Package ‘bhm’

April 13, 2020

Type Package
Title Biomarker Threshold Models
Version 1.16
Date 2020-04-12
Author Bingshu E. Chen
Maintainer Bingshu E. Chen <bingshu.chen@queensu.ca>
Depends R (>= 3.5.0), coda, ggplot2, MASS, survival
Imports methods
Description Contains tools to fit both predictive and prognostic biomarker effects using biomarker threshold models and continuous threshold models. Evaluate the treatment effect, biomarker effect and treatment-biomarker interaction using probability index measurement. Test for treatment-biomarker interaction using residual bootstrap method.
License GPL (>= 2)
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2020-04-13 12:50:05 UTC

R topics documented:

bhm-package .. 2
bhm .. 3
bhmControl ... 6
brm ... 7
data .. 10
mpl .. 11
pIndex ... 13
pIndexControl ... 15
plot ... 16
print .. 17
resboot ... 19

Index 21
Description

This package fits biomarker threshold regression models for predictive and prognostic biomarker effects with binary data and survival data with an unknown biomarker cutoff point (Chen et al., 2014)<DOI:10.1016/j.csda.2013.05.015>. Multivariable models can also be fitted for adjusted biomarker effect (Fang et al., 2017)<DOI:10.1016/j.csda.2017.02.011>. Tools such as Probability index are included to measure treatment effect, biomarker effect or treatment-biomarker interaction(Jiang et al, 2016)<DOI:10.1002/sim.6907>.

Details

"bhm" is a R package for Biomarker Threshold Models. Please use the following steps to install the most recent version of 'bhm' package:

1. First, you need to install the 'devtools' package. You can skip this step if you have 'devtools' installed in your R. Invoke R and then type
   ```
   install.packages("devtools")
   ```
2. Load the devtools package.
   ```
   library(devtools)
   ```
3. Install "bhm" package from github with R command
   ```
   install_github("statapps/bhm")
   ```

"bhm" uses different statistical methods to identify cut-point (threshold parameter) for the biomarker in either generalized linear models or Cox proportional hazards model.

A stable version of View the "bhm" package is also available from the Comprehensive R Archive Network (https://CRAN.R-project.org/package=bhm) and can be installed using R command

```
install.packages("bhm")
```

Author(s)

Bingshu E. Chen, Tian Fang, Jia Wang, Shuoshuo Liu

Maintainer: Bingshu E. Chen <bingshu.chen@queensu.ca>

References

bhm

See Also

bhm, brm, coxph, glm, survival

Examples

fit = bhm(y~biomarker+treatment)
print(summary(fit))

bhm Fitting Biomarker Threshold Models

Description

{bhm} is a R package for Biomarker Threshold Models. It uses either Hierarchical Bayes method or profile likelihood method (Chen, et al, 2014 and Tian, et al, 2017) to identify a cut-point (threshold parameter) for the biomarker in either generalized linear models or Cox proportional hazards model. The model is specified by giving a symbolic description of the linear predictor and a description of the distribution family.

Usage

bhm(x, ...)

S3 method for class 'formula'
bhm(formula, family, data, control = list(...),

use
bhm(y ~ biomarker)
#
to fit a prognostic model with biomarker term only
#
use
#
bhm(y ~ biomarker+treatment)
#
to fit a predictive model with interaction between biomarker
and treatment, use
#
bhmFit(x, y, family, control)
to fit a model without the formula
#
Biomarker shall be in the first dependent variable
#
To summary a "bhm" boject,
#
S3 method for class 'bhm'
summary(object, ...)

