Package ‘bestglm’

March 13, 2020

Type Package
Title Best Subset GLM and Regression Utilities
Version 0.37.3
Date 2020-03-13
Author A.I. McLeod, Changjiang Xu and Yuanhao Lai
Maintainer Yuanhao Lai <ylai72@uwo.ca>
Depends R (>= 3.1.0), leaps
Suggests MASS
Imports lattice, glmnet, grpreg, pls
Enhances caret
Description Best subset glm using information criteria or cross-validation,
carried by using 'leaps' algorithm (Furnival and Wilson, 1974) <doi:10.2307/1267601>
or complete enumeration (Morgan and Tatar, 1972) <doi:10.1080/00401706.1972.10488918>. Implements PCR and PLS using AIC/BIC.
Implements one-standard deviation rule for use with the ‘caret’ package.
LazyLoad yes
LazyData yes
Classification/ACM G.3, G.4, I.5.1
Classification/MSC 62M10, 91B84
License GPL (>= 2)
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-03-13 10:10:02 UTC

R topics documented:

 bestglm-package .. 2
 AirQuality ... 4
 asbinary ... 5
 bestglm ... 6
bestglm-package

Description

Provides new information criterion BICq as well as AIC, BIC and EBIC for selecting the best model. Additionally, various CV algorithms are also provided.

Details
bestglm is the main function. All other functions are utility functions and are not normally invoked. Many examples are provided in the vignettes accompanying this package. The vignettes are produced using the R package Sweave and so R scripts can easily be extracted.

The R package xtable is needed for the vignette in SimExperimentBICq.Rnw.

Author(s)
A.I. McLeod and Changjiang Xu

References

See Also
leaps

Examples

```r
## Not run:
data(zprostate)
train<-(zprostate[zprostate[,10],][,-10]
#Best subset using AIC
bestglm(train, IC="AIC")
#Best subset using BIC
bestglm(train, IC="BIC")
#Best subset using EBIC
bestglm(train, IC="EBIC")
#Best subset using BICg with g=0.5 (tuning parameter)
bestglm(train, IC="BICg", t=0.5)
#Best subset using BICq. Note BICq with q=0.25 is default.
bestglm(train, IC="BICq")
#Best subset using BICq with q=0.5 (equivalent to BIC)
bestglm(train, IC="BICq", t=0.5)
#Remark: set seed since CV depends on it
set.seed(123321123)
bestglm(train, IC="CV", t=10)
#using HTF method
bestglm(train, IC="CV", CVArgs=list(Method="HTF", K=10, REP=1))
#Best subset, logistic regression
data(SAheart)
```
```r
bestglm(SAheart, IC="BIC", family=binomial) #Best subset, factor variables with more than 2 levels
data(AirQuality) #subset
bestglm(AirQuality, IC="BICq")

## End(Not run)
```

AirQuality

Daily ozone pollution with meteorological and date inputs

Description

This dataset was derived from the R built-in dataset `airquality` by adding date information and deleting all missing values. This dataset is referred to as 'environmental' in Cleveland (1993).

Usage

```r
data(AirQuality)
```

Format

A data frame with 111 observations on the following 6 variables.

- **Solar.R** input, a numeric vector
- **Wind** input, a numeric vector
- **Temp** input, a numeric vector
- **month** input, a factor with levels May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
- **weekday** input, a factor with levels Sunday Monday Tuesday Wednesday Thursday Friday Saturday
- **Ozone** output, a numeric vector

Details

Cleveland (1993, Chapter 5) presents an insightful analysis using co-plots and the scatterplot matrix. Several interesting interactions are noted. For a fixed 'Wind', the effect of 'Solar.R' changes as 'Temp' increases. And for a fixed 'Temp', as 'Wind' decreases, the effect of 'Solar.R' is less.

Source

`airquality`

References

```
asbinary
  Binary representation of non-negative integer

Description

A non-negative integer is represented as a binary number. The digits, 0 or 1, of this number are
returned in a vector.

Usage

to.binary(n, k = ceiling(logb(n+1,base=2)))

Arguments

n     a non-negative integers
k     number of digits to be returned.

Value

A vector of length k. The first element is the least significant digit.

Author(s)

A.I. McLeod

Examples

to.binary(63)
to.binary(64)
#sometimes we want to pad result with 'leading' 0's
to.binary(63, k=20)
to.binary(64, k=20)
```
bestglm

Best Subset GLM using Information Criterion or Cross-Validation

Description

Best subset selection using 'leaps' algorithm (Furnival and Wilson, 1974) or complete enumeration (Morgan and Tatar, 1972). Complete enumeration is used for the non-Gaussian and for the case where the input matrix contains factor variables with more than 2 levels. The best fit may be found using the information criterion IC: AIC, BIC, EBIC, or BICq. Alternatively, with IC='CV' various types of cross-validation may be used.

Usage

```r
bestglm(Xy, family = gaussian, IC = "BIC", t = "default",
CVArgs = "default", qLevel = 0.99, TopModels = 5,
method = "exhaustive", intercept = TRUE, weights = NULL,
nvmax = "default", RequireFullEnumerationQ = FALSE, ...)
```

Arguments

- **Xy**
 Dataframe containing the design matrix X and the output variable y. All columns must be named.

- **family**
 One of the glm distribution functions. The glm function is not used in the Gaussian case. Instead for efficiency either 'leaps' is used or when factor variables are present with more than 2 levels, 'lm' may be used.

- **IC**
 Information criteria to use: "AIC", "BIC", "BICg", "BICq", "LOOCV", "CV".

- **t**
 adjustable parameter for BICg, BICq or CV. For BICg, default is g=t=1. For BICq, default is q=t=0.25. For CV, default the delete-d method with d=ceil(n(1-1/(log n - 1))) and REP=t=1000. The default value of the parameter may be changed by changing t.

- **CVArgs**
 Used when IC is set to 'CV'. The default is use the delete-d algorithm with d=ceil(n(1-1/(log n - 1))) and t=100 repetitions. Note that the number of repetitions can be changed using t. More generally, CVArgs is a list with 3 named components: Method, K, REP, where Method is one of "HTF", "DH", "d" corresponding to using the functions CVHTM (Hastie et al., 2009, K-fold CV), CVDH (adjusted K-fold CV, Davison and Hartigan, 1997) and CVd (delete-d CV with random subsamples, Shao, 1997).

- **qLevel**
 the alpha level for determining interval for best q. Larger alpha’s result in larger intervals.

