Package ‘beeswarm’

June 1, 2021

Title The Bee Swarm Plot, an Alternative to Stripchart

Description The bee swarm plot is a one-dimensional scatter plot like “stripchart”, but with closely-packed, non-overlapping points.

Version 0.4.0

Date 2021-05-07

Imports stats, graphics, grDevices, utils

NeedsCompilation yes

License Artistic-2.0

URL https://github.com/aroneklund/beeswarm

BugReports https://github.com/aroneklund/beeswarm/issues

Author Aron Eklund [aut, cre] (<https://orcid.org/0000-0003-0861-1001>),
 James Trimble [aut] (<https://orcid.org/0000-0001-7282-8745>)

Maintainer Aron Eklund <aroneklund@gmail.com>

Repository CRAN

Date/Publication 2021-06-01 21:40:02 UTC

R topics documented:

 beeswarm .. 2
 breast .. 6
 bxplot .. 7
 swarmx ... 9

Index 12
Description

Create a bee swarm plot. A bee swarm plot is a one-dimensional scatter plot similar to stripchart, but with various methods to separate coincident points such that each point is visible. Also, beeswarm introduces additional features unavailable in stripchart, such as the ability to control the color and plotting character of each point.

Usage

beeswarm(x, ...)

S3 method for class 'formula'
beeswarm(formula, data = NULL, subset, na.action = NULL,
 pwpch = NULL, pwcol = NULL, pwbg = NULL, pwcex = NULL, dlab, glab, ...)

Default S3 method:
beeswarm(x,
 method = c("swarm", "compactswarm", "center", "hex", "square"),
 vertical = TRUE, horizontal = !vertical,
 cex = 1, spacing = 1, breaks = NULL,
 labels, at = NULL,
 corral = c("none", "gutter", "wrap", "random", "omit"),
 corralWidth, side = 0L,
 priority = c("ascending", "descending", "density", "random", "none"),
 fast = TRUE,
 pch = par("pch"), col = par("col"), bg = NA,
 pwpch = NULL, pwcol = NULL, pwbg = NULL, pwcex = NULL,
 do.plot = TRUE, add = FALSE, axes = TRUE, log = FALSE,
 xlim = NULL, ylim = NULL, dlim = NULL, glim = NULL,
 xlab = NULL, ylab = NULL, dlab = ",", glab = ",",
 ...
)

Arguments

formula A formula, such as y ~ grp, where y is a numeric vector of data values to be split into groups according to the grouping variable grp (usually a factor).
data A data.frame (or list) from which the variables in formula should be taken.
subset An optional vector specifying a subset of observations to be used.
na.action A function which indicates what should happen when the data contain NAs. The default is to quietly ignore missing values in either the response or the group.
x A numeric vector, or a data frame or list of numeric vectors, each of which is plotted as an individual swarm.
beeswarm

method
Method for arranging points (see Details).

vertical, horizontal
Orientation of the plot. horizontal takes precedence if both are specified.

cex
Size of points relative to the default given by par("cex"). Unlike other plotting functions, this must be a single value. (But see also the pwcex argument)

spacing
Relative spacing between points.

breaks
Breakpoints (optional). If NULL, breakpoints are chosen automatically. If NA, bins are not used (similar to stripchart with method = "stack").

labels
Labels for each group. Recycled if necessary. By default, these are inferred from the data.

at
Numeric vector giving the locations where the swarms should be drawn; defaults to 1:n where n is the number of groups.

corral
Method to adjust points that would be placed outside their own group region (see Details).

corralWidth
Width of the "corral" in user coordinates. If missing, a sensible value will be chosen.

side
Direction to perform jittering: 0: both directions; 1: to the right or upwards; -1: to the left or downwards.

priority
Order used to perform point layout when method is "swarm" or "compactswarm"; ignored otherwise (see Details).

fast
Use compiled version of algorithm? This option is ignored for all methods except "swarm" and "compactswarm".

