Package ‘bbl’

October 12, 2022

Title Boltzmann Bayes Learner
Version 1.0.0
Maintainer Jun Woo <junwoo035@gmail.com>
Depends R (>= 3.6.0)
Imports methods, stats, utils, Rcpp (>= 0.12.16), pROC, RColorBrewer
Description Supervised learning using Boltzmann Bayes model inference, which extends naive Bayes model to include interactions. Enables classification of data into multiple response groups based on a large number of discrete predictors that can take factor values of heterogeneous levels. Either pseudo-likelihood or mean field inference can be used with L2 regularization, cross-validation, and prediction on new data.
<doi:10.18637/jss.v101.i05>.
License GPL (>= 2)
LinkingTo Rcpp
Encoding UTF-8
RoxygenNote 7.1.2
NeedsCompilation yes
Suggests glmnet, BiocManager, Biostrings
Author Jun Woo [aut, cre] (<https://orcid.org/0000-0003-3220-2064>)
Repository CRAN
Date/Publication 2022-01-27 23:20:12 UTC

R topics documented:

bbl .. 2
bbl.fit .. 4
crossVal ... 5
fitted.bbl .. 7
formula.bbl .. 8
freq2raw .. 8
bbl

Boltzmann Bayes Learning Inference

Description

Main driver for bbl inference

Usage

bbl(
 formula,
 data,
 weights,
 xlevels = NULL,
 verbose = 1,
 method = "pseudo",
 novarOk = FALSE,
 testNull = TRUE,
 prior.count = 1,
 ...
)
Arguments

- **formula**
 - Formula for modeling

- **data**
 - Data for fitting

- **weights**
 - Vector of weights for each instance in data. Restricted to non-negative integer frequencies, recoding the number of times each row of data must be repeated. If NULL, assumed to be all 1. Fractional weights are not supported. Can be a named column in data

- **xlevels**
 - List of factor levels for predictors. If NULL, will be inferred from data with factor levels ordered alphanumerically.

- **verbose**
 - Output verbosity level. Will be send to down-stream function calls with one level lower

- **method**
 - BB inference algorithm; pseudo-likelihood inference ('pseudo') or mean field ('mf')

- **novarOk**
 - If TRUE, will proceed with predictors having only one level

- **testNull**
 - Repeat the inference for the ‘pooled’ sample; i.e., under the null hypothesis of all rows in data belonging to a single group

- **prior.count**
 - Prior count for computing single predictor and pairwise frequencies

- **...**
 - Other parameters to `mleestimate`

Details

Formula argument and data are used to tabulate xlevels unless explicitly given as list. Data are expected to be factors or integers. This function is a driver interpreting formula and calls bbi.fit. Will stop with error if any predictor has only one level unless novarOk='TRUE'. Use `removeConst` to remove the non-varying predictors before calling if this happens.

Value

A list of class bbl with the following elements:

- **coefficients**
 - List of inferred coefficients with elements h, J, h0, and J0. The bias parameter h is a list of length equal to no. of response groups, each of which is a list of the same structure as xlevels: length equal to no. of predictors, containing vectors of length equal to each predictor factor levels: \(h_i^y(x) \) represented by \(h[[y]][[i]][x] \). The interaction parameter J is a list of lists of dimension \(m \times m \), where \(m \) is the number of predictors. Each element is a matrix of dimension \(L_i \times L_j \), where \(L_i \) and \(L_j \) are numbers of factor levels in predictor i and j: \(J_{ij}^{y}(x_1, x_2) \) represented by \(J[[y]][[i]][[j]][x1, x2] \). All elements of lists are named. The pooled parameters h0 and J0, if computed, are of one less dimension, omitting response group argument.

- **xlevels**
 - List of vectors containing predictor levels.

- **terms**
 - The terms of formula input.

- **groups**
 - Vector of response groups.

- **groupname**
 - Name of the response variable.
Matrix of logicals whose elements record whether formula includes interaction between the two predictors.

Model data frame derived from formula and data.

Log likelihood.

Vector log partition function. Used in predict.

Vector of integral weights (frequencies).

Function call.

Degrees of freedom.

