

\[a \sim \text{uniform on grid}[alim[1], alimb[2]] \]

\[nu \sim \text{uniform on grid}[\text{dim(data)}-1 + \exp(nulim[1]), \text{dim(data)}-1 + \exp(nulim[2])] \]

\[v \sim \text{uniform on grid}[vlim[1], vlim[2]] \]

\[alpha \sim (1 - (\alpha - alphamin)/(alphamax - alphamin))^\text{power} \]

\[alpha = \text{alphamin then expected number of components} = \text{Istarmin} \]

\[alpha = \text{alphamax then expected number of components} = \text{Istarmax} \]

We parameterize the prior on \(\Sigma_i \) such that \(\text{mode}(\Sigma) = \frac{nu}{nu + 2}vI \). The support of \(nu \) enforces valid IW density; \(nulim[1] > 0 \)

We use the structure for \(\text{nmix} \) that is compatible with the \text{bayesm} routines for finite mixtures of normals. This allows us to use the same summary and plotting methods.

The default choices of \(alim, nulim, \) and \(vlim \) determine the location and approximate size of candidate "atoms" or possible normal components. The defaults are sensible given that we scale the data. Without scaling, you want to insure that \(alim \) is set for a wide enough range of values (remember \(a \) is a precision parameter) and the \(v \) is big enough to propose \(\Sigma \) matrices wide enough to cover the data range.

A careful analyst should look at the posterior distribution of \(a, nu, v \) to make sure that the support is set correctly in \(alim, nulim, vlim \). In other words, if we see the posterior bunched up at one end of these support ranges, we should widen the range and rerun.

If you want to force the procedure to use many small atoms, then set \(nulim \) to consider only large values and set \(vlim \) to consider only small scaling constants. Set \(\text{Istarmax} \) to a large number. This will create a very "lumpy" density estimate somewhat like the classical Kernel density estimates. Of course, this is not advised if you have a prior belief that densities are relatively smooth.

Argument Details:

Data = list(y)

- **y:** \(nxk \) matrix of observations on \(k \) dimensional data

Prior = list(Prioralpha, lambda_hyper) [optional]

- **Prioralpha:**
 - list(Istarmin, Istarmax, power)

$Istarmin$: is expected number of components at lower bound of support of alpha (def: 1)
InStarmax: is expected number of components at upper bound of support of alpha (def: $\min(50, 0.1 \times \text{nrow}(y))$

power: is the power parameter for alpha prior (def: 0.8)

lambda_hyper: list(alim, nullim, vlim)

alim: defines support of a distribution (def: c(0.01, 10))

nullim: defines support of nu distribution (def: c(0.01, 3))

vlim: defines support of v distribution (def: c(0.1, 4))

Mcmc = list(R, keep, nprint, maxuniq, SCALE, gridsize) [only R required]

R: number of MCMC draws

keep: MCMC thinning parameter – keep every keepth draw (def: 1)

nprint: print the estimated time remaining for every nprint’th draw (def: 100, set to 0 for no print)

maxuniq: storage constraint on the number of unique components (def: 200)

SCALE: should data be scaled by mean,std deviation before posterior draws (def: TRUE)

gridsize: number of discrete points for hyperparameter priors (def: 20)

Details: nmix is a list with 3 components. Several functions in the bayesm package that involve a Dirichlet Process or mixture-of-normals return nmix. Across these functions, a common structure is used for nmix in order to utilize generic summary and plotting functions.

probdraw: ncomp*R/keep matrix that reports the probability that each draw came from a particular component

zdraw: R/keepxnobs matrix that indicates which component each draw is assigned to

compdraw: A list of R/keep lists of ncomp lists. Each of the inner-most lists has 2 elements: a vector of draws for mu and

Value

A list containing:

nmix a list containing: probdraw, zdraw, compdraw (see “nmix Details” section)

alphadraw R/keep vector of alpha draws

nudraw R/keep vector of nu draws

adraw R/keep vector of a draws

vdraw R/keep vector of v draws

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

See Also

rnmixGibbs, rmixture, rmixGibbs, eMixMargDen, momMix, mixDen, mixDenBi

Examples

if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=2000} else {R=10}

set.seed(66)

simulate univariate data from Chi-Sq
N = 200
chisqdf = 8
yl = as.matrix(rchisq(N, df=chisqdf))

set arguments for rDPGibbs

Data1 = list(y=yl)
Prioralpha = list(Istarmin=1, Istarmax=10, power=0.8)
Prior1 = list(Prioralpha=Prioralpha)
Mcmc = list(R=R, keep=1, maxuniq=200)

c1 = rDPGibbs(Prior=Prior1, Data=Data1, Mcmc=Mcmc)

if(0){
plotting examples
rgi = c(0,20)
g = matrix(seq(from=rgi[1],to=rgi[2],length.out=50), ncol=1)
deltax = (rgi[2]-rgi[1]) / nrow(g)
plot(c1$nmix, Grid=g, Data=yl)

plot true density with histogram
plot(range(g[,1]), 1.5*range(dchisq(g[,1],df=chisqdf)),
type="n", xlab=paste("Chisq ; ",N," obs",sep=""), ylab="")
hist(yl, xlim=rgi, freq=FALSE, col="yellow", breaks=20, add=TRUE)
lines(g[,1], dchisq(g[,1],df=chisqdf) / (sum(dchisq(g[,1],df=chisqdf))*deltax),
col="blue", lwd=2)
}

simulate bivariate data from the "Banana" distribution (Meng and Barnard)

banana = function(A, B, C1, C2, N, keep=10, init=10) {
R = init*keep + N*keep
x1 = x2 = 0
bimat = matrix(double(2*N), ncol=2)
for (r in 1:R) {
 x1 = rnorm(1,mean=(B*x2+C1) / (A*(x2^2)+1), sd=sqrt(1/(A*(x2^2)+1)))
 x2 = rnorm(1,mean=(B*x2+C2) / (A*(x1^2)+1), sd=sqrt(1/(A*(x1^2)+1)))
 if (r>init*keep && r%%keep==0) {
 mkeep = r/keep
 bimat[mkeep-init,] = c(x1,x2)
 }
}
return(bimat)
}

set.seed(66)
nvar2 = 2
A = 0.5
B = 0
C1 = C2 = 3
y2 = banana(A=A, B=B, C1=C1, C2=C2, 1000)
rhierBinLogit

MCMC Algorithm for Hierarchical Binary Logit

Description

This function has been deprecated. Please use rhierMnlRwMixture instead.

rhierBinLogit implements an MCMC algorithm for hierarchical binary logits with a normal heterogeneity distribution. This is a hybrid sampler with a RW Metropolis step for unit-level logit parameters.

rhierBinLogit is designed for use on choice-based conjoint data with partial profiles. The Design matrix is based on differences of characteristics between two alternatives. See Appendix A of Bayesian Statistics and Marketing for details.

Usage

rhierBinLogit(Data, Prior, Mcmc)
Arguments

Data

list(lgtdata, Z)

Prior

list(Deltabar, ADelta, nu, V)

Mcmc

list(R, keep, sbeta)

Details

Model and Priors: $y_{hi} = 1$ with $Pr = \frac{exp(x'_{hi}\beta_h)}{1 + exp(x'_{hi}\beta_h)}$ and β_h is $\text{nvar} \times 1$

$h = 1, \ldots, \text{length(lgtdata)}$ units (or "respondents" for survey data)

$\beta_h = Z\Delta[,h] + u_h$

Note: here $Z\Delta$ refers to $Z \times \Delta$ with $Z\Delta[,h]$ the hth row of this product

Δ is an nznvar array

$u_h \sim N(0, V_{beta})$

$\delta = \text{vec}(\Delta) \sim N(\text{vec}(Deltabar), V_{beta}(x)A\Delta^{-1})$

$V_{beta} \sim IW(\nu, V)$

Argument Details: Data = list(lgtdata, Z) [Z optional]

- lgtdata: list of lists with each cross-section unit MNL data
- lgtdata[[h]]$y: $n_h \times 1$ vector of binary outcomes (0,1)
- lgtdata[[h]]$X: $n_h \times \text{nvar}$ design matrix for h'th unit
- Z: $\text{nreg} \times \text{nz}$ mat of unit chars (def: vector of ones)

Prior = list(Deltabar, ADelta, nu, V) [optional]

- Deltabar: $\text{nz} \times \text{nvar}$ matrix of prior means (def: 0)
- ADelta: prior precision matrix (def: 0.01I)
- nu: d.f. parameter for IW prior on normal component Sigma (def: nvar+3)
- V: pds location parm for IW prior on normal component Sigma (def: nuI)

Mcmc = list(R, keep, sbeta) [only R required]

- R: number of MCMC draws
- keep: MCMC thinning parm – keep every keepth draw (def: 1)
- sbeta: scaling parm for RW Metropolis (def: 0.2)

Value

A list containing:

- Deltadraw: $R/keep \times \text{nz} \times \text{nvar}$ matrix of draws of Delta
- betadraw: $\text{nlt} \times \text{nz} \times \text{nvar} \times R/keep$ array of draws of betas
- Vbetadraw: $R/keep \times \text{nz} \times \text{nvar}$ matrix of draws of Vbeta
- llike: $R/keep \times 1$ vector of log-like values
- reject: $R/keep \times 1$ vector of reject rates over nlgt units
Note

Some experimentation with the Metropolis scaling parameter (sbeta) may be required.

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see Chapter 5, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

See Also

rhierMnlRwMixture

Examples

```r
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=10000} else {R=10}
set.seed(66)
nvar = 5          ## number of coefficients
nlgt = 1000       ## number of cross-sectional units
nobs = 10         ## number of observations per unit
nz = 2            ## number of regressors in mixing distribution

Z = matrix(c(rep(1,nlgt),runif(nlgt,min=-1,max=1)), nrow=nlgt, ncol=nz)
Delta = matrix(c(-2, -1, 0, 1, 2, -1, 1, -0.5, 0.5, 0), nrow=nz, ncol=nvar)
iota = matrix(1, nrow=nvar, ncol=1)
Vbeta = diag(nvar) + 0.5*iota%*%t(iota)

lgtdata=NULL
for (i in 1:nlgt) {
  beta = t(Delta)%*%Z[i,] + as.vector(t(chol(Vbeta))%*%rnorm(nvar))
  X = matrix(runif(nobs*nvar), nrow=nobs, ncol=nvar)
  prob = exp(X%*%beta) / (1+exp(X%*%beta))
  unif = runif(nobs, 0, 1)
  y = ifelse(unif<prob, 1, 0)
  lgtdata[[i]] = list(y=y, X=X, beta=beta)
}

Data1 = list(lgtdata=lgtdata, Z=Z)
Mcmc1 = list(R=R)

out = rhierBinLogit(Data=Data1, Mcmc=Mcmc1)

cat("Summary of Delta draws", fill=TRUE)
summary(out$Deltadraw, tvalues=as.vector(Delta))

cat("Summary of Vbeta draws", fill=TRUE)
summary(out$Vbetadraw, tvalues=as.vector(Vbeta[upper.tri(Vbeta,diag=TRUE)]))
```

rhierLinearMixture

Gibbs Sampler for Hierarchical Linear Model with Mixture-of-Normals Heterogeneity

Description

rhierLinearMixture implements a Gibbs Sampler for hierarchical linear models with a mixture-of-normals prior.

Usage

rhierLinearMixture(Data, Prior, Mcmc)

Arguments

Data | list(regdata, Z)
Prior | list(deltabar, Ad, mubar, Amu, nu, V, nu.e, ssq, ncomp)
Mcmc | list(R, keep, nprint)

Details

Model and Priors: nreg regression equations with nvar as the number of X vars in each equation

\[y_i = X_i \beta_i + e_i \] with \(e_i \sim N(0, \tau_i) \)

\(\tau_i \sim nu.e \times \frac{ssq_i}{\chi^2_{nu.e}} \) where \(\tau_i \) is the variance of \(e_i \)

\(B = Z\Delta + U \) or \(\beta_i = \Delta'Z[i,]' + u_i \)

\(\Delta \) is an nzxnvar matrix

Z should not include an intercept and should be centered for ease of interpretation. The mean of each of the nreg \(\beta \)s is the mean of the normal mixture. Use summary() to compute this mean from the compdraw output.

\(u_i \sim N(\mu_{ind}, \Sigma_{ind}) \)

\(ind \sim \text{multinomial}(pvec) \)

\(pvec \sim \text{dirichlet}(a) \)

\(\delta = \text{vec}(\Delta) \sim N(\text{deltabar}, A_d^{-1}) \)

\(\mu_j \sim N(\text{mubar}, \Sigma_j(x)\text{Amu}^{-1}) \)
$$\Sigma_j \sim IW(nu, V)$$

Be careful in assessing the prior parameter Amu: 0.01 can be too small for some applications. See chapter 5 of Rossi et al for full discussion.

Argument Details:

Data = list(regdata, Z) [Z optional]

- **regdata:** list of lists with X and y matrices for each of nreg=length(regdata) regressions
- **regdata[[i]]$X:** n_i x nvar design matrix for equation i
- **regdata[[i]]$y:** n_i x 1 vector of observations for equation i
- **Z:** nreg x nz matrix of unit characteristics (def: vector of ones)

Prior = list(deltabar, Ad, mubar, Amu, nu, V, nu.e, ssq, ncomp) [all but ncomp are optional]

- **deltabar:** nz x nvar vector of prior means (def: 0)
- **Ad:** prior precision matrix for vec(Delta) (def: 0.01*I)
- **mubar:** nvar x 1 prior mean vector for normal component mean (def: 0)
- **Amu:** prior precision for normal component mean (def: 0.01)
- **nu:** d.f. parameter for IW prior on normal component Sigma (def: nvar+3)
- **V:** PDS location parameter for IW prior on normal component Sigma (def: nu*I)
- **nu.e:** d.f. parameter for regression error variance prior (def: 3)
- **ssq:** scale parameter for regression error variance prior (def: var(y_i))
- **a:** Dirichlet prior parameter (def: 5)
- **ncomp:** number of components used in normal mixture

Mcmc = list(R, keep, nprint) [only R required]

- **R:** number of MCMC draws
- **keep:** MCMC thinning parm – keep every keepth draw (def: 1)
- **nprint:** print the estimated time remaining for every nprint’th draw (def: 100, set to 0 for no print)

nmix Details: nmix is a list with 3 components. Several functions in the bayesm package that involve a Dirichlet Process or mixture-of-normals return nmix. Across these functions, a common structure is used for nmix in order to utilize generic summary and plotting functions.