- **TopModels**
 Finds the best TopModels models.

- **method**
 Method used in leaps algorithm for searching for the best subset.

- **intercept**
 Default TRUE means the intercept term is always included. If set to FALSE, no intercept term is included. If you want only include the intercept term when it is significant then set IncludeInterceptQ=FALSE and include a column of 1’s in the design matrix.
weights

weights

nvmax

maximum number of independent variables allowed. By default, all variables

RequireFullEnumerationQ

Use exhaustive search algorithm instead of 'leaps'

...

Optional arguments which are passed to lm or glm

Details

In the Gaussian case, the loglikelihood may be written \(\log L = -\frac{(n/2) \log (RSS/n)}{2} \), where RSS is the residual sum-of-squares and n is the number of observations. When the function 'glm' is used, the log-likelihood, \(\log L \), is obtained using 'logLik'. The penalty for EBIC and BICq depends on the tuning parameter argument, t. The argument t also controls the number of replications used when the delete-d CV is used as default. In this case, the parameter d is chosen using the formula recommended by Shao (1997). See CVd for more details.

In the binomial GLM, nonlogistic, case the last two columns of Xy are the counts of 'success' and 'failures'.

Cross-validation may also be used to select the best subset. When cross-validation is used, the best models of size k according to the log-likelihood are compared for k=0,1,...,p, where p is the number of inputs. Cross-validation is not available when there are categorical variables since in this case it is likely that the training sample may not contain all levels and in this case we can’t predict the response in the validation sample. In the case of GLM, the "DH" method for CV is not available. Usually it is a good idea to keep the intercept term even if it is not significant. See discussion in vignette.

Cross-validation is not available for models with no intercept term or when force.in is non-null or when nvmax is set to less than the full number of independent variables.

Please see the package vignette for more details and examples.

Value

A list with class attribute 'bestglm' and named components:

- **BestModel**: An lm-object representing the best fitted regression.
- **Title**: A brief title describing the algorithm used: CV(K=K), CVadj(K=K), CVd(d=K). The range of q for an equivalent BICq model is given.
- **Subsets**: The best subsets of size, k=0,1,...,p are indicated as well the value of the log-likelihood and information criterion for each best subset. In the case of categorical variables with more than 2 levels, the degrees of freedom are also shown.
- **qTable**: Table showing range of q for choosing each possible subset size. Assuming intercept=TRUE, k=1 corresponds to model with only an intercept term and k=p+1, where p is the number of input variables, corresponds to including all variables.
- **Bestq**: Optimal q
- **ModelReport**: A list with components: NullModel, LEAPSQ, glmQ, gaussianQ, NumDF, CategoricalQ, Bestk.
- **BestModels**: Variables in the TopModels best list

Methods function ‘print.bestglm’ and ‘summary.bestglm’ are provided.
Author(s)

C. Xu and A.I. McLeod

References

See Also

glm, lm, leaps CVHTF, CVDH, CVd

Examples

#Example 1.
#White noise test.
set.seed(123321123)
p<-25 #number of inputs
n<-100 #number of observations
X<-matrix(rnorm(n*p), ncol=p)
y<-rnorm(n)
Xy<-as.data.frame(cbind(X,y))
names(Xy)<-c(paste("X",1:p,sep=""),"y")
bestAIC <- bestglm(Xy, IC="AIC")
bestBIC <- bestglm(Xy, IC="BIC")
bestEBIC <- bestglm(Xy, IC="BICg")
bestBICq <- bestglm(Xy, IC="BICq")
NAIC <- length(coef(bestAIC$BestModel))-1
NBIC <- length(coef(bestBIC$BestModel))-1
NEBIC <- length(coef(bestEBIC$BestModel))-1
NBICq <- length(coef(bestBICq$BestModel))-1
ans<-c(NAIC, NBIC, NEBIC, NBICq)
names(ans)<-c("AIC", "BIC", "BICg", "BICq")
ans

AIC BIC EBIC BICq
3 1 0 0

#Example 2. bestglm with BICq
#Find best model. Default is BICq with q=0.25
data(znuclear) #standardized data.
#Rest of examples assume this dataset is loaded.
out<-bestglm(znuclear, IC="BICq")
Example 3. Normal probability plot, residuals, best model
ans<-bestglm(znuclear, IC="BICq")
e<-resid(ans$BestModel)
qqnorm(e, ylab="residuals, best model")

To save time, none of the remaining examples are run
Not run:
Example 4. bestglm, using EBIC, g=1
bestglm(znuclear, IC="BICg")
EBIC with g=0.5
bestglm(znuclear, IC="BICg", t=0.5)

Example 5. bestglm, CV
data(zprostate)
train<-(zprostate[zprostate[,10],][,-10])
the default CV method takes too long, set t=10 to do only
10 replications instead of the recommended 1000
bestglm(train, IC="CV", t=10)
bestglm(train, IC="CV", CVArgs=list(Method="HTF", K=10, REP=1))
Compare with DH Algorithm. Normally set REP=100 is recommended.
bestglm(train, IC="CV", CVArgs=list(Method="DH", K=10, REP=1))
Compare LOOCV
bestglm(train, IC="LOOCV")

Example 6. Optimal q for manpower dataset
data(manpower)
out<-bestglm(manpower)
out$Bestq

Example 7. Factors with more than 2 levels
data(AirQuality)
bestglm(AirQuality)

Example 8. Logistic regression
data(SAheart)
bestglm(SAheart, IC="BIC", family=binomial)
BIC agrees with backward stepwise approach
out<glm(chd~., data=SAheart, family=binomial)
step(out, k=log(nrow(SAheart)))
#But BICq with q=0.25
bestglm(SAheart, IC="BICq", t=0.25, family=binomial)

Cross-validation with glm
make reproducible results
set.seed(33997711)
takes about 15 seconds and selects 5 variables
bestglm(SAheart, IC="CV", family=binomial)
about 6 seconds and selects 2 variables
bestglm(SAheart, IC="CV", CVArgs=list(Method="HTF", K=10, REP=1), family=binomial)
Will produce an error -- NA
\dontrun{bestglm(SAheart, IC="CV", CVArgs=list(Method="DH", K=10, REP=1), family=binomial)}
\dontrun{bestglm(SAheart, IC="LOOCV", family=binomial)}

Example 9. Model with no intercept term
X<-matrix(rnorm(200*3), ncol=3)
b<-c(0, 1.5, 0)
y<-X%*%b + rnorm(40)
Xy<-data.frame(as.matrix.data.frame(X), y=y)
bestglm(Xy, intercept=FALSE)
End(Not run)

CVd

Cross-validation using delete-d method.