Author(s)

Jun Woo, <junwoo035@gmail.com>

References

doi: 10.18637/jss.v101.i05

Examples

titanic <- as.data.frame(Titanic)
b <- bbl(Survived ~ (Class + Sex + Age)^2, data = titanic, weights = Freq)
b

Description

Performs bbl inference using response vector and predictor matrix

Usage

bbl.fit(
 x, y,
 qJ = NULL,
 weights = NULL,
 xlevels = NULL,
 verbose = 1,
 method = "pseudo",
 prior.count = 1,
 ...
)
Arguments

- **x**: Data frame of factors with each predictor in columns.
- **y**: Vector of response variables.
- **qJ**: Matrix of logicals indicating which predictor combinations are interacting.
- **weights**: Vector of non-negative integer frequencies, recoding the number of times each row of data must be repeated. If `NULL`, assumed to be all 1. Fractional weights are not supported.
- **xlevels**: List of factor levels for predictors. If `NULL`, will be inferred from data with factor levels ordered alphanumerically.
- **verbose**: Verbosity level of output. Will be propagated to `mlestimate` with one level down.
- **method**: `c('pseudo', 'mf')`; inference method.
- **prior.count**: Prior count for computing single predictor and pairwise frequencies
- **...**: Other arguments to `mlestimate`.

Details

This function would normally be called by `bbl` rather than directly. Expects the predictor data x and response vector y instead of formula input to `bbl`.

Value

List of named components h, J, lkh, and lz; see `bbl` for information regarding these components.

Examples

```r
titanic <- as.data.frame(Titanic)
freq <- titanic$Freq
x <- titanic[,1:3]
y <- titanic$Survived
b <- bbl.fit(x=x, y=y, weights=freq)
b
```

crossVal

Cross-Validation of BB Learning

Description

Run multiple fittings of `bbl` model with training/validation division of data
Usage

crossVal(
 formula,
 data,
 weights,
 novarOk = FALSE,
 lambda = 1e-05,
 lambdah = 0,
 eps = 0.9,
 nfold = 5,
 method = "pseudo",
 use.auc = TRUE,
 verbose = 1,
 progress.bar = FALSE,
 storeOpt = TRUE,

...)

Arguments

formula Formula for model. Note that intercept has no effect.
data Data frame of data. Column names must match formula.
weights Frequency vector of how many times each row of data must be repeated. If
 NULL, defaults to vector of 1s. Fractional values are not supported.
novarOk Proceed even when there are predictors with only one factor level.
lambda Vector of L2 penalizer values for method = 'pseudo'. Inferences will be re-
 peated for each value. Restricted to non-negative values.
lambdah L2 penalizer in method = 'pseudo' applied to parameter h. In contrast to
 lambda, only a single value is allowed.
eps Vector of regularization parameters, $\epsilon \in [0, 1]$, for method = 'mf'. Inference
 will be repeated for each value.
nfold Number of folds for training/validation split.
method c('pseudo', 'mf') for pseudo-likelihood maximization or mean field.
use.auc Use AUC as the measure of prediction accuracy. Only works if response groups
 are binary. If FALSE, mean prediction group accuracy will be used as score.
verbose Verbosity level. Downgraded when relayed into bbl.
progress.bar Display progress bar in predict.
storeOpt Store the optimal fitted object of class bbl.
... Other parameters to mlestimate.

Details

The data slot of object is split into training and validation subsets of (nfold-1):1 ratio. The model
is trained with the former and validated on the latter. Individual division/fold results are combined
into validation result for all instances in the data set and prediction score is evaluated using the
known response group identity.
Value

Object of class cv.bbl extending bbl, a list with extra components: regstar, Value of regularization parameter, lambda and eps for method='pseudo' and method='mf', respectively, at which the accuracy score is maximized; maxscore, Value of maximum accuracy; cvframe, Data frame of regularization parameters and scores scanned. If use.auc=TRUE, also contains 95

Examples

```r
set.seed(513)
m <- 5
n <- 100
predictors <- list()
for(i in 1:m) predictors[[i]] <- c('a','c','g','t')
names(predictors) <- paste0('v',1:m)
par <- list(randompar(predictors), randompar(predictors, h0=0.1, J0=0.1))
dat <- randomsamp(predictors, response=c('ctrl','case'), par=par, nsample=n)
cv <- crossVal(y ~ .^2, data=dat, method='mf', eps=seq(0.1,0.9,0.1))
cv
```

fitted.bbl

Fitted Response Group Probabilities

Description

Response group probabilities from BBL fit

Usage

```r
## S3 method for class 'bbl'
fitted(object, ...)
```

Arguments

- **object**: Object of class bbl.
- **...**: Other arguments

Details

This method returns predicted response group probabilities of trainig data

Value

Matrix of response group probabilities with data points in rows and response groups in columns