Arguments

formula an object of class "formula"(or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.

family a description of the response distribution and link function to be used in the model. The available family function are either "binomial" for fitting a logistic regression model or "surv" for fitting a Cox proportional hazards model

data an optional data frame, list or environment (or object coercible by 'as.data.frame' to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which glm is called.

x, y For "bhmFit", x is a design matrix of dimension n * p and y is a vector of observations of length n for "glm" models or a "Surv" survival object for "coxph" models.

control a list of parameters for controlling the fitting process. See "bhmControl" for details

object object returned from model fit

... additional arguments to be passed to the low level regression fitting functions (see below)

Details

'bimarker' is a Biomarker variable. This variable is required and shall be the first dependent variable in the formula.

"interaction" is an option of fitting model with itneractin term. When interaction = TRUE, a predictive biomarker model will be fitted. When interaction = FALSE, a prognostic biomarker model will be fitted. Both Biomarker and Treatment variables are required if 'interaction' = TRUE and 'treatment' shall be the second variable in the formula.

"bhmFit" and "bhmGibbs" are the workhouse functions: they are not normally called directly but can be more efficient where the response vector, design matrix and family have already been calculated.

"x.cdf" is a function that maps biomarker values to interval (0, 1) using its empirical cumulative distribution function. After the threshold parameters are identified, the biomarker variable will be transformed back to its original scale.
Value

`bhm` returns an object of class inheriting from "bhm" which inherits from the class `glm` or `coxph`. See later in this section.

The function "summary" (i.e., "summary.bhm") can be used to obtain or print a summary of the results, for example, the 95%

An object of class "bhm" is a list containing at least the following components:

- `c.max` : a vector of the mean estimates for the threshold parameter(s)
- `coefficients` : a named vector of coefficients from 'bhm'
- `c.fit` : fitted conditional regression model given c = c.max
- `cg` : Gibbs sample for threshold parameter c
- `bg` : Gibbs sample for the coefficients beta

Note

The logistic regression part are based on codes wrote by Tian Fang.

Author(s)

Bingshu E. Chen (bingshu.chen@queensu.ca)

References

See Also

glm, coxph, bhmControl

Examples

```r
##
## Generate a random data set
n = 300
b = c(0.5, 1, 1.5)
data = gendat.surv(n, c0 = 0.40, beta = b)
age = runif(n, 0, 1)*100
tm = data[, 1]
status = data[, 2]
trt = data[, 3]
ki67 = data[, 4]
## fit a biomarker threshold survival model with one single cut point
# fit = bhm(Surv(tm, status)~ki67+trt+age, interaction = TRUE, B=5, R=10)
## here B=5 and R=10 is used for test run. In general, B > 500 and R > 2000 is
## recommend for the analysis of biomarker variable. To fit a model with
```
bhmControl

Auxiliary function for bhm fitting

Description

Auxiliary function for bhm fitting. Typically only used internally by 'bhmFit', but may be used to construct a control argument to either function.

Usage

bhmControl(method = 'Bayes', interaction, biomarker.main, alpha, B, R, thin, epsilon, c.n, beta0, sigma0)

Arguments

method choose either 'Bayes' for Bayes method with MCMC or 'profile' for profile likelihood method with Bootstrap. The default value is 'Bayes'
interaction an option of fitting model with interaction term When interaction = TRUE, a predictive biomarker model will be fitted When interaction = FALSE, a prognostic biomarker model will be fitted The default value is interaction = TRUE.
biomarker.main include biomarker main effect, default is TRUE
B number of burn in
R number of replications for Bayes meothd or number of Bootstrap for profile likelihood method
thin thinning parameter for Gibbs samples, default is 2
epsilon biomarker (transformed) step length for profile likelihood method, default is 0.01
alpha significance level (e.g. alpha=0.05)
c.n number of threshold (i.e. the cut point), default is 1
beta0 initial value for mean of the prior distribution of beta, default is 0
sigma0 initial value for variance of the prior distribution of beta, default is 10000

Details

Control is used in model fitting of "bhm".

two cut points, use:
##
fit = bhm(Surv(tm, status)-bmk+trt+age, B = 500, R = 2000, c.n = 2)
##
To print the output, use
##
print(fit)
Value

This function checks the internal consistency and returns a list of value as inputed to control model fit of bhm.