Description

The delete-d method for cross-validation uses a random sample of d observations as the validation sample. This is repeated many times.

Usage

CVd(X, y, d = ceiling(n * (1 - 1/(log(n) - 1))), REP = 100, family = gaussian, ...)

Arguments

- **X**: training inputs
- **y**: training output
- **d**: size of validation sample
- **REP**: number of replications
- **family**: glm family
- **...**: optional arguments passed to glm or lm

Details

Shao (1993, 1997) suggested the delete-d algorithm implemented in this function. In this algorithm, a random sample of d observations are taken as the validation sample. This random sampling is repeated REP times. Shao (1997, p.234, eqn. 4.5 and p.236) suggests \(d = n(1 - 1/(\log n - 1)) \). This is obtained by taking \(\lambda_n = \log n \) on page 236 (Shao, 1997). As shown in the table Shao’s recommended choice of the d parameter corresponds to validation samples that are typically much larger that used in 10-fold or 5-fold cross-validation. LOOCV corresponds to d=1 only!
Vector of two components comprising the cross-validation MSE and its sd based on the MSE in each validation sample.

Author(s)

A.I. McLeod and C. Xu

References

Examples

#Example 1. delete-d method
#For the training set, n=67. So 10-fold CV is like using delete-d
#with d=7, approximately.
data(zprostate)
train<-(zprostate[zprostate[,10],])[,-10]
X<-train[,1:2]
y<-train[,9]
set.seed(123321123)
CVd(X, y, d=7, REP=10)
#should set to 1000. Used 10 to save time in example.
Usage

CVDH(X, y, K = 10, REP = 1)

Arguments

X
training inputs
y
training output
K
size of validation sample
REP
number of replications

Details

Algorithm 6.5 (Davison and Hinkley, p.295) is implemented.

Value

Vector of two components comprising the cross-validation MSE and its sd based on the MSE in each validation sample.

Author(s)

A.I. McLeod and C. Xu

References

See Also

bestglm, CVHTF, CVd, LOOCV

Examples

#Example 1. Variability in 10-fold CV with Davison-Hartigan Algorithm.
#Plot the CVs obtained by using 10-fold CV on the best subset model of size 2 for the prostate data. We assume the best model is the model with the first two inputs and then we compute the CV's using 10-fold CV, 100 times. The result is summarized by a boxplot as well as the sd.

NUMSIM<-10
data(zprostate)
train<-(zprostate[zprostate[,10],])[,-10]
X<-train[,1:2]
y<-train[,9]
cvs<-numeric(NUMSIM)
set.seed(123321123)
for (isim in 1:NUMSIM)
cvs[isim]<-CVDH(X,y,K=10,REP=1)[1]
summary(cvs)
Description

K-fold cross-validation.

Usage

CVHTF(X, y, K = 10, REP = 1, family = gaussian, ...)

Arguments

- X: training inputs
- y: training output
- K: size of validation sample
- REP: number of replications
- family: glm family
- ...: optional arguments passed to glm or lm

Details

HTF (2009) describe K-fold cross-validation. The observations are partitioned into K non-overlapping subsets of approximately equal size. Each subset is used as the validation sample while the remaining K-1 subsets are used as training data. When \(K = n \), where \(n \) is the number of observations the algorithm is equivalent to leave-one-out CV. Normally \(K = 10 \) or \(K = 5 \) are used. When \(K < n - 1 \), there are may be many possible partitions and so the results of K-fold CV may vary somewhat depending on the partitions used. In our implementation, random partitions are used and we allow for many replications. Note that in the Shao’s delete-d method, random samples are used to select the validation data whereas in this method the whole partition is selected as random. This is accomplished using, fold <- sample(rep(1:K, length=n)). Then fold indicates each validation sample in the partition.

Value

Vector of two components comprising the cross-validation MSE and its sd based on the MSE in each validation sample.

Author(s)

A.I. McLeod and C. Xu

References

See Also

`bestglm`, `CVd`, `CVDH`, `LOOCV`

Examples

```r
# Example 1. 10-fold CV
data(zprostate)
train<-(zprostate[zprostate[,10],])[,-10]
X<-train[,1:2]
y<-train[,9]
CVHTF(X,y,K=10,REP=1)[1]
```

Description

For convenience we have labelled the input variables 1 through 11 to be consistent with the notation used in Miller (2002). Only the first 11 variables were used in Miller's analyses. The best fitting subset regression with these 11 variables, uses only 3 inputs and has a residual sum of squares of 6.77 while using forward selection produces a best fit with 3 inputs with residual sum of squares 21.19. Backward selection and stagewise methods produce similar results. It is remarkable that there is such a big difference. Note that the usual forward and backward selection algorithms may fail since the linear regression using 11 variables gives essentially a perfect fit.

Usage

```r
data(Detroit)
```

Format

A data frame with 13 observations on the following 14 variables.

- **FTP.1**: Full-time police per 100,000 population
- **UEMP.2**: Percent unemployed in the population
- **MAN.3**: Number of manufacturing workers in thousands
- **LIC.4**: Number of handgun licences per 100,000 population
- **GR.5**: Number of handgun registrations per 100,000 population
- **CLEAR.6**: Percent homicides cleared by arrests
- **WM.7**: Number of white males in the population
- **NMAN.8**: Number of non-manufacturing workers in thousands
- **GOV.9**: Number of government workers in thousands
- **HE.10**: Average hourly earnings
- **WE.11**: Average weekly earnings
ACC Death rate in accidents per 100,000 population
ASR Number of assaults per 100,000 population
HOM Number of homicides per 100,000 of population

Details
The data were originally collected and discussed by Fisher (1976) but the complete dataset first appeared in Gunst and Mason (1980, Appendix A). Miller (2002) discusses this dataset throughout his book. The data were obtained from StatLib.

