Package ‘beam’

January 28, 2020

Type Package

Title Fast Bayesian Inference in Large Gaussian Graphical Models

Version 2.0.1

Date 2020-01-16

Author Gwenael G.R. Leday [cre, aut],
Ilaria Speranza [aut],
Harry Gray [ctb]

Maintainer Gwenael G.R. Leday <gwenael.1eday@mrc-bsu.cam.ac.uk>

Depends R (>= 3.1.0)

Imports stats, methods, grDevices, graphics, Matrix, fdrtool, igraph,
knitr, Rcpp, assertthat

Description Fast Bayesian inference of marginal and conditional independence structures from high-dimensional data.

LazyLoad yes

License GPL (>= 2.0)

LazyData TRUE

NeedsCompilation yes

Repository CRAN

RoxygenNote 6.0.1

LinkingTo Rcpp, RcppArmadillo, BH

Suggests covr, testthat

URL https://github.com/gleday/beam

Date/Publication 2020-01-28 09:40:20 UTC

R topics documented:

beam-package .. 2
beam .. 3
beam-class .. 5
Fast Bayesian Inference in Large Gaussian Graphical Models

Description

The package enables inference of marginal and conditional dependencies from high-dimensional using the method of Leday and Richardson (2019). Inference is carried out by multiple testing of hypotheses about pairwise (marginal or conditional) independence using closed-form Bayes factors. Exact tail probabilities are obtained from the null distributions of the Bayes factors to help address the multiplicity problem and control desired error rates for incorrect edge inclusion. The method is computationally very efficient and allows to address problems with hundreds or thousands of variables.

Details

1. The main function of the package is `beam` which carries out shrinkage estimation of the (inverse) covariance and compute the (scaled) Bayes factors as well as the tail probabilities (p-values). The function returns an (S4) object of class `beam-class` that is associated with the following methods:
 - `summary,beam-method`:
 provides a summary of inferred (marginal and/or conditional) associations.
 - `marg,beam-method`:
 returns a data.frame with marginal correlations, Bayes factors and/or tail probabilities.
 - `cond,beam-method`:
 returns a data.frame with partial correlations, Bayes factors and/or tail probabilities.
 - `mcor,beam-method`:
 return marginal correlation matrix (scaled posterior expectation of the covariance matrix).
 - `pcor,beam-method`:
 return partial correlation matrix (scaled posterior expectation of the inverse covariance matrix).
 - `plotML,beam-method`:
 plot log-marginal likelihood of the Gaussian conjugate model as a function of shrinkage parameter.
 - `plotCor,beam-method`:
 plot heatmap of marginal (upper triangle) and/or partial (lower triangle) correlation estimates.

2. The function `beam.select` takes as input an object of class `beam-class` and carries out edge selection by multiple testing of hypotheses about pairwise (marginal or conditional) independence. The function helps address the multiplicity problem and control different types of error rates (e.g. false discovery rate, family-wise error rate, ...). `beam.select` returns an (S4) object of class `beam.select-class` that is associated with the following methods:
beam

- **summary,beam.select-method:** provides a summary of inferred (marginal or conditional) associations.
- **marg,beam.select-method:** returns a data.frame with marginal correlations, Bayes factors and/or tail probabilities for selected edges.
- **cond,beam.select-method:** returns a data.frame with partial correlations, Bayes factors and/or tail probabilities for selected edges.
- **bgraph,beam.select-method:** return an igraph object containing the marginal (in)dependence graph.
- **ugraph,beam.select-method:** return an igraph object containing the conditional (in)dependence graph.

Author(s)

Authors: Gwenael G.R. Leday and Ilaria Speranza
Maintainer: Gwenael G.R. Leday <gwenael.leday@mrc-bsu.cam.ac.uk>

References

Description

This function carries out covariance and inverse covariance estimation within the Gaussian conjugate model. The scale matrix parameter of the inverse-Wishart is set to the identity (default), whereas the degree of freedom parameter is estimated by maximization of the marginal likelihood. The function also computes the Bayes factor and tail probability (p-values) to test the marginal or conditional independence between all pairs of variables.

Usage

```
beam(X, type = "conditional", return.only = c("cor", "BF", "prob"),
verbose=TRUE, D=NULL)
```

Arguments

- **X**
 n by p data matrix
- **type**
 character. Either "marginal", "conditional" or "both". See Details.
- **return.only**
 character. Either "cor", "BF", "prob". See details.
- **verbose**
 logical. Whether information on progress should be printed.
- **D**
 matrix. Prior marginal correlation matrix. Must be positive definite, well-conditioned and have unit variance.
Details

The arguments type and return.only have essentially been introduced for computational and memory savings. Using argument type the user may indicate whether the marginal dependencies ("marginal"), the conditional dependencies ("conditional") or both ("both") are to be inferred. On the other hand, the argument return.only is used to indicate whether the correlations ("cor"), Bayes factors ("BF") or tail probabilities ("prob") should be returned. Default is to return all three quantities for conditional dependencies.