- **probdraw:** ncomp x R/keep matrix that reports the probability that each draw came from a particular component
- **zdraw:** R/keep x nobs matrix that indicates which component each draw is assigned to (here, null)
- **compdraw:** A list of R/keep lists of ncomp lists. Each of the inner-most lists has 2 elements: a vector of draws for mu and a matrix of draws for the Cholesky root of Sigma.

Value

A list containing:

- **taudraw** R/keep x nreg matrix of error variance draws
- **betadraw** nreg x nvar x R/keep array of individual regression coef draws
- **Deltadraw** R/keep x nz x nvar matrix of Deltadraws
nmix a list containing: probdraw, zdraw, compdraw (see “nmix Details” section)

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see Chapter 5, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

See Also

rhierLinearModel

Examples

```r
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=2000} else {R=10}
set.seed(66)
nreg = 300
nobs = 500
nvar = 3
nz = 2
Z = matrix(runif(nreg*nz), ncol=nz)
Z = t(t(Z) - apply(Z,2,mean))
Delta = matrix(c(1,-1,2,0,1,0), ncol=nz)
tau0 = 0.1
iota = c(rep(1,nobs))

## create arguments for rmixture
tcomps = NULL
a = matrix(c(1,0,0,0.5773503,1.1547005,0,-0.4082483,0.4082483,1.2247449), ncol=3)
tcomps[[1]] = list(mu=c(0,-1,-2), rooti=a)
tcomps[[2]] = list(mu=c(0,-1,-2)*2, rooti=a)
tcomps[[3]] = list(mu=c(0,-1,-2)*4, rooti=a)
tpvec = c(0.4, 0.2, 0.4)

## simulated data with Z
regdata = NULL
betas = matrix(double(nreg*nvar), ncol=nvar)
tind = double(nreg)
for (reg in 1:nreg) {
  tempout = rmixture(1,tpvec,tcomps)
  betas[reg,] = Delta%*%Z[reg,] + as.vector(tempout$x)
  tind[reg] = tempout$z
  X = cbind(iota, matrix(runif(nobs*(nvar-1)),ncol=(nvar-1)))
```
ruierLinearModel

Gibbs Sampler for Hierarchical Linear Model with Normal Heterogeneity

Description

rhierLinearModel implements a Gibbs Sampler for hierarchical linear models with a normal prior.

Usage

rhierLinearModel(Data, Prior, Mcmc)

Arguments

Data list(regdata, Z)
Prior list(Deltabar, A, nu.e, ssq, nu, V)
Mcmc list(R, keep, nprint)
Details

Model and Priors: \(n_{\text{reg}} \) regression equations with \(n_{\text{var}} \) \(X \) variables in each equation

\[
y_i = X_i \beta_i + e_i \quad \text{with} \quad e_i \sim N(0, \tau_i)
\]

\(\tau_i \sim \text{nu.e} \times \text{ssq}_i / \chi^2_{\text{nu.e}} \) where \(\tau_i \) is the variance of \(e_i \)

\(\beta_i \sim N(Z\Delta[i,], V_{\beta}) \)

Note: \(Z\Delta \) is the matrix \(Z \ast \Delta \) and \([i,]\) refers to \(i \)th row of this product

\[
\text{vec}(\Delta) \sim N(\text{vec}(Deltabar), V_{\beta} x A^{-1})
\]

\(V_{\beta} \sim IW(\text{nu}, V) \)

\(\Delta, \text{Deltabar} \) are \(nz \times nvar \); \(A \) is \(nz \times nz \); \(V_{\beta} \) is \(nvar \times nvar \).

Note: if you don't have any \(Z \) variables, omit \(Z \) in the \(\text{Data} \) argument and a vector of ones will be inserted; the matrix \(\Delta \) will be \(1 \times nvar \) and should be interpreted as the mean of all unit \(\beta \)s.

Argument Details:

\[
\text{Data} = \text{list}\left(\text{regdata}, Z\right) \quad \left[Z\ \text{optional}\right]
\]

- \(\text{regdata} \):
 - list of lists with \(X \) and \(y \) matrices for each of \(n_{\text{reg}}=\text{length}(\text{regdata}) \) regressions
 - \(\text{regdata}[[i]]\$X \): \(n_i \times nvar \) design matrix for equation \(i \)
 - \(\text{regdata}[[i]]\$y \): \(n_i \times 1 \) vector of observations for equation \(i \)
 - \(Z \): \(n_{\text{reg}} \times nz \) matrix of unit characteristics (def: vector of ones)

- \(\text{Prior} = \text{list}(\text{Deltabar}, A, \text{nu.e}, \text{ssq}, \text{nu}, V) \) \{optional\}
 - \(\text{Deltabar} \): \(nz \times nvar \) matrix of prior means (def: 0)
 - \(A \): \(nz \times nz \) matrix for prior precision (def: 0.01I)
 - \(\text{nu.e} \): d.f. parameter for regression error variance prior (def: 3)
 - \(\text{ssq} \): scale parameter for regression error var prior (def: var(y_i))
 - \(\text{nu} \): d.f. parameter for \(V_{\beta} \) prior (def: nvar+3)
 - \(V \): Scale location matrix for \(V_{\beta} \) prior (def: nu*I)

- \(\text{Mcmc} = \text{list}(R, \text{keep}, \text{nprint}) \) \{only \(R \) required\}
 - \(R \): number of MCMC draws
 - \(\text{keep} \): MCMC thinning parm – keep every \(\text{keep} \)th draw (def: 1)
 - \(\text{nprint} \): print the estimated time remaining for every \(\text{nprint} \)th draw (def: 100, set to 0 for no print)

Value

A list containing:

- \(\text{betadraw} \): \(n_{\text{reg}} \times nvar \times R/\text{keep} \) array of individual regression coef draws
- \(\text{taudraw} \): \(R/\text{keep} \times n_{\text{reg}} \) matrix of error variance draws
- \(\text{Deltadraw} \): \(R/\text{keep} \times nz \times nvar \) matrix of Deltadraws
- \(\text{Vbetadraw} \): \(R/\text{keep} \times nvar \times nvar \) matrix of \(V_{\beta} \) draws

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.
References

For further discussion, see Chapter 3, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

See Also

rhierLinearMixture

Examples

```r
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=2000} else {R=10}
set.seed(66)

nreg = 100
nobs = 100
nvar = 3
Vbeta = matrix(c(1, 0.5, 0, 0.5, 2, 0.7, 0, 0.7, 1), ncol=3)

Z = cbind(c(rep(1,nreg)), 3*runif(nreg))
Z[,2] = Z[,2] - mean(Z[,2])
nz = ncol(Z)
Delta = matrix(c(1,-1,2,0,1,0), ncol=2)
Delta = t(Delta) # first row of Delta is means of betas
Beta = matrix(rnorm(nreg*nvar),nrow=nreg)%*%chol(Vbeta) + Z%*%Delta

tau = 0.1
iota = c(rep(1,nobs))
regdata = NULL
for (reg in 1:nreg) {
  X = cbind(iota, matrix(runif(nobs*(nvar-1)),ncol=(nvar-1)))
y = X%*%Beta[reg,] + sqrt(tau)*rnorm(nobs)
regdata[[reg]] = list(y=y, X=X)
}

Data1 = list(regdata=regdata, Z=Z)
Mcmc1 = list(R=R, keep=1)
out = rhierLinearModel(Data=Data1, Mcmc=Mcmc1)

cat("Summary of Delta draws", fill=TRUE)
summary(out$Deltadraw, tvalues=as.vector(Delta))
cat("Summary of Vbeta draws", fill=TRUE)
summary(out$Vbetadraw, tvalues=as.vector(Vbeta[upper.tri(Vbeta, diag=TRUE)]))

## plotting examples
if(0){
  plot(out$betadraw)
  plot(out$Deltadraw)
}
```
rhierMnlDP MCMC Algorithm for Hierarchical Multinomial Logit with Dirichlet Process Prior Heterogeneity

Description

rhierMnlDP is a MCMC algorithm for a hierarchical multinomial logit with a Dirichlet Process prior for the distribution of heterogeneity. A base normal model is used so that the DP can be interpreted as allowing for a mixture of normals with as many components as there are panel units. This is a hybrid Gibbs Sampler with a RW Metropolis step for the MNL coefficients for each panel unit. This procedure can be interpreted as a Bayesian semi-parametric method in the sense that the DP prior can accomodate heterogeneity of an unknown form.

Usage

rhierMnlDP(Data, Prior, Mcmc)

Arguments

Data list(lgtdata, Z, p)
Prior list(deltabar, Ad, Prioralpha, lambda_hyper)
Mcmc list(R, keep, nprint, s, w, maxunique, gridsize)

Details

Model and Priors: \(y_i \sim MNL(X_i, \beta_i) \) with \(i = 1, \ldots, \text{length(lgtdata)} \) and where \(\theta_i \) is \(nvar \times 1 \)
\(\beta_i = Z \Delta [i,] + u_i \)
Note: \(Z \Delta \) is the matrix \(Z \ast \Delta \); \([i,]\) refers to \(i \)th row of this product
Delta is an \(nz \times nvar \) matrix
\(\beta_i \sim N(\mu_i, \Sigma_i) \)
\(\theta_i = (\mu_i, \Sigma_i) \sim DP(G_0(\lambda), \alpha) \)

\(G_0(\lambda) : \)
\(\mu_i | \Sigma_i \sim N(0, \Sigma_i (x)^{-1}) \)
\(\Sigma_i \sim IW(nu, nu \ast v \ast I) \)
\(delta = vec(\Delta) \sim N(\text{deltabar}, A_d^{-1}) \)

\(\lambda(a, nu, v) : \)
\(a \sim \text{uniform}[a_{\text{lim}[1]}, a_{\text{lim}[2]}] \)
\(nu \sim \text{dim(data)}-1 + \exp(z) \)
\(z \sim \text{uniform}[\text{dim(data)}-1+nulim[1], nulim[2]] \)
\(v \sim \text{uniform}[v_{\text{lim}[1]}, v_{\text{lim}[2]}] \)
\(alpha \sim (1 - (alpha - alphemnin)/(alphamax - alphemnin))^{\text{power}} \)
alpha = alphemnin then expected number of components = \(I_{\text{starmin}} \)
alpha = alphamax then expected number of components = \(I_{\text{starmax}} \)
Z should NOT include an intercept and is centered for ease of interpretation. The mean of each of the \(\text{nlgt} \) \(\beta \)s is the mean of the normal mixture. Use \texttt{summary()} to compute this mean from the \texttt{compdraw} output.

We parameterize the prior on \(\Sigma \) such that \(\text{mode}(\Sigma) = \nu/(\nu + 2)vI \). The support of \(\nu \) enforces a non-degenerate IW density; \(\text{nulim}[1] > 0 \).

The default choices of alim, nulim, and vlim determine the location and approximate size of candidate "atoms" or possible normal components. The defaults are sensible given a reasonable scaling of the X variables. You want to insure that alim is set for a wide enough range of values (remember \(a \) is a precision parameter) and the \(v \) is big enough to propose Sigma matrices wide enough to cover the data range.

A careful analyst should look at the posterior distribution of a, \(\nu \), \(v \) to make sure that the support is set correctly in alim, nulim, vlim. In other words, if we see the posterior bunched up at one end of these support ranges, we should widen the range and rerun.

If you want to force the procedure to use many small atoms, then set nulim to consider only large values and set vlim to consider only small scaling constants. Set alphamx to a large number. This will create a very "lumpy" density estimate somewhat like the classical Kernel density estimates. Of course, this is not advised if you have a prior belief that densities are relatively smooth.

Argument Details:

\texttt{Data = list(lgtdata, \ Z, p) [Z optional]}

- **lgtdata:** list of lists with each cross-section unit MNL data
 - \texttt{lgtdata[[i]]$y: nix1 vector of multinomial outcomes (1, \ldots, m)}
 - \texttt{lgtdata[[i]]$X: nixvvar design matrix for \(i \)th unit}
- **Z:** \(nregxnz \) matrix of unit characteristics (def: vector of ones)
- **p:** number of choice alternatives

\texttt{Prior = list(deltabar, Ad, Prioralpha, lambda_hyper) [optional]}

- **deltabar:** \(nz \times nvar \times 1 \) vector of prior means (def: 0)
- **Ad:** prior precision matrix for vec(D) (def: 0.01*I)
- **Prioralpha:** list(Istarmin, Istarmax, power)
 - \$Istarmin: expected number of components at lower bound of support of alpha (def: 1)
 - \$Istarmax: expected number of components at upper bound of support of alpha (def: \(\min(50, 0.1*\text{nlgt}) \))
 - \$power: power parameter for alpha prior (def: 0.8)
- **lambda_hyper:** list(alim, nulim, vlim)
 - \$alim: defines support of a distribution (def: c(0.01, 2))
 - \$nulim: defines support of nu distribution (def: c(0.001, 3))
 - \$vlim: defines support of v distribution (def: c(0.1, 4))

\texttt{Mcmc = list(R, keep, nprint, s, w, maxunique, gridsize) [only R required]}

- **R:** number of MCMC draws
- **keep:** MCMC thinning parameter – keep every \texttt{keep}th draw (def: 1)
- **nprint:** print the estimated time remaining for every \texttt{nprint}'th draw (def: 100, set to 0 for no print)
- **s:** scaling parameter for RW Metropolis (def: \(2.93/sqrt(nvar) \))
- **w:** fractional likelihood weighting parameter (def: 0.1)
- **maxuniq:** storage constraint on the number of unique components (def: 200)
- **gridsize:** number of discrete points for hyperparameter priors, (def: 20)
nmix Details: nmix is a list with 3 components. Several functions in the bayesm package that involve a Dirichlet Process or mixture-of-normals return nmix. Across these functions, a common structure is used for nmix in order to utilize generic summary and plotting functions.

probdraw: ncompR/keep matrix that reports the probability that each draw came from a particular component (here, a one-column matrix of 1s)
zdraw: R/keepxnobs matrix that indicates which component each draw is assigned to (here, null)
compdraw: A list of R/keep lists of ncomp lists. Each of the inner-most lists has 2 elements: a vector of draws for mu and a matrix of draws for Sigma.