pch, col, bg
Plotting characters and colors, specified by group. Recycled if necessary (see Details).

pwpch, pwcol, pwbg, pwcex
"Point-wise" plotting characteristics, specified for each data point (see Details).

do.plot
Draw a plot?

add
Add to an existing plot?

axes
Draw axes and box?

log
Use a logarithmic scale on the data axis?

xlim, ylim
Limits of the plot.

dlim, glim
An alternative way to specify limits (see Details).

xlab, ylab
Axis labels.

dlab, glab
An alternative way to specify axis labels (see Details).

...
Further arguments passed to plot.

Details

Several methods for placing the points are available; each method uses a different algorithm to avoid overlapping points.

The default method, swarm, places points in increasing order. If a point would overlap an existing point, it is shifted sideways (along the group axis) by a minimal amount sufficient to avoid overlap. breaks is ignored.
The other three methods first discretize the values along the data axis, in order to create more efficient packing: square places the points on a square grid, whereas hex uses a hexagonal grid. center uses a square grid to produce a symmetric swarm. By default, the number of breakpoints for discretization is determined by a combination of the available plotting area and the plotting character size. The discretization of the data can be explicitly controlled using breaks. If breaks is set to NA, the data will not be grouped into intervals; this may be a sensible option if the data is already discrete.

In contrast to most other plotting functions, changing the size of the graphics device will often change the position of the points.

The plotting characters and colors can be controlled in two ways. First, the arguments pch, col and bg can specify plotting characters and colors in the same way as stripchart and boxplot: in short, the arguments apply to each group as a whole (and are recycled if necessary). Alternatively, the “point-wise” characteristics of each individual data point can be controlled using pwpch, pwcol, and pwbg, which override pch, col and bg if these are also specified. Likewise, pwex controls the size of each point relative to the default (which may be adjusted by cex). Notably, the point layout algorithm is applied without considering the point-wise arguments; thus setting pwex larger than 1 will usually result in partially overlapping points. These arguments can be specified as a list or vector. If supplied using the formula method, the arguments can be specified as part of the formula interface; i.e. they are affected by data and subset.

The dlab and glab labels may be used instead of xlab and ylab if those are not specified. dlab applies to the continuous data axis (the Y axis unless horizontal is TRUE); glab to the group axis. Likewise, dlim and glim can be used to specify limits of the axes instead of xlim or ylim.

This function is intended to be mostly compatible with calls to stripchart or boxplot. Thus, code that works with these functions should work with beeswarm with minimal modification.

By default, swarms from different groups are not prevented from overlapping. Thus, large data sets, or data sets with uneven distributions, may produce somewhat unpleasing beeswarms. If this is a problem, consider reducing cex. Another approach is to control runaway points (those that would be plotted outside a region allotted to each group) with the corral argument: The default, "none", does not control runaway points. "gutter" collects runaway points along the boundary between groups. "wrap" implements periodic boundaries. "random" places runaway points randomly in the region. "omit" omits runaway points. See Examples below.

When using the "swarm" method, priority controls the order in which the points are placed; this generally has a noticeable effect on the resulting appearance. "ascending" gives the "traditional" beeswarm plot in which the points are placed in an ascending order. "descending" is the opposite. "density" prioritizes points with higher local density. "random" places points in a random order. "none" places points in the order provided.

Whereas the "swarm" method places points in a predetermined order, the "compactswarm" method uses a greedy strategy to determine which point will be placed next. This often leads to a more tightly-packed layout. The strategy is very simple: on each iteration, a point that can be placed as close as possible to the non-data axis is chosen and placed. If there are two or more equally good points, priority is used to break ties.

