Package ‘betaMC’

April 14, 2024

Title Monte Carlo for Regression Effect Sizes

Version 1.3.2

Description Generates Monte Carlo confidence intervals for standardized regression coefficients (beta) and other effect sizes, including multiple correlation, semipartial correlations, improvement in R-squared, squared partial correlations, and differences in standardized regression coefficients, for models fitted by lm().

'betaMC' combines ideas from Monte Carlo confidence intervals for the indirect effect (Pesigan and Cheung, 2023 <doi:10.3758/s13428-023-02114-4>) and the sampling covariance matrix of regression coefficients (Dudgeon, 2017 <doi:10.1007/s11336-017-9563-z>) to generate confidence intervals effect sizes in regression.

URL https://github.com/jeksterslab/betaMC,

https://jeksterslab.github.io/betaMC/

BugReports https://github.com/jeksterslab/betaMC/issues

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0)

Imports stats

Suggests knitr, rmarkdown, testthat, MASS, mice, Amelia

RoxygenNote 7.3.1

NeedsCompilation no

Author Ivan Jacob Agaloos Pesigan [aut, cre, cph]

Maintainer Ivan Jacob Agaloos Pesigan <r.jeksterslab@gmail.com>

Repository CRAN

Date/Publication 2024-04-14 18:00:09 UTC
BetaMC

R topics documented:

BetaMC ... 2
coeff.betamc .. 4
confint.betamc ... 4
DeltaRSqMC ... 5
DiffBetaMC ... 6
MC ... 8
MCM1 ... 10
nsm1982 ... 13
PCorMC .. 14
print.betamc .. 15
print.mc .. 16
RSqMC .. 17
SCorMC .. 18
summary.betamc ... 20
summary.mc ... 20
vcov.betamc ... 21

Index 23

BetaMC

Estimate Standardized Regression Coefficients and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method

Description

Estimate Standardized Regression Coefficients and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method

Usage

BetaMC(object, alpha = c(0.05, 0.01, 0.001))

Arguments

- object: Object of class mc, that is, the output of the MC() function.
- alpha: Numeric vector. Significance level \(\alpha \).

Details

The vector of standardized regression coefficients (\(\hat{\beta} \)) is derived from each randomly generated vector of parameter estimates. Confidence intervals are generated by obtaining percentiles corresponding to 100(1 - \(\alpha \))% from the generated sampling distribution of \(\hat{\beta} \), where \(\alpha \) is the significance level.
Value

Returns an object of class betamc which is a list with the following elements:

- **call** Function call.
- **args** Function arguments.
- **thetahatstar** Sampling distribution of $\hat{\beta}$.
- **vcov** Sampling variance-covariance matrix of $\hat{\beta}$.
- **est** Vector of estimated $\hat{\beta}$.
- **fun** Function used ("BetaMC").

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Beta Monte Carlo Functions: DeltaRSqMC(), DiffBetaMC(), MC(), MCMI(), PCorMC(), RSqMC(), SCorMC()

Examples

```r
# Data ---------------------------------------------------------------
data("nas1982", package = "betaMC")

# Fit Model in lm -----------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)

# MC -----------------------------------------------------------------
mc <- MC(
    object,
    R = 100, # use a large value e.g., 20000L for actual research
    seed = 0508
)

# BetaMC --------------------------------------------------------------
out <- BetaMC(mc, alpha = 0.05)

# Methods -------------------------------------------------------------
print(out)
summary(out)
coef(out)
vcov(out)
confint(out, level = 0.95)
```
coef.betamc

Estimated Parameter Method for an Object of Class betamc

Description

Estimated Parameter Method for an Object of Class betamc

Usage

```r
## S3 method for class 'betamc'
coef(object, ...)  
```

Arguments

- `object`: Object of Class betamc, that is, the output of the BetaMC(), RSqMC(), SCorMC(), DeltaRSqMC(), PCorMC(), or DiffBetaMC() functions.
- `...`: additional arguments.