Examples

```r
titanic <- as.data.frame(Titanic)
fit <- bbl(Survived ~ Class + Sex + Age, data=titanic, weights=titanic$Freq)
```
formula.bbl
Formula in BBL Fitting

Description

Returns the formula used in BBL fit

Usage

```r
## S3 method for class 'bbl'
formula(x, ...)
```

Arguments

- `x`: Object of class `bbl`
- `...`: Other arguments

Value

Formula object

Examples

```r
titanic <- as.data.frame(Titanic)
fit <- bbl(Survived ~ Class + Sex + Age, data=titanic, weights=titanic$Freq)
formula(fit)
```

freq2raw
Convert Frequency Table into Raw Data

Description

Data with unique rows and a frequency column is converted into data with duplicate rows.

Usage

```r
freq2raw(data, freq)
```

Arguments

- `data`: Data frame with factors in columns
- `freq`: Vector of frequency of each row in `data`; can be a named column in `data`; if missing, the column `Freq` is looked for in `data`
Details

The output data frame can be used as input to \texttt{bbl}.

Value

Data frame with one row per instances

Examples

\begin{verbatim}
Titanic
x <- as.data.frame(Titanic)
head(x)
titanic <- freq2raw(data=x[,1:3], freq=x$Freq)
head(titanic)
\end{verbatim}

\begin{verbatim}
logLik.bbl

log likelihood for bbl object

Description

Compute log likelihood from a fitted \texttt{bbl} object

Usage

\begin{verbatim}
S3 method for class 'bbl'
logLik(object, ...)
\end{verbatim}

Arguments

object Object of class \texttt{bbl}

Details

This method uses inferred parameters from calls to \texttt{bbl} and data to compute the log likelihood.

Value

An object of class \texttt{logLik}, the Log likelihood value and the attribute "df" (degrees of freedom), the number of parameters.
mcSample

Sample Predictor Distributions

Description

Uses fitted BBL model to explore predictor distributions

Usage

```r
mcSample(object, nsteps = 1000, verbose = 1, progress.bar = TRUE)
```

Arguments

- `object` Object of class `bbl`
- `nsteps` Total number of MC steps
- `verbose` Verbosity level of output
- `progress.bar` Display progress bar

Details

After `bbl` fit, the resulting model is used by this function to sample predictor distributions in each response group and find the most likely predictor set using MCMC.

Examples

```r
titanic <- as.data.frame(Titanic)
b <- bbl(Survived~., data=titanic[,1:4], weights=titanic$Freq)
pxy <- mcSample(b)
pxy
```

mleestimate

Maximum likelihood estimate

Description

Perform inference of bias and interaction parameters for a single response group
Usage

mlestimate(
 xi,
 weights = NULL,
 qJ = NULL,
 method = "pseudo",
 L = NULL,
 lambda = 1e-05,
 lambdah = 0,
 symmetrize = TRUE,
 eps = 0.9,
 nprint = 100,
 itmax = 1e+05,
 tolerance = 1e-04,
 verbose = 1,
 prior.count = 1,
 naive = FALSE,
 lz.half = FALSE
)

Arguments

xi Data matrix; expected to be numeric with elements ranging from zero to positive integral upper bound L-1.
weights Frequency vector of number of times each row of xi is to be repeated. If NULL, defaults to 1. Expected to be non-negative integers.
qJ Matrix of logicals indicating which predictor pairs are interacting. If NULL, all are allowed.
method c('pseudo', 'mf') for pseudo-likelihood maximization or mean field inference.
L Vector of number of factor levels in each predictor. If NULL, will be inferred from xi.
lambda Vector of L2 regularization parameters for method = 'pseudo'. Applies to interaction parameters J.
lambdah L2 parameters for h in 'pseudo'. If NULL, it is set equal to lambda. lambdah = 0 will free h from penalization.
symmetrize Enforce the symmetry of interaction parameters by taking mean values of the matrix and its trace: \(J_{ij}^{(y)}(x_1, x_2) = J_{ji}^{(y)}(x_2, x_1) \).
eps Vector of regularization parameters for mf. Must be within the range of \(\epsilon \in [0, 1] \).
nprint Frequency of printing iteration progress under 'pseudo'.
itmax Maximum number of iterations for 'pseudo'.
tolerance Upper bound for fractional changes in pseudo-likelihood values before terminating iteration in 'pseudo'.