Value
A list containing:

Deltadraw R/keepxz * nvar matrix of draws of Delta, first row is initial value
betadraw nlgtxnvarxR/keep array of draws of betas
nmix a list containing: probdraw, zdraw, compdraw (see “nmix Details” section)
adraw R/keep draws of hyperparm a
vdraw R/keep draws of hyperparm v
nudraw R/keep draws of hyperparm nu
Istardraw R/keep draws of number of unique components
alphadraw R/keep draws of number of DP tightness parameter
loglike R/keep draws of log-likelihood

Note
As is well known, Bayesian density estimation involves computing the predictive distribution of a "new" unit parameter, \(\theta_{n+1} \) (here "n"=nlgt). This is done by averaging the normal base distribution over draws from the distribution of \(\theta_{n+1} \) given \(\theta_1, ..., \theta_n, \alpha, \lambda, \text{data} \). To facilitate this, we store those draws from the predictive distribution of \(\theta_{n+1} \) in a list structure compatible with other bayesm routines that implement a finite mixture of normals.

Large \(R \) values may be required (>20,000).

Author(s)
Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References
For further discussion, see Chapter 5, Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

See Also
rhierMnlRwMixture
Examples

```r
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=200000} else {R=10}
set.seed(66)

p = 3  # num of choice alterns
ncoef = 3
nlgt = 300  # num of cross sectional units
nz = 2
Z = matrix(runif(nz*nlgt),ncol=nz)
Z = t(t(Z)-apply(Z,2,mean))  # demean Z
ncomp = 3  # no of mixture components
Delta=matrix(c(1,0,1,0,1,2),ncol=2)
comps = NULL
comps[[1]] = list(mu=c(0,-1,-2), rooti=diag(rep(2,3)))
comps[[2]] = list(mu=c(0,-1,-2)*2, rooti=diag(rep(2,3)))
comps[[3]] = list(mu=c(0,-1,-2)*4, rooti=diag(rep(2,3)))
pvec=c(0.4, 0.2, 0.4)

## simulate from MNL model conditional on X matrix
simmnlwX = function(n,X,beta) {
  k = length(beta)
  Xbeta = X%*%beta
  j = nrow(Xbeta) / n
  Xbeta = matrix(Xbeta, byrow=TRUE, ncol=j)
  Prob = exp(Xbeta)
  iota = c(rep(1,j))
  denom = Prob%*%iota
  Prob = Prob / as.vector(denom)
  y = vector("double", n)
  ind = 1:j
  for (i in 1:n) {
    yvec = rmultinom(1, 1, Prob[i,])
    y[i] = ind%*%yvec
  }
  return(list(y=y, X=X, beta=beta, prob=Prob))
}

## simulate data with a mixture of 3 normals
simlgtdata = NULL
ni = rep(50,300)
for (i in 1:nlgt) {
  betai = Delta%*%Z[i,] + as.vector(rmixture(1,pvec,comps)$x)
  Xa = matrix(runif(ni[i]*p,min=-1.5,max=0), ncol=p)
  X = createX(p, na=1, nd=NULL, Xa=Xa, Xd=NULL, base=1)
  outa = simmnlwX(ni[i], X, betai)
  simlgtdata[[i]] = list(y=outa$y, X=X, beta=betai)
}

## plot betas
if(0){
  bmat = matrix(0, nlgt, ncoef)
  for(i in 1:nlgt) { bmat[i,] = simlgtdata[[i]]$beta }
```
rhierMnlRwMixture

MCMC Algorithm for Hierarchical Multinomial Logit with Mixture-of-Normals Heterogeneity

Description

rhierMnlRwMixture is a MCMC algorithm for a hierarchical multinomial logit with a mixture of normals heterogeneity distribution. This is a hybrid Gibbs Sampler with a RW Metropolis step for the MNL coefficients for each panel unit.

Usage

rhierMnlRwMixture(Data, Prior, Mcmc)

Arguments

Data list(lgtdata, Z, p)
Prior list(a, deltabar, Ad, mubar, Amu, nu, V, a, ncomp, SignRes)
Mcmc list(R, keep, nprint, s, w)

Details

Model and Priors: \(y_i \sim \text{MNL}(X_i, \beta_i) \) with \(i = 1, \ldots, \text{length(lgtdata)} \) and where \(\beta_i \) is \(nvar \times 1 \)

\[\beta_i = Z \Delta[i,i] + u_i \]

Note: \(Z \Delta \) is the matrix \(Z \times \Delta \) and \([i,i]\) refers to \(i \)th row of this product

Delta is an \(nz \times nvar \) array

\[u_i \sim N(\mu_{ind}, \Sigma_{ind}) \] with \(ind \sim \text{multinomial}(pvec) \)
\[
\begin{align*}
pvec & \sim \text{dirichlet}(a) \\
delta & = \text{vec}(\Delta) \sim N(\text{deltabar}, A_d^{-1}) \\
\mu_j & \sim N(\text{mubar}, \Sigma_j(x) A_{mu}^{-1}) \\
\Sigma_j & \sim \text{IW}(nu, V)
\end{align*}
\]

Note: \(Z\) should NOT include an intercept and is centered for ease of interpretation. The mean of each of the \(nlgt\) \(\beta\)s is the mean of the normal mixture. Use \text{summary()} to compute this mean from the \text{compdraw} output.

Be careful in assessing prior parameter \(A_{mu}\): 0.01 is too small for many applications. See chapter 5 of Rossi et al for full discussion.

\textbf{Argument Details:} \(\text{Data = list(lgtdata, Z, p)} \) [2 \text{optional}]

\text{Prior = list(a, deltabar, Ad, mubar, Amu, nu, V, a, ncomp, SignRes)} \space \text{[all but} \space \text{ncomp are optional]}

\text{Mcmc = list(R, keep, nprint, s, w)} \space \text{[only} \space \text{R required]}

\textbf{Sign Restrictions:} If \(\beta_k\) has a sign restriction: \(\beta_k = \text{SignRes}[k] \ast \exp(\beta \ast i, k)\)

To use sign restrictions on the coefficients, \(\text{SignRes}\) must be an \(nvarx1\) vector containing values of either 0, -1, or 1. The value 0 means there is no sign restriction, -1 ensures that the coefficient is negative, and 1 ensures that the coefficient is positive. For example, if \(\text{SignRes} = c(0, 1, -1)\), the first coefficient is unconstrained, the second will be positive, and the third will be negative.

The sign restriction is implemented such that if the the \(k\)th \(\beta\) has a non-zero sign restriction (i.e., it is constrained), we have \(\beta_k = \text{SignRes}[k] \ast \exp(\beta \ast k)\).

The sign restrictions (if used) will be reflected in the \text{betadraw} output. However, the unco-
strained mixture components are available in \texttt{nmix}. \textbf{Important}: Note that draws from \texttt{nmix} are distributed according to the mixture of normals but \textbf{not} the coefficients in \texttt{betadraw}. Care should be taken when selecting priors on any sign restricted coefficients. See related vignette for additional information.

\texttt{nmix} \textbf{Details}: \texttt{nmix} is a list with 3 components. Several functions in the \texttt{bayesm} package that involve a Dirichlet Process or mixture-of-normals return \texttt{nmix}. Across these functions, a common structure is used for \texttt{nmix} in order to utilize generic summary and plotting functions.

\begin{description}
\item[probdraw:] \texttt{ncompR/keep} matrix that reports the probability that each draw came from a particular component
\item[zdraw:] \texttt{R/keepxnobs} matrix that indicates which component each draw is assigned to (here, null)
\item[compdraw:] A list of \texttt{R/keep} lists of \texttt{ncomp} lists. Each of the inner-most lists has 2 elements: a vector of draws for \texttt{mu} and a matrix of draws for the Cholesky root of \texttt{Sigma}.
\end{description}

\textbf{Value}

A list containing:

\begin{description}
\item[Deltadraw:] \texttt{R/keepxznvar} matrix of draws of Delta, first row is initial value
\item[betadraw:] \texttt{nlgtxnvarxR/keep} array of beta draws
\item[nmix] a list containing: \texttt{probdraw}, \texttt{zdraw}, \texttt{compdraw} (see "\texttt{nmix} Details" section)
\item[loglike] \texttt{R/keepx1} vector of log-likelihood for each kept draw
\item[SignRes] \texttt{nvarx1} vector of sign restrictions
\end{description}

\textbf{Note}

Note: as of version 2.0-2 of \texttt{bayesm}, the fractional weight parameter has been changed to a weight between 0 and 1. \texttt{w} is the fractional weight on the normalized pooled likelihood. This differs from what is in Rossi et al chapter 5, i.e.

\begin{equation}
\text{like}_i^{(1-w)}x_{\text{like,pooled}}((n_i/N)*w)
\end{equation}

Large R values may be required (>20,000).

\textbf{Author(s)}

Peter Rossi, Anderson School, UCLA, \texttt{<perossichi@gmail.com>}.

\textbf{References}

For further discussion, see Chapter 5, \textit{Bayesian Statistics and Marketing} by Rossi, Allenby, and McCulloch.

\url{http://www.perossi.org/home/bsm-1}

\textbf{See Also}

\texttt{rmnlIndepMetrop}
Examples

if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=10000} else {R=10}
set.seed(66)

p = 3 # num of choice alterns
ncof = 3
nlgt = 300 # num of cross sectional units
nz = 2
Z = matrix(runif(nz*nlgt), ncol=nz)
Z = t(t(Z) - apply(Z,2,mean)) # demean Z
ncomp = 3 # num of mixture components
Delta = matrix(c(1,0,1,0,1,2), ncol=2)
comps=NULL
comps[[1]] = list(mu=c(0,-1,-2), rooti=diag(rep(1,3)))
comps[[2]] = list(mu=c(0,-1,-2)*2, rooti=diag(rep(1,3)))
comps[[3]] = list(mu=c(0,-1,-2)*4, rooti=diag(rep(1,3)))
pvec = c(0.4, 0.2, 0.4)

simulate from MNL model conditional on X matrix
simmnlwX= function(n,X,beta) {
 k = length(beta)
 Xbeta = X%*%beta
 j = nrow(Xbeta) / n
 Xbeta = matrix(Xbeta, byrow=TRUE, ncol=j)
 Prob = exp(Xbeta)
 iota = c(rep(1,j))
 denom = Prob%*%iota
 Prob = Prob/as.vector(denom)
 y = vector("double", n)
 ind = 1:j
 for (i in 1:n) {
 yvec = rmultinom(1, 1, Prob[i,])
 y[i] = ind%*%yvec
 }
 return(list(y=y, X=X, beta=beta, prob=Prob))
}

simulate data
simlgtdata = NULL
ni = rep(50, 300)
for (i in 1:nlgt) {
 betai = Delta%*%Z[i,] + as.vector(rmixture(1,pvec,comps)$x)
 Xa = matrix(runif(ni[i]*p,min=-1.5,max=0), ncol=p)
 X = createX(p, na=1, nd=NULL, Xa=Xa, Xd=NULL, base=1)
 outa = simmnlwX(ni[i], X, betai)
 simlgtdata[[i]] = list(y=outa$y, X=X, beta=betai)
}

plot betas
if(0){
 bmat = matrix(0, nlgt, ncof)
for(i in 1:nlg) { bmat[i,] = simlgtdata[[i]]$beta}
par(mfrow = c(ncoef,1))
for(i in 1:ncoef) { hist(bmat[,i], breaks=30, col="magenta") }
}

set parms for priors and Z
Prior1 = list(ncomp=5)
keep = 5
Mcmc1 = list(R=R, keep=keep)
Data1 = list(p=p, lgtdata=simlgtdata, Z=Z)

fit model without sign constraints
out1 = rhierMnlRwMixture(Data=Data1, Prior=Prior1, Mcmc=Mcmc1)

cat("Summary of Delta draws", fill=TRUE)
summary(out1$Deltadraw, tvalues=as.vector(Delta))

cat("Summary of Normal Mixture Distribution", fill=TRUE)
summary(out1$nmix)

plotting examples
if(0) {
 plot(out1$betadraw)
 plot(out1$nmix)
}

fit model with constraint that beta_i2 < 0 forall i
Prior2 = list(ncomp=5, SignRes=c(0,-1,0))
out2 = rhierMnlRwMixture(Data=Data1, Prior=Prior2, Mcmc=Mcmc1)

cat("Summary of Delta draws", fill=TRUE)
summary(out2$Deltadraw, tvalues=as.vector(Delta))

cat("Summary of Normal Mixture Distribution", fill=TRUE)
summary(out2$nmix)

plotting examples
if(0) {
 plot(out2$betadraw)
 plot(out2$nmix)
}

rhierNegbinRw

MCMC Algorithm for Hierarchical Negative Binomial Regression

Description

rhierNegbinRw implements an MCMC algorithm for the hierarchical Negative Binomial (NBD) regression model. Metropolis steps for each unit-level set of regression parameters are automatically tuned by optimization. Over-dispersion parameter (alpha) is common across units.
Usage

rhierNegbinRw(Data, Prior, Mcmc)

Arguments

Data
list(regdata, Z)

Prior
list(Deltabar, Adelta, nu, V, a, b)

Mcmc
list(R, keep, nprint, s_beta, s_alpha, alpha, c, Vbeta0, Delta0)

Details

Model and Priors:
y_i \sim \text{NBD(mean}=\lambda, \text{over-dispersion}=\alpha)
\lambda = \exp(X_i \beta_i)
\beta_i \sim \mathcal{N}(\Delta'z_i, \text{Vbeta})
vec(\Delta)\text{Vbeta} \sim \mathcal{N}(vec(\text{Deltabar}), \text{Vbeta}(x)\text{Adelta})
\text{Vbeta} \sim \text{IW(nu}, \text{V})
\alpha \sim \text{Gamma}(a, b) \text{ (unless Mcmc$alpha specified)}
Note: prior mean of \alpha = a/b, variance = a/(b^2)