Value

Returns a vector of estimated parameters.

confint.betamc

Confidence Intervals Method for an Object of Class betamc

Description

Confidence Intervals Method for an Object of Class betamc

Usage

```r
## S3 method for class 'betamc'
confint(object, parm = NULL, level = 0.95, ...)  
```

Arguments

- `object`: Object of Class betamc, that is, the output of the BetaMC(), RSqMC(), SCorMC(), DeltaRSqMC(), PCorMC(), or DiffBetaMC() functions.
- `parm`: a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
- `level`: the confidence level required.
- `...`: additional arguments.
DeltaRSqMC

Value

Returns a matrix of confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

DeltaRSqMC
Estimate Improvement in R-Squared and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method

Description

Estimate Improvement in R-Squared and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method

Usage

```r
DeltaRSqMC(object, alpha = c(0.05, 0.01, 0.001))
```

Arguments

- **object**: Object of class `mc`, that is, the output of the `MC()` function.
- **alpha**: Numeric vector. Significance level α.

Details

The vector of improvement in R-squared (ΔR^2) is derived from each randomly generated vector of parameter estimates. Confidence intervals are generated by obtaining percentiles corresponding to $100(1 - \alpha)\%$ from the generated sampling distribution of ΔR^2, where α is the significance level.

Value

Returns an object of class `betamc` which is a list with the following elements:

- **call**: Function call.
- **args**: Function arguments.
- **thetahatstar**: Sampling distribution of ΔR^2.
- **vcov**: Sampling variance-covariance matrix of ΔR^2.
- **est**: Vector of estimated ΔR^2.
- **fun**: Function used ("DeltaRSqMC").

Author(s)

Ivan Jacob Agaloos Pesigan
See Also

Other Beta Monte Carlo Functions: BetaMC(), DiffBetaMC(), MC(), MCMI(), PCorMC(), RSqMC(), SCorMC()

Examples

```r
# Data -----------------------------------------------
data("nas1982", package = "betaMC")

# Fit Model in lm -----------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)

# MC -----------------------------------------------
mc <- MC(
  object,
  R = 100, # use a large value e.g., 20000L for actual research
  seed = 0508
)

# DeltaRSqMC ---------------------------------------
out <- DeltaRSqMC(mc, alpha = 0.05)

## Methods -----------------------------------------
print(out)
summary(out)
coef(out)
vcov(out)
confint(out, level = 0.95)
```

DiffBetaMC

Estimate Differences of Standardized Slopes and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method

Description

Estimate Differences of Standardized Slopes and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method

Usage

`DiffBetaMC(object, alpha = c(0.05, 0.01, 0.001))`

Arguments

- `object` Object of class `mc`, that is, the output of the `MC()` function.
- `alpha` Numeric vector. Significance level α.
Details
The vector of differences of standardized regression slopes is derived from each randomly generated vector of parameter estimates. Confidence intervals are generated by obtaining percentiles corresponding to $100(1 - \alpha)\%$ from the generated sampling distribution of differences of standardized regression slopes, where α is the significance level.

Value
Returns an object of class `betamc` which is a list with the following elements:

- **call** Function call.
- **args** Function arguments.
- **thetahatstar** Sampling distribution of differences of standardized regression slopes.
- **vcov** Sampling variance-covariance matrix of differences of standardized regression slopes.
- **est** Vector of estimated differences of standardized regression slopes.
- **fun** Function used ("DiffBetaMC").

Author(s)
Ivan Jacob Agaloos Pesigan

See Also
Other Beta Monte Carlo Functions: `BetaMC()`, `DeltaRSqMC()`, `MC()`, `MCMI()`, `PCorMC()`, `RSqMC()`, `SCorMC()`

Examples
```r
# Data ---------------------------------------------------------------
data("nas1982", package = "betaMC")

# Fit Model in lm ---------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)

# MC ---------------------------------------------------------------
mc <- MC(
  object,
  R = 100, # use a large value e.g., 20000L for actual research
  seed = 0508
)

# DiffBetaMC --------------------------------------------------------
out <- DiffBetaMC(mc, alpha = 0.05)

## Methods ----------------------------------------------------------
print(out)
summary(out)
coef(out)
vcov(out)
```
Generate the Sampling Distribution of Regression Parameters Using the Monte Carlo Method