Value

An object of class beam-class

Author(s)

Gwenael G.R. Leday and Ilaria Speranza

References

Examples

```r
# Load data
data(TCPAprad)

# beam
fit <- beam(X = TCPAprad, type="both")

# Print summary
summary(fit)

# Extract matrix of marginal correlations
mcor(fit)[1:5, 1:5]

# Extract matrix of partial correlations
pcor(fit)[1:5, 1:5]

# Plot log-marginal likelihood of the Gaussian conjugate model
plotML(fit)

# Plot heatmap of marginal (upper triangle) and/or partial (lower triangle) correlation estimates
plotCor(fit)
```
beam-class

Class beam

Description

An S4 class representing the output of the beam function.

Usage

```r
## S4 method for signature 'beam'
print(x, ...)

## S4 method for signature 'beam'
show(object)

## S4 method for signature 'beam'
summary(object, ...)

## S4 method for signature 'beam'
marg(object)

## S4 method for signature 'beam'
cond(object)

## S4 method for signature 'beam'
mcor(object)

## S4 method for signature 'beam'
pcor(object)

## S4 method for signature 'beam'
postExpSigma(object, vars.method="eb")

## S4 method for signature 'beam'
postExpOmega(object, vars.method="eb")

## S4 method for signature 'beam'
plotML(object, ...)

## S4 method for signature 'beam'
plotCor(object, type = object@type, order = 'original', by = "marginal")

## S4 method for signature 'beam'
bgraph(object)

## S4 method for signature 'beam'
ugraph(object)
```
Arguments

x An object of class beam-class
object An object of class beam-class
type character. Type of correlation to be displayed (marginal, conditional or both)
order character. Either 'original' or 'clust'. If 'clust' the rows and columns of the
correlation matrix are reordered using the cluster memberships obtained by the
Louvain clustering algorithm.
by character. When type ="both" and order = 'clust', specifies whether the clus-
tering has to be performed using the complete weighted marginal or conditional
independence graph.
vars.method character. Method of shrinkage estimation for the variances.
... further arguments passed to or from other methods.

Slots

table dat.frame. A data.frame containing marginal and/or partial correlation estimates, Bayes
factors and tail probabilities for each edge.
deltaOpt numeric. Empirical Bayes estimate of hyperpaprameter delta.
dimX numeric. Dimension of the input data matrix X.
type character. Input argument.)
varlabs character. Column labels of X.
gridAlpha matrix. A matrix containing the log-marginal likelihood of the Gaussian conjugate
model as a function of a grid of values of alpha and delta.
return.only character. Input argument.
time numeric. Running time (in seconds).
TinvStdev numeric. Square root of partial variances.
s numeric. Sample variances.

Author(s)

Gwenael G.R. Leday and Ilaria Speranza
beam.select

Edge selection with multiple testing and error control

Description

Infer graphical structures by multiple testing

Usage

```r
beam.select(object, thres = 0.1, method = "BH",
return.only = c(object@return.only, "adj"))
```

Arguments

- `object`: An object of class `beam-class`.
- `thres`: numeric. Threshold to be applied on adjusted tail probabilities.
- `method`: character. Method to use for multiple comparison adjustment of tail probabilities.
- `return.only`: character. Quantities to be returned.

Details

The argument `method` allows to adjust the tail probabilities obtained from the null distributions of the Bayes factors for multiple comparisons. Possible choices are: "holm", "bonferroni", "BH", "BY" and "HC". Apart from "HC", these are passed onto the R function `p.adjust` from package `stats` and we refer the user to its documentation for details. The method "HC" provides an optimal decision threshold based on the Higher Criticism score which is computed using the R function `hc.thresh` from package `fdrtool`. Again, we refer to the associated documentation for details.

The argument `return.only` allows to decide which quantities have to be in the output: it could be any subvector of c("cor", "BF", "prob", "adj") (provided that the requested quantities have been computed in the beam object, except for adjusted probabilities). It can also be set to NULL: in this case, only the selected edges will be returned without any additional information. The default value for this argument are the columns present in the beam object plus the adjusted probabilities.

Value

An object of class `beam.select-class`

Author(s)

Gwenaël G.R. Leday and Ilaria Speranza
References

beam.select-class

Class beam.select

Description

An S4 class representing the output of the beam.select function.

Usage

S4 method for signature 'beam.select'
print(x, ...)

S4 method for signature 'beam.select'
show(object)

S4 method for signature 'beam.select'
summary(object, ...)

