Package ‘bennu’

September 14, 2023

Title Bayesian Estimation of Naloxone Kit Number Under-Reporting

Version 0.3.0

Description Bayesian model and associated tools for generating estimates of
total naloxone kit numbers distributed and used from naloxone kit orders
data. Provides functions for generating simulated data of naloxone kit use
and functions for generating samples from the posterior.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

Biarch true

Depends R (>= 3.4.0)

Imports dplyr, ggplot2, glue, lifecycle, magrittr, methods, Rcpp (>=
0.12.0), RcppParallel (>= 5.0.1), rlang, rstan (>= 2.26.0),
rstantools (>= 2.2.0), scales, tidybayes, tidy

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.0),
RcppParallel (>= 5.0.1), rstan (>= 2.26.0), StanHeaders (>=
2.26.0)

SystemRequirements GNU make

Suggests bayesplot, covr, knitr, posterior, rmarkdown, stringr,
testthat (>= 3.0.0)

Config/testthat/edition 3

URL https://sempwn.github.io/bennu/

BugReports https://github.com/sempwn/bennu/issues

VignetteBuilder knitr

NeedsCompilation yes

Author Mike Irvine [aut, cre, cph] (<https://orcid.org/0000-0003-4785-8998>),
Samantha Bardwell [ctb],
Andrew Johnson [ctb]

Maintainer Mike Irvine <mike.irvine@bccdc.ca>

Repository CRAN

Date/Publication 2023-09-14 00:20:02 UTC
R topics documented:

- bennu-package .. 2
- est_naloxone ... 2
- est_naloxone_vec .. 4
- generate_model_data ... 5
- kit_summary_table .. 6
- model_random_walk_data 7
- plot_kit_use ... 9

Index 10

bennu-package

The 'bennu' package.

Description

Bayesian Estimation of Naloxone use Number Under-reporting

References

est_naloxone

Run Bayesian estimation of naloxone number under-reporting

Description

Samples from Bayesian model using input from data frame

Usage

```r
est_naloxone(
  d,
  psi_vec = c(0.7, 0.2, 0.1),
  max_delays = 3,
  delay_alpha = 2,
  delay_beta = 1,
  run_estimation = TRUE,
  rw_type = 1,
  chains = 4,
  iter = 2000,
  seed = 42,
  adapt_delta = 0.85,
  ...
)
```
est_naloxone

Arguments

- **d**: data frame with format
 - **regions**: unique id for region
 - **times**: time in months
- **Orders**: Kits ordered
- **Reported_Used**: Kits reported as used
- **Reported_Distributed**: Kits reported as distributed
- **region_name**: Optional label for region
- **psi_vec**: reporting delay distribution
- **max_delays**: maximum delay from kit ordered to kit distributed
- **delay_alpha**: shape parameter for order to distributed delay distribution
- **delay_beta**: shape parameter for order to distributed delay distribution
- **run_estimation**: if TRUE will sample from posterior otherwise will sample from prior only
- **rw_type**: 1 - random walk of order one. 2 - random walk of order 2.
- **chains**: A positive integer specifying the number of Markov chains. The default is 4.
- **iter**: A positive integer specifying the number of iterations for each chain (including warmup). The default is 2000.
- **seed**: Seed for random number generation
- **adapt_delta**: (double, between 0 and 1, defaults to 0.8)
- **...**: other parameters to pass to rstan::sampling

Value

An S4 rstan::stanfit class object containing the fitted model

See Also

Other inference: est_naloxone_vec()

Examples

```r
## Not run:
library(rstan)
library(bayesplot)
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores(logical = FALSE))

d <- generate_model_data()
fit <- est_naloxone(d, iter = 100, chains = 1)
mcmc_pairs(fit,
  pars = c("sigma", "mu0"),
  off_diag_args = list(size = 1, alpha = 0.5))

## End(Not run)
```
Run Bayesian estimation of naloxone number under-reporting

Description
Samples from Bayesian model

Usage

```r
est_naloxone_vec(
  N_region,
  N_t,
  N_distributed,
  regions,
  times,
  Orders2D,
  Reported_Distributed,
  Reported_Used,
  region_name,
  psi_vec = c(0.7, 0.2, 0.1),
  max_delays = 3,
  delay_alpha = 2,
  delay_beta = 1,
  run_estimation = TRUE,
  rw_type = 1,
  chains = 4,
  iter = 2000,
  seed = 42,
  adapt_delta = 0.85,
  ...
)
```

Arguments

- `N_region`: Number of regions
- `N_t`: number of time steps
- `N_distributed`: Number of samples of reporting for distribution of kits
- `regions`: vector (time, region) of regions (coded 1 to N_region)
- `times`: vector (time, region) of regions (coded 1 to N_t)
- `Orders2D`: vector (time, region) of orders
- `Reported_Distributed`: vector (time, region) reported as distributed
- `Reported_Used`: vector (time, region) reported as used
- `region_name`: bring in region names
generate_model_data

psi_vec reporting delay distribution
max_delays maximum delay from kit ordered to kit distributed
delay_alpha shape parameter for order to distributed delay distribution
delay_beta shape parameter for order to distributed delay distribution
run_estimation if TRUE will sample from posterior otherwise will sample from prior only
rw_type 1 - random walk of order one. 2 - random walk of order 2.
chains A positive integer specifying the number of Markov chains. The default is 4.
iter A positive integer specifying the number of iterations for each chain (including warmup). The default is 2000.
seed Seed for random number generation
adapt_delta (double, between 0 and 1, defaults to 0.8)
... other parameters to pass to rstan::sampling

Value

An S4 rstan::stanfit class object containing the fitted model

See Also

Other inference: est_naloxone()

generate_model_data
generate model data for testing purposes

Description

[Deprecated]

Simulate kits ordered and kits distributed for a set number of regions and time-points.