Note

Based on code from Tian Fang.

Author(s)

Bingshu E. Chen

See Also

bhm

Examples

```r
## To fit a prognostic model for biomarker with two cut-points,  
## 500 burn-in samples and 10000 Gibbs samples,

c = bhmControl(interaction = FALSE, B = 500, R = 10000, c.n = 2)

## then fit the following model
##
# fit = bhmFit(x, y, family = 'surv', control = c)
```

Description

{brm} is a R package for Continuous Threshold Models. It uses the maximum likelihood method (Liu and Chen, 2020) to identify a cut-point (threshold parameter) for the biomarker in the Cox proportional hazards model. The model is specified by giving a symbolic description of the linear predictor and a description of the distribution family.

Usage

```r
brm(x, ...)
```

S3 method for class 'formula'

```r
brm(formula, data = list(...), method = c("gradient",  
"profile"), epsilon = NULL, ...)
```

use
brm(y ~ biomarker)
to fit a prognostic model with biomarker term only (will be implement in the future)
use
brm(y ~ biomarker+treatment+x1+x2+...)
to fit a predictive model with interaction between biomarker
and treatment, adjusted for x1, x2, etc.
use
brm(x, y, method, ...)
to fit a model without formula
Biomarker shall be in the first dependent variable

Arguments

formula
- an object of class "formula" (or one that can be coerced to this class): a symbolic
description of the model to be fitted. The details of model specification are given under 'Details'.

data
- an optional data frame, list or environment (or object coercible by 'as.data.frame' to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which glm is called.

method
- Method to fit a brm model. The default method is "Gradient". We will expend to the single-index model in this package soon.

x
- For "brm.default", x is a design matrix of dimension n * p and y is a vector of observations of length n for a "Surv" survival object for "coxph" models.

... additional arguments to be passed to the low level regression fitting functions (see below).

epsilon
- Step width for the profile likelihood method, default is (max(w)-min(w))/20.

Details

'biomarker' is a Biomarker variable. This variable is required and shall be the first dependent variable in the formula.

"interaction" is an option of fitting model with interaction term. When interaction = TRUE, a predictive biomarker model will be fitted. When interaction = FALSE, a prognostic biomarker model will be fitted. Both Biomarker and Treatment variables are required if 'interaction' = 'TRUE' and 'treatment' shall be the second variable in the formula.

"brm.default" is the workhorse functions: they are not normally called directly but can be more efficient where the response vector, design matrix and family have already been calculated.
Value

brm returns an object of class inheriting from "brm" which inherits from the class glm or 'coxph'. See later in this section.

The function "summary" (i.e., "summary.brm") can be used to obtain or print a summary of the results, for example, the 95%

An object of class "brm" is a list containing at least the following components:

- `c.max`: a vector of the mean estimates for the threshold parameter(s)
- `coefficients`: a named vector of coefficients from 'brm'
- `c.fit`: fitted conditional regression model given c = c.max

Author(s)

Shuoshuo Liu (shuoshuo.liu@psu.edu) and Bingshu E. Chen (bingshu.chen@queensu.ca)

References

See Also

bhm, coxph, plot.brm, print.brm, residuals.brm, summary.brm

Examples

```r
## Generate a random data set
n = 100
b = c(0.5, 1, 1.5)
data = gendat.surv(n, c0 = 0.40, beta = b, type="brm")
age = runif(n, 0, 1)*100
tm = data[, 1]
status = data[, 2]
trt = data[, 3]
ki67 = data[, 4]
## fit a biomarker threshold survival model with one single cut point
fit = brm(Surv(tm, status)~ki67+trt+age)
##
## fit a prognostic continuous threshold model with biomarker only
##
## fit = brm(Surv(tm, status)~ki67)
##
## To print the output, use
##
## print(fit)
##
```
Description

dataset for biomarker threshold model (bhm)

