Package ‘bibliometrix’

May 24, 2024

Type Package

Title Comprehensive Science Mapping Analysis

Version 4.2.3

License GPL-3

URL https://www.bibliometrix.org,
https://github.com/massimoaria/bibliometrix,
https://www.k-synth.com

BugReports https://github.com/massimoaria/bibliometrix/issues

LazyData true

Encoding UTF-8

Depends R (>= 3.3.0)

Imports stats, grDevices, bibliometrixData, dimensionsR, dplyr, DT, ca, forcats, ggplot2, ggrepel, igraph, Matrix, plotly, openalexR, openxlsx, pubmedR, readr, readxl, rscopus, shiny, SnowballC, stringdist, stringi, tidytext

Suggests knitr, rmarkdown, testthat (>= 3.0.0), shinycssloaders, visNetwork, wordcloud2

RoxygenNote 7.3.1

NeedsCompilation no
R topics documented:

- bibliometrix-package
- authorProdOverTime
- biblioAnalysis
- biblioNetwork
- bibloshiny
- bibtag
- bradford
- citations
- cocMatrix
- collabByRegionPlot
- conceptualStructure
- convert2df
- countries
- couplingMap
- customTheme
- dominance
- duplicatedMatching
- fieldByYear
- Hindex
- histNetwork
- histPlot
- idByAuthor
- keywordAssoc
- KeywordGrowth
- localCitations
- logo
- lotka
- mergeDbSources
- metaTagExtraction
- missingData
- net2Pajek
- net2VOSviewer
- networkPlot
- networkStat
- normalizeCitationScore
- normalizeSimilarity
- plot.bibliodendrogram
Description

Details

INSTALLATION
- Stable version from CRAN:
install.packages("bibliometrix")
- Or development version from GitHub:
install.packages("devtools") devtools::install_github("massimoaria/bibliometrix")
- Load "bibliometrix"
library("bibliometrix")

DATA LOADING AND CONVERTING
The export file can be imported and converted by R using the function `convert2df`:

```r
file <- ("https://www.bibliometrix.org/datasets/savedrecs.txt")
M <- convert2df(file, dbsource = "wos", format = "bibtex")
```

`convert2df` creates a bibliographic data frame with cases corresponding to manuscripts and variables to Field Tag in the original export file. Each manuscript contains several elements, such as authors’ names, title, keywords and other information. All these elements constitute the bibliographic attributes of a document, also called metadata. Data frame columns are named using the standard Clarivate Analytics WoS Field Tag codify.

BIBLIOMETRIC ANALYSIS

The first step is to perform a descriptive analysis of the bibliographic data frame. The function `biblioAnalysis` calculates main bibliometric measures using this syntax:

```r
results <- biblioAnalysis(M, sep = ";")
```

The function `biblioAnalysis` returns an object of class "bibliometrix".

To summarize main results of the bibliometric analysis, use the generic function `summary`. It displays main information about the bibliographic data frame and several tables, such as annual scientific production, top manuscripts per number of citations, most productive authors, most productive countries, total citation per country, most relevant sources (journals) and most relevant keywords. `summary` accepts two additional arguments. `k` is a formatting value that indicates the number of rows of each table. `pause` is a logical value (TRUE or FALSE) used to allow (or not) pause in screen scrolling. Choosing `k=10` you decide to see the first 10 Authors, the first 10 sources, etc.

```r
S <- summary(object = results, k = 10, pause = FALSE)
```

Some basic plots can be drawn using the generic function plot:

```r
plot(x = results, k = 10, pause = FALSE)
```

BIBLIOGRAPHIC NETWORK MATRICES

Manuscript’s attributes are connected to each other through the manuscript itself: author(s) to journal, keywords to publication date, etc. These connections of different attributes generate bipartite networks that can be represented as rectangular matrices (Manuscripts x Attributes). Furthermore, scientific publications regularly contain references to other scientific works. This generates a further network, namely, co-citation or coupling network. These networks are analyzed in order to capture meaningful properties of the underlying research system, and in particular to determine the influence of bibliometric units such as scholars and journals.

`biblioNetwork` function

The function `biblioNetwork` calculates, starting from a bibliographic data frame, the most frequently used networks: Coupling, Co-citation, Co-occurrences, and Collaboration. `biblioNetwork` uses two arguments to define the network to compute: - `analysis` argument can be "co-citation", "coupling", "collaboration", or "co-occurrences". - `network` argument can be "authors", "references", "countries", "universities", "keywords", "author_keywords", "titles" and "abstracts".

i.e. the following code calculates a classical co-citation network:

```r
NetMatrix <- biblioNetwork(M, analysis = "co-citation", network = "references", sep = ";")
```

VISUALIZING BIBLIOGRAPHIC NETWORKS

All bibliographic networks can be graphically visualized or modeled. Using the function `networkPlot`, you can plot a network created by `biblioNetwork` using R routines.
The main argument of *networkPlot* is type. It indicates the network map layout: circle, kamada-kawai, mds, etc.