The kits ordered simulation is a simple square-term multiplied by region_coeffs. For example if region_coeffs = c(1,2) then the number of kits ordered at month 12 are c(1,2) * 12^2 = c(144,288).

The probability of kit use in time is assumed to increase linearly in inverse logit space at a constant rate 0.1. The probability of reporting for each month and region is iid distributed \(\logit^{-1}(p) \sim N(2,5) \) which produces a mean reporting rate of approximately 88%

Usage

generate_model_data(
 N_t = 24,
 region_coeffs = c(5, 0.5),
 c_region = c(-1, 2),
 reporting_freq = NULL
)
Arguments

- **N_t**: number of time-points
- **region_coeffs**: vector of coefficients for regions determining kit orders
- **c_region**: logit probability of kit use per region
- **reporting_freq**: The frequency that distribution data is provided. If NULL distribution frequency matches orders frequency

Value

A tibble

- **Orders**: Kit orders per time and region
- **regions**: Numeric index indicating region of orders and distributions
- **Reported_Used**: Number of kits reported as used
- **Reported_Distributed**: Number of kits reported as distributed
- **p_use**: Probability that a kit was used
- **p_reported**: Probability that a distributed kit was reported
- **times**: Index for time
- **region_name**: String index for the region

See Also

Other data generation: `model_random_walk_data()`

kit_summary_table
Summarize model fit

Description

Provides a summary of:

- Estimated kits distributed
- Percentage of kits distributed that are reported
- Estimated kits used
- Percentage of kits used that are reported
- Percentage of kits orders that are used
- Probability kit used if distributed

Usage

```r
kit_summary_table(fit, ..., data = NULL, accuracy = 0.01, cri_range = 0.95)
```
Arguments

- **fit**: stanfit object
- **data**: data used for model fitting. Can also include p_use column which can be used to plot true values if derived from simulated data.
- **accuracy**: A number to round to. Use (e.g.) 0.01 to show 2 decimal places of precision. If NULL, the default, uses a heuristic that should ensure breaks have the minimum number of digits needed to show the difference between adjacent values.
- **cri_range**: The range of the credible interval e.g. 0.95

Value

A tibble::tibble

- Probability of kit use if distributed
- Estimated as distributed
- Proportion kits distributed that are reported
- Estimated kits used
- Proportion kits used that are reported
- Proportion kits ordered that are used

See Also

Other plots: plot_kit_use()

Examples

```r
## Not run:
fit <- est_naloxone(d)
kits_summary_table(fit,regions,data = d)
## End(Not run)
```

Description

Model generating process using random walk to match data generating model in Bayesian framework.
Usage

```r
model_random_walk_data(
  N_t = 24,
  region_coeffs = c(5, 0.5),
  c_region = c(-1, 2),
  sigma = 2,
  zeta = 0.5,
  mu0 = -1,
  Orders = NULL,
  reporting_freq = NULL
)
```

Arguments

- `N_t` number of time-points
- `region_coeffs` vector of coefficients for regions determining kit orders
- `c_region` logit probability of kit use per region
- `sigma` standard deviation of error in logit probability of kit use
- `zeta` standard deviation of random walk in logit space
- `mu0` initial condition of random walk in logit space
- `Orders` A 2D matrix of shape `length(region_coeffs)` by `N_t`
- `reporting_freq` The frequency that distribution data is provided. If `NULL` distribution frequency matches orders frequency

Value

A tibble

- `Orders` Kit orders per time and region
- `regions` Numeric index indicating region of orders and distributions
- `Reported_Used` Number of kits reported as used
- `Reported_Distributed` Number of kits reported as distributed
- `p_use` Probability that a kit was used
- `p_reported` Probability that a distributed kit was reported
- `times` Index for time
- `region_name` String index for the region

See Also

Other data generation: `generate_model_data()`
plot_kit_use

Plot of probability of naloxone kit use

Description

plot can compare between two different model fits or a single model fit by region. If data are simulated then can also include in plot. For more details see the introduction vignette: vignette("Introduction", package = "bennu")

Usage

plot_kit_use(..., data = NULL)

Arguments

... named list of stanfit objects

data data used for model fitting. Can also include p_use column which can be used to plot true values if derived from simulated data.

Value

ggplot2 object

See Also

Other plots: kit_summary_table()
Index

* data generation
 generate_model_data, 5
 model_random_walk_data, 7
* inference
 est_naloxone, 2
 est_naloxone_vec, 4
* plots
 kit_summary_table, 6
 plot_kit_use, 9

bennu (bennu-package), 2
bennu-package, 2

est_naloxone, 2, 5
est_naloxone_vec, 3, 4

generate_model_data, 5, 8
ggplot2, 9

kit_summary_table, 6, 9
model_random_walk_data, 6, 7
plot_kit_use, 7, 9

rstan::sampling, 3, 5
rstan::stanfit, 3, 5

stanfit, 7, 9

tibble, 6
tibble::tibble, 7