Usage

```r
MC(
  object,
  R = 20000L,
  type = "hc3",
  g1 = 1,
  g2 = 1.5,
  k = 0.7,
  decomposition = "eigen",
  pd = TRUE,
  tol = 1e-06,
  fixed_x = FALSE,
  seed = NULL
)
```

Arguments

- **object**: Object of class `lm`.
- **R**: Positive integer. Number of Monte Carlo replications.
- **type**: Character string. Sampling covariance matrix type. Possible values are "mvn", "adf", "hc0", "hc1", "hc2", "hc3", "hc4", "hc4m", and "hc5". type = "mvn" uses the normal-theory sampling covariance matrix. type = "adf" uses the asymptotic distribution-free sampling covariance matrix. type = "hc0" through "hc5" uses different versions of heteroskedasticity-consistent sampling covariance matrix.
- **g1**: Numeric. g1 value for type = "hc4m".
- **g2**: Numeric. g2 value for type = "hc4m".
- **k**: Numeric. Constant for type = "hc5"
- **pd**: Logical. If pd = TRUE, check if the sampling variance-covariance matrix is positive definite using tol.
tol Numeric. Tolerance used for pd.

fixed_x Logical. If fixed_x = TRUE, treat the regressors as fixed. If fixed_x = FALSE, treat the regressors as random.

seed Integer. Seed number for reproducibility.

Details

Let the parameter vector of the unstandardized regression model be given by

\[\theta = \{ b, \sigma^2, \text{vech} (\Sigma_{XX}) \} \]

where \(b \) is the vector of regression slopes, \(\sigma^2 \) is the error variance, and \(\text{vech} (\Sigma_{XX}) \) is the vector of unique elements of the covariance matrix of the regressor variables. The empirical sampling distribution of \(\theta \) is generated using the Monte Carlo method, that is, random values of parameter estimates are sampled from the multivariate normal distribution using the estimated parameter vector as the mean vector and the specified sampling covariance matrix using the type argument as the covariance matrix. A replacement sampling approach is implemented to ensure that the model-implied covariance matrix is positive definite.

Value

Returns an object of class `mc` which is a list with the following elements:

- **call** Function call.
- **args** Function arguments.
- **lm_process** Processed `lm` object.
- **scale** Sampling variance-covariance matrix of parameter estimates.
- **location** Parameter estimates.
- **thetahatstar** Sampling distribution of parameter estimates.
- **fun** Function used ("MC").

Author(s)

Ivan Jacob Agaloos Pesigan

References

MCMI

Generate the Sampling Distribution of Regression Parameters Using the Monte Carlo Method for Data with Missing Values

Description

Generate the Sampling Distribution of Regression Parameters Using the Monte Carlo Method for Data with Missing Values

Usage

MCMI(
 object,
 mi,
 R = 20000L,
 type = "hc3",
 g1 = 1,
 g2 = 1.5,
 k = 0.7,
)
decomposition = "eigen",
pd = TRUE,
tol = 1e-06,
fixed_x = FALSE,
seed = NULL
)

Arguments

- **object**: Object of class `lm`.
- **mi**: Object of class `mids` (output of `mice::mice()`), object of class `amelia` (output of `Amelia::amelia()`), or a list of multiply imputed data sets.
- **R**: Positive integer. Number of Monte Carlo replications.
- **type**: Character string. Sampling covariance matrix type. Possible values are "mvn", "adf", "hc0", "hc1", "hc2", "hc3", "hc4", "hc4m", and "hc5". type = "mvn" uses the normal-theory sampling covariance matrix. type = "adf" uses the asymptotic distribution-free sampling covariance matrix. type = "hc0" through "hc5" uses different versions of heteroskedasticity-consistent sampling covariance matrix.
- **g1**: Numeric. g1 value for type = "hc4m".
- **g2**: Numeric. g2 value for type = "hc4m".
- **k**: Numeric. Constant for type = "hc5"
- **pd**: Logical. If pd = TRUE, check if the sampling variance-covariance matrix is positive definite using tol.
- **tol**: Numeric. Tolerance used for pd.
- **fixed_x**: Logical. If fixed_x = TRUE, treat the regressors as fixed. If fixed_x = FALSE, treat the regressors as random.
- **seed**: Integer. Seed number for reproducibility.