Usage

to generate survival data, use:

gendat.surv(n, c0, beta, type=c("brm", "bhm"))

to generate glm data, use:

gendat.glm(n, c0, beta)

Arguments

n sample size
c0 cut off point, for example c0 = 0.4
beta regression coefficient, for example, beta = c(0.3, log(0.5), log(0.25))
type type of biomarker threshold model, either bhm or brm, default is type = "brm"

Format

The format of the data set for analysis shall be a data frame with a response variable (either a Surv object for Cox model or a glm response variable object) and at least one dependent variable as the biomarker variable.

Details

data set of prostate cancer in the 'survival' package is used as an example in paper by Chen, et al. (2014).

Source

prostate dataset can be loaded with 'library(survival)'.

References

Examples

```r
#data(data)
## maybe str(data); plot(data) ...
c0 = 0.4
b = c(-0.5, 1.5, 1.3)
data = gendat.surv(n=30, c0 = c0, beta = b)
```

mpl

Joint models for clustered data with binary and survival outcomes.

Description

`mpl` is a function to fit a joint model for clustered binary and survival data using maximum penalized likelihood (MPL) method with Jackknife variance.

Usage

```r
mpl(formula, ...) 
```

```r
## S3 method for class 'Var'
mpl(formula, formula.glm, formula.cluster, data, weights=NULL, subset = NULL, max.iter=100, tol = 0.005, jackknife=TRUE, ...)
```

Arguments

- `formula` an object of class "formula" (or one that can be coerced to that class): a symbolic description of the Cox proportional hazards model to be fitted for survival data.
- `formula.glm` an object of class "formula" (or one that can be coerced to that class): a symbolic description of the generalized linear model to be fitted for binary data.
- `formula.cluster` an object of class "formula" (or one that can be coerced to that class): a symbolic description of the cluster variable.
- `data` an optional data frame, list or environment (or object coercible by `as.data.frame` to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which `mpl` is called.
- `weights` to be added in the future
- `subset` only a subset of data will be used for model fitting.
- `max.iter` Maximum number of iterations, default is `max.iter = 100`
- `tol` Tolrance for convergence, default is `tol = 0.005`
jackknife Jackknife method for variance, default is jackknife = TRUE

additional arguments to be passed to the low level regression fitting functions (see below).

Details

mpl(Surv(time, event) ~ w+z, y ~ x1+x2, ~cluster) will fit penalized likelihood for binary and survival data with cluster effect. Function print(x) can be used to print a summary of mpl results.

Value

mpl returns an object of class inheriting from "mpl". When jackknife = TRUE, an object of class "mpl" is a list containing the following components:

theta the maximum estimate of the regression coefficients and varaince component

OR_HR Odds ratios (OR) and hazard ratios (HR) for binary and survival outcomes, respectively

ase Asymptotic standard error for theta, which is usually underestimated

jse Jackknife standard error of theta based on resampling, this is considered to be more robust

Note

Based on code from J. Wang.

Author(s)

Bingshu E. Chen (bingshu.chen@queensu.ca)

References

See Also

coxph, glm, print.

Examples

##
No run
#
fit = mpl(Surv(time, event)~trt+ki67, resp~trt+age, ~center.id)
pIndex

Probability Index for Survival Time Difference

Description

\{pIndex\} is a function to estimate and test difference of survival time among groups. It is defined as
\[p = \Pr\{T_1 < T_2\}, \] where \(T_1\) is survival time for subjects in group 1 and \(T_2\) is survival time in group 2.

