Package ‘bennu’

June 23, 2023

Title Bayesian Estimation of Naloxone Kit Number Under-Reporting

Version 0.2.1

Description Bayesian model and associated tools for generating estimates of
total naloxone kit numbers distributed and used from naloxone kit orders
data. Provides functions for generating simulated data of naloxone kit use
and functions for generating samples from the posterior.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.1

Biarch true

Depends R (>= 3.4.0)

Imports dplyr, ggplot2, magrittr, methods, Rcpp (>= 0.12.0),
 RcppParallel (>= 5.0.1), rstan (>= 2.18.1), rstantools (>=
 2.2.0), scales, tidybayes, tidyr

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0),
 RcppParallel (>= 5.0.1), rstan (>= 2.18.1), StanHeaders (>=
 2.18.0)

SystemRequirements GNU make

Suggests bayesplot, covr, knitr, posterior, rmarkdown, testthat (>=
 3.0.0)

Config/testthat/edition 3

URL https://sempwn.github.io/bennu/

BugReports https://github.com/sempwn/bennu/issues

VignetteBuilder knitr

NeedsCompilation yes

Author Mike Irvine [aut, cre, cph] (<https://orcid.org/0000-0003-4785-8998>),
 Samantha Bardwell [ctb]

Maintainer Mike Irvine <mike.irvine@bccdc.ca>

Repository CRAN

Date/Publication 2023-06-23 08:40:12 UTC
R topics documented:

- bennu-package
- est_naloxone
- est_naloxone_vec
- generate_model_data
- plot_kit_use

Index

bennu-package

The 'bennu' package.

Description

Bayesian Estimation of Naloxone use Number Under-reporting

References

est_naloxone

Run Bayesian estimation of naloxone number under-reporting

Description

Samples from Bayesian model using input from data frame

Usage

```r
est_naloxone(
  d,
  psi_vec = c(0.7, 0.2, 0.1),
  max_delays = 3,
  delay_alpha = 2,
  delay_beta = 1,
  run_estimation = TRUE,
  rw_type = 1,
  chains = 4,
  iter = 2000,
  seed = 42,
  adapt_delta = 0.85,
  ...
)
```
est_naloxone

Arguments

d data frame with format
regions unique id for region
times time in months
Orders Kits ordered
Reported_Used Kits reported as used
Reported_Distributed Kits reported as distributed
region_name Optional label for region
psi_vec reporting delay distribution
max_delays maximum delay from kit ordered to kit distributed
delay_alpha shape parameter for order to distributed delay distribution
delay_beta shape parameter for order to distributed delay distribution
run_estimation if TRUE will sample from posterior otherwise will sample from prior only
rw_type 1 - random walk of order one. 2 - random walk of order 2.
chains A positive integer specifying the number of Markov chains. The default is 4.
iter A positive integer specifying the number of iterations for each chain (including warmup). The default is 2000.
seed Seed for random number generation
adapt_delta (double, between 0 and 1, defaults to 0.8)
... other parameters to pass to rstan::sampling

Value

An S4 stanfit class object containing the fitted model

See Also

Other inference: est_naloxone_vec()

Examples

Not run:
library(rstan)
library(bayesplot)

rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores(logical = FALSE))

d <- generate_model_data()
fit <- est_naloxone(d, iter = 100, chains = 1)
mcmc_pairs(fit,
 pars = c("sigma", "mu0"),
 off_diag_args = list(size = 1, alpha = 0.5)
)

End(Not run)
est_naloxone_vec

Run Bayesian estimation of naloxone number under-reporting

Description

Samples from Bayesian model

Usage

```r
est_naloxone_vec(
  N_region,
  N_t,
  N_distributed,
  regions,
  times,
  Orders2D,
  Reported_Distributed,
  Reported_Used,
  region_name,
  psi_vec = c(0.7, 0.2, 0.1),
  max_delays = 3,
  delay_alpha = 2,
  delay_beta = 1,
  run_estimation = TRUE,
  rw_type = 1,
  chains = 4,
  iter = 2000,
  seed = 42,
  adapt_delta = 0.85,
  ...
)
```

Arguments

- **N_region**: Number of regions
- **N_t**: number of time steps
- **N_distributed**: Number of samples of reporting for distribution of kits
- **regions**: vector (time, region) of regions (coded 1 to N_region)
- **times**: vector (time, region) of regions (coded 1 to N_t)
- **Orders2D**: vector (time, region) of orders
- **Reported_Distributed**: vector (time, region) reported as distributed
- **Reported_Used**: vector (time, region) reported as used
- **region_name**: bring in region names
generate_model_data

psi_vec reporting delay distribution
max_delays maximum delay from kit ordered to kit distributed
delay_alpha shape parameter for order to distributed delay distribution
delay_beta shape parameter for order to distributed delay distribution
run_estimation if TRUE will sample from posterior otherwise will sample from prior only
rw_type 1 - random walk of order one. 2 - random walk of order 2.
chains A positive integer specifying the number of Markov chains. The default is 4.
iter A positive integer specifying the number of iterations for each chain (including warmup). The default is 2000.
seed Seed for random number generation
adapt_delta (double, between 0 and 1, defaults to 0.8)
... other parameters to pass to rstan::sampling

Value

An S4 stanfit class object containing the fitted model

See Also

Other inference: est_naloxone()

generate_model_data generate model data for testing purposes

Description

Simulate kits ordered and kits distributed for a set number of regions and time-points.

The kits ordered simulation is a simple square-term multiplied by region_coeffs. For example if region_coeffs = c(1,2) then the number of kits ordered at month 12 are c(1,2) * 12^2 = c(144,288).

The probability of kit use in time is assumed to increase linearly in inverse logit space at a constant rate 0.1. The probability of reporting for each month and region is iid distributed logit^{-1}(p) ~ N(2,5) which produces a mean reporting rate of approximately 88%

Usage

generate_model_data(
 N_t = 24,
 region_coeffs = c(5, 0.5),
 c_region = c(-1, 2),
 reporting_freq = NULL
)
plot_kit_use

Arguments

N_t number of time-points
region_coeffs vector of coefficients for regions determining kit orders
c_region logit probability of kit use per region
reporting_freq The frequency that distribution data is provided. If NULL distribution frequency matches orders frequency

Value

A tibble

Orders Kit orders per time and region
regions Numeric index indicating region of orders and distributions
Reported_Used Number of kits reported as used
Reported_Distributed Number of kits reported as distributed
p_use Probability that a kit was used
p_reported Probability that a distributed kit was reported
times Index for time
region_name String index for the region

plot_kit_use Plot of probability of naloxone kit use

Description

plot can compare between two different model fits or a single model fit by region. If data are simulated then can also include in plot. For more details see the introduction vignette: vignette("Introduction", package = "bennu")

Usage

plot_kit_use(..., data = NULL)

Arguments

... named list of stanfit objects
data data used for model fitting. Can also include p_use column which can be used to plot true values if derived from simulated data.

Value

ggplot2 object
Index

* data generation
 generate_model_data, 5
* inference
 est_naloxone, 2
 est_naloxone_vec, 4
* plots
 plot_kit_use, 6

bennu (bennu-package), 2
bennu-package, 2

est_naloxone, 2, 5
est_naloxone_vec, 3, 4

generate_model_data, 5
ggplot2, 6

plot_kit_use, 6
rstan::sampling, 3, 5
stanfit, 6