Value

A data frame with plotting information, invisibly.
beeswarm

See Also

stripchart, boxplot

Examples

```r
## One of the examples from 'stripchart'
beeswarm(decrease ~ treatment,
  data = OrchardSprays, log = TRUE,
  pch = 16, col = rainbow(8))

## One of the examples from 'boxplot', with a beeswarm overlay
boxplot(len ~ dose, data = ToothGrowth,
  main = "Guinea Pigs' Tooth Growth",
  xlab = "Vitamin C dose mg",
  ylab = "Tooth length")
beeswarm(len ~ dose, data = ToothGrowth, col = 2, add = TRUE)

## Compare the 5 methods
op <- par(mfrow = c(2,3))
for (m in c("swarm", "compactswarm", "center", "hex", "square")) {
  beeswarm(len ~ dose, data = ToothGrowth, method = m, main = m)
}
par(op)

## Demonstrate the use of 'pwcol'
data(breast)
beeswarm(time_survival ~ ER, data = breast,
  pch = 16, pwcol = 1 + as.numeric(event_survival),
  xlab = "", ylab = "Follow-up time (months)",
  labels = c("ER neg", "ER pos"))
legend("topright", legend = c("Yes", "No"),
  title = "Censored", pch = 16, col = 1:2)

## The list interface
distributions <- list(runif = runif(200, min = -3, max = 3),
  rnorm = rnorm(200),
  rlnorm = rlnorm(200, sdlog = 0.5))
beeswarm(distributions, col = 2:4)

## Demonstrate 'pwcol' with the list interface
myCol <- lapply(distributions, function(x) cut(x, breaks = quantile(x), labels = FALSE))
beeswarm(distributions, pch = 16, pwcol = myCol)
legend("bottomright", legend = 1:4, pch = 16, col = 1:4, title = "Quartile")

## Demonstrate the 'corral' methods
par(mfrow = c(2,3))
beeswarm(distributions, col = 2:4,
  main = "corral = "none" (default)"
  corral = "gutter",
  main = "corral = "gutter"")
```
beeswarm(distributions, col = 2:4, corral = "wrap",
 main = 'corral = "wrap"')
beeswarm(distributions, col = 2:4, corral = "random",
 main = 'corral = "random"')
beeswarm(distributions, col = 2:4, corral = "omit",
 main = 'corral = "omit"')

Demonstrate 'side' and 'priority'
par(mfrow = c(2,3))
beeswarm(distributions, col = 2:4,
 main = 'Default')
beeswarm(distributions, col = 2:4, side = -1,
 main = 'side = -1')
beeswarm(distributions, col = 2:4, side = 1,
 main = 'side = 1')
beeswarm(distributions, col = 2:4, priority = "descending",
 main = 'priority = "descending"')
beeswarm(distributions, col = 2:4, priority = "random",
 main = 'priority = "random"')
beeswarm(distributions, col = 2:4, priority = "density",
 main = 'priority = "density"')

Demonstrate 'side' and 'priority' for compact method
par(mfrow = c(2,3))
beeswarm(distributions, col = 2:4, method = "compactswarm",
 main = 'Default')
beeswarm(distributions, col = 2:4, method = "compactswarm", side = -1,
 main = 'side = -1')
beeswarm(distributions, col = 2:4, method = "compactswarm", side = 1,
 main = 'side = 1')
beeswarm(distributions, col = 2:4, method = "compactswarm",
 priority = "descending", main = 'priority = "descending"')
beeswarm(distributions, col = 2:4, method = "compactswarm",
 priority = "random", main = 'priority = "random"')
beeswarm(distributions, col = 2:4, method = "compactswarm",
 priority = "density", main = 'priority = "density"')

Demonstrate pwcol, pwpch, pwbg, and pwce
beeswarm(mpg ~ cyl, data = mtcars, cex = 3,
 pwcol = gear, pwbg = am + 1, pwpch = gear + 18, pwce = hp / 335)

breast

Lymp-node-negative primary breast tumors

Description

Tumor molecular measurements and outcome from breast cancer patients.
Usage

 data(breast)

Format

A data frame with 286 observations on the following 5 variables.