Details

Multiple imputation is used to deal with missing values in a data set. The vector of parameter estimates and the corresponding sampling covariance matrix are estimated for each of the imputed data sets. Results are combined to arrive at the pooled vector of parameter estimates and the corresponding sampling covariance matrix. The pooled estimates are then used to generate the sampling distribution of regression parameters. See MC() for more details on the Monte Carlo method.

Value

Returns an object of class `mc` which is a list with the following elements:

- **call**: Function call.
args Function arguments.

lm_process Processed lm object.

scale Sampling variance-covariance matrix of parameter estimates.

location Parameter estimates.

thetahatstar Sampling distribution of parameter estimates.

fun Function used ("MCMI").

Author(s)

Ivan Jacob Agaloos Pesigan

References

See Also

Other Beta Monte Carlo Functions: `BetaMC()`, `DeltaRSqMC()`, `DiffBetaMC()`, `MC()`, `PCorMC()`, `RSqMC()`, `SCorMC()`

Examples

```r
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaMC")
nas1982_missing <- mice::ampute(nas1982)$amp # data set with missing values

# Multiple Imputation
mi <- mice::mice(nas1982_missing, m = 5, seed = 42, print = FALSE)

# Fit Model in lm ----------------------------------------------------------
## Note that this does not deal with missing values.
## The fitted model ("object") is updated with each imputed data
## within the "MCMI()" function.
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982_missing)

# Monte Carlo --------------------------------------------------------------
mc <- MCMI(
  object,
  mi = mi,
  R = 100, # use a large value e.g., 20000L for actual research
)```

---

**MCMI**

function to generate Monte Carlo confidence intervals for the indirect effect. It takes a processed `lm` object, a `mice` object for multiple imputation, and an argument `R` for the number of Monte Carlo samples.

**Function Arguments**

- `object`: Processed `lm` object.
- `mi`: `mice` object for multiple imputation.
- `R`: Number of Monte Carlo samples (default: 100).

**Usage**

```r
MCMI(object, mi, R = 100)
```

**Examples**

```r
Data ---
data("nas1982", package = "betaMC")
nas1982_missing <- mice::ampute(nas1982)$amp # data set with missing values

Multiple Imputation
mi <- mice::mice(nas1982_missing, m = 5, seed = 42, print = FALSE)

Fit Model in lm --
Note that this does not deal with missing values.
The fitted model ("object") is updated with each imputed data
within the "MCMI()" function.
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982_missing)

Monte Carlo --
mc <- MCMI(
 object,
 mi = mi,
 R = 100, # use a large value e.g., 20000L for actual research
)```

Author(s)

Ivan Jacob Agaloos Pesigan

References

See Also

Other Beta Monte Carlo Functions: `BetaMC()`, `DeltaRSqMC()`, `DiffBetaMC()`, `MC()`, `PCorMC()`, `RSqMC()`, `SCorMC()`