verbose Verbosity level.
prior.count Prior count for method = 'mf' to reduce numerical instability.
naive Naive Bayes inference. Equivalent to method = 'mf' together with eps = 0.
lz.half Divide interaction term in approximation to \(\ln Z_{ij} \) in 'pseudo'.

Details

Given numeric data matrix, either pseudo-likelihood of mean-field theory is used to find the maximum likelihood estimate of bias \(h \) and interaction \(J \) parameters. Normally called by \texttt{bbl} rather than directly.

Value

List of inferred parameters \(h \) and \(J \). See \texttt{bbl} for parameter structures.

Examples

```r
set.seed(535)
predictors <- list()
for(i in 1:5) predictors[[i]] <- c('a', 'c', 'g', 't')
par <- randompar(predictors)
par
xi <- sample_xi(nsample=5000, predictors=predictors, h=par$h, J=par$J,
    code_out=TRUE)
head(xi)
ps <- mlestimate(xi=xi, method='pseudo', lambda=0)
ps$h
ps$J[[1]]
mf <- mlestimate(xi=xi, method='mf', eps=0.9)
plot(x=unlist(par$h), y=unlist(ps$h), xlab='True', ylab='Inferred')
segments(x0=-2, x1=2, y0=-2, y1=2, lty=2)
points(x=unlist(par$J), y=unlist(ps$J), col='red')
points(x=unlist(par$J), y=unlist(mf$h), col='blue')
points(x=unlist(par$J), y=unlist(mf$J), col='green')
```

model.frame.bbl

Model Frame for BBL

Description

Returns the model frame used in BBL fit

Usage

```r
## S3 method for class 'bbl'
model.frame(formula, ...)
```
Arguments

- `formula`: Object of class `bbl`
- `...`: Other arguments

Value

Data frame used for fitting

Examples

```r
titanic <- as.data.frame(Titanic)
fit <- bbl(Survived ~ Class + Sex + Age, data=titanic[,1:4], weights=titanic$Freq)
head(model.frame(fit))
```

nobs.bbl

Number of Observations in BBL Fit

Description

Returns the number of observations from a BBL fit

Usage

```r
## S3 method for class 'bbl'
nobs(object, ...)
```

Arguments

- `object`: Object of class `bbl`
- `...`: Other arguments

Value

An integer of number of observations

Examples

```r
titanic <- as.data.frame(Titanic)
fit <- bbl(Survived ~ Class + Sex + Age, data=titanic[,1:4], weights=titanic$Freq)
nobs(fit)
```
plot.bbl

Plot bbl object

Description

Visualize bias and interaction parameters

Usage

S3 method for class 'bbl'
plot(x, layout = NULL, hcol = NULL, Jcol = NULL, npal = 100, ...)

Arguments

- **x**: Object of class bbl
- **layout**: Matrix of layouts for arrangement of linear and interaction parameters. If NULL, the top half will be used for linear parameter barplot and bottom half will be divided into interaction heatmaps for each response group.
- **hcol**: Color for linear barplots. Grayscale if NULL.
- **Jcol**: Color for interaction heatmaps. Default (NULL) is RdBu from RColorBrewer.
- **npal**: Number of color scales.
- **...**: Other graphical parameters for plot.

Details

This method displays a barplot of bias parameters and heatmaps (one per response group) of interaction parameters. All parameters are offset by the pooled values (single group inference) unless missing.

plot.cv.bbl

Plot Cross-validation Outcome

Description

Plot cross-validation score as a function of regularization parameter
predict.bbl

Usage

S3 method for class 'cv.bbl'
plot(
 x,
 type = "b",
 log = "x",
 pch = 21,
 bg = "white",
 xlab = NULL,
 ylab = NULL,
 las = 1,
 ...
)

Arguments

x Object of class cv.bbl from a call to crossVal
type Symbol type in plot, present here to set default.
log Log scale argument to plot.
pch Symbol type code in par.
bg Symbol background color in par.
xlab X axis label
ylab Y axis label
las Orientation of axis labels in par.
... Other arguments to plot.