In the following, we propose some examples.

Country Scientific Collaboration

Create a country collaboration network
M <- metaTagExtraction(M, Field = "AU_CO", sep = ";")
NetMatrix <- biblioNetwork(M, analysis = "collaboration", network = "countries", sep = ";")
Plot the network
net=networkPlot(NetMatrix, n = dim(NetMatrix)[1], Title = "Country Collaboration", type = "circle", size=TRUE, remove.multiple=FALSE,labelsize=0.8)

Co-Citation Network

Create a co-citation network
NetMatrix <- biblioNetwork(M, analysis = "co-citation", network = "references", sep = ";")
Plot the network
net=networkPlot(NetMatrix, n = 30, Title = "Co-Citation Network", type = "fruchterman", size=T, remove.multiple=FALSE, labelsize=0.7,edgesize = 5)

Keyword co-occurrences

Create keyword co-occurrences network
NetMatrix <- biblioNetwork(M, analysis = "co-occurrences", network = "keywords", sep = ";")
Plot the network
net=networkPlot(NetMatrix, normalize="association", weighted=T, n = 30, Title = "Keyword Co-occurrences", type = "fruchterman", size=T,edgesize = 5,labelsize=0.7)

CO-WORD ANALYSIS: THE CONCEPTUAL STRUCTURE OF A FIELD

The aim of the co-word analysis is to map the conceptual structure of a framework using the word co-occurrences in a bibliographic collection. The analysis can be performed through dimensionality reduction techniques such as Multidimensional Scaling (MDS), Correspondence Analysis (CA) or Multiple Correspondence Analysis (MCA). Here, we show an example using the function *conceptualStructure* that performs a CA or MCA to draw a conceptual structure of the field and K-means clustering to identify clusters of documents which express common concepts. Results are plotted on a two-dimensional map. *conceptualStructure* includes natural language processing (NLP) routines (see the function *termExtraction*) to extract terms from titles and abstracts. In addition, it implements the Porter’s stemming algorithm to reduce inflected (or sometimes derived) words to their word stem, base or root form.

Conceptual Structure using keywords (method="MCA")
CS <- conceptualStructure(M,field="ID", method="MCA", minDegree=4, clust=4 ,k.max=8, stemming=FALSE, labelsize=10, documents=10)

HISTORICAL DIRECT CITATION NETWORK

The historiographic map is a graph proposed by E. Garfield to represent a chronological network map of most relevant direct citations resulting from a bibliographic collection. The function histNetwork generates a chronological direct citation network matrix which can be plotted using *histPlot*:

Create a historical citation network
histResults <- histNetwork(M, sep = ";")
Plot a historical co-citation network
net <- histPlot(histResults, size = 10)

Author(s)
Massimo Aria [cre, aut, cph] (<https://orcid.org/0000-0002-8517-9411>), Corrado Cuccurullo [aut] (<https://orcid.org/0000-0002-7401-8575>)
Maintainer: Massimo Aria <aria@unina.it>

References

authorProdOverTime

Top-Authors’ Productivity over Time

Description
It calculates and plots the author production (in terms of number of publications) over the time.

Usage
authorProdOverTime(M, k = 10, graph = TRUE)

Arguments
M is a bibliographic data frame obtained by convert2df function.
k is a integer. It is the number of top authors to analyze and plot. Default is k = 10.
graph is logical. If TRUE the function plots the author production over time graph. Default is graph = TRUE.
The function `authorProdOverTime` returns a list containing two objects:

- `dfAU` is a data frame
- `dfpapersAU` is a data frame
- `graph` is a ggplot object

See Also

- `bibliAnalysis` function for bibliometric analysis
- `summary` method for class `bibliometrix`

Examples

```r
data(scientometrics, package = "bibliometrixData")
res <- authorProdOverTime(scientometrics, k=10)
print(res$dfAU)
plot(res$graph)
```

Description

It performs a bibliometric analysis of a dataset imported from SCOPUS and Clarivate Analytics Web of Science databases.

Usage

```r
bibliAnalysis(M, sep = ";")
```

Arguments

- `M` is a bibliographic data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to manuscripts and variables to Field Tag in the original SCOPUS and Clarivate Analytics Web of Science file.
- `sep` is the field separator character. This character separates strings in each column of the data frame. The default is `sep = ";"`.