Argument Details:
Data = list(regdata, Z) \text{ [Z optional]}
regdata: list of lists with data on each of nreg units
regdata[[i]]$X: nobs$_ixnvar matrix of X variables
regdata[[i]]$y: nobs$_i$x1 vector of count responses
Z: nregxnvar matrix of unit characteristics (def: vector of ones)

Prior = list(Deltabar, Adelta, nu, V, a, b) \text{ [optional]}
Deltabar: nzxnvar prior mean matrix (def: 0)
Adelta: nzxnz PDS prior precision matrix (def: 0.01*I)
nu: d.f. parameter for Inverted Wishart prior (def: nvar+3)
V: location matrix of Inverted Wishart prior (def: nu*I)
a: Gamma prior parameter (def: 0.5)
b: Gamma prior parameter (def: 0.1)

Mcmc = list(R, keep, nprint, s_beta, s_alpha, alpha, c, Vbeta0, Delta0) \text{ [only R required]}
R: number of MCMC draws
keep: MCMC thinning parameter – keep every keepth draw (def: 1)
nprint: print the estimated time remaining for every nprint^th draw (def: 100, set to 0 for no print)
s_beta: scaling for beta | alpha RW inc cov (def: 2.93/sqrt(nvar))
s_alpha: scaling for alpha | beta RW inc cov (def: 2.93)
alpha: over-dispersion parameter (def: alpha \sim \text{Gamma}(a,b))
c: fractional likelihood weighting parm (def: 2)
Vbeta0: starting value for Vbeta (def: I)
Delta0: starting value for Delta (def: 0)
Value

A list containing:

- `llike` \(R/keep \) vector of values of log-likelihood
- `betadraw` \(nreg \times nvar / keep \) array of beta draws
- `alphadraw` \(R/keep \) vector of alpha draws
- `acceptrbeta` acceptance rate of the beta draws
- `acceptralpha` acceptance rate of the alpha draws

Note

The NBD regression encompasses Poisson regression in the sense that as alpha goes to infinity the NBD distribution tends to the Poisson.

For "small" values of alpha, the dependent variable can be extremely variable so that a large number of observations may be required to obtain precise inferences.

For ease of interpretation, we recommend demeaning \(Z \) variables.

Author(s)

Sridhar Narayanan (Stanford GSB) and Peter Rossi (Anderson School, UCLA), <perossichi@gmail.com>.

References

For further discussion, see Chapter 5, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

See Also

rnegbinRw

Examples

```r
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=2000} else {R=10}
set.seed(66)

# Simulate from the Negative Binomial Regression
sinnegbin = function(X, beta, alpha) {
  lambda = exp(X%*%beta)
  y = NULL
  for (j in 1:length(lambda)) {y = c(y, rnbinom(1, mu=lambda[j], size=alpha)) }
  return(y)
}

nreg = 100        # Number of cross sectional units
T = 50            # Number of observations per unit
nobs = nreg*T
nvar = 2          # Number of X variables
```
nz = 2 # Number of Z variables

Construct the Z matrix
Z = cbind(rep(1,nreg), rnorm(nreg,mean=1,sd=0.125))

Delta = cbind(c(4,2), c(0.1,-1))
alpha = 5
Vbeta = rbind(c(2,1), c(1,2))

Construct the regdata (containing X)
simnegbindata = NULL
for (i in 1:nreg) {
 betai = as.vector(Z[i,]%*%Delta) + chol(Vbeta)%*%rnorm(nvar)
 X = cbind(rep(1,T),rnorm(T,mean=2,sd=0.25))
 simnegbindata[[i]] = list(y=simnegbin(X,betai,alpha), X=X, beta=betai)
}

Beta = NULL
for (i in 1:nreg) {Beta = rbind(Beta,matrix(simnegbindata[[i]]$beta,nrow=1))}
Data1 = list(regdata=simnegbindata, Z=Z)
Mcmc1 = list(R=R)
out = rhierNegbinRw(Data=Data1, Mcmc=Mcmc1)

cat("Summary of Delta draws", fill=TRUE)
summary(out$Deltadraw, tvalues=as.vector(Delta))

cat("Summary of Vbeta draws", fill=TRUE)
summary(out$Vbetadraw, tvalues=as.vector(Vbeta[upper.tri(Vbeta,diag=TRUE)]))

cat("Summary of alpha draws", fill=TRUE)
summary(out$alpha, tvalues=alpha)

plotting examples
if(0){
 plot(out$betadraw)
 plot(out$alpha,tvalues=alpha)
 plot(out$Deltadraw,tvalues=as.vector(Delta))
}

rivDP

rivDP is a Gibbs Sampler for a linear structural equation with an arbitrary number of instruments.

rivDP uses a mixture-of-normals for the structural and reduced form equations implemented with a Dirichlet Process prior.

Description

rivDP is a Gibbs Sampler for a linear structural equation with an arbitrary number of instruments. rivDP uses a mixture-of-normals for the structural and reduced form equations implemented with a Dirichlet Process prior.
rivDP

Usage

rivDP(Data, Prior, Mcmc)

Arguments

Data list(y, x, w, z)
Prior list(md, Ad, mbg, Abg, lambda, Prioralpha, lambda_hyper)
Mcmc list(R, keep, nprint, maxuniq, SCALE, gridsize)

Details

Model and Priors:
\[x = z^T \delta + e_1\]
\[y = \beta \ast x + w^T \gamma + e_2\]
\[e_1, e_2 \sim N(\theta_i)\] where \(\theta_i\) represents \(\mu_i, \Sigma_i\)

Note: Error terms have non-zero means. DO NOT include intercepts in the \(z\) or \(w\) matrices. This is different from rivGibbs which requires intercepts to be included explicitly.

\[\delta \sim N(md, Ad^{-1})\]
\[vec(\beta, \gamma) \sim N(mbg, Abg^{-1})\]
\[\theta_i \sim G\]
\[G \sim DP(alpha, G_0)\]
\[alpha \sim (1 - (alpha - alpha_{min})/(alpha_{max} - alphamin))^{power}\]

where \(alpha_{min}\) and \(alpha_{max}\) are set using the arguments in the reference below. It is highly recommended that you use the default values for the hyperparameters of the prior on alpha.

\(G_0\) is the natural conjugate prior for \((\mu, \Sigma): \Sigma \sim IW(nu, vI)\) and \(\mu|\Sigma \sim N(0, \Sigma(x)a^{-1})\)

These parameters are collected together in the list \(\lambda\). It is highly recommended that you use the default settings for these hyper-parameters.

\[\lambda(a, nu, v):\]
\[a \sim uniform[alim[1], alimb[2]]\]
\[nu \sim dim(data)-1 + \exp(z)\]
\[z \sim uniform[dim(data)-1+nulim[1], nulim[2]]\]
\[v \sim uniform[vlim[1], vlim[2]]\]

Argument Details: Data = list(y, x, w, z)

- \(y\): \(nx1\) vector of obs on LHS variable in structural equation
- \(x\): \(nx1\) vector of obs on "endogenous" variable in structural equation
- \(w\): \(nxj\) matrix of obs on "exogenous" variables in the structural equation
- \(z\): \(nxp\) matrix of obs on instruments

Prior = list(md, Ad, mbg, Abg, lambda, Prioralpha, lambda_hyper) [optional]

- \(md\): \(p\)-length prior mean of delta (def: 0)
- \(Ad\): \(pxp\) PDS prior precision matrix for prior on delta (def: 0.01*I)
- \(mbg\): \((j + 1)\)-length prior mean vector for prior on beta.gamma (def: 0)
- \(Abg\): \((j + 1)\times(j + 1)\) PDS prior precision matrix for prior on beta.gamma (def: 0.01*I)
- \(Prioralpha\): list(Istarmin, Istarmax, power)
$Istarmin$: is expected number of components at lower bound of support of alpha (def: 1)
$Istarmax$: is expected number of components at upper bound of support of alpha (def: floor(0.1*length(y)))
$power$: is the power parameter for alpha prior (def: 0.8)

lambda_hyper: list(alim, nulim, vlim)
$alim$: defines support of a distribution (def: c(0.01, 10))
$nulim$: defines support of nu distribution (def: c(0.01, 3))
$vlim$: defines support of v distribution (def: c(0.1, 4))

Mcmc = list(R, keep, nprint, maxuniq, SCALE, gridsize) [only R required]

R: number of MCMC draws
keep: MCMC thinning parameter: keep every keepth draw (def: 1)
nprint: print the estimated time remaining for every nprint'th draw (def: 100, set to 0 for no print)
maxuniq: storage constraint on the number of unique components (def: 200)
SCALE: scale data (def: TRUE)
gridsize: gridsize parameter for alpha draws (def: 20)

nmix Details: nmix is a list with 3 components. Several functions in the bayesm package that involve a Dirichlet Process or mixture-of-normals return nmix. Across these functions, a common structure is used for nmix in order to utilize generic summary and plotting functions.

probdraw: ncompR/keep matrix that reports the probability that each draw came from a particular component (here, a one-column matrix of 1s)
zdraw: R/keepxnobs matrix that indicates which component each draw is assigned to (here, null)
compdraw: A list of R/keep lists of ncomp lists. Each of the inner-most lists has 2 elements: a vector of draws for mu and a matrix of draws for the Cholesky root of Sigma.

Value
A list containing:
deltadraw R/keepxp array of delta draws
betadraw R/keepx1 vector of beta draws
alphadraw R/keepx1 vector of draws of Dirichlet Process tightness parameter
Istardraw R/keepx1 vector of draws of the number of unique normal components
gammadraw R/keepxj array of gamma draws
nmix a list containing: probdraw, zdraw, compdraw (see “nmix Details” section)

Author(s)
Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References
See also, Chapter 4, Bayesian Non- and Semi-parametric Methods and Applications by Peter Rossi.
rivDP

See Also

rivGibbs

Examples

```r
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=2000} else {R=10}
set.seed(66)

## simulate scaled log-normal errors and run
k = 10
delta = 1.5
Sigma = matrix(c(1, 0.6, 0.6, 1), ncol=2)
N = 1000
tbeta = 4
scalefactor = 0.6
root = chol(scalefactor*Sigma)
mu = c(1,1)

## compute interquartile ranges
ninterq = qnorm(0.75) - qnorm(0.25)
error = matrix(rnorm(100000*2), ncol=2)%*%root
error = t(t(error)+mu)
Err = t(t(exp(error)) - exp(mu+0.5*scalefactor*diag(Sigma)))
lnNinterq = quantile(Err[,1], prob=0.75) - quantile(Err[,1], prob=0.25)

## simulate data
error = matrix(rnorm(N*2), ncol=2)%*%root
eror = t(t(error)+mu)
Err = t(t(exp(error)) - exp(mu+0.5*scalefactor*diag(Sigma)))

## scale appropriately
Err[,1] = Err[,1]*ninterq/lnNinterq
Err[,2] = Err[,2]*ninterq/lnNinterq
z = matrix(runif(k*N), ncol=k)
x = z%*%(delta*c(rep(1,k))) + Err[,1]
y = x*tbeta + Err[,2]

## specify data input and mcmc parameters
Data = list()
Data$z = z
Data$x = x
Data$y = y

Mcmc = list()
Mcmc$maxuniq = 100
Mcmc$R = R
end = Mcmc$R

out = rivDP(Data=Data, Mcmc=Mcmc)

cat("Summary of Beta draws", fill=TRUE)
summary(out$betadraw, tvalues=tbeta)
```
plotting examples
if(0) {
 plot(out$betadraw, tvalues=tbeta)
 plot(out$nmix) # plot "fitted" density of the errors
}

rivGibbs

Gibbs Sampler for Linear "IV" Model

Description

rivGibbs is a Gibbs Sampler for a linear structural equation with an arbitrary number of instruments.

Usage

```
rivGibbs(Data, Prior, Mcmc)
```

Arguments

- **Data**
 - list(y, x, w, z)
- **Prior**
 - list(md, Ad, mbg, Abg, nu, V)
- **Mcmc**
 - list(R, keep, nprint)

Details

Model and Priors:

\[
\begin{align*}
x &= z'\delta + e_1 \\
y &= \beta \star x + w'\gamma + e_2 \\
e_1, e_2 &\sim N(0, \Sigma) \\
\delta &\sim N(md, Ad^{-1}) \\
vec(\beta, \gamma) &\sim N(mbg, Abg^{-1}) \\
\Sigma &\sim IW(nu, V)
\end{align*}
\]

Argument Details:

- **Data** = list(y, x, w, z)
 - *y*: nx1 vector of obs on LHS variable in structural equation
 - *x*: nx1 vector of obs on "endogenous" variable in structural equation
 - *w*: nxj matrix of obs on "exogenous" variables in the structural equation
 - *z*: n xp matrix of obs on instruments

- **Prior** = list(md, Ad, mbg, Abg, nu, V) [optional]
 - *md*: p-length prior mean of delta (def: 0)
 - *Ad*: pxp PDS prior precision matrix for prior on delta (def: 0.01*I)
 - *mbg*: (j + 1)-length prior mean vector for prior on beta.gamma (def: 0)
rivGibbs

Abg: \((j + 1)x(j + 1)\) PDS prior precision matrix for prior on beta, gamma (def: 0.01*I)
nu: d.f. parameter for Inverted Wishart prior on Sigma (def: 5)
V: 2x2 location matrix for Inverted Wishart prior on Sigma (def: nu*I)

\[
\text{Mcmc} = \text{list}(R, \text{keep}, \text{nprint}) \quad [\text{only } R \text{ required}]
\]

R: number of MCMC draws
keep: MCMC thinning parameter: keep every keepth draw (def: 1)
nprint: print the estimated time remaining for every nprint’th draw (def: 100, set to 0 for no print)

Value

A list containing:

deltadraw \(R/\text{keep}x\) matrix of delta draws
betadraw \(R/\text{keep}x1\) vector of beta draws
gammadraw \(R/\text{keep}xj\) matrix of gamma draws
Sigmadraw \(R/\text{keep}x4\) matrix of Sigma draws – each row is the vector form of Sigma

Author(s)

Rob McCulloch and Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see Chapter 5, Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

Examples

if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=2000} else {R=10}
set.seed(66)
simIV = function(delta, beta, Sigma, n, z, w, gamma) {
 eps = matrix(rnorm(2*n),ncol=2) %*% chol(Sigma)
 x = z%*%delta + eps[,1]
 y = beta*x + eps[,2] + w%*%gamma
 list(x=as.vector(x), y=as.vector(y))
}

n = 200
p=1 # number of instruments
z = cbind(rep(1,n), matrix(runif(n*p),ncol=p))
w = matrix(1,n,1)
rho = 0.8
Sigma = matrix(c(1,rho,rho,1), ncol=2)
delta = c(1,4)
beta = 0.5
gamma = c(1)
rmixGibbs = simIV(delta, beta, Sigma, n, z, w, gamma)

Data1 = list(); Data1$z = z; Data1$w=w; Data1$x=simiv$x; Data1$y=simiv$y
Mcmc1=list(); Mcmc1$R = R; Mcmc1$keep=1

out = rivGibbs(Data=Data1, Mcmc=Mcmc1)

cat("Summary of Beta draws", fill=TRUE)
summary(out$betadraw, tvalues=beta)

cat("Summary of Sigma draws", fill=TRUE)
summary(out$Sigmadraw, tvalues=as.vector(Sigma[upper.tri(Sigma,diag=TRUE)]))

plotting examples
if(0){plot(out$betadraw)}

rmixGibbs

Gibbs Sampler for Normal Mixtures w/o Error Checking

Description

rmixGibbs makes one draw using the Gibbs Sampler for a mixture of multivariate normals. rmixGibbs is not designed to be called directly. Instead, use rnmixGibbs wrapper function.

