Package ‘bfsl’
December 16, 2018

Title Best-Fit Straight Line
Version 0.1.0
Description Provides the solution from York (1968) <doi:10.1016/S0012-821X(68)80059-7> for fitting a straight line to bivariate data with errors in both coordinates. It gives unbiased estimates of the intercept, slope and standard errors of the best-fit straight line to independent points with (possibly correlated) normally distributed errors in both x and y. Other commonly used errors-in-variables methods, such as orthogonal distance regression, geometric mean regression or Deming regression are special cases of York’s solution.

Depends R (>= 3.5.0)
License GPL-3
URL https://github.com/pasturm/bfsl
BugReports https://github.com/pasturm/bfsl/issues
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Suggests testthat
NeedsCompilation no
Author Patrick Sturm [aut, cre]
Maintainer Patrick Sturm <sturm@tofwerk.com>
Repository CRAN
Date/Publication 2018-12-16 14:50:03 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Package</th>
<th>Topic</th>
<th>No. Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>bfsl</td>
<td>bfsl</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>bfsl_control</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>pearson_york</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>plot.bfsl</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>print.bfsl</td>
<td>5</td>
</tr>
</tbody>
</table>

Index 6
bfsl  \hspace{1cm} Calculates the Best-fit Straight Line

**Description**

bfsl calculates the best-fit straight line to independent points with (possibly correlated) normally distributed errors in both coordinates.

**Usage**

```r
bfsl(x, y = NULL, sd_x = 0, sd_y = 1, r = 0, control = bfsl_control())
```

**Arguments**

- `x`  
  A vector of \(x\) observations or a data frame (or an object coercible by `as.data.frame` to a data frame) containing the named vectors `x`, `y`, and optionally `sd_x`, `sd_y` and `r`. If weights \(w_x\) and \(w_y\) are given, then `sd_x` and `sd_y` are calculated from \(sd_x = 1/\sqrt{w_x}\) and \(sd_y = 1/\sqrt{w_y}\). Specifying `y`, `sd_x`, `sd_y` or `r` directly as function arguments overwrites these variables in the data structure.

- `y`  
  A vector of `y` observations.

- `sd_x`  
  A vector of `x` measurement error standard deviations. If it is of length one, all data points are assumed to have the same `x` standard deviation.

- `sd_y`  
  A vector of `y` measurement error standard deviations. If it is of length one, all data points are assumed to have the same `y` standard deviation.

- `r`  
  A vector of correlation coefficients between errors in `x` and `y`. If it is of length one, all data points are assumed to have the same correlation coefficient.

- `control`  
  A list of control settings. See `bfsl_control` for the names of the settable control values and their effect.

**Details**

bfsl provides the general least-squares estimation solution to the problem of fitting a straight line to independent data with (possibly correlated) normally distributed errors in both `x` and `y`.

With `sd_x = 0` the (weighted) ordinary least squares solution is obtained. The calculated standard errors of the slope and intercept multiplied with `sqrt(chisq)` correspond to the ordinary least squares standard errors.

With `sd_x = c, sd_y = d`, where `c` and `d` are positive numbers, and `r = 0` the Deming regression solution is obtained. If additionally `c = d`, the orthogonal distance regression solution, also known as major axis regression, is obtained.

Setting `sd_x = sd(x), sd_y = sd(y)` and `r = 0` leads to the geometric mean regression solution, also known as reduced major axis regression or standardised major axis regression.

The goodness of fit metric `chisq` is a weighted reduced chi-squared statistic. It compares the deviations of the points from the fit line to the assigned measurement error standard deviations. If `x` and `y` are indeed related by a straight line, and if the assigned measurement errors are correct.
(and normally distributed), then \( \text{chisq} \) will equal 1. A \( \text{chisq} > 1 \) indicates underfitting: the fit does not fully capture the data or the measurement errors have been underestimated. A \( \text{chisq} < 1 \) indicates overfitting: either the model is improperly fitting noise, or the measurement errors have been overestimated.

**Value**

An object of class "bfsl", which is a list containing the following components:

- **coefficients**: A 2x2 matrix with columns of the fitted coefficients (intercept and slope) and their standard errors.
- **chisq**: The goodness of fit (see Details).
- **control**: The control list used, see the control argument.
- **convInfo**: A list with convergence information.
- **call**: The matched call.
- **data**: A list containing \( x, y, sd_x, sd_y \) and \( r \).

**References**


**Examples**

```r
x = pearson_york$x
y = pearson_york$y
sd_x = 1/sqrt(pearson_york$w_x)
sd_y = 1/sqrt(pearson_york$w_y)
bfsl(x, y, sd_x, sd_y)

fit = bfsl(pearson_york)
plot(fit)
```

---

**bfsl_control**  
**Controls the Iterations in the bfsl Algorithm**

**Description**

`bfsl_control` allows the user to set some characteristics of the `bfsl` best-fit straight line algorithm.

**Usage**

```r
bfsl_control(tol = 1e-10, maxit = 100)
```
Arguments

tol A positive numeric value specifying the tolerance level for the convergence criterion

maxit A positive integer specifying the maximum number of iterations allowed.

Value

A list with two components named as the arguments.

See Also

bfs1

Examples

bfs1_control(tol = 1e-8, maxit = 1000)

Description


Usage

pearson_york

Format

A data frame with 10 rows and 4 variables:

<table>
<thead>
<tr>
<th>x</th>
<th>w_x</th>
<th>y</th>
<th>w_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>w_x</td>
<td>y</td>
<td>w_y</td>
</tr>
</tbody>
</table>

References


Examples

bfs1(pearson_york)
plot.bfsl 

Plot Method for bfsl Results

Description
Plot method for objects of class "bfsl".

Usage
## S3 method for class 'bfsl'
plot(x, grid = TRUE, ...)

Arguments

x An object of class "bfsl".
grid If TRUE (default) grid lines are plotted.
... Further parameters to be passed to the plotting routines.

Details
plot.bfsl plots the data points with error bars and the calculated best-fit straight line.

print.bfsl

Print Method for bfsl Results

Description
print method for class "bfsl".

Usage
## S3 method for class 'bfsl'
print(x, digits = max(3L,getOption("digits") - 3L), ...)

Arguments

x An object of class "bfsl".
digits The number of significant digits to use when printing.
... Further arguments passed to print.default.
Index

*Topic datasets
  pearson_york, 4

as.data.frame, 2

bfs1, 2, 4
bfs1_control, 2, 3

pearson_york, 4
plot.bfs1, 5
print.bfs1, 5