Value

`bibliAnalysis` returns an object of class "bibliometrix".

The functions `summary` and `plot` are used to obtain or print a summary and some useful plots of the results.

An object of class "bibliometrix" is a list containing the following components:
biblioNetwork

Creating Bibliographic networks

Description

biblioNetwork creates different bibliographic networks from a bibliographic data frame.

Examples

Not run:
data(management, package = "bibliometrixData")
results <- biblioAnalysis(management)
summary(results, k = 10, pause = FALSE)

End(Not run)
biblioNetwork

Usage

```r
biblioNetwork(
  M,
  analysis = "coupling",
  network = "authors",
  n = NULL,
  sep = ";",
  short = FALSE,
  shortlabel = TRUE,
  remove.terms = NULL,
  synonyms = NULL
)
```

Arguments

- **M** is a bibliographic data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to manuscripts and variables to Field Tag in the original SCOPUS and Clarivate Analytics WoS file.
- **analysis** is a character object. It indicates the type of analysis can be performed. `analysis` argument can be "collaboration", "coupling", "co-occurrences" or "co-citation". Default is `analysis = "coupling"`.
- **network** is a character object. It indicates the network typology. The `network` argument can be "authors", "references", "sources", "countries", "keywords", "author_keywords", "titles", or "abstracts". Default is `network = "authors"`.
- **n** is an integer. It indicates the number of items to select. If `N = NULL`, all items are selected.
- **sep** is the field separator character. This character separates strings in each column of the data frame. The default is `sep = ";\"`.
- **short** is a logical. If TRUE all items with frequency<2 are deleted to reduce the matrix size.
- **shortlabel** is logical. If TRUE, reference labels are stored in a short format. Default is `shortlabel=TRUE`.
- **remove.terms** is a character vector. It contains a list of additional terms to delete from the documents before term extraction. The default is `remove.terms = NULL`.
- **synonyms** is a character vector. Each element contains a list of synonyms, separated by ";", that will be merged into a single term (the first word contained in the vector element). The default is `synonyms = NULL`.

Details

The function `biblioNetwork` can create a collection of bibliographic networks following the approach proposed by Batagelj & Cerinsek (2013) and Aria & cuccurullo (2017).

Typical networks output of `biblioNetwork` are:

```
#### Collaboration Networks ####
```
biblioNetwork

- Authors collaboration (analysis = "collaboration", network = "authors")
- University collaboration (analysis = "collaboration", network = "universities")
- Country collaboration (analysis = "collaboration", network = "countries")

Co-citation Networks
- Authors co-citation (analysis = "co-citation", network = "authors")
- Reference co-citation (analysis = "co-citation", network = "references")
- Source co-citation (analysis = "co-citation", network = "sources")

Coupling Networks
- Manuscript coupling (analysis = "coupling", network = "references")
- Authors coupling (analysis = "coupling", network = "authors")
- Source coupling (analysis = "coupling", network = "sources")
- Country coupling (analysis = "coupling", network = "countries")

Co-occurrences Networks
- Authors co-occurrences (analysis = "co-occurrences", network = "authors")
- Source co-occurrences (analysis = "co-occurrences", network = "sources")
- Keyword co-occurrences (analysis = "co-occurrences", network = "keywords")
- Author-Keyword co-occurrences (analysis = "co-occurrences", network = "author_keywords")
- Title content co-occurrences (analysis = "co-occurrences", network = "titles")
- Abstract content co-occurrences (analysis = "co-occurrences", network = "abstracts")

References:

Value
It is a squared network matrix. It is an object of class dgMatrix of the package Matrix.

See Also
convert2df to import and convert a SCOPUS and Thomson Reuters’ ISI Web of Knowledge export file in a data frame.
cocMatrix to compute a co-occurrence matrix.
biblioAnalysis to perform a bibliometric analysis.

Examples
EXAMPLE 1: Authors collaboration network

data(scientometrics, package = "bibliometrixData")

NetMatrix <- biblioNetwork(scientometrics, analysis = "collaboration", network = "authors", sep = ";")
Example 2: Co-citation network

```r
data(scientometrics, package = "bibliometrixData")
NetMatrix <- biblioNetwork(scientometrics, analysis = "co-citation", network = "references", sep = ";")
net <- networkPlot(NetMatrix, n = 30, type = "kamada", Title = "Co-Citation", labelsize=0.5)
```

Description

`biblioshiny` performs science mapping analysis using the main