Usage

rmixGibbs(y, Bbar, A, nu, V, a, p, z)

Arguments

- **y** data array where rows are obs
- **Bbar** prior mean for mean vector of each norm comp
- **A** prior precision parameter
- **nu** prior d.f. parm
- **V** prior location matrix for covariance prior
- **a** Dirichlet prior parms
- **p** prior prob of each mixture component
- **z** component identities for each observation – "indicators"

Value

a list containing:

- **p** draw of mixture probabilities
- **z** draw of indicators of each component
- **comps** new draw of normal component parameters
Warning

This routine is a utility routine that does not check the input arguments for proper dimensions and type.

Author(s)

Rob McCulloch (Arizona State University) and Peter Rossi (Anderson School, UCLA), <perossichi@gmail.com>.

References

For further discussion, see Chapter 5 Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

See Also

rnmixGibbs

Description

rmixture simulates iid draws from a Multivariate Mixture of Normals

Usage

rmixture(n, pvec, comps)

Arguments

n number of observations
pvec ncomp x 1 vector of prior probabilities for each mixture component
comps list of mixture component parameters

details

comps is a list of length ncomp with ncomp = length(pvec).
comps[[j]][[1]] is mean vector for the jth component.
comps[[j]][[2]] is the inverse of the cholesky root of Σ for jth component

Value

A list containing:
x: an nx length(components[[1]][[1]]) array of iid draws
z: an nx1 vector of indicators of which component each draw is taken from
Warning

This routine is a utility routine that does not check the input arguments for proper dimensions and type.

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

See Also

rmnlIndepMetrop

Description

rmnlIndepMetrop implements Independence Metropolis algorithm for the multinomial logit (MNL) model.

Usage

rmnlIndepMetrop(Data, Prior, Mcmc)

Arguments

Data

list(y, X, p)

Prior

list(A, betabar)

Mcmc

list(R, keep, nprint, nu)

Details

Model and Priors: \(y \sim \text{MNL}(X, \beta) \)
\[Pr(y = j) = \frac{\exp(x_j' \beta)}{\sum_k e^{x_k' \beta}} \]
\(\beta \sim N(\text{betabar}, A^{-1}) \)

Argument Details: Data = list(y, X, p)

- \(y \): \(n \times 1 \) vector of multinomial outcomes (1, ..., p)
- \(X \): \(n \times pxk \) matrix
- \(p \): number of alternatives

Prior = list(A, betabar) [optional]

- \(A \): \(kxk \) prior precision matrix (def: 0.01*I)
- \(\text{betabar} \): \(kx1 \) prior mean (def: 0)
Mcmc = list(R, keep, nprint, nu) \texttt{[}only R required\texttt{]}

\begin{itemize}
\item \texttt{R:} number of MCMC draws
\item \texttt{keep:} MCMC thinning parameter – keep every \texttt{keep}th draw (def: 1)
\item \texttt{nprint:} print the estimated time remaining for every \texttt{nprint}'th draw (def: 100, set to 0 for no print)
\item \texttt{nu:} d.f. parameter for independent t density (def: 6)
\end{itemize}

\textbf{Value}

A list containing:

\begin{itemize}
\item \texttt{betadraw R/\texttt{keep}xk} matrix of beta draws
\item \texttt{loglike R/\texttt{keep}x1} vector of log-likelihood values evaluated at each draw
\item \texttt{acceptr} acceptance rate of Metropolis draws
\end{itemize}

\textbf{Author(s)}

Peter Rossi, Anderson School, UCLA, \texttt{<perossichi@gmail.com>}.

\textbf{References}

For further discussion, see Chapter 3, \textit{Bayesian Statistics and Marketing} by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

\textbf{See Also}

rhierMnlRwMixture

\textbf{Examples}

\begin{verbatim}
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=2000} else {R=10}
set.seed(66)
simmnl = function(p, n, beta) {
 ## note: create X array with 2 alt.spec vars
 k = length(beta)
 X1 = matrix(runif(n*p, min=-1, max=1), ncol=p)
 X2 = matrix(runif(n*p, min=-1, max=1), ncol=p)
 X = createX(p, na=2, nd=NULL, Xd=NULL, Xa=cbind(X1,X2), base=1)
 Xbeta = X*%*%beta
 ## now do probs
 p = nrow(Xbeta) / n
 Xbeta = matrix(Xbeta, byrow=TRUE, ncol=p)
 Prob = exp(Xbeta)
 iota = c(rep(1,p))
 denom = Prob%*%iota
 Prob = Prob / as.vector(denom)
 ## draw y
 y = vector("double",n)
 ind = 1:p

\end{verbatim}
for (i in 1:n) {
 yvec = rmultinom(1, 1, Prob[i,])
 y[i] = ind%*%yvec
}
return(list(y=y, X=X, beta=beta, prob=Prob))

n = 200
p = 3
beta = c(1, -1, 1.5, 0.5)
simout = simmnl(p, n, beta)

Data1 = list(y=simout$y, X=simout$X, p=p)
Mcmc1 = list(R=R, keep=1)
out = rmnlIndepMetrop(Data=Data1, Mcmc=Mcmc1)

cat("Summary of beta draws", fill=TRUE)
summary(out$betadraw, tvalues=beta)

plotting examples
if(0){plot(out$betadraw)}

rmnpGibbs

Gibbs Sampler for Multinomial Probit

Description

rmnpGibbs implements the McCulloch/Rossi Gibbs Sampler for the multinomial probit model.

Usage

rmnpGibbs(Data, Prior, Mcmc)

Arguments

Data list(y, X, p)
Prior list(betabar, A, nu, V)
Mcmc list(R, keep, nprint, beta0, sigma0)

Details

Model and Priors: $w_i = X_i \beta + e$ with $e \sim N(0, \Sigma)$. Note: w_i and e are $(p - 1) \times 1$.
$y_i = j$ if $w_{ij} > \max(0, w_{i,-j})$ for $j = 1, \ldots, p - 1$ and where $w_{i,-j}$ means elements of w_i other than the jth.
$y_i = p$, if all $w_i < 0$
β is not identified. However, $\beta/\sqrt{\sigma_{11}}$ and Σ/σ_{11} are identified. See reference or example below for details.
\[\beta \sim N(\text{betabar}, A^{-1})\]
\[\Sigma \sim IW(\nu, V)\]

Argument Details: Data = list\(y, X, p\)

- \(y\): \(nx1\) vector of multinomial outcomes \((1, \ldots, p)\)
- \(X\): \(n \times (p - 1)xk\) design matrix. To make \(X\) matrix use \text{createX} with DIFF=TRUE
- \(p\): number of alternatives

Prior = list\(\text{betabar}, A, \nu, V\) [optional]

- \(\text{betabar}\): \(kx1\) prior mean (def: 0)
- \(A\): \(kxk\) prior precision matrix (def: 0.01*I)
- \(\nu\): d.f. parameter for Inverted Wishart prior (def: (p-1)+3)
- \(V\): PDS location parameter for Inverted Wishart prior (def: nu*I)

Mcmc = list\(R, \text{keep}, \text{nprint}, \text{beta0}, \text{sigma0}\) [only \(R\) required]

- \(R\): number of MCMC draws
- \text{keep}: MCMC thinning parameter – keep every \text{keep}th draw (def: 1)
- \text{nprint}: print the estimated time remaining for every \text{nprint}'th draw (def: 100, set to 0 for no print)
- \text{beta0}: initial value for beta (def: 0)
- \text{sigma0}: initial value for sigma (def: I)

Value

A list containing:

- \text{betadraw} \(R/\text{keep}xk\) matrix of betadraws
- \text{sigmadraw} \(R/\text{keep}(p - 1) \times (p - 1)\) matrix of sigma draws – each row is the vector form of sigma

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see Chapter 4, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

See Also

dmpGibbs
Examples

if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=2000} else {R=10}
set.seed(66)

simmnp = function(X, p, n, beta, sigma) {
 indmax = function(x) {which(max(x)==x)}
 Xbeta = X%*%beta
 w = as.vector(crossprod(chol(sigma),matrix(rnorm((p-1)*n),ncol=n))) + Xbeta
 w = matrix(w, ncol=(p-1), byrow=TRUE)
 maxw = apply(w, 1, max)
 y = apply(w, 1, indmax)
 y = ifelse(maxw < 0, p, y)
 return(list(y=y, X=X, beta=beta, sigma=sigma))
}

p = 3
n = 500
beta = c(-1,1,1,2)
Sigma = matrix(c(1, 0.5, 0.5, 1), ncol=2)
k = length(beta)
X1 = matrix(runif(n*p,min=0,max=2),ncol=p)
X2 = matrix(runif(n*p,min=0,max=2),ncol=p)
X = createX(p, na=2, nd=NULL, Xa=cbind(X1,X2), Xd=NULL, DIFF=TRUE, base=p)
simout = simmnp(X,p,500,beta,Sigma)

Data1 = list(p=p, y=simout$y, X=simout$X)
Mcmc1 = list(R=R, keep=1)
out = rmnpGibbs(Data=Data1, Mcmc=Mcmc1)

cat(" Summary of Betadraws ", fill=TRUE)
betatilde = out$betadraw / sqrt(out$sigmadraw[,1])
attributes(betatilde)$class = "bayesm.mat"
summary(betatilde, tvalues=beta)

cat(" Summary of Sigmadraws ", fill=TRUE)
sigmadraw = out$sigmadraw / out$sigmadraw[,1]
attributes(sigmadraw)$class = "bayesm.var"
summary(sigmadraw, tvalues=as.vector(Sigma[upper.tri(Sigma,diag=TRUE)]))

plotting examples
if(0){plot(betatilde,tvalues=beta)}

--

```
rmultireg
```

Draw from the Posterior of a Multivariate Regression

Description

`rmultireg` draws from the posterior of a Multivariate Regression model with a natural conjugate prior.
Usage

rmultireg(Y, X, Bbar, A, nu, V)

Arguments

Y \(nxm\) matrix of observations on m dep vars
X \(nxk\) matrix of observations on indep vars (supply intercept)
Bbar \(kxm\) matrix of prior mean of regression coefficients
A \(kxk\) Prior precision matrix
nu d.f. parameter for Sigma
V \(mxm\) pdf location parameter for prior on Sigma

Details

Model:
\[Y = XB + U \]
\(B \) is \(kxm \) matrix of coefficients; \(\Sigma \) is \(mxm \) covariance matrix.

Priors:
\[\beta | \Sigma \sim N(\text{betabar}, \Sigma(x)A^{-1}) \]
\(\text{betabar} = \text{vec}(\text{Bbar}); \beta = \text{vec}(B) \)
\[\Sigma \sim \text{IW}(\nu, V) \]

Value

A list of the components of a draw from the posterior

\(B \) draw of regression coefficient matrix
\(\Sigma \) draw of Sigma

Warning

This routine is a utility routine that does not check the input arguments for proper dimensions and type.

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see Chapter 2, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1
Examples

```r
if (nchar(Sys.getenv("LONG_TEST")) != 0) {R=2000} else {R=10}
set.seed(66)

n = 200
m = 2
X = cbind(rep(1,n), runif(n))
k = ncol(X)
B = matrix(c(1,2,-1,3), ncol=m)
Sigma = matrix(c(1, 0.5, 0.5, 1), ncol=m)
RSigma = chol(Sigma)
Y = X %*% B + matrix(rnorm(m*n), ncol=m) %*% RSigma

betabar = rep(0, k*m)
Bbar = matrix(betabar, ncol=m)
A = diag(rep(0.01, k))
nu = 3
V = nu * diag(m)

betadraw = matrix(double(R*k*m), ncol=k*m)
Sigmadraw = matrix(double(R*m*m), ncol=m*m)

for (rep in 1:R) {
  out = rmultireg(Y, X, Bbar, A, nu, V)
  betadraw[rep,] = out$B
  Sigmadraw[rep,] = out$Sigma
}

cat(" Betadraws ", fill=TRUE)
mat = apply(betadraw, 2, quantile, probs=c(0.01, 0.05, 0.5, 0.95, 0.99))
mat = rbind(as.vector(B), mat)
rownames(mat)[1] = "beta"
print(mat)

cat(" Sigma draws" , fill=TRUE)
mat = apply(Sigmadraw, 2, quantile, probs=c(0.01, 0.05, 0.5, 0.95, 0.99))
mat = rbind(as.vector(Sigma), mat); rownames(mat)[1] = "Sigma"
print(mat)
```

rmvpGibbs

Gibbs Sampler for Multivariate Probit

Description

rmvpGibbs implements the Edwards/Allenby Gibbs Sampler for the multivariate probit model.