S4 method for signature 'beam.select'
marg(object)

S4 method for signature 'beam.select'
cond(object)

S4 method for signature 'beam.select'
mcor(object)

S4 method for signature 'beam.select'
pcor(object)

S4 method for signature 'beam.select'
plotML(object, ...)

S4 method for signature 'beam.select'
plotAdj(object, type=object@type, order = "original")
beam.select-class

bgraph(object)

S4 method for signature 'beam.select'

ugraph(object)

Arguments

- **x**: An object of class `beam.select-class`
- **object**: An object of class `beam.select-class`
- **type**: character. Type of correlation to be displayed (marginal, conditional or both)
- **order**: character. Either 'original' or 'clust'. If 'clust' the rows and columns of the adjacency matrix are reordered using the cluster memberships obtained by the Louvain clustering algorithm.
- **...**: further arguments passed to or from other methods.

Slots

- **marginal**: data.frame. A data.frame containing the marginal correlation estimates, Bayes factors and tail probabilities for the selected edges only.
- **conditional**: data.frame. A data.frame containing the partial correlation estimates, Bayes factors and tail probabilities for the selected edges only.
- **dimX**: numeric. Dimension of the input data matrix X.
- **type**: character. Input type (marginal, conditional or both)
- **var.labs**: character. Column labels of X.
- **gridAlpha**: matrix. A matrix containing the log-marginal likelihood of the Gaussian conjugate model as a function of a grid of values of alpha and delta.
- **valOpt**: numeric. Maximum value of the log-marginal likelihood of the Gaussian conjugate model
- **method**: character. Input method.
- **thres**: numeric. Input threshold

Author(s)

Gwenaël G.R. Leday and Ilaria Speranza
Description

Fast and memory efficient reconstruction of large conditional independence networks.

Usage

```r
lightbeam(X, thres = 0.1, method = "holm", verbose=TRUE)
```

Arguments

- `X` n by p data matrix
- `thres` numeric. Significance threshold to be applied on adjusted tail probabilities.
- `method` character. Method to use for multiple comparison adjustment of tail probabilities.
- `verbose` logical. Whether information on progress should be be printed.

Details

The function returns a sparse upper triangular matrix containing the (adjusted) tails probabilities that are below the given threshold (i.e. significant).

Value

An object of class `dgCMatrix-class`

Author(s)

Gwenael G.R. Leday

References

Examples

```r
# Load data
data(TCPAprad)

# beam
res <- lightbeam(X = TCPAprad, thres=0.1)
```
TCPAprad

Protein expression data.

Description

Level 3 normalized proteomic data (v3.0) from The Cancer Proteome Alas (http://tcpaportal.org/tcpa). The data comprise the measurements of 189 antibodies obtained from 164 tumor tissue samples (prostate adenocarcinoma) using reverse phase protein arrays (RPPA).

Usage

TCPAprad

Format

A 164 by 189 matrix

Source

The Cancer Proteome Alas (http://tcpaportal.org/tcpa)

References

Examples

data(TCPAprad)
dim(TCPAprad)
TCPAprad[1:5, 1:5]
Index

beam, 2, 3, 5
beam-class, 5
beam-package, 2
beam.select, 2, 7, 8
beam.select-class, 8
bgraph (beam-class), 5
bgraph, beam-method (beam-class), 5
 bgraph, beam.select-method (beam.select-class), 8
cond (beam-class), 5
cond, beam-method (beam-class), 5
cond, beam.select-method (beam.select-class), 8
lightbeam, 10
marg (beam-class), 5
marg, beam-method (beam-class), 5
 marg, beam.select-method (beam.select-class), 8
mcor (beam-class), 5
mcor, beam-method (beam-class), 5
mcor, beam.select-method (beam.select-class), 8
pcor (beam-class), 5
pcor, beam-method (beam-class), 5
 pcor, beam.select-method (beam.select-class), 8
plotAdj (beam.select-class), 8
plotAdj, beam.select-method (beam.select-class), 8
plotCor (beam-class), 5
plotCor, beam-method (beam-class), 5
plotML (beam-class), 5
plotML, beam-method (beam-class), 5
plotML, beam.select-method (beam.select-class), 8
postExpOmega (beam-class), 5
postExpOmega, beam-method (beam-class), 5
postExpSigma (beam-class), 5
postExpSigma, beam-method (beam-class), 5
print, beam-method (beam-class), 5
print, beam.select-method (beam.select-class), 8
show, beam-method (beam-class), 5
show, beam.select-method (beam.select-class), 8
summary, beam-method (beam-class), 5
summary, beam.select-method (beam.select-class), 8
TCPAprad, 11
ugraph (beam-class), 5
ugraph, beam-method (beam-class), 5
ugraph, beam.select-method (beam.select-class), 8