Source
http://lib.stat.cmu.edu/datasets/detroit

References

Examples
#Detroit data example
data(Detroit)
#As in Miller (2002) columns 1-11 are used as inputs
p<-11
#For possible comparison with other algorithms such as LARS
it is preferable to work with the scaled inputs.
#From Miller (2002, Table 3.14), we see that the
best six inputs are: 1, 2, 4, 6, 7, 11
X<-as.data.frame(scale(Detroit[,c(1,2,4,6,7,11)]))
y<-Detroit[,ncol(Detroit)]
Xy<-cbind(X,HOM=y)
#Use backward stepwise regression with BIC selects full model
out <- lm(HOM~., data=Xy)
step(out, k=log(nrow(Xy)))
#
#Same story with exhaustive search algorithm
out<-bestglm(Xy, IC="BIC")
out
#But many coefficients have p-values that are quite large considering
the selection bias. Note: 1, 6 and 7 are all about 5% only.
#We can use BICq to reduce the number of variables.
The qTable let's choose q for other possible models,
out$qTable
#This suggest we try q=0.05 or q=0.0005
bestglm(Xy,IC="BICq", t=0.05)
bestglm(Xy,IC="BICq", t=0.00005)
#It is interesting that the subset model of size 2 is not a subset
itself of the size 3 model. These results agree with Miller (2002, Table 3.14).
#
Using delete-d CV with d=4 suggests variables 2,4,6,11
set.seed(1233211)
bestglm(Xy, IC="CV", CVArgs=list(Method="d", K=4, REP=50))

dgrid

Scaled Variables Dependency Plots: Output vs Inputs

Description

A lattice grid plot is produced for the output vs. each input. The variables are scaled to have mean zero and variance one.

Usage

dgrid(XyDF, span=0.8)

Arguments

- **XyDF**: Must be a dataframe with the last column corresponding to the output
- **span**: smoothing parameter for loess

Value

a lattice plot

Author(s)

A. I. McLeod

See Also

`pairs`, `splom`

Examples

data(mcdonald)
dgrid(mcdonald)
Fires

Description

The forest fire data were collected during January 2000 to December 2003 for fires in the Montesinho natural park located in the northeast region of Portugal. The response variable of interest was area burned in ha. When the area burned as less than one-tenth of a hectare, the response variable as set to zero. In all there were 517 fires and 247 of them recorded as zero. The region was divided into a 10-by-10 grid with coordinates X and Y running from 1 to 9. The categorical variable xyarea indicates the region in this grid for the fire.

Usage

data(Fires)

Format

A data frame with 517 observations on the following 12 variables. All quantitative variables have been standardized.

xyarea a factor with 36 levels
month an ordered factor with 12 levels
day an ordered factor with 7 levels
FFMC fine fuel moisture code
DMC Duff moisture code
DC drought code
ISI initial spread index
temp average ambient temperature
RH a numeric vector
wind wind speed
rain rainfall
lburned log(x+1), x is burned area with x=0 for small fires

Details

The original data may be found at the website below as well as an analysis. The quantitative variables in this dataset have been standardized. For convenience, the original data is provided in MontesinhoFires.

Source

http://archive.ics.uci.edu/ml/datasets/Forest+Fires
References

See Also

MontesinhoFires

Examples

data(Fires)
names(Fires)
#ANOVA for xyarea is significant at 1.1%.
summary(aov(lburned~xyarea, data=Fires))

fitted.pcreg Fitted values in PCR and PLS.

Description

The fitted values are returned given the output from pcreg.

Usage

S3 method for class 'pcreg'
fitted(object, ...)

Arguments

object object output
... additional parameters

Details

Method function for pcreg.

Value

residuals

Author(s)

A. I. McLeod

See Also

pcreg, residuals.pcreg, plot.pcreg
Examples

```r
fitted(pcreg(mcdonald, scale=TRUE))
```

glmnetGridTable

Multipanel Display and Table Glmnet CV Output.

Description

Four panels.

Usage

```r
glmnetGridTable(XyList, alpha = 0, nfolds=10, family = "gaussian")
```

Arguments

- **XyList**: input
- **alpha**: elastic net parameter
- **nfolds**: Number of folds, K, in regularized K-fold CV, must be >3 and <=10.
- **family**: distribution

Details

TBA

Value

plot produced by side-effect. Table.

Note

Set random seed beforehand if you want reproducibility.

Author(s)

A. I. McLeod

See Also

`trainTestPartition`, `cv.glmnet`, `glmnet`, `predict.glmnet`

Examples

```r
set.seed(7733551)
out <- trainTestPartition(mcdonald)
round(glmnetGridTable(out),4)
```
glmnetPredict

Glmnet Prediction Using CVAV.

Description

Predict by averaging the predictions from cv.glmnet().

Usage

```
glmnetPredict(XyList, NREP = 15, alpha = 0, nfolds=10,
             family = c("gaussian", "binomial", "poisson", "multinomial"))
```

Arguments

- **XyList**: list with components XyTr, XTr, yTr, XTe.
- **NREP**: number of replications to use in average
- **alpha**: elastic net parameter
- **nfolds**: Number of folds, K, in regularized K-fold CV, must be >3 and <=10.
- **family**: model

Value

vector with predictions

Author(s)

A. I. McLeod

See Also

`trainTestPartition`, `glmnetGridTable`, `glmnet`, `cv.glmnet`, `predict.glmnet`

Examples

```
set.seed(7733551)
out <- trainTestPartition(mcdonald)
round(glmnetGridTable(out),4)
yh <- glmnetPredict(out, NREP=5)
sqrt(mean((out$yTe - yh)^2))
```
grpregPredict

Predictions on Test Data with Grpreg

Description

A dataframe is partitioned randomly into training and test samples. The function grpreg::grpreg() is used to fit the training data using Lasso, SCAD and MCP penalty functions. The BIC criterion is used to selecting the penalty parameter lambda.

Usage

grpregPredict(Xy, trainFrac = 2/3, XyList=NULL)

Arguments

Xy a dataframe that may contain factor variables
trainFrac the fraction of data to be used for training
XyList instead of supplying Xy you can provide XyList.

Value

vector of RMSEs

See Also

glmnetPredict, glmnetGridTable, trainTestPartition, grpreg

Examples

grpregPredict(mcdonald)

hivif

Simulated Linear Regression (Train) with Nine Highly Correlated Inputs

Description

The script that generated this data is given below.