Examples

```r
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaMC")
nas1982_missing <- mice::ampute(nas1982)$amp # data set with missing values

# Multiple Imputation
mi <- mice::mice(nas1982_missing, m = 5, seed = 42, print = FALSE)

# Fit Model in lm ----------------------------------------------------------
## Note that this does not deal with missing values.
## The fitted model ("object") is updated with each imputed data
## within the "MCMI()" function.
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982_missing)

# Monte Carlo --------------------------------------------------------------
mc <- MCMI(
  object,
  mi = mi,
  R = 100, # use a large value e.g., 20000L for actual research
)```
seed = 0508
)

# The `mc` object can be passed as the first argument
# to the following functions
# - BetaMC
# - DeltaRSqMC
# - DiffBetaMC
# - PCorMC
# - RSqMC
# - SCorMC

---

1982 National Academy of Sciences Doctoral Programs Data

Description

1982 National Academy of Sciences Doctoral Programs Data

Usage

nas1982

Format

Ratings of 46 doctoral programs in psychology in the USA with the following variables:

- **QUALITY**: Program quality ratings.
- **NFACUL**: Number of faculty members in the program.
- **NGRADS**: Number of program graduates.
- **PCTSUPP**: Percentage of program graduates who received support.
- **PCTGRT**: Percent of faculty members holding research grants.
- **NARTIC**: Number of published articles attributed to program faculty member.
- **PCTPUB**: Percent of faculty with one or more published article.

References

**PCorMC**

*Estimate Squared Partial Correlation Coefficients and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method*

---

**Description**

Estimate Squared Partial Correlation Coefficients and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method

**Usage**

```r
PCorMC(object, alpha = c(0.05, 0.01, 0.001))
```

**Arguments**

- `object` Object of class `mc`, that is, the output of the `MC()` function.
- `alpha` Numeric vector. Significance level $\alpha$.

**Details**

The vector of squared partial correlation coefficients ($r_{p}^2$) is derived from each randomly generated vector of parameter estimates. Confidence intervals are generated by obtaining percentiles corresponding to $100(1-\alpha)\%$ from the generated sampling distribution of $r_{p}^2$, where $\alpha$ is the significance level.

**Value**

Returns an object of class `betamc` which is a list with the following elements:

- `call` Function call.
- `args` Function arguments.
- `thetahatstar` Sampling distribution of $r_{p}^2$.
- `vcov` Sampling variance-covariance matrix of $r_{p}^2$.
- `est` Vector of estimated $r_{p}^2$.
- `fun` Function used ("PCorMC").

**Author(s)**

Ivan Jacob Agaloos Pesigan

**See Also**

Other Beta Monte Carlo Functions: `BetaMC()`, `DeltaRSqMC()`, `DiffBetaMC()`, `MC()`, `MCMI()`, `RSqMC()`, `SCorMC()`
Examples

```r
Data ---
data("nas1982", package = "betaMC")

Fit Model in lm --
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)

MC ---
mc <- MC(object, R = 100, # use a large value e.g., 20000L for actual research
 seed = 0508)

PCorMC ---
out <- PCorMC(mc, alpha = 0.05)

Methods ---
print(out)
summary(out)
coef(out)
vcov(out)
confint(out, level = 0.95)
```

print.betamc

Print Method for an Object of Class betamc

Description

Print Method for an Object of Class betamc

Usage

```r
S3 method for class 'betamc'
print(x, alpha = NULL, digits = 4, ...)
```

Arguments

- `x`: Object of Class betamc, that is, the output of the BetaMC(), RSqMC(), SCorMC(), DeltaRSqMC(), PCorMC(), or DiffBetaMC() functions.
- `alpha`: Numeric vector. Significance level $\alpha$. If `alpha = NULL`, use the argument `alpha` used in `x`.
- `digits`: Digits to print.
- `...`: additional arguments.
**Value**

Prints a matrix of estimates, standard errors, number of Monte Carlo replications, and confidence intervals.

**Author(s)**

Ivan Jacob Agaloos Pesigan

---

### print.mc

**Print Method for an Object of Class mc**

**Description**

Print Method for an Object of Class `mc`

**Usage**

```r
S3 method for class 'mc'
print(x, ...)
```

**Arguments**

- `x` Object of Class `mc`.
- `...` additional arguments.

**Value**

Prints the first set of simulated parameter estimates and model-implied covariance matrix.

**Author(s)**

Ivan Jacob Agaloos Pesigan

**Examples**