Details

This function will plot accuracy score as a function of regularization parameter from a call to crossVal.

predict.bbl Predict Response Group Using bbl Model

Description

Make prediction of response group identity based on trained model

Usage

S3 method for class 'bbl'
predict(object, newdata, type = "link", verbose = 1, progress.bar = FALSE, ...)
Arguments

- **object**: Object of class `bbl` containing trained model
- **newdata**: Data frame of new data for which prediction is to be made. Columns must contain all of those in `model@data`. If column names are present, the columns will be matched based on them. Extra columns will be ignored. If column names are not provided, the columns should exactly match `model@data` predictor parts. If `NULL`, replaced by `model@data` (self-prediction).
- **type**: Return value type. If 'link', the logit scale probabilities. If 'prob' the probability itself.
- **verbose**: Verbosity level
- **progress.bar**: Display progress of response group probability. Useful for large samples.
- **...**: Other arguments to methods

Details

This method uses a new data set for predictors and trained `bbl` model parameters to compute posterior probabilities of response group identity.

Value

Data frame of predicted posterior probabilities with samples in rows and response groups in columns. The last column is the predicted response group with maximum probability.

Examples

```r
set.seed(154)

m <- 5
L <- 3
n <- 1000

predictors <- list()
for(i in 1:m) predictors[[i]] <- seq(0,L-1)
names(predictors) <- paste0('v',1:m)
par <- list(randompar(predictors=predictors, dJ=0.5),
           randompar(predictors=predictors, h0=0.1, J0=0.1, dJ=0.5))
dat <- randomsamp(predictors=predictors, response=c('ctrl','case'), par=par,
                  nsample=n)
dat <- dat[sample(n),]
dtrain <- dat[seq(n/2),]
dtest <- dat[seq(n/2+1,n),]

model <- bbl(y ~ .^2, data=dtrain)
pred <- predict(model, newdata=dtest)
score <- mean(dtest$y==pred$yhat)
score

auc <- pROC::roc(response=dtest$y, predictor=pred$case, direction='<')$auc
auc
```
predict.cv.bbl
Predict using Cross-validation Object

Description
Use the optimal fitted model from cross-validation run to make prediction

Usage
```r
## S3 method for class 'cv.bbl'
predict(object, ...)
```

Arguments
- `object` Object of class `cv.bbl`.
- `...` Other parameters to `predict.bbl`.

Details
This method will use the fitted model with maximum accuracy score returned by a call to `crossVal` to make prediction on new data

Value
Data frame of prediction; see `predict.bbl`.

print.bbl
Print Boltzmann Bayes Learning Fits

Description
This method displays model structure and first elements of coefficients

Usage
```r
## S3 method for class 'bbl'
print(x, showcoeff = TRUE, maxcoeff = 3L, ...)```

**Arguments**
- `x` An object of class `bbl`, usually derivied from a call to `bbl`.
- `showcoeff` Display first few fit coefficients
- `maxcoeff` Maximum number of coefficients to display
- `...` Further arguments passed to or from other methods
print.summary.bbl

Details
Displays the call to \texttt{bbl}, response variable and its levels, predictors and their levels, and the first few fit coefficients.

\begin{Verbatim}
print.cv.bbl  Display Cross-validation Result
\end{Verbatim}

Description
Print cross-validation optimal result and data frame

Usage
\begin{verbatim}
## S3 method for class 'cv.bbl'
print(x, ...)
\end{verbatim}

Arguments
\begin{itemize}
\item \texttt{x} \hspace{1cm} Object of class \texttt{cv.bbl}
\item \texttt{...} \hspace{1cm} Other arguments to methods
\end{itemize}

Details
This method prints \texttt{crossVal} object with the optimal regularization condition and maximum accuracy score on top and the entire score profile as a data frame below.

\begin{Verbatim}
print.summary.bbl  Print Summary of Boltzmann Bayes Learning
\end{Verbatim}

Description
This method prints the summary of \texttt{bbl} object

Usage
\begin{verbatim}
## S3 method for class 'summary.bbl'
print(x, ...)
\end{verbatim}

Arguments
\begin{itemize}
\item \texttt{x} \hspace{1cm} Object of class \texttt{summary.bbl}
\item \texttt{...} \hspace{1cm} Other arguments to methods
\end{itemize}

Details
The naive Bayes summary of \texttt{summary.bbl} object is displayed.
**randompar**

*Generate Random Parameters*

**Description**

Random values of bias and interaction parameters are generated using either uniform or normal distributions.

**Usage**