- **ER**: Estrogen receptor status (factor with levels `neg`, `pos`)
- **ESR1**: Expression of the ESR1 gene (numeric)
- **ERBB2**: Expression of the ERBB2 gene (numeric)
- **time_survival**: Time in months (numeric)
- **event_survival**: Coded event: 0 = censored, 1 = metastasis (numeric)

Details

ER, ESR1, and ERBB2 were measured on a tumor specimen taken at surgery (time = 0).

ESR1 and ERBB2 expression values were determined by microarray probe sets 205225_at and 216836_s_at using RMA-normalized data.

Source

Examples

 data(breast)

 with(breast,
 plot(ESR1, ERBB2, col = as.numeric(ER))
)

bxplot

Plot quantile lines

Description

Plot lines indicating the specified quantiles for each group. This function is intended as a simplified interpretation of `boxplot`, which can be combined with a `beeswarm` (or `stripchart`) plot.
Usage

bxplot(x, ...)

S3 method for class 'formula'
bxplot(formula, data = NULL, ..., subset, na.action = NULL)

Default S3 method:
bxplot(x, probs = c(0.25, 0.5, 0.75),
 vertical = TRUE, horizontal = !vertical, add = FALSE,
 col = par("col"), lty = par("lty"), lwd = NULL,
 at = NULL, width = 0.75, ...)

Arguments

formula A formula, such as \(y \sim \text{grp} \), where \(y \) is a numeric vector of data values to be split into groups according to the grouping variable \(\text{grp} \) (usually a factor).

data A data.frame (or list) from which the variables in \(\text{formula} \) should be taken.

subset An optional vector specifying a subset of observations to be used.

na.action A function which indicates what should happen when the data contain NAs. The default is to quietly ignore missing values in either the response or the group.

x A numeric vector, or a data frame or list of numeric vectors, each of which is considered as a group.

probs A numeric vector of probabilities with values in \([0,1]\)

vertical, horizontal Orientation of the plot. \(\text{horizontal} \) takes precedence if both are specified.

add Add to an existing plot?

col, lty Color and line type for each probability.

lwd Line width for each probability (see below).

at Numeric vector giving the locations where the swarms should be drawn; defaults to \(1:n \) where \(n \) is the number of groups.

width Width of the lines.

... Further arguments passed to \texttt{boxplot}.

Details

This function is intended as a minimalistic interpretation of \texttt{boxplot}; however, the quantiles plotted by \texttt{bxplot} are not necessarily the same as the hinges plotted by \texttt{boxplot}.

Notice that specifying a vector of graphical parameters such as \(\text{lwd} \) or \(\text{col} \) will refer to each of \texttt{probs}, not to each group in the data (as one might expect by analogy with \texttt{boxplot}).

If \(\text{lwd} \) is \text{NULL}, and if the \texttt{probs} includes 0.5, \(\text{lwd} \) will be set to 3 times \texttt{par("lwd")} for \texttt{probs=0.5}, and \texttt{par("lwd")} for the others. (Thus something resembling the median line and hinges of a boxplot is produced by default.)
Value
None.

Examples

bxplot on bottom
beeswarm(len ~ dose, data = ToothGrowth)
bxplo(t(len ~ dose, data = ToothGrowth, add = TRUE)

bxplot on top
bxplot(decrease ~ treatment, data = OrchardSprays, probs = 0.5, col = 2)
beeswarm(decrease ~ treatment, data = OrchardSprays, add = TRUE)

Show deciles
data(breast)
bxplot(time_survival ~ event_survival, data = breast,
 probs = seq(0, 1, by = 0.1), col = rainbow(10))
beeswarm(time_survival ~ event_survival, data = breast,
 pch = 21, bg = "gray75", add = TRUE)

swarmx

Adjust 1-d data to separate coincident points

Description
Take a series of points lying in a horizontal or vertical line, and jitter them in the other dimension such that no points are overlapping.