```r
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
mc <- MC(object, R = 100)
print(mc)
```
RSqMC

Estimate Multiple Correlation Coefficients (R-Squared and Adjusted R-Squared) and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method

Description

Estimate Multiple Correlation Coefficients (R-Squared and Adjusted R-Squared) and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method

Usage

RSqMC(object, alpha = c(0.05, 0.01, 0.001))

Arguments

object Object of class mc, that is, the output of the MC() function.
alpha Numeric vector. Significance level $\alpha$.

Details

R-squared ($R^2$) and adjusted R-squared ($\bar{R}^2$) are derived from each randomly generated vector of parameter estimates. Confidence intervals are generated by obtaining percentiles corresponding to $100(1 - \alpha)\%$ from the generated sampling distribution of $R^2$ and $\bar{R}^2$, where $\alpha$ is the significance level.

Value

Returns an object of class betamc which is a list with the following elements:

- **call** Function call.
- **args** Function arguments.
- **thetahatstar** Sampling distribution of $R^2$ and $\bar{R}^2$.
- **vcov** Sampling variance-covariance matrix of $R^2$ and $\bar{R}^2$.
- **est** Vector of estimated $R^2$ and $\bar{R}^2$.
- **fun** Function used ("RSqMC").

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Beta Monte Carlo Functions: BetaMC(), DeltaRSqMC(), DiffBetaMC(), MC(), MCM(), PCorMC(), SCorMC()
Examples

# Data
```r
data("nas1982", package = "betaMC")
```

# Fit Model in lm
```r
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
```

# MC
```r
mc <- MC(object, R = 100, seed = 0508)
```

# RSqMC
```r
out <- RSqMC(mc, alpha = 0.05)
```

## Methods
```r
print(out)
summary(out)
coef(out)
vcov(out)
confint(out, level = 0.95)
```

SCorMC

Estimate Semipartial Correlation Coefficients and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method

Description

Estimate Semipartial Correlation Coefficients and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method

Usage

```r
SCorMC(object, alpha = c(0.05, 0.01, 0.001))
```

Arguments

- `object`: Object of class `mc`, that is, the output of the `MC()` function.
- `alpha`: Numeric vector. Significance level $\alpha$.

Details

The vector of semipartial correlation coefficients ($r_s$) is derived from each randomly generated vector of parameter estimates. Confidence intervals are generated by obtaining percentiles corresponding to $100(1-\alpha)\%$ from the generated sampling distribution of $r_s$, where $\alpha$ is the significance level.
SCorMC

Value

Returns an object of class betamc which is a list with the following elements:

call Function call.
args Function arguments.
thetahatstar Sampling distribution of $r_s$.
vcov Sampling variance-covariance matrix of $r_s$.
est Vector of estimated $r_s$.
fun Function used ("SCorMC").

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Beta Monte Carlo Functions: BetaMC(), DeltaRSqMC(), DiffBetaMC(), MC(), MCM(), PCorMC(), RSqMC()

Examples

# Data --------------------------------------------
data("nas1982", package = "betaMC")
# Fit Model in lm -------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
# MC ---------------------------------------------
mc <- MC(
   object,
   R = 100, # use a large value e.g., 20000L for actual research
   seed = 0508
)
# SCorMC -----------------------------------------
out <- SCorMC(mc, alpha = 0.05)
## Methods ---------------------------------------
print(out)
summary(out)
coef(out)
vcov(out)
confint(out, level = 0.95)
### summary.mc

#### Summary Method for an Object of Class `mc`

**Description**

Summary Method for an Object of Class `mc`

**Usage**

```r
definition
S3 method for class 'mc'
summary(object, digits = 4, ...)
```

**Arguments**

- `object`: Object of Class `mc`, that is, the output of the `BetaMC()`, `RSqMC()`, `SCorMC()`, `DeltaRSqMC()`, `PCorMC()`, or `DiffBetaMC()` functions.
- `alpha`: Numeric vector. Significance level \(\alpha\). If `alpha = NULL`, use the argument `alpha` used in `object`.
- `digits`: Digits to print.
- `...`: Additional arguments.

**Value**

Returns a matrix of estimates, standard errors, number of Monte Carlo replications, and confidence intervals.

**Author(s)**

Ivan Jacob Agaloos Pesigan

---

### summary.betamc

#### Summary Method for an Object of Class `betamc`

**Description**

Summary Method for an Object of Class `betamc`

**Usage**