Usage

rmvpGibbs(Data, Prior, Mcmc)
Arguments

Data list(y, X, p)
Prior list(betabar, A, nu, V)
Mcmc list(R, keep, nprint, beta0, sigma0)

Details

Model and Priors: \(w_i = X_i \beta + e \) with \(e \sim N(0, \Sigma) \). Note: \(w_i \) is \(px1 \).
\[y_{ij} = 1 \text{ if } w_{ij} > 0, \ \text{else } y_i = 0. \ j = 1, \ldots, p \]

beta and Sigma are not identified. Correlation matrix and the betas divided by the appropriate standard deviation are. See reference or example below for details.
\[\beta \sim N(\text{betabar}, A^{-1}) \]
\[\Sigma \sim IW(nu, V) \]

To make \(X \) matrix use createX

Argument Details: Data = list(y, X, p)

\[
X: \ n \times pxk \ \text{Design Matrix} \\
y: \ n \times px1 \ \text{vector of 0/1 outcomes} \\
p: \ \text{dimension of multivariate probit}
\]

Prior = list(betabar, A, nu, V) [optional]

betabar: \(k x 1 \) prior mean (def: 0)
A: \(k x k \) prior precision matrix (def: 0.01*I)
nu: d.f. parameter for Inverted Wishart prior (def: (p-1)+3)
V: PDS location parameter for Inverted Wishart prior (def: nu*I)

Mcmc = list(R, keep, nprint, beta0, sigma0) [only R required]

R: number of MCMC draws
keep: MCMC thinning parameter – keep every keepth draw (def: 1)
nprint: print the estimated time remaining for every nprint’th draw (def: 100, set to 0 for no print)
beta0: initial value for beta
sigma0: initial value for sigma

Value

A list containing:

betadraw \(R/keeppxk \) matrix of betadraws
sigmadraw \(R/keeppxp * p \) matrix of sigma draws – each row is the vector form of sigma

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.
References

For further discussion, see Chapter 4, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

See Also

rmnpGibbs

Examples

```r
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=2000} else {R=10}
set.seed(66)

simmvp = function(X, p, n, beta, sigma) {
  w = as.vector(crossprod(chol(sigma),matrix(rnorm(p*n),ncol=n))) + X%*%beta
  y = ifelse(w<0, 0, 1)
  return(list(y=y, X=X, beta=beta, sigma=sigma))
}

p = 3
n = 500
beta = c(-2,0,2)
Sigma = matrix(c(1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1), ncol=3)
k = length(beta)
I2 = diag(rep(1,p))
xadd = rbind(I2)
for(i in 2:n) { xadd=rbind(xadd,I2) }
X = xadd

simout = simmvp(X,p,500,beta,Sigma)

Data1 = list(p=p, y=simout$y, X=simout$X)
Mcmc1 = list(R=R, keep=1)

out = rmvpGibbs(Data=Data1, Mcmc=Mcmc1)

ind = seq(from=0, by=p, length=k)
inda = 1:3
ind = ind + inda
cat(" Betadraws ", fill=TRUE)
betatilde = out$betadraw / sqrt(out$sigmadraw[,ind])
attributes(betatilde)$class = "bayesm.mat"
summary(betatilde, tvalues=beta/sqrt(diag(Sigma)))

rdraw = matrix(double((R)*p*p), ncol=p*p)
rdraw = t(apply(out$sigmadraw, 1, nmat))
attributes(rdraw)$class = "bayesm.var"
tvalue = nmat(as.vector(Sigma))
dim(tvalue) = c(p,p)
tvalue = as.vector(tvalue[upper.tri(tvalue,diag=TRUE)])
cat(" Draws of Correlation Matrix ", fill=TRUE)
```
summary(rdraw, tvalues=tvalue)

plotting examples
if(0){plot(betatilde, tvalues=beta/sqrt(diag(Sigma)))}

rmvst

Draw from Multivariate Student-t

Description

rmvst draws from a multivariate student-t distribution.

Usage

```r
rmvst(nu, mu, root)
```

Arguments

- `nu`: d.f. parameter
- `mu`: mean vector
- `root`: Upper Tri Cholesky Root of Sigma

Value

- `length(mu)` draw vector

Warning

This routine is a utility routine that does **not** check the input arguments for proper dimensions and type.

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch. http://www.perossi.org/home/bsm-1

See Also

- `lndMvst`

Examples

```r
set.seed(66)
rmvst(nu=5, mu=c(rep(0,2)), root=chol(matrix(c(2,1,1,2), ncol=2)))
```
rnegbinRw

MCMC Algorithm for Negative Binomial Regression

Description

rnegbinRw implements a Random Walk Metropolis Algorithm for the Negative Binomial (NBD) regression model where $\beta|\alpha$ and $\alpha|\beta$ are drawn with two different random walks.

Usage

rnegbinRw(Data, Prior, Mcmc)

Arguments

Data list(y, X)
Prior list(betabar, A, a, b)
Mcmc list(R, keep, nprint, s_beta, s_alpha, beta0, alpha)

Details

Model and Priors: $y \sim NBD(mean = \lambda, over \text{– dispersion} = \alpha)$
$\lambda = \exp(x^\prime \beta)$
$\beta \sim N(betabar, A^{-1})$
$\alpha \sim Gamma(a, b)$ (unless Mcmc$alpha specified)
Note: prior mean of $\alpha = a/b$, variance $= a/(b^2)$

Argument Details: Data = list(y, X)

Prior = list(betabar, A, a, b) [optional]

betabar: k x 1 prior mean (def: 0)
A: k x k PDS prior precision matrix (def: 0.01*I)
a: Gamma prior parameter (not used if Mcmc$alpha specified) (def: 0.5)
b: Gamma prior parameter (not used if Mcmc$alpha specified) (def: 0.1)

Mcmc = list(R, keep, nprint, s_beta, s_alpha, beta0, alpha) [only R required]

R: number of MCMC draws
keep: MCMC thinning parameter – keep every keepth draw (def: 1)
nprint: print the estimated time remaining for every nprint'th draw (def: 100, set to 0 for no print)
s_beta: scaling for beta l alpha RW inc cov matrix (def: 2.93/sqrt(k))
s_alpha: scaling for alpha l beta RW inc cov matrix (def: 2.93)
alpha: over-dispersion parameter (def: alpha ~ Gamma(a,b))
Value

A list containing:

- `betadraw` \(R^{k \times k} \) matrix of beta draws
- `alphadraw` \(R^{k \times 1} \) vector of alpha draws
- `llike` \(R^{k \times 1} \) vector of log-likelihood values evaluated at each draw
- `acceptrbeta` acceptance rate of the beta draws
- `acceptralpha` acceptance rate of the alpha draws

Note

The NBD regression encompasses Poisson regression in the sense that as alpha goes to infinity the NBD distribution tends toward the Poisson. For "small" values of alpha, the dependent variable can be extremely variable so that a large number of observations may be required to obtain precise inferences.

Author(s)

Sridhar Narayanan (Stanford GSB) and Peter Rossi (Anderson School, UCLA), <perossichi@gmail.com>.

References

For further discussion, see Bayesian Statistics and Marketing by Rossi, Allenby, McCulloch. http://www.perossi.org/home/bsm-1

See Also

`rhierNegbinRw`

Examples

```r
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=1000} else {R=10}
set.seed(66)

simnegbin = function(X, beta, alpha) {
  # Simulate from the Negative Binomial Regression
  lambda = exp(X%*%beta)
  y = NULL
  for (j in 1:length(lambda)) { y = c(y, rnbinom(1, mu=lambda[j], size=alpha)) } 
  return(y)
}

nobs = 500
nvar = 2 # Number of X variables
alpha = 5
Vbeta = diag(nvar)*0.01

# Construct the regdata (containing X)
simmegbindata = NULL
```
beta = c(0.6, 0.2)
X = cbind(rep(1,nobs), rnorm(nobs,mean=2,sd=0.5))
simnegbindata = list(y=simnegbin(X,beta,alpha), X=X, beta=beta)

Data1 = simnegbindata
Mcmc1 = list(R=R)

out = rnegbinRw(Data=Data1, Mcmc=list(R=R))

cat("Summary of alpha/beta draw", fill=TRUE)
summary(out$alphadraw, tvalues=alpha)
summary(out$betadraw, tvalues=beta)

plotting examples
if(0){plot(out$betadraw)}

rnmixGibbs

Gibbs Sampler for Normal Mixtures

Description

rnmixGibbs implements a Gibbs Sampler for normal mixtures.

Usage

rnmixGibbs(Data, Prior, Mcmc)

Arguments

<table>
<thead>
<tr>
<th>Data</th>
<th>list(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior</td>
<td>list(Mubar, A, nu, V, a, ncomp)</td>
</tr>
<tr>
<td>Mcmc</td>
<td>list(R, keep, nprint, Loglike)</td>
</tr>
</tbody>
</table>

Details

Model and Priors:

\[y_i \sim N(\mu_{ind}, \Sigma_{ind}) \]
ind \sim iid \text{multinomial}(p) with p an \text{ncompx1} vector of probs
\[\mu_j \sim N(mubar, \Sigma_j(x)A^{-1}) \text{ with } mubar = vec(Mubar) \]
\[\Sigma_j \sim IW(nu, V) \]

Note: this is the natural conjugate prior – a special case of multivariate regression

\[p \sim \text{Dirchlet}(a) \]

Argument Details:

Data = list(y)

y: \text{n x k} matrix of data (rows are obs)

Prior = list(Mubar, A, nu, V, a, ncomp) \text{[only ncomp required]}
Mubar: \(1 \times k\) vector with prior mean of normal component means (def: 0)
A: \(1 \times 1\) precision parameter for prior on mean of normal component (def: 0.01)
u: d.f. parameter for prior on Sigma (normal component cov matrix) (def: \(k+3\))
V: \(k \times k\) location matrix of IW prior on Sigma (def: \(nu*I\))
a: \(ncomp \times 1\) vector of Dirichlet prior parameters (def: \(\text{rep}(5,ncomp)\))
ncomp: number of normal components to be included

\[
\text{Mcmc} = \text{list}(R, \text{keep}, \text{nprint}, \text{Loglike}) \quad \text{[only R required]}
\]

R: number of MCMC draws
keep: MCMC thinning parameter – keep every \(keep\)th draw (def: 1)
nprint: print the estimated time remaining for every \(nprint\)'th draw (def: 100, set to 0 for no print)
LogLike: logical flag for whether to compute the log-likelihood (def: FALSE)

\text{nmix Details:} \quad \text{nmix is a list with 3 components. Several functions in the bayesm package that involve a Dirichlet Process or mixture-of-normals return \text{nmix}. Across these functions, a common structure is used for \text{nmix} in order to utilize generic summary and plotting functions.}

\text{probdraw:} \quad \text{\(ncomp \times R/keep\) matrix that reports the probability that each draw came from a particular component}
\text{zdraw:} \quad \text{\(R/keep\times nobs\) matrix that indicates which component each draw is assigned to}
\text{compdraw:} \quad \text{A list of \(R/keep\) lists of \(ncomp\) lists. Each of the inner-most lists has 2 elements: a vector of draws for \(mu\) and...}

\text{Value}

A list containing:

\begin{align*}
& \text{ll} \quad \text{\(R/keep\times 1\) vector of log-likelihood values} \\
& \text{nmix} \quad \text{a list containing: probdraw, zdraw, compdraw (see “\text{nmix Details}” section)}
\end{align*}

\text{Note}

In this model, the component normal parameters are not-identified due to label-switching. However, the fitted mixture of normals density is identified as it is invariant to label-switching. See chapter 5 of Rossi et al below for details.

Use \text{eMixMargDen} or \text{momMix} to compute posterior expectation or distribution of various identified parameters.

\text{Author(s)}

Peter Rossi, Anderson School, UCLA, \text{<perossichi@gmail.com>}.

\text{References}

For further discussion, see Chapter 3, \textit{Bayesian Statistics and Marketing} by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1
rordprobitGibbs

Gibbs Sampler for Ordered Probit

Description

rordprobitGibbs implements a Gibbs Sampler for the ordered probit model with a RW Metropo-
lis step for the cut-offs.

See Also

- `rmixture`, `rmixGibbs`, `eMixMargDen`, `momMix`, `mixDen`, `mixDenBi`

Examples

```r
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=2000} else {R=10}
set.seed(66)

dim = 5
k = 3  # dimension of simulated data and number of "true" components
sigma = matrix(rep(0.5,dim^2), nrow=dim)
diag(sigma) = 1
sigfac = c(1,1,1)
mufac = c(1,2,3)
compsmv = list()
for(i in 1:k) compsmv[[i]] = list(mu=mufac[i]*1:dim, sigma=sigfac[i]*sigma)

# change to "rooti" scale
comps = list()
for(i in 1:k) comps[[i]] = list(mu=compsmv[[i]][[1]], rooti=solve(chol(compsmv[[i]][[2]])))
pvec = (1:k) / sum(1:k)

noobs = 500
dm = rmixture(noobs, pvec, comps)

Data1 = list(y=dm$x)
ncomp = 9
Prior1 = list(ncomp=ncomp)
Mcmc1 = list(R=R, keep=1)

out = rnmixGibbs(Data=Data1, Prior=Prior1, Mcmc=Mcmc1)

cat("Summary of Normal Mixture Distribution", fill=TRUE)
summary(out$nmix)

tmom = momMix(matrix(pvec,nrow=1), list(comps))
mat = rbind(tmom$mu, tmom$sd)
cat(" True Mean/Std Dev", fill=TRUE)
print(mat)

## plotting examples
if(0){plot(out$nmix,Data=dm$x)}
```

rordprobitGibbs

Usage

rordprobitGibbs(Data, Prior, Mcmc)

Arguments

Data: list(y, X, k)
Prior: list(betabar, A, dstarbar, Ad)
Mcmc: list(R, keep, nprint, s)

Details

Model and Priors:
\[z = X\beta + e \text{ with } e \sim N(0, I) \]
\[y = k \text{ if } c[k] \leq z < c[k+1] \text{ with } k = 1, \ldots, K \]
cutoffs = \{c[1], \ldots, c[k+1]\}
\[\beta \sim N(\text{betabar}, A^{-1}) \]
\[dstar \sim N(\text{dstarbar}, \text{Ad}^{-1}) \]

Be careful in assessing prior parameter \(\text{Ad}\): 0.1 is too small for many applications.