Usage

data("hivif")
Format

A data frame with 1000 observations on the following 10 variables.

x1 a numeric vector
x2 a numeric vector
x3 a numeric vector
x4 a numeric vector
x5 a numeric vector
x6 a numeric vector
x7 a numeric vector
x8 a numeric vector
x9 a numeric vector
y a numeric vector

Examples

#Simple example
data(hivif)
lm(y ~ ., data=hivif)
#
#This example shows how the original data was simulated and
#how additional test data may be simulated.
Not run:
set.seed(778851) #needed for original training data
n <- 100
p <- 9 # 9 covariates plus intercept
sig <- toeplitz(0.9^(0:(p-1)))
X <- MASS::mvrnorm(n=n, rep(0, p), Sigma=sig)
colnames(X) <- paste0("x", 1:p)
b <- c(0,-0.3,0,0,-0.3,0,0,0.3,0.3) #
names(b) <- paste0("x", 1:p)
y <- 1 + X
Xy <- cbind(as.data.frame.matrix(X), y=y) #=hivif
#Test data
nTe <- 10^3
XTe <- MASS::mvrnorm(n=nTe, rep(0, p), Sigma=sig)
colnames(XTe) <- paste0("x", 1:p)
yTe <- 1 + XTe
XyTe <- cbind(as.data.frame.matrix(XTe), y=yTe) #test data
ans <- lm(y ~ ., data=Xy) #fit training data
mean((XyTe$y - predict(ans, newdata=XyTe))^2) #MSE on test data

End(Not run)
Description

Dataset on poverty and academic performance.

Usage

data("Iowa")

Format

A data frame with 133 observations on the following 3 variables.

City a factor with 6 levels Cedar Rapids Davenport Des Moines Iowa City Sioux City Waterloo
Poverty percentage subsidized
Test achievement test score

Details

There are n=133 average test scores for schools in the K=6 largest cities. The test score offers a standardized measure of academic achievement. The purpose of the study is to investigate if there is a relationship between academic achievement, as measured by the test, and poverty. It is expected that students from economically disadvantaged backgrounds will do less well. Data on the average income in the school district was not available so a proxy variable for poverty was used. The percentage of students who received subsidized meals was available so this was used as the "Poverty" variable.

Source

Abraham and Ledholter, Introduction to Regression, Wiley.

Examples

data(Iowa)
table(Iowa$City)
LOOCV

Leave-one-out cross-validation

Description

An observation is removed and the model is fit the the remaining data and this fit used to predict the value of the deleted observation. This is repeated, n times, for each of the n observations and the mean square error is computed.

Usage

```r
LOOCV(X, y)
```

Arguments

- `X`: training inputs
- `y`: training output

Details

LOOCV for linear regression is exactly equivalent to the PRESS method suggested by Allen (1971) who also provided an efficient algorithm.

Value

Vector of two components comprising the cross-validation MSE and its sd based on the MSE in each validation sample.

Author(s)

A.I. McLeod and C. Xu

References

See Also

`bestglm`, `Cvd`, `CVDH`, `CVHTF`
Examples

Example. Compare LOO CV with K-fold CV.
Find CV MSE's for LOOCV and compare with K=5, 10, 20, 40, 50, 60
Takes about 30 sec
Not run:
data(zprostate)
train<-(zprostate[zprostate[,10],]][,-10]
X<-train[,1:2]
y<-train[,9]
CVLOO<-LOOCV(X,y)
KS<-c(5,10,20,40,50,60)
nKS<-length(KS)
cvs<-numeric(nKS)
set.seed(1233211231)
for (iK in 1:nKS)
cvs[iK]<-CVDH(X,y,K=KS[iK],REP=10)[1]
boxplot(cvs)
abline(h=CVLOO, lwd=3, col="red")
title(sub="Boxplot of CV's with K=5,10,20,40,50,60 and LOO CV in red")

End(Not run)

manpower

Hospital manpower data

Description

The goal of this study is to predict the manpower requirement as given in the output variable Hours given the five other input variables. Data is from Table 3.8 of Myers (1990). See also Examples 3.8, 4.5, 8.8.

Usage

data(manpower)

Format

A data frame with 17 observations. The output variable is Hours and the inputs are Load, Xray, BedDays, AreaPop and Stay. The site 1 through 17 is indicated by the row name.

Load a numeric vector
Xray a numeric vector
BedDays a numeric vector
AreaPop a numeric vector
Stay a numeric vector
Hours a numeric vector
Details
This data illustrates the multicollinearity problem and the use of VIF to identify it. It provides an illustrative example for ridge regression and more modern methods such as lasso and lars.

Source

References

Examples
data(manpower)

mcdonald Pollution dataset from McDonald and Schwing (1973)

Description
Regression data used to illustrate ridge regression

Usage
data("mcdonald")

Format
A data frame with 60 observations on the following 16 variables.

PREC Average annual precipitation in inches
JANT Average January temperature in degrees F
JULT Same for July
OVR65 Percent of 1960 SMSA population aged 65 or older
POPN Average household size
EDUC Median school years completed by those over 22
HOUS Percent of housing units which are sound & with all facilities
DENS Population per sq. mile in urbanized areas, 1960
NONW Percent non-white population in urbanized areas, 1960
WWDRK Percent employed in white collar occupations
POOR Percent of families with income < $3000
MontesinhoFires

HC Relative hydrocarbon pollution potential
NOx Same for nitric oxides
SOx Same for sulphur dioxide
HUMID Annual average percent relative humidity at 1pm
MORT Total age-adjusted mortality rate per 100,000

Details

Ridge regression example

Source

Examples

data(mcdonald)
vifx(mcdonald[, -ncol(mcdonald)])

MontesinhoFires

Forest fires in Montesinho natural park

Description

The forest fire data were collected during January 2000 to December 2003 for fires in the Montesinho natural park located in the northeast region of Portugal. The response variable of interest was area burned in ha. When the area burned as less than one-tenth of a hectare, the response variable as set to zero. In all there were 517 fires and 247 of them recorded as zero. The region was divided into a 10-by-10 grid with coordinates X and Y running from 1 to 9.

Usage

data(MontesinhoFires)

Format

A data frame with 517 observations on the following 13 variables.

X X coordinate for region, 0-10
Y X coordinate for region, 0-10
month an ordered factor with 12 levels
day an ordered factor with 7 levels
FFMC fine fuel moisture code
DMC Duff moisture code
Details

This is the original data taken from the website below.

Source

http://archive.ics.uci.edu/ml/datasets/Forest+Fires

References

See Also

Fires

Examples

data(MontesinhoFires)
names(MontesinhoFires)
data(Fires)
names(Fires)
#Anova for month
summary(aov(burned~month, data=MontesinhoFires))
oneSDRule

Arguments

- XyList: list with six elements
- dist: distance used

Value

- vector of predictions

Author(s)

A. I. McLeod

See Also

sphereX

Examples

```r
AQ <- airquality[complete.cases(airquality),c(2,3,4,1)]
XyList <- trainTestPartition(AQ)
NNPredict(XyList)
```

oneSDRule

Utility function. Implements the 1-sd rule.