Usage

```
swarmx(x, y,
   xsize = xinch(0.08, warn.log = FALSE),
   ysize = yinch(0.08, warn.log = FALSE),
   log = NULL, cex = par("cex"), side = 0L,
   priority = c("ascending", "descending", "density", "random", "none"),
   fast = TRUE, compact = FALSE)
```

```
swarmy(x, y,
   xsize = xinch(0.08, warn.log = FALSE),
   ysize = yinch(0.08, warn.log = FALSE),
   log = NULL, cex = par("cex"), side = 0L,
   priority = c("ascending", "descending", "density", "random", "none"),
   fast = TRUE, compact = FALSE)
```

Arguments

- **x, y** Coordinate vectors in any format supported by `xy.coords`.
- **xsize, ysize** Width and height of the plotting character in user coordinates.
log Character string indicating which axes are logarithmic, as in `plot.default`, or `NULL` to figure it out automatically.
cex Relative plotting character size.
side Direction to perform jittering: 0: both directions; 1: to the right or upwards; -1: to the left or downwards.
priority Method used to perform point layout (see below).
fast Use compiled version of algorithm? This option is ignored for all methods except “swarm” and “compactswarm”.
compact Use compact layout? (see below)

Details

For `swarmx`, the input coordinates must lie in a vertical line. For `swarmy`, the input coordinates must lie in a horizontal line.

`swarmx` adjusts coordinates to the left or right; `swarmy` adjusts coordinates up or down.

`priority` controls the order in which the points are placed; this has generally has a noticeable effect on the resulting appearance. "ascending" gives the "traditional" beeswarm plot in which the points are placed in an ascending order. "descending" is the opposite. "density" prioritizes points with higher local density. "random" places points in a random order. "none" places points in the order provided.

When `compact` is FALSE, points are placed in a predetermined order. When `compact` is TRUE, a greedy strategy is used to determine which point will be placed next. This often leads to a more tightly-packed layout. The strategy is very simple: on each iteration, a point that can be placed as close as possible to the non-data axis is chosen and placed. If there are two or more equally good points, `priority` is used to break ties.

Usually it makes sense to call this function after a plotting device has already been set up (e.g. when adding points to an existing plot), so that the default values for `xsize`, `ysize`, and `log` will be appropriate.

Value

A data frame with columns `x` and `y` with the new coordinates.

See Also

`beeswarm`, `jitter`

Examples

```r
## Plot points in one dimension
index <- rep(0, 100)
values <- rnorm(100)
plot(index, values, xlim = c(-0.5, 2.5))
points(swarmx(index + 1, values), col = 2)
points(swarmx(index + 2, values, cex = 1.5), col = 3, cex = 1.5)
```
Try the horizontal direction, with a log scale
plot(values, index, log = "x", ylim = c(-1, 2))
points(swarmy(values, index + 1), col = 2)

Newer examples using "side", "priority", and "compact"
plot(c(-0.5, 3.5), range(values), type = "n")
points(swarmx(index + 0, values), col = 1)
points(swarmx(index + 0.9, values, side = -1), col = 2)
points(swarmx(index + 1.1, values, side = 1, priority = "descending"), col = 3)
points(swarmx(index + 2, values, priority = "density"), col = 4)
points(swarmx(index + 3, values, priority = "random"), col = 5)
points(swarmx(index + 3, values, priority = "random", compact = TRUE), col = 5)
Index

* datasets
 breast, 6
* dplot
 swarmx, 9
* hplot
 beeswarm, 2
 bxplot, 7

beeswarm, 2, 7, 10
boxplot, 4, 5, 7, 8
breast, 6
bxplot, 7

jitter, 10

plot, 3
plot.default, 10

stripchart, 2, 4, 5, 7
swarmx, 9
swarmy (swarmx), 9

xy.coords, 9