Argument Details:

Data = list(y, X, k)

\(y\): \(nx1\) vector of observations, \((1, \ldots, k)\)
\(X\): \(nxp\) Design Matrix
\(k\): the largest possible value of \(y\)

Prior = list(betabar, A, dstarbar, Ad) \{optional\}

\(\text{betabar}\): \(px1\) prior mean (def: 0)
\(A\): \(pxp\) prior precision matrix (def: 0.01*I)
\(\text{dstarbar}\): \(ndstarx1\) prior mean, where \(ndstar = k - 2\) (def: 0)
\(\text{Ad}\): \(ndstarxndstar\) prior precision matrix (def: I)

Mcmc = list(R, keep, nprint, s) \{only R required\}

\(R\): number of MCMC draws
\(\text{keep}\): MCMC thinning parameter – keep every \(\text{keepth}\) draw (def: 1)
\(\text{nprint}\): print the estimated time remaining for every \(\text{nprint}^{th}\) draw (def: 100, set to 0 for no print)
\(s\): scaling parameter for RW Metropolis (def: \(2.93/\sqrt{p}\))

Value

A list containing:

\(\text{betadraw}\) \(R/\text{keepxp}\) matrix of betadraws
\(\text{cutdraw}\) \(R/\text{keepx}(k - 1)\) matrix of cutdraws
\(\text{dstardraw}\) \(R/\text{keepx}(k - 2)\) matrix of dstardraws
\(\text{accept}\) acceptance rate of Metropolis draws for cut-offs
Note

The relationship between cut-offs and dstar is:
c[3] = exp(dstar[1]),
c[k] = c[k-1] + exp(dstar[k-2])

Author(s)
Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References
Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch
http://www.perossi.org/home/bsm-1

See Also
rbprobitGibbs

Examples
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=2000} else {R=10}
set.seed(66)
simulate data for ordered probit model
simordprobit=function(X, betas, cutoff){
 z = X%*%betas + rnorm(nobs)
 y = cut(z, br = cutoff, right=TRUE, include.lowest = TRUE, labels = FALSE)
 return(list(y = y, X = X, k=(length(cutoff)-1), betas= betas, cutoff=cutoff))
}
nobs = 300
X = cbind(rep(1,nobs),runif(nobs, min=0, max=5),runif(nobs,min=0, max=5))
k = 5
betas = c(0.5, 1, -0.5)
cutoff = c(-100, 0, 1.0, 1.8, 3.2, 100)
simout = simordprobit(X, betas, cutoff)

Data=list(X=simout$X, y=simout$y, k=k)
set Mcmc for ordered probit model
Mcmc = list(R=R)
out = rordprobitGibbs(Data=Data, Mcmc=Mcmc)

cat(" ", fill=TRUE)
cat("acceptance rate= ", accept=out$accept, fill=TRUE)
outputs of betadraw and cut-off draws

cat(" Summary of betadraws", fill=TRUE)
summary(out$betadraw, tvalues=betas)
cat(" Summary of cut-off draws", fill=TRUE)
summary(out$cutdraw, tvalues=cutoff[2:k])

plotting examples
if(0){plot(out$cutdraw)}

rscaleUsage

MCMC Algorithm for Multivariate Ordinal Data with Scale Usage Heterogeneity

Description

rscaleUsage implements an MCMC algorithm for multivariate ordinal data with scale usage heterogeneity.

Usage

rscaleUsage(Data, Prior, Mcmc)

Arguments

- **Data**: list(x, k)
- **Prior**: list(nu, V, mubar, Am, gs, Lambdanu, LambdaV)
- **Mcmc**: list(R, keep, nprint, ndghk, e, y, mu, Sigma, sigma, tau, Lambda)

Details

Model and Priors: \(n = \text{nrow}(x) \) individuals respond to \(p = \text{ncol}(x) \) questions; all questions are on a scale 1, \ldots, k for respondent \(i \) and question \(j \).

\[
x_{ij} = d \text{ if } c_{d-1} \leq y_{ij} \leq c_d \text{ where } d = 1, \ldots, k \text{ and } c_d = a + bd + cd^2
\]

\[
y_i = \mu + \tau_i + \delta + \sigma_i + z_i \text{ with } z_i \sim N(0, \Sigma)
\]

\[
(\tau_i, \ln(\sigma_i)) \sim N(\phi, \Lambda)
\]

\[
\phi = (0, \lambda_{22})
\]

\[
\mu \sim N(\text{mubar}, \text{Am}^{-1})
\]

\[
\Sigma \sim \text{IW}(\text{nu}, \text{V})
\]

\[
\Lambda \sim \text{IW}(\text{Lambdanu}, \text{LambdaV})
\]

\(e \sim \text{unif} \) on a grid

It is highly recommended that the user choose the default prior settings. If you wish to change prior settings and/or the grids used, please carefully read the case study listed in the reference below.

Argument Details: Data = list(x, k)
x: \(n \times p\) matrix of discrete responses
k: number of discrete rating scale options

Prior = list(nu, V, mubar, Am, gs, Lambdanu, LambdaV) \[optional\]

nu: d.f. parameter for Sigma prior (def: \(p + 3\))
V: scale location matrix for Sigma prior (def: \(nu*I\))
mubar: \(p \times 1\) vector of prior means (def: rep(k/2, p))
Am: \(p \times p\) prior precision matrix (def: 0.01*I)
gs: grid size for sigma (def: 100)
Lambdanu: d.f. parameter for Lambda prior (def: 20)
LambdaV: scale location matrix for Lambda prior (def: (Lambdanu - 3)*Lambda)

Mcmc = list(R, keep, nprint, ndghk, e, y, mu, Sigma, sigma, tau, Lambda) \[only R required\]

R: number of MCMC draws (def: 1000)
keep: MCMC thinning parameter – keep every keepth draw (def: 1)
nprint: print the estimated time remaining for every nprint’th draw (def: 100, set to 0 for no print)
ndghk: number of draws for a GHK integration (def: 100)
e: initial value (def: 0)
y: initial values (def: x)
mu: initial values (def: apply(y, 2, mean), a \(p\)-length vector)
Sigma: initial value (def: var(y))
sigma: initial values (def: rep(1, n))
tau: initial values (def: rep(0, n))
Lambda: initial values (def: matrix(c(4, 0, 0, .5), ncol=2))

Value
A list containing:

- \(\text{Sigmadraw}\): \(R/\text{keep}\times p\) matrix of Sigma draws – each row is the vector form of Sigma
- \(\text{mudraw}\): \(R/\text{keep}\times p\) matrix of mu draws
- \(\text{taudraw}\): \(R/\text{keep}\times n\) matrix of tau draws
- \(\text{sigmadraw}\): \(R/\text{keep}\times n\) matrix of sigma draws
- \(\text{Lambdadraw}\): \(R/\text{keep}\times 4\) matrix of Lamda draws
- \(\text{edraw}\): \(R/\text{keep}\times 1\) vector of e draws

Warning
\(tau, sigma\) are identified from the scale usage patterns in the \(p\) questions asked per respondent (# cols of \(x\)). Do not attempt to use this on datasets with only a small number of total questions.

Author(s)
Rob McCulloch (Arizona State University) and Peter Rossi (Anderson School, UCLA), <perossichi@gmail.com>.
References

For further discussion, see Case Study 3 on Overcoming Scale Usage Heterogeneity, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

Examples

```r
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=1000} else {R=5}
set.seed(66)

data(customerSat)
surveydat = list(k=10, x=as.matrix(customerSat))

out = rscaleUsage(Data=surveydat, Mcmc=list(R=R))
summary(out$mudraw)
```

rsurGibbs

Gibbs Sampler for Seemingly Unrelated Regressions (SUR)

Description

rsurGibbs implements a Gibbs Sampler to draw from the posterior of the Seemingly Unrelated Regression (SUR) Model of Zellner.

Usage

```r
rsurGibbs(Data, Prior, Mcmc)
```

Arguments

- **Data**: list(regdata)
- **Prior**: list(betabar, A, nu, V)
- **Mcmc**: list(R, keep)

Details

Model and Priors:

\[
y_i = X_i \beta_i + e_i \quad \text{with} \quad i = 1, \ldots, m \quad \text{for} \quad m \quad \text{regressions}\\
(e(k,1), \ldots, e(k,m))^\prime \sim N(0, \Sigma) \quad \text{with} \quad k = 1, \ldots, n
\]

Can be written as a stacked model:

\[
y = X \beta + e \quad \text{where} \quad y \quad \text{is a} \quad nobs \times m \quad \text{vector} \quad \text{and} \quad p = \text{length}(\beta) = \text{sum(length}(\beta_i))
\]

Note: must have the same number of observations \((n)\) in each equation but can have a different number of \(X\) variables \((p_i)\) for each equation where \(p = \sum p_i\).

\[
\beta \sim N(\text{betabar}, A^{-1})\\
\Sigma \sim IW(\nu, V)
\]

Argument Details: Data = list(regdata)
rsurGibbs

regdata: list of lists, regdata[[i]] = list(y=y_i, X=X_i), where y_i is nx1 and X_i is nxp_i

Prior = list(betabar, A, nu, V) [optional]

betabar: px1 prior mean (def: 0)
A: pxp prior precision matrix (def: 0.01*I)
nu: d.f. parameter for Inverted Wishart prior (def: m+3)
V: mxm scale parameter for Inverted Wishart prior (def: nu*I)

Mcmc = list(R, keep) [only R required]

R: number of MCMC draws
keep: MCMC thinning parameter – keep every keepth draw (def: 1)
nprint: print the estimated time remaining for every nprint'th draw (def: 100, set to 0 for no print)

Value

A list containing:

betadraw Rxp matrix of betadraws
Sigmadraw Rx(m * m) array of Sigma draws

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see Chapter 3, Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

See Also

rmultireg

Examples

if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=1000} else {R=10}
set.seed(66)

simulate data from SUR
beta1 = c(1,2)
beta2 = c(1,-1,-2)
nobs = 100
nreg = 2
iota = c(rep(1, nobs))
X1 = cbind(iota, runif(nobs))
X2 = cbind(iota, runif(nobs), runif(nobs))
Sigma = matrix(c(0.5, 0.2, 0.2, 0.5), ncol=2)
U = chol(Sigma)
E = matrix(rnorm(2*nobs),ncol=2)%*%U
y1 = X1%*%beta1 + E[,1]
y2 = X2%*%beta2 + E[,2]

run Gibbs Sampler
regdata = NULL
regdata[[1]] = list(y=y1, X=X1)
regdata[[2]] = list(y=y2, X=X2)
out = rsurGibbs(Data=list(regdata=regdata), Mcmc=list(R=R))
cat("Summary of beta draws", fill=TRUE)
summary(out$betadraw, tvalues=c(beta1,beta2))
cat("Summary of Sigmadraws", fill=TRUE)
summary(out$Sigmadraw, tvalues=as.vector(Sigma[upper.tri(Sigma,diag=TRUE)]))

plotting examples
if(0){plot(out$betadraw, tvalues=c(beta1,beta2))}

rtrun

Draw from Truncated Univariate Normal

Description

rtrun draws from a truncated univariate normal distribution.

Usage

```
rtrun(mu, sigma, a, b)
```

Arguments

- **mu**: mean
- **sigma**: standard deviation
- **a**: lower bound
- **b**: upper bound

Details

Note that due to the vectorization of the *rnorm* and *qnorm* commands in R, all arguments can be vectors of equal length. This makes the inverse CDF method the most efficient to use in R.

Value

Draw (possibly a vector)
Warning

This routine is a utility routine that does not check the input arguments for proper dimensions and type.

**Note also that rtrun is currently affected by the numerical accuracy of the inverse CDF function when truncation points are far out in the tails of the distribution, where “far out” means $|a-\mu|/\sigma > 6$ and/or $|b-\mu|/\sigma > 6$. A fix will be implemented in a future version of bayesm.

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see Chapter 2, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.

http://www.perossi.org/home/bsm-1

Examples

```r
set.seed(66)
rtrun(mu=c(rep(0,10)), sigma=c(rep(1,10)), a=c(rep(0,10)), b=c(rep(2,10)))
```

Description

runireg implements an iid sampler to draw from the posterior of a univariate regression with a conjugate prior.

Usage

```r
runireg(Data, Prior, Mcmc)
```

Arguments

- **Data**: list(y, X)
- **Prior**: list(betabar, A, nu, ssq)
- **Mcmc**: list(R, keep, nprint)

Details

Model and Priors: $y = X\beta + e$ with $e \sim N(0,\sigma^2)$

$\beta \sim N(\text{betabar},\sigma^2 \cdot A^{-1})$

$\sigma^2 \sim (nu * ssq)/\chi^2_{nu}$

Argument Details: Data = list(y, X)
\(y \): \(nx1 \) vector of observations
\(X \): \(nxk \) design matrix

Prior = list(betabar, A, nu, ssq) [optional]

- **betabar**: \(kx1 \) prior mean (def: 0)
- **A**: \(kxk \) prior precision matrix (def: 0.01*I)
- **nu**: d.f. parameter for Inverted Chi-square prior (def: 3)
- **ssq**: scale parameter for Inverted Chi-square prior (def: \(\text{var}(y) \))

Mcmc = list(R, keep, nprint) [only \(R \) required]

- **R**: number of draws
- **keep**: thinning parameter – keep every \(\text{keep} \)th draw (def: 1)
- **nprint**: print the estimated time remaining for every \(\text{nprint} \)th draw (def: 100, set to 0 for no print)

Value

A list containing:

- **betadraw**: \(Rxk \) matrix of betadraws
- **sigmasqdraw**: \(Rx1 \) vector of sigma-sq draws

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see Chapter 2, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

See Also

runiregGibbs

Examples

```r
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=2000} else {R=10}
set.seed(66)

n = 200
X = cbind(rep(1,n), runif(n))
beta = c(1,2)
sigsq = 0.25
y = X%*%beta + rnorm(n, sd=sqrt(sigsq))
out = runireg(Data=list(y=y, X=X), Mcmc=list(R=R))
```
runiregGibbs

Gibbs Sampler for Univariate Regression

Description

runiregGibbs implements a Gibbs Sampler to draw from posterior of a univariate regression with a conditionally conjugate prior.

