Package ‘belg’

May 1, 2022

Title Boltzmann Entropy of a Landscape Gradient
Version 1.5.2
Description Calculates the Boltzmann entropy of a landscape gradient. This package uses the analytical method created by Gao, P., Zhang, H. and Li, Z., 2018 (<doi:10.1111/tgis.12315>) and by Gao, P. and Li, Z., 2019 (<doi:10.1007/s10980-019-00854-3>). It also extend the original ideas by allowing calculations on data with missing values.

License MIT + file LICENSE
Encoding UTF-8
ByteCompile true
RoxygenNote 7.1.2
Depends R (>= 3.3.0)
LinkingTo Rcpp, RcppArmadillo
Imports Rcpp
Suggests testthat, sp, raster, rgdal, covr, knitr, rmarkdown, ggplot2, rasterVis, stars, terra
URL https://r-spatialecology.github.io/belg/
BugReports https://github.com/r-spatialecology/belg/issues
VignetteBuilder knitr
NeedsCompilation yes
Author Jakub Nowosad [aut, cre] (<https://orcid.org/0000-0002-1057-3721>), Space Informatics Lab [cph]
Maintainer Jakub Nowosad <nowosad.jakub@gmail.com>
Repository CRAN
Date/Publication 2022-05-01 14:30:10 UTC

R topics documented:

get_boltzmann 2

Index 5
get_boltzmann

Boltzmann entropy of a landscape gradient

Description

Calculates the Boltzmann entropy of a landscape gradient

Usage

get_boltzmann(
 x,
 method = "aggregation",
 na_adjust = TRUE,
 base = "log10",
 relative = FALSE
)

Default S3 method:
get_boltzmann(
 x,
 method = "aggregation",
 na_adjust = TRUE,
 base = "log10",
 relative = FALSE
)

S3 method for class 'matrix'
get_boltzmann(
 x,
 method = "aggregation",
 na_adjust = TRUE,
 base = "log10",
 relative = FALSE
)

S3 method for class 'array'
get_boltzmann(
 x,
 method = "aggregation",
 na_adjust = TRUE,
 base = "log10",
 relative = FALSE
)

S3 method for class 'RasterLayer'
get_boltzmann(
 x,
get_boltzmann

```r
get_boltzmann(
  x,
  method = "aggregation",
  na_adjust = TRUE,
  base = "log10",
  relative = FALSE
)
```

S3 method for class 'RasterStack'
get_boltzmann(
 x,
 method = "aggregation",
 na_adjust = TRUE,
 base = "log10",
 relative = FALSE
)

S3 method for class 'RasterBrick'
get_boltzmann(
 x,
 method = "aggregation",
 na_adjust = FALSE,
 base = "log10",
 relative = FALSE
)

S3 method for class 'stars'
get_boltzmann(
 x,
 method = "aggregation",
 na_adjust = TRUE,
 base = "log10",
 relative = FALSE
)

S3 method for class 'SpatRaster'
get_boltzmann(
 x,
 method = "aggregation",
 na_adjust = TRUE,
 base = "log10",
 relative = FALSE
)

Arguments

- **x**
 - SpatRaster, stars, RasterLayer, RasterStack, RasterBrick, matrix, or array.
- **method**
 - A method used. Either "hierarchy" for the hierarchy-based method (Gao et al., 2017) or "aggregation" (default) for the aggregation-based method (Gao et al., 2019).
get_boltzmann

<table>
<thead>
<tr>
<th>na_adjust</th>
<th>Should the output value be adjusted to the proportion of not missing cells? Either TRUE (default) or FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>base</td>
<td>A logarithm base ("log", "log2" or "log10").</td>
</tr>
<tr>
<td>relative</td>
<td>Should a relative or absolute entropy be calculated? TRUE or FALSE (default).</td>
</tr>
</tbody>
</table>

Details

The method for computing the Boltzmann entropy of a landscape gradient works on integer values that are either positive or equals to zero. This function automatically rounds values to the nearest integer value (rounding halfway cases away from zero) and negative values are shifted to positive values.

Value

a numeric vector

References

Examples

```r
new_c = c(56, 86, 98, 50, 45, 56, 96, 25,
          15, 55, 85, 69, 12, 52, 25, 56,
          32, 25, 68, 98, 58, 66, 56, 58)

lg = matrix(new_c, nrow = 3, ncol = 8, byrow = TRUE)
get_boltzmann(lg, relative = FALSE, method = "hierarchy", base = "log10")
get_boltzmann(lg, relative = TRUE, method = "hierarchy", base = "log2")
get_boltzmann(lg, relative = TRUE, method = "hierarchy", base = "log")
```
Index

get_boltzmann, 2