Usage

\[
pIndex(x, \ldots)
\]

```r
## S3 method for class 'formla'
pIndex(formula, data, control = list(\ldots),\ldots)
###To estimate probability index for treatment and control groups (define by trt): 
#
#  fit = pIndex(Surv(time, status) ~ trt)
#
###To estimate probability index difference for treatment and control groups (define by trt) between biomarker positive and biomarker negative subjects(i.e. Treatment-biomarker interaction):
#
#  fit = pIndex(Surv(time, status) ~ trt+biomarker)
```

Arguments

- `formula` an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.
- `data` an optional data frame, list or environment (or object coercible by 'as.data.frame' to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which `pIndex` is called.
- `x` Here covariate x is a design matrix of dimension n * 1 (for two sample test) or dimension n * 2 (for treatment * biomarker interaction).
- `control` a list of parameters for controlling the fitting process. See 'pIndexControl' for details
- `\ldots` additional arguments to be passed to the low level regression fitting functions (see below).

Details

pIndex(y~x) will estimate probability index of two groups (eg. treatment vs control) define by x.
pIndex(y~x1 + x2) will estimate the difference of probability index of x1 (eg. treatment vs control).
between biomarker positive and biomarker negative groups (x2). Function print(x) can be used to print a summary of pIndex results.

Value

pIndex returns an object of class inheriting from "pIndex". When B > 0, an object of class "pIndex" is a list containing at least the following components:

- **theta**: the estimated probability index
- **theta.b**: Bootstrap or Jackknife sample of the probability index
- **sd**: standard deviation of theta based on resampling
- **ci**: (1-alpha) percent confidence interval based on resampling

Note

This function is part of the bhm package.

Author(s)

Bingshu E. Chen (bingshu.chen@queensu.ca)

References

See Also

bhm, pIndexControl

Examples

```r
##
## Generate a random data set
n = 50
b = c(0.5, 1, 1.5)
data = gendat.surv(n, c0 = 0.40, beta = b, type='brm')
age = runif(n, 0, 1)*100
tm = data[, 1]
status = data[, 2]
trt = data[, 3]
ki67 = data[, 4]
#
### No run
#
# fit = pIndex(Surv(tm, status) ~ trt + ki67)
#```
Description

Auxiliary function for pIndex fitting. Typically only used internally by 'pIndexFit', but may be used to construct a control argument to either function.

Usage

pIndexControl(method = c("Efron", "Elc", "Elw", "Pic"),
model = c("default", "local", "threshold"),
ci = c("Bootstrap", "Jackknife"), weights = NULL,
kernel = NULL, h = 0.1, w = seq(0.05, 0.95, 0.05),
alpha = 0.05, B = 0, pct = 0.5, tau=NULL)

Arguments

- **method**: choose either ‘Efron’ for Efron method, ‘Elc’ for conditional empirical likelihood, ‘Elw’ for weighted empirical likelihood method, and ‘Pic’ for piecewise exponential distribution. The default value is ‘Efron’
- **model**: ‘default’ for default pIndex model, ‘local’ for kernel method, ‘threshold’ for threshold method
- **ci**: Method to construct confidence interval, ‘Bootstrap’ for Bootstrap method and ‘Jackknife’ for Jackknife method
- **weights**: case weight
- **kernel**: kernel function types, including "gaussian", "epanechnikov", "rectangular", "triangular", "biweight", "cosine", "optcosine". The default value is ‘gaussian’
- **h**: bandwidth, default is 0.1
- **w**: percentile of biomarker value for local fit
- **B**: number of Bootstrap sample
- **alpha**: significance level (e.g. alpha=0.05)
- **pct**: Percentile of threshold (i.e. the cut point), default is 0.5
- **tau**: maximum time tau to be used for pIndex

Details

Control is used in model fitting of ‘pIndex’.

Value

This function checks the internal consistency and returns a list of value as inputed to control model fit of pIndex.
Note

Based on code from Bingshu E. Chen.

Author(s)

Bingshu E. Chen

See Also

bhm, pIndex

Examples