```r
randompar(predictors, distr = "unif", h0 = 0, dh = 1, J0 = 0, dJ = 1)
```

**Arguments**

- `predictors` List of predictor factor levels. See `bb1`.
- `distr` `c('unif', 'norm')` for uniform or normal distributions.
- `h0` Mean of bias parameters
- `dh` sd of bias if `distr = 'unif'`. If `distr = 'norm'`, \( h = [h_0 - dh, h_0 + dh] \).
- `J0` Mean of interaction parameters.
- `dJ` sd of interactions if `distr = 'unif'`. If `distr = 'norm'`, \( J = [J_0 - dJ, J_0 + dJ] \).

**Details**

Input argument `predictors` is used to set up proper list structures of parameters.

**Value**

List of parameters, \( h \) and \( J \).

**Examples**

```r
set.seed(311)
predictors <- list()
for(i in 1:5) predictors[[i]] <- c('a', 'c')
par <- randompar(predictors=predictors)
par
```
randomsamp  Generate Random Boltzmann Bayes Model Data

Description
Predictor-response paired data are generated

Usage
randomsamp(predictors, response, prob = NULL, par, nsample = 100)

Arguments
- predictors: List of vectors of predictor levels
- response: Vector of response variables
- prob: Vector of probabilities for sampling each response group
- par: List of bbl parameters for each response group; e.g., generated from calls to randompar.
- nsample: Sample size

Details
The argument response is used to set up all possible levels of response groups and likewise for predictors. The parameter argument par must have the appropriate structure consistent with response and predictors. This function is a wrapper calling sample_xi multiple times.

Value
Data frame of response and predictor variables.

readFasta  Read FASTA File

Description
Read nucleotide sequence files in FASTA format

Usage
readFasta(file, rownames = FALSE)

Arguments
- file: File name of FASTA input.
- rownames: Use the sequence annotation line in file (starts with '>') as the row names. Will fail if there are duplicate items.
**Details**

Sequence data in FASTA files are converted into data frame suitable as input to `bb1`. If sequence lengths are different, instances longer than those already read will be truncated. Empty sequences are skipped.

**Value**

Data frame of each sequence in rows.

**Examples**

```r
file <- tempfile('data')
write('>seq1', file)
write('atgcc', file, append=TRUE)
write('>seq2', file, append=TRUE)
write('gccaa', file, append=TRUE)
system(paste0('cat ',file))
x <- readFasta(file)
x
```

---

<table>
<thead>
<tr>
<th>removeConst</th>
<th>Remove Non-varying Predictors</th>
</tr>
</thead>
</table>

**Description**

Constant predictor is identified and removed

**Usage**

```r
removeConst(x)
```

**Arguments**

- `x` Data frame containing discrete factor variables in each column

**Details**

Variables with only one factor level is removed from data. Intended for use before calling `bb1`.

**Value**

Data frame omitting non-varying variables from `x`. 
Examples

```r
set.seed(351)
nt <- c('a','c','g','t')
x <- data.frame(v1=sample(nt,size=50,replace=TRUE),
 v2=rep('a',50),v3=sample(nt,size=50,replace=TRUE))
y <- sample(c('case','ctrl'),size=50,replace=TRUE)
dat <- cbind(data.frame(y=y), x)
summary(dat)
dat <- removeConst(dat)
summary(dat)
```

residuals.bbl  
*Residuals of BBL fit*

Description

Binary-valued vector of fitted vs. true response group

Usage

```r
S3 method for class 'bbl'
residuals(object, ...)
```

Arguments

- `object` Object of class bbl
- `...` Other arguments

Details

Discrete response group identity for each data point is compared with the fitted group and 0 (discordant) or 1 (concordant) is returned

Value

Vector binary values for each data point

Examples