Description

The CV and its standard deviation are provided for a range of models ordered by the number of parameters estimated.

Usage

```r
oneSDRule(CVout)
```

Arguments

- CVout: A matrix with two columns. First column is the CV and second, its sd. Row ordering is from fewest parameter to most.

Value

The row corresponding to the best model.

Author(s)

A.I. McLeod and C. Xu
References

Examples
CV<-c(1.4637799, 0.7036285, 0.6242480, 0.6069406, 0.6006472, 0.5707958, 0.5907897, 0.5895489)
CVsd<-c(0.24878992, 0.14160499, 0.08714908, 0.11376041, 0.08522291, 0.11897327, 0.07960879, 0.09235052, 0.12860983)
CVout <- matrix(c(CV, CVsd), ncol=2)
oneSDRule(CVout)

pcreg

Principal Component and Partial Least Squares Regression

Description
Regression using the principal components or latent variables as inputs. The best model is selected using components 1, 2, ..., r, where r, the number of components to use is determined by the AIC or BIC.

Usage
pcreg(Xy, scale = TRUE, method = c("PC", "LV"), ic = c("BIC", "AIC"))

Arguments
- **Xy**: dataframe with variable names in columns
- **scale**: Whether or not to scale. Default is TRUE.
- **method**: either principal components, "PC", or partial least squares latent variables, "LV"
- **ic**: "BIC" or "AIC"

Value
An S3 class list "pcreg" with components
- **lmfit**: lm model
- **PLSFit**: column sd
- **Z**: matrix of principal components or latent vector
- **method**: 'pcr' or 'pls'

Author(s)
A. I. McLeod
Diagnostic plots for PCR and PLS

Description
Diagnostic plots available with lm-objects are provided.

Usage
S3 method for class 'pcreg'
plot(x, ...)

Arguments
x x output from pcreg(). It has S3 class 'pcreg'.
... additional parameters

Details
See plot method for S3 class 'lm'.

Value
Nothing. The plot is produced.

Author(s)
A. I. McLeod

See Also
pcreg, fitted.pcreg, residuals.pcreg

Examples
ans <- pcreg(mcdonald, scale=TRUE)
plot(ans)
plot1SDRule
Plot Regularization Path and One Standard Deviation Rule

Description

Takes input either matrix with 2 columns or output from caret::train() and produces a plot showing the best model selected using the 1 SD rule.

Usage

```r
plot1SDRule(ans, main = "", sub = "", xlab = "df", ylab = "EPE")
```

Arguments

- `ans`: matrix or output from train
- `main`: optional plot title
- `sub`: optional plot subtitle
- `xlab`: optional x-axis label
- `ylab`: optional y-axis label

Value

tuning parameter value for best model

Author(s)

A. I. McLeod

References

Hastie, Tibsharani and Friedman, "Elements of Statistical Learning".

See Also

`oneSDRule`

Examples

```r
CV <- c(1.4637799, 0.7036285, 0.6242480, 0.6069406, 0.6006877, 0.6005472, 0.3707958, 0.5907897, 0.5895489)
CVsd <- c(0.24878992, 0.14160499, 0.08714908, 0.11376041, 0.08522291, 0.11897327, 0.07960879, 0.09235052, 0.12860983)
CVout <- matrix(c(CV, CVsd), ncol=2)
oneSDRule(CVout)
```
predict.pcreg

Predict Method for Pcreg.

Description

Prediction for models fit using `pcreg()`.

Usage

```r
## S3 method for class 'pcreg'
predict(object, newdata, ...)
```

Arguments

- `object`: the S3 class object produced as output from the function `pcreg()`
- `newdata`: dataframe with new data and with same column names as used in the original argument to `pcreg`.
- `...`: additional arguments

Details

The prediction method, `predict.mvr()`, which is available in the pls package is used. We take advantage of this since it avoids fussing with scaling issues since it is automatically handled for us by `predict.mvr()`

Value

the predicted values

Author(s)

A. I. McLeod

See Also

`predict.pcreg`, `summary.pcreg`, `plot.pcreg`, `fitted.pcreg`, `residuals.pcreg`

Examples

```r
XyList <- trainTestPartition(mcdonald)
XyTr <- XyList$XyTr
XyTe <- XyList$XyTe
ans <- pcreg(XyTr, scale=TRUE)
predict(ans, newdata=XyTe)
```
print.bestglm

Print method for 'bestglm' object

Description

A brief description of the best fit is given.

Usage

```r
## S3 method for class 'bestglm'
print(x, ...)
```

Arguments

- `x`: Output from the `bestglm` function
- `...`: optional arguments

Value

No value. Output to terminal only.

Author(s)

A.I. McLeod and C. Xu

See Also

`bestglm`, `summary.bestglm`

Examples

```r
data(znuclear)
bestglm(znuclear)
```

print.pcreg

Print method for 'pcreg' object

Description

A brief description of the best fit is given.

Usage

```r
## S3 method for class 'pcreg'
print(x, ...)
```

Arguments

- `x`: Output from the `pcreg` function
- `...`: optional arguments

Value

No value. Output to terminal only.
residuals.pcreg

Arguments

- `x`: Output from the pcreg function
- `...`: optional arguments

Value

No value. Output to terminal only.

Author(s)

A.I. McLeod and C. Xu

See Also

pcreg, summary.pcreg

Examples

pcreg(znuclear, scale=TRUE)

residuals.pcreg Residuals Fitted PCR or PLS

Description

The residuals from a model fitted using pcreg are returned.

Usage

```r
## S3 method for class 'pcreg'
residuals(object, ...)
```

Arguments

- `object`: object output
- `...`: additional parameters

Details

Method function for pcreg.

Value

residuals

Author(s)

A. I. McLeod
rubber

See Also
 pcreg, fitted, plot

Examples
 resid(pcreg(mcdonald, scale=TRUE))

rubber

Abrasion loss for various hardness and tensile strength

Description
 The data come from an experiment to investigate how the resistance of rubber to abrasion is affected by the hardness of the rubber and its tensile strength.

Usage
 data(rubber)

Format
 A data frame with 30 observations on the following 3 variables.
 hardness hardness in degree Shore
 tensile.strength tensile strength in kg per square meter
 abrasion.loss abrasion loss in gram per hour
 ts.low tensile strength minus the breakpoint 180 km/m^2
 ts.high tensile strength minus the breakpoint 180 km/m^2

Source

References

Examples
 data(rubber)
 ans <- lm(abrasion.loss~hardness+tensile.strength, data=rubber)
Description

A retrospective sample of males in a heart-disease high-risk region of the Western Cape, South Africa.