```r
To calculate the probability index for a biomarker with conditional empirical likelihood method,
and the corresponding 90 percent CI using Bootstrap method with 10000 bootstrap sample

cctl = pIndexControl(method = 'Elc', ci = 'Bootstrap', B = 10000, alpha = 0.1)

then fit the following model
##
fit = pIndex(y~x1 + x2, family = 'surv', control = ctl)
```

plot

Plot a fitted biomarker threshold model

Description

Several different type of plots can be produced for biomarker threshold models. Plot method is used to provide a summary of outputs from "bhm", "pIndex", "resboot". Use "methods(plot)" and the documentation for these for other plot methods.

Usage

```r
S3 method for class 'bhm'
plot(x, type = c("profile", "density"), ...)
S3 method for class 'brm'
plot(x, type = c("HR"), ...)
S3 method for class 'pIndex'
plot(x, ...)
S3 method for class 'residuals.brm'
plot(x, type="Martingale", ...)
```
Arguments

x: a class returned from "bhm", "pIndex" or "resboot" fit.

type: type of plot in bhm object, "profile" to plot profile likelihood, "density" to plot trace and density of the threshold distribution. "HR" to plot hazard ratio of the "brm" object.

... other options used in plot().

Details

plot.bhm is called to plot either the profile likelihood function or the threshold density function.

plot.pIndex is called to plot local probability index (pIndex) of a continuous biomarker.

plot.resboot is called to plot the bootstrap distribution of the likelihood ratio test statistics for biomarker threshold models (resboot).

The default method, plot.default has its own help page. Use methods("plot") to get all the methods for the plot generic.

Author(s)

Bingshu E. Chen

See Also

The default method for plot plot.default glm bhm pIndex resboot

Examples

```r
plot(fit)
#
plot for bhm object
#
plot(fit, type = 'density')
#```

Description

print and summary are used to provide a short summary of outputs from "bhm", "brm", "mpl", "pIndex", "resboot".
Usage

```r
## S3 method for class 'bhm'
print(x, ...)
## S3 method for class 'brm'
print(x, digits = 4, ...)
## S3 method for class 'mpl'
print(x, digits = 3, ...)
## S3 method for class 'pIndex'
print(x, ...)
## S3 method for class 'resboot'
print(x, ...)
## S3 method for class 'summary.bhm'
print(x, ...)
```

Arguments

- `x` : a class returned from `bhm`, `pIndex` or `resboot` fit
- `digits` : number of digits to be printed
- `...` : other options used in `print()`

Details

`print.bhm` is called to print object or summary of object from the biomarker threshold models `bhm`. `print.pIndex` is called to print object or summary of object from the probability index model `pIndex`. `print.resboot` is called to print object or summary of object from the resiudall bootstrap method for biomarker threshold models `resboot`. `summary(fit)` provides detail summary of ‘bhm’ model fit, including parameter estimates, standard errors, and 95 percent CIs.

The default method, `print.default` has its own help page. Use `methods("print")` to get all the methods for the `print` generic.

Author(s)

Bingshu E. Chen

See Also

The default method for print `print.default`. Other methods include `glm, bhm, brm, mpl, pIndex, resboot`.

Examples

```r
#
# print(fit)
#```
resboot

**Rresidual Bootstrap Test (RBT) for treatment-biomarker interaction**

**Description**

[resboot] is a function to test the existance of treatment-biomarker interaction in biomarker threshold model

\[ g(Y) = b0 + b1 \cdot I(w>c) + b2 \cdot z + b3 \cdot I(w>c) \cdot z. \]

**Usage**

resboot(x, ...)