```r
titanic <- as.data.frame(Titanic)
dat <- freq2raw(titanic[,1:4], freq=titanic$Freq)
fit <- bbl(Survived ~ .^2, data=dat)
x <- residuals(fit)
table(x)
```
**sample_xi**

Generate Random Samples from Boltzmann Distribution

**Description**

Random samples are drawn from Boltzmann distribution

**Usage**

```r
sample_xi(nsample = 1, predictors = NULL, h, J, code_out = FALSE)
```

**Arguments**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nsample</td>
<td>Sample size</td>
</tr>
<tr>
<td>predictors</td>
<td>List of predictor factor levels.</td>
</tr>
<tr>
<td>h</td>
<td>Bias parameter; see <code>bb1</code>.</td>
</tr>
<tr>
<td>J</td>
<td>Interaction parameters; see <code>bb1</code>.</td>
</tr>
<tr>
<td>code_out</td>
<td>Output in integer codes; $a_i = 0, \cdots, L_i - 1$. If FALSE, output in factors in predictors.</td>
</tr>
</tbody>
</table>

**Details**

All possible factor states are enumerated exhaustively using input argument `predictors`. If the number of predictors $m$ or the number of factor levels $L_i$ for each predictor $i$ are even moderately large ($m \geq 10$ or $L_i \geq 5$), this function will likely hang because the number of all possible states grows exponentially.

**Value**

Data frame of samples in rows and predictors in columns.

**Examples**

```r
set.seed(512)
m <- 5
n <- 1000
predictors <- list()
for(i in 1:m) predictors[[i]] <- c('a','c','g','t')
par <- randompar(predictors)
xi <- sample_xi(nsample=n, predictors=predictors, h=par$h, J=par$J)
head(xi)
```
**Naive Bayes Summary**

**Description**

Estimate significant of predictor-group association using naive Bayes model

**Usage**

```r
S3 method for class 'bbl'
summary(object, prior.count = 0, ...)
```

**Arguments**

- `object`: Object of class `bbl`
- `prior.count`: Prior count to be used for computing naive Bayes coefficients and test results. If 0, will produce NAs for factor levels without data points.
- `...`: Other arguments to methods.

**Details**

This `summary.bbl` method gives a rough overview of associations within a `bbl` fit object via naive Bayes coefficients and test p-values. Note that naive Bayes results displayed ignore interactions even when interactions are present in the model being displayed. This feature is because simple analytic results exist for naive Bayes coefficients and test p-values. The likelihood ratio test is with respect to the null hypothesis that coefficients are identical for all response groups.

**Value**

Object of class `summary.bbl` extending `bbl` class; a list with extra components

- `h`: List of bias coefficients of response groups under naive Bayes approximation
- `h0`: Bias coefficients of pooled group under naive Bayes
- `chisqNaive`: Vector of chi-square statistics for likelihood ratio test for each predictor
- `dfNaive`: Vector of degrees of freedom for likelihood ratio test for each predictor
- `pvNaive`: Vector p-values for each predictor
weights.bbl

Weights in BBL Fit

Description

This method returns weights used in BBL fit.

Usage

```r
S3 method for class 'bbl'
weights(object, ...)
```

Arguments

- `object`: Object of class `bbl`.
- `...`: Other arguments

Details

Note that weights are integral frequency values specifying repeat number of each instance in `bbl`. If no weights were used (default of 1s), `NULL` is returned.

Value

Vector of weights for each instance
Index

bbl, 2, 5–7, 9, 12, 17–21, 23
bbl.fit, 4

crossVal, 5, 15, 17, 18

fitted.bbl, 7
fitted.values(fitted.bbl), 7
formula.bbl, 8
freq2raw, 8

logLik.bbl, 9

mcSample, 10
mestimate, 3, 5, 6, 10
model.frame.bbl, 12

nobs.bbl, 13

par, 15, 20
plot, 14, 15
plot.bbl, 14
plot.cv.bbl, 14
predict, 4, 6
predict.bbl, 15, 17
predict.cv.bbl, 17
print.bbl, 17
print.cv.bbl, 18
print.summary.bbl, 18

randompar, 19, 20
randomsamp, 20
readFasta, 20
removeConst, 3, 21
residuals.bbl, 22

sample_xi, 20, 23
summary.bbl, 24

weights.bbl, 25