Usage

```r
data(SAheart)
```

Format

A data frame with 462 observations on the following 10 variables.

- **sbp**: systolic blood pressure
- **tobacco**: cumulative tobacco (kg)
- **ldl**: low density lipoprotein cholesterol
- **adiposity**: a numeric vector
- **famhist**: family history of heart disease, a factor with levels `Absent`, `Present`
- **typea**: type-A behavior
- **obesity**: a numeric vector
- **alcohol**: current alcohol consumption
- **age**: age at onset
- **chd**: response, coronary heart disease

Details

A retrospective sample of males in a heart-disease high-risk region of the Western Cape, South Africa. There are roughly two controls per case of CHD. Many of the CHD positive men have undergone blood pressure reduction treatment and other programs to reduce their risk factors after their CHD event. In some cases the measurements were made after these treatments. These data are taken from a larger dataset, described in Rousseauw et al, 1983, South African Medical Journal.

Source

Examples

```r
data(SAheart)
str(SAheart)
summary(SAheart)
```
Simulated Regression Data

Description

Data a simulation study reported by Shao (1993, Table 1). The linear regression model Shao (1993, Table 2) reported 4 simulation experiments using 4 different values for the regression coefficients:

\[y = 2 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \epsilon, \]

where \(\epsilon \) is an independent normal error with unit variance.

The four regression coefficients for the four experiments are shown in the table below,

<table>
<thead>
<tr>
<th>Experiment</th>
<th>(\beta_2)</th>
<th>(\beta_3)</th>
<th>(\beta_4)</th>
<th>(\beta_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>0</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>6</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

The table below summarizes the probability of correct model selection in the experiment reported by Shao (1993, Table 2). Three model selection methods are compared: LOOCV (leave-one-out CV), CV(d=25) or the delete-d method with d=25 and APCV which is a very efficient computation CV method but specialized to the case of linear regression.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>LOOCV</th>
<th>CV(d=25)</th>
<th>APCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.484</td>
<td>0.934</td>
<td>0.501</td>
</tr>
<tr>
<td>2</td>
<td>0.641</td>
<td>0.947</td>
<td>0.651</td>
</tr>
<tr>
<td>3</td>
<td>0.801</td>
<td>0.965</td>
<td>0.818</td>
</tr>
<tr>
<td>4</td>
<td>0.985</td>
<td>0.948</td>
<td>0.999</td>
</tr>
</tbody>
</table>

The CV(d=25) outperforms LOOCV in all cases and it also outforms APCV by a large margin in Experiments 1, 2 and 3 but in case 4 APCV is slightly better.

Usage

data(Shao)

Format

A data frame with 40 observations on the following 4 inputs.

- x2 a numeric vector
- x3 a numeric vector
- x4 a numeric vector
- x5 a numeric vector
sphereX

Source

Examples

#In this example BICq(q=0.25) selects the correct model but BIC does not
data(Shao)
X<-as.matrix.data.frame(Shao)
b<-c(0,0,4,0)
set.seed(123321123)
#Note: matrix multiplication must be escaped in Rd file
y<-X%*%b+rnorm(40)
Xy<-data.frame(Shao, y=y)
bestglm(Xy)
bestglm(Xy, IC="BICq")

sphereX Sphere Data Matrix

Description

The data matrix is scaled and sphered so it is orthonormal. The Cholesky decomposition is used.

Usage

sphereX(X)

Arguments

X X rectangular data matrix

Value

sphered matrix

Author(s)

A. I. McLeod

See Also

scale, NNPredict

Examples

data(longley)
longley.x <- data.matrix(longley[, 1:6])
sphereX(longley.x)
Summary of `bestglm` object

Description

An analysis of deviance and a likelihood-ratio test with p-value. The p-value is greatly exaggerated due to selection.

Usage

```r
## S3 method for class 'bestglm'
summary(object, SubsetsQ=FALSE, ...)
```

Arguments

- `object`: Output from the `bestglm` function
- `SubsetsQ`: List best subsets of each size
- `...`: optional arguments

Value

No value. Output to terminal only.

Author(s)

A.I. McLeod and C. Xu

See Also

`bestglm`, `print.bestglm`

Examples

```r
data(znuclear)
summary(bestglm(znuclear))
#
#find statistical signficance of overall regression
data(Fires)
summary(bestglm(Fires, IC="BICq", t=1))
```
Summary Method for Pcreg.

Description

The summary is based on the summary method for S3 class `lm`.

Usage

```r
## S3 method for class 'pcreg'
summary(object, ...)  
```

Arguments

- `object`: object output
- `...`: additional parameters

Details

Method function for pcreg.

Value

- residuals

Note

The standard errors and p-values are wrong due to selection bias.

Author(s)

A. I. McLeod

See Also

- `pcreg`, `fitted`, `plot`

Examples

```r
resid(pcreg(mcdonald, scale=TRUE))
```
trainTestPartition
Partition Dataframe into Train/Test Samples

Description

Dataframe used to create training and test datasets using specified fraction for the training sample. The data matrix must be comprised of continuous variables only (no factors).

Usage

trainTestPartition(Xy, trainFrac = 2/3)

Arguments

Xy
Dataframe with column names, last column is the response variable and others are the regression input variables. The data matrix must be comprised of continuous variables only (no factors).

trainFrac
Fraction to be used for the training sample.

Value

A list with components

XyTr
Training dataframe.

XTr
Matrix, input training variables.

yTr
Vector, output training variable.

XyTe
Training dataframe.

XTe
Matrix, input test variables.

yTe
Vector, output test variable.

XyTr
Training dataframe.

XyTr
Training dataframe.

XyTr
Training dataframe.

Author(s)

A. I. McLeod

Examples

set.seed(7733551)
out <- trainTestPartition(mcdonald)
round(glmnetGridTable(out),4)
vifx

Variance Inflation Factor for a Design Matrix

Description
Barplot of the VIF is produced

Usage
vifx(X)

Arguments
X A design matrix

Details
The VIF are the diagonal elements in the inverse \(t(X^*)X^* \), where \(X^* \) is the rescaled design matrix.