```r
S3 method for class 'formula'
resboot(formula, family, data=list(...), B = 100, epsilon = 0.01, ...)
```

To test the null hypothesis of interaction between treatment variable (define by z) and biomarker variables (define by w) for survival dataa, use:

```r
fit = resboot(Surv(time, status) ~ w + z + w:z)
```

**Arguments**

- `formula`: an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.
- `family`: default is family = 'Surv' for survival data.
- `data`: an optional data frame, list or environment (or object coercible by 'as.data.frame' to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which resboot is called.
- `x`: Here covariate x is a design matrix of dimension n * 1 (for two sample test) or dimension n * 2 (for treatment * biomarker interaction).
- `B`: Number of bootstraps, default is B = 100
- `epsilon`: Biomarker (transformed) step length for profile likelihood method, default is epsilon = 0.01
- `...`: additional arguments to be passed to the low level regression fitting functions (see below).

**Details**

resboot(y~w + z + w:z) will give residual bootstrap p-value for interaction between biomarker variable (w) and treatment variable (z). The null hypothesis is given by H0: b3 = 0, where b3 is the regression coefficient for the interaction term I(w>c)*z. Function print(x) can be used to print a summary of resboot results.
Value

resboot returns an object of class inheriting from "resboot". When B > 0, an object of class "resboot" is a list containing at least the following components:

- theta: the estimated maximum of likelihood ratio statistics
- theta.b: Bootstrap sample of theta
- sd: standard deviation of theta based on resampling
- ci: (1-alpha) percent confidence interval for theta based on resampling

Note

Based on code from Parisa Gavanji.

Author(s)

Bingshu E. Chen (bingshu.chen@queensu.ca)

References


See Also

bhm coxph

Examples

```r
Generate a random data set
n = 30
b = c(0.5, 1, 1.5)
data = gendat.surv(n, c0 = 0.40, beta = b)
tm = data[, 1]
status = data[, 2]
trt = data[, 3]
ki67 = data[, 4]

No run

fit = resboot(Surv(tm, status) ~ trt + ki67)
```
Index

*Topic Biomarker interaction
  bhm, 3
  brm, 7
  pIndex, 13
  resboot, 19
*Topic Biomarker threshold models
  bhm-package, 2
*Topic Continuous threshold models
  bhm-package, 2
  brm, 7
*Topic Cox regression
  mpl, 11
*Topic Indicator threshold models
  bhm, 3
  bhm-package, 2
*Topic Jackknife
  mpl, 11
*Topic Joint model
  mpl, 11
*Topic Logistic regression
  bhm, 3
  mpl, 11
*Topic Penalized likelihood
  mpl, 11
*Topic Predictive effect
  bhm, 3
  brm, 7
  resboot, 19
*Topic Probability index
  bhm-package, 2
  pIndex, 13
*Topic Prognostic effect
  bhm, 3
  brm, 7
*Topic Residual Bootstrap
  bhm-package, 2
*Topic Residual bootstrap
  resboot, 19
*Topic control

bhmControl, 6
pIndexControl, 15

*Topic datasets
  data, 10
*Topic plot
  plot, 16
*Topic print
  print, 17
*Topic summary
  plot, 16
  print, 17

bhm, 3, 6, 7, 9, 14, 16–18, 20
bhm-doc (bhm-package), 2
bhm-package, 2
bhmControl, 5, 6
bhmFit (bhm), 3
bhmGibbs (bhm), 3
brm, 3, 7, 18
coxph, 3, 5, 9, 12, 20
data, 10
gendat.glm (data), 10
gendat.surv (data), 10
glm, 3, 5, 12, 17, 18
mpl, 11, 18
mplFit (mpl), 11
pIndex, 13, 15–18
pIndexControl, 14, 15
pIndexFit (pIndex), 13
pIndexLocal (pIndex), 13
pIndexThreshold (pIndex), 13
plot, 16
plot.brms, 9
plot.default, 17
predict.brms (brm), 7
print, 12, 17
print.brml, 9
print.default, 18
prolikControl (bhmControl), 6
prolikFit (bhm), 3

resboot, 17, 18, 19
residuals.brml, 9
residuals.brml (brml), 7

summary.bhm (bhm), 3
summary.brml, 9
summary.brml (brml), 7
survival, 3

thm.fit (bhm), 3
thm.lik (bhm), 3

x.cdf (bhm), 3