Usage

runiregGibbs(Data, Prior, Mcmc)

Arguments

- **Data**
 - list(y, X)
- **Prior**
 - list(betabar, A, nu, ssq)
- **Mcmc**
 - list(sigmasq, R, keep, nprint)

Details

Model and Priors:

\[y = X\beta + \epsilon \quad \text{with} \quad \epsilon \sim N(0, \sigma^2) \]
\[\beta \sim N(\text{betabar}, A^{-1}) \]
\[\sigma^2 \sim (nu * ssq)/\chi^2_{nu} \]

Argument Details:

- **Data = list(y, X)**
 - \(y\): \(nx1\) vector of observations
 - \(X\): \(nxk\) design matrix

- **Prior = list(betabar, A, nu, ssq)**
 - **betabar**: \(kx1\) prior mean (def: 0)
 - **A**: \(kxk\) prior precision matrix (def: 0.01*I)
 - **nu**: d.f. parameter for Inverted Chi-square prior (def: 3)
 - **ssq**: scale parameter for Inverted Chi-square prior (def: var(y))

- **Mcmc = list(sigmasq, R, keep, nprint)**
 - **sigmasq**: value for \(\sigma^2\) for first Gibbs sampler draw of \(\beta|\sigma^2\)
 - **R**: number of MCMC draws

plotting examples

```r
if(0) {plot(out$betadraw)}
```
keep: MCMC thinning parameter – keep every keepth draw (def: 1)
nprint: print the estimated time remaining for every nprint'th draw (def: 100, set to 0 for no print)

Value

A list containing:

betadraw \(R \times k \) matrix of betadraws
sigmasqdraw \(R \times 1 \) vector of sigma-sq draws

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see Chapter 3, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

See Also

runireg

Examples

```r
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=1000} else {R=10}
set.seed(66)
n = 200
X = cbind(rep(1,n), runif(n))
beta = c(1,2)
sigsq = 0.25
y = X%*%beta + rnorm(n, sd=sqrt(sigsq))
out = runiregGibbs(Data=list(y=y, X=X), Mcmc=list(R=R))

cat("Summary of beta and Sigmasq draws", fill=TRUE)
summary(out$betadraw, tvalues=beta)
summary(out$sigmasqdraw, tvalues=sigsq)

## plotting examples
if(0) {plot(out$betadraw)}
```
rwishart
Draw from Wishart and Inverted Wishart Distribution

Description

`rwishart` draws from the Wishart and Inverted Wishart distributions.

Usage

`rwishart(nu, V)`

Arguments

- `nu`
 d.f. parameter
- `V`
 pds location matrix

Details

In the parameterization used here, $W \sim W(\nu, V)$ with $E[W] = \nu V$.

If you want to use an Inverted Wishart prior, you must invert the location matrix before calling `rwishart`. e.g.
$\Sigma \sim IW(\nu, V); \Sigma^{-1} \sim W(\nu, V^{-1})$.

Value

A list containing:

- `W`: Wishart draw
- `IW`: Inverted Wishart draw
- `C`: Upper tri root of `W`
- `CI`: `inv(C), W^{-1} = CIC'`

Warning

This routine is a utility routine that does **not** check the input arguments for proper dimensions and type.

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

References

For further discussion, see Chapter 2, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1
Examples

```r
set.seed(66)
rswishart(5, diag(3))$IW
```

Scotch

Survey Data on Brands of Scotch Consumed

Description

Data from Simmons Survey. Brands used in last year for those respondents who report consuming scotch.

Usage

```r
data(Scotch)
```

Format

A data frame with 2218 observations on 21 brand variables. All variables are numeric vectors that are coded 1 if consumed in last year, 0 if not.

Source

References

Chapter 4, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch
http://www.perossi.org/home/bsm-1

Examples

```r
data(Scotch)
cat(" Frequencies of Brands", fill=TRUE)
mat = apply(as.matrix(Scotch), 2, mean)
print(mat)

## use Scotch data to run Multivariate Probit Model
if(0) {
  y = as.matrix(Scotch)
p = ncol(y)
n = nrow(y)
dimnames(y) = NULL
y = as.vector(t(y))
y = as.integer(y)
i_p = diag(p)
X = rep(i_p, n)
```
X = matrix(X, nrow=p)
X = t(X)

R = 2000
Data = list(p=p, X=X, y=y)
Mcmc = list(R=R)

set.seed(66)
out = rmvpGibbs(Data=Data, Mcmc=Mcmc)

ind = (0:(p-1))*p + (1:p)
cat(" Betadraws ", fill=TRUE)
mat = apply(out$betadraw/sqrt(out$sigmadraw[,ind]), 2 , quantile,
probs=c(0.01, 0.05, 0.5, 0.95, 0.99))
attributes(mat)$class = "bayesm.mat"
summary(mat)

rdraw = matrix(double((R)*p*p), ncol=p*p)
rdraw = t(apply(out$sigmadraw, 1, nmat))
attributes(rdraw)$class = "bayesm.var"
cat(" Draws of Correlation Matrix ", fill=TRUE)
summary(rdraw)

simnhlogit

Simulate from Non-homothetic Logit Model

Description

`simnhlogit` simulates from the non-homothetic logit model.

Usage

`simnhlogit(theta, lnprices, Xexpend)`

Arguments

- `theta` coefficient vector
- `lnprices` `nxp` array of prices
- `Xexpend` `nwk` array of values of expenditure variables

Details

For details on parameterization, see `llnhlogit`.
\textit{simnhlogit}

\textbf{Value}

A list containing:

- \texttt{y} \quad \text{n}\times\text{1} \text{ vector of multinomial outcomes } (1, \ldots, p)
- \texttt{Xexpend} \quad \text{expenditure variables}
- \texttt{lnprices} \quad \text{price array}
- \texttt{theta} \quad \text{coefficients}
- \texttt{prob} \quad \text{n}\times\text{p} \text{ array of choice probabilities}

\textbf{Warning}

This routine is a utility routine that does \textbf{not} check the input arguments for proper dimensions and type.

\textbf{Author(s)}

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

\textbf{References}

For further discussion, see Chapter 4, \textit{Bayesian Statistics and Marketing} by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

\textbf{See Also}

\texttt{llnhlogit}

\textbf{Examples}

\begin{verbatim}
N = 1000
p = 3
k = 1

theta = c(rep(1,p), seq(from=-1, to=1, length=p), rep(2,k), 0.5)
lnprices = matrix(runif(N*p), ncol=p)
Xexpend = matrix(runif(N*k), ncol=k)

simdata = simnhlogit(theta, lnprices, Xexpend)
\end{verbatim}
summary.bayesm.mat Summarize Mcmc Parameter Draws

Description

summary.bayesm.mat is an S3 method to summarize marginal distributions given an array of draws.

Usage

S3 method for class 'bayesm.mat'
summary(object, names, burnin = trunc(0.1 * nrow(X)),
tvalues, QUANTILES = TRUE, TRAILER = TRUE,...)

Arguments

object object (hereafter X) is an array of draws, usually an object of class bayesm.mat
names optional character vector of names for the columns of X
burnin number of draws to burn-in (def: 0.1 * nrow(X))
tvalues optional vector of "true" values for use in simulation examples
QUANTILES logical for should quantiles be displayed (def: TRUE)
TRAILER logical for should a trailer be displayed (def: TRUE)
... optional arguments for generic function

Details

Typically, summary.bayesm.nmix will be invoked by a call to the generic summary function as in summary(object) where object is of class bayesm.mat. Mean, Std Dev, Numerical Standard error (of estimate of posterior mean), relative numerical efficiency (see numEff), and effective sample size are displayed. If QUANTILES=TRUE, quantiles of marginal distributions in the columns of X are displayed.

summary.bayesm.mat is also exported for direct use as a standard function, as in summary.bayesm.mat(matrix).

summary.bayesm.mat(matrix) returns (invisibly) the array of the various summary statistics for further use. To assess this array use stats=summary(Drawmat).

Author(s)

Peter Rossi, Anderson School, UCLA, <perossichi@gmail.com>.

See Also

summary.bayesm.var, summary.bayesm.nmix
Examples

```r
## Not run: out=rnmnpGibbs(Data,Prior,Mcmc); summary(out$betadraw)
```

summary.bayesm.nmix

Summarize Draws of Normal Mixture Components

Description

`summary.bayesm.nmix` is an S3 method to display summaries of the distribution implied by draws of Normal Mixture Components. Posterior means and variance-covariance matrices are displayed.

Note: 1st and 2nd moments may not be very interpretable for mixtures of normals. This summary function can take a minute or so. The current implementation is not efficient.

Usage

```r
## S3 method for class 'bayesm.nmix'
summary(object, names, burnin=trunc(0.1*nrow(probdraw)), ...)
```

Arguments

- `object` : an object of class `bayesm.nmix`, a list of lists of draws
- `names` : optional character vector of names for each dimension of the density
- `burnin` : number of draws to burn-in (def: 0.1 * nrow(probdraw))
- `...` : parms to send to summary

Details

An object of class `bayesm.nmix` is a list of three components:

- `probdraw` : a matrix of $R/keep$ rows by dim of normal mix of mixture prob draws
- `second comp` : not used
- `compdraw` : list of list of lists with draws of mixture comp parms

Author(s)

Peter Rossi, Anderson School, UCLA, `<perossichi@gmail.com>`.

See Also

- `summary.bayesm.mat`
- `summary.bayesm.var`

Examples

```r
## Not run: out=rnmix(Data,Prior,Mcmc); summary(out)
```
summary.bayesm.var
Summarize Draws of Var-Cov Matrices

Description

`summary.bayesm.var` is an S3 method to summarize marginal distributions given an array of draws.

Usage

```r
## S3 method for class 'bayesm.var'
summary(object, names, burnin = trunc(0.1 * nrow(Vard)), tvalues, QUANTILES = FALSE, ...)
```

Arguments

- `object`: object (herafter, Vard) is an array of draws of a covariance matrix.
- `names`: optional character vector of names for the columns of Vard.
- `burnin`: number of draws to burn-in (def: 0.1 * nrow(Vard)).
- `tvalues`: optional vector of "true" values for use in simulation examples.
- `QUANTILES`: logical for should quantiles be displayed (def: TRUE).
- `...`: optional arguments for generic function.

Details

Typically, `summary.bayesm.var` will be invoked by a call to the generic summary function as in `summary(object)` where `object` is of class `bayesm.var`. Mean, Std Dev, Numerical Standard error (of estimate of posterior mean), relative numerical efficiency (see `numEff`), and effective sample size are displayed. If `QUANTILES=TRUE`, quantiles of marginal distributions in the columns of `Vard` are displayed.

`Vard` is an array of draws of a covariance matrix stored as vectors. Each row is a different draw.

The posterior mean of the vector of standard deviations and the correlation matrix are also displayed.

Author(s)

Peter Rossi, Anderson School, UCLA, `<perossichi@gmail.com>`.

See Also

- `summary.bayesm.mat`
- `summary.bayesm.nmix`

Examples

```r
## Not run: out=rmnpGibbs(Data,Prior,Mcmc); summary(out$sigmadraw)
```
Description

Volume of canned tuna sales as well as a measure of display activity, log price, and log wholesale price. Weekly data aggregated to the chain level. This data is extracted from the Dominick’s Finer Foods database maintained by the Kilts Center for Marketing at the University of Chicago’s Booth School of Business. Brands are seven of the top 10 UPCs in the canned tuna product category.

Usage

data(tuna)

Format

A data frame with 338 observations on 30 variables.

- `$WEEK` a numeric vector
- `$MOVE#` unit sales of brand #
- `$NSALE#` a measure of display activity of brand #
- `$LPRICE#` log of price of brand #
- `$LWHPRIC#` log of wholesale price of brand #
- `$FULLCUST` total customers visits

The brands are:

1. Star Kist 6 oz.
2. Chicken of the Sea 6 oz.
5. Geisha 6 oz.
7. HH Chunk Lite 6.5 oz.

Source

References

Chapter 7, *Bayesian Statistics and Marketing* by Rossi, Allenby, and McCulloch.
http://www.perossi.org/home/bsm-1

Examples

data(tuna)
cat(" Quantiles of sales", fill=TRUE)
mat = apply(as.matrix(tuna[,2:5]), 2, quantile)
print(mat)

example of processing for use with rivGibbs
if(0) {
 data(tuna)
 t = dim(tuna)[1]
customers = tuna[,30]
sales = tuna[,2:8]
lnprice = tuna[,16:22]
lnwhPrice = tuna[,23:29]
share = sales/mean(customers)
shareout = as.vector(1-rowSums(share))
inprob = log(share/shareout)

create w matrix
I1 = as.matrix(rep(1,t))
I0 = as.matrix(rep(0,t))
intercept = rep(I1,4)
brand1 = rbind(I1, I0, I0, I0)
brand2 = rbind(I0, I1, I0, I0)
brand3 = rbind(I0, I0, I1, I0)
w = cbind(intercept, brand1, brand2, brand3)

choose brand 1 to 4
y = as.vector(as.matrix(lnprob[,1:4]))
X = as.vector(as.matrix(lnprice[,1:4]))
lnwhPrice = as.vector(as.matrix(lnwhPrice[1:4]))
z = cbind(w, lnwhPrice)

Data = list(z=z, w=w, x=X, y=y)
Mcmc = list(R=R, keep=1)

set.seed(66)
out = rivGibbs(Data=Data, Mcmc=Mcmc)

cat(" betadraws ", fill=TRUE)
summary(out$betadraw)

plotting examples
if(0) {plot(out$betadraw)}
}