Value
vector with VIF’s

Author(s)
A. I. McLeod

References

Examples
data(mcdonald)
vifx(mcdonald[, -ncol(mcdonald)])
Nuclear plant data. Quantitative inputs logged and standardized.

Description

Data on 32 nuclear power plants. The response variable is cost and there are ten covariates.

Usage

data(znuclear)

Format

A data frame with 32 observations on the following 12 variables. All quantitative variables, except date, have been logged and standardized to have mean 0 and variance 1.

date Quantitative covariate. The date on which the construction permit was issued. The data are measured in years since January 1 1990 to the nearest month.
T1 Quantitative covariate. The time between application for and issue of the construction permit.
T2 Quantitative covariate. The time between issue of operating license and construction permit.
capacity Quantitative covariate. The net capacity of the power plant (MWe).
PR Binary covariate. Value 1, indicates the prior existence of a LWR plant at the same site.
NE Binary covariate, located in North-East USA
CT Binary covariate, presence of cooling tower
BW Binary covariate, where 1 indicates that the nuclear steam supply system was manufactured by Babcock-Wilcox.
N Quantitative covariate. The cumulative number of power plants constructed by each architect-engineer.
PT Binary covariate, partial turnkey guarantee.
cost Outcome. The capital cost of construction in millions of dollars adjusted to 1976 base.

Details

Davison (2003) explores fitting models to this data using forward and backward stepwise regression. In this modelling logs of quantiative variables are used. We have also standardized this data to facilitate comparison with other techniques such as LARS and principal component regression.

Source

Obtained from the CRAN package boot.
References

Examples

data(znuclear)
bestglm(znuclear, IC="BICq")

zprostate

Prostate cancer data. Standardized.

Description

Data with 8 inputs and one output used to illustrate the prediction problem and regression in the textbook of Hastie, Tibshirani and Freedman (2009).

Usage

data(zprostate)

Format

A data frame with 97 observations, 9 inputs and 1 output. All input variables have been standardized.

lcavol log-cancer volume
lweight log prostate weight
age age in years
lbph log benign prostatic hyperplasia
svi seminal vesicle invasion
lcp log of capsular penetration
gleason Gleason score
pgg45 percent of Gleascores 4/5
lpss Outcome. Log of PSA
train TRUE or FALSE

Details

A study of 97 men with prostate cancer examined the correlation between PSA (prostate specific antigen) and a number of clinical measurements: lcavol, lweight, lbph, svi, lcp, gleason, pgg45
Examples

#Prostate data. Table 3.3 HTF.
data(zprostate)
#full dataset
trainQ<-zprostate[,10]
train <-zprostate[trainQ,-10]
test <-zprostate[!trainQ,-10]
ans<-lm(lpsa~., data=train)
sig<-summary(ans)$sigma
yHat<-predict(ans, newdata=test)
yTest<-zprostate$lpsa[!trainQ]
TE<-mean((yTest-yHat)^2)
#subset
ansSub<-bestglm(train, IC="BICq")$BestModel
sigSub<-summary(ansSub)$sigma
yHatSub<-predict(ansSub, newdata=test)
TESub<-mean((yTest-yHatSub)^2)
m<-matrix(c(TE,sig,TESub,sigSub), ncol=2)
dimnames(m)<-list(c("TestErr","Sd"),c("LS","Best"))
m
Index

*Topic **arith**
 asbinary, 5

*Topic **datagen**
 trainTestPartition, 42

*Topic **datasets**
 AirQuality, 4
 Detroit, 14
 Fires, 17
 hivif, 21
 Iowa, 23
 manpower, 25
 mcdonald, 26
 MontesinhoFires, 27
 rubber, 36
 SAheart, 37
 Shao, 38
 znuclear, 44
 zprostate, 45

*Topic **matrix**
 sphereX, 39

*Topic **models**
 bestglm, 6
 CVD, 10
 CVDH, 11
 CVHTF, 13
 fitted.pcreg, 18
 glmnetGridTable, 19
 glmnetPredict, 20
 grpregPredict, 21
 LOOCV, 24
 pcreg, 30
 plot.pcreg, 31
 plot1SDRule, 32
 predict.pcreg, 33
 print.bestglm, 34
 print.pcreg, 34
 residuals.pcreg, 35
 summary.bestglm, 40
 summary.pcreg, 41

*Topic **package**
 bestglm-package, 2

*Topic **prediction**
 NNPredict, 28

*Topic **regression**
 bestglm, 6
 CVD, 10
 CVDH, 11
 CVHTF, 13
 fitted.pcreg, 18
 glmnetGridTable, 19
 glmnetPredict, 20
 grpregPredict, 21
 LOOCV, 24
 pcreg, 30
 plot.pcreg, 31
 predict.pcreg, 33
 print.bestglm, 34
 print.pcreg, 34
 residuals.pcreg, 35
 summary.bestglm, 40
 summary.pcreg, 41

*Topic **ts**
 dgrid, 16
 vifx, 43

AirQuality, 4
airquality, 4
asbinary, 5

bestglm, 6, 11, 12, 14, 24, 34, 40
bestglm-package, 2

cv.glmnet, 19, 20
Cvd, 7, 8, 10, 12, 14, 24
CVDH, 8, 11, 14, 24
CVHTF, 8, 11, 12, 13, 24

Detroit, 14
dgrid, 16
INDEX

Fires, 17, 28
fitted, 36, 41
fitted.pcreg, 18, 31, 33

glm, 8
glmnet, 19, 20
glmnetGridTable, 19, 20, 21
glmnetPredict, 20, 21
gpreg, 21
gpregPredict, 21

hivif, 21

Iowa, 23

leaps, 3, 8
lm, 8
LOOCV, 11, 12, 14, 24

manpower, 25
mcdonald, 26
MontesinhoFires, 17, 18, 27

NNPredict, 28, 39

oneSDRule, 29, 32

pairs, 16
pcreg, 18, 30, 31, 35, 36, 41
plot, 36, 41
plot.pcreg, 18, 31, 31, 33
plot1SDRule, 32
predict.glmnet, 19, 20
predict.pcreg, 31, 33, 33
print.bestglm, 34, 40
print.pcreg, 34

resid.pcreg(residuals.pcreg), 35
residuals.pcreg, 18, 31, 33, 35
rubber, 36

SAheart, 37
scale, 39
Shao, 38
sphereX, 29, 39
splom, 16
summary.bestglm, 34, 40
summary.pcreg, 31, 33, 35, 41

to.binary(asbinary), 5
trainTestPartition, 19–21, 42