```r
definition
S3 method for class 'betamc'
summary(object, alpha = NULL, digits = 4, ...)
```

**Arguments**

- `object`: Object of Class `betamc`, that is, the output of the `BetaMC()`, `RSqMC()`, `SCorMC()`, `DeltaRSqMC()`, `PCorMC()`, or `DiffBetaMC()` functions.
- `alpha`: Numeric vector. Significance level \(\alpha\). If `alpha = NULL`, use the argument `alpha` used in `object`.
- `digits`: Digits to print.
- `...`: Additional arguments.

**Value**

Returns a matrix of estimates, standard errors, number of Monte Carlo replications, and confidence intervals.

**Author(s)**

Ivan Jacob Agaloos Pesigan
vcov.betamc

Arguments

object Object of Class mc, that is, the output of the MC() function.
digits Digits to print.
... additional arguments.

Value

Returns a list with the following elements:

mean Mean of the sampling distribution of $\hat{\theta}$.
var Variance of the sampling distribution of $\hat{\theta}$.
bias Monte Carlo simulation bias.
rmse Monte Carlo simulation root mean square error.
location Location parameter used in the Monte Carlo simulation.
scale Scale parameter used in the Monte Carlo simulation.

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

# Fit the regression model
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
mc <- MC(object, R = 100)
summary(mc)

vcov.betamc

Sampling Variance-Covariance Matrix Method for an Object of Class betamc

Description

Sampling Variance-Covariance Matrix Method for an Object of Class betamc

Usage

## S3 method for class 'betamc'
vcov(object, ...)

Arguments

object Object of Class betamc, that is, the output of the BetaMC(), RSqMC(), SCorMC(), DeltaRSqMC(), PCorMC(), or DiffBetaMC() functions.
... additional arguments.
Value

Returns the variance-covariance matrix of estimates.

Author(s)

Ivan Jacob Agaloos Pesigan
Index

* Beta Monte Carlo Functions
  BetaMC, 2
  DeltaRSqMC, 5
  DiffBetaMC, 6
  MC, 8
  MCM, 10
  PCorMC, 14
  RSqMC, 17
  SCorMC, 18

* betaMC
  BetaMC, 2
  DeltaRSqMC, 5
  DiffBetaMC, 6
  MC, 8
  MCM, 10
  PCorMC, 14
  RSqMC, 17
  SCorMC, 18

* data
  nas1982, 13

* deltarsq
  DeltaRSqMC, 5

* diff
  DiffBetaMC, 6

* mc
  MC, 8
  MCM, 10

* methods
  coef.betamc, 4
  confint.betamc, 4
  print.betamc, 15
  print.mc, 16
  summary.betamc, 20
  summary.mc, 20
  vcov.betamc, 21

* pcor
  PCorMC, 14

* rsq
  RSqMC, 17

* scor
  SCorMC, 18

* std
  BetaMC, 2

Amelia::amelia(), 11
BetaMC, 2, 6, 7, 10, 12, 14, 17, 19
coef.betamc, 4
confint.betamc, 4
DeltaRSqMC, 3, 5, 7, 10, 12, 14, 17, 19
DiffBetaMC, 3, 6, 10, 12, 14, 17, 19
MC, 3, 6, 7, 10, 12, 14, 17, 19
MCM, 3, 6, 7, 10, 14, 17, 19
mice::mice(), 11
nas1982, 13
PCorMC, 3, 6, 7, 10, 12, 14, 17, 19
print.betamc, 15
print.mc, 16
RSqMC, 3, 6, 7, 10, 12, 14, 17, 19
SCorMC, 3, 6, 7, 10, 12, 14, 17, 18
summary.betamc, 20
summary.mc, 20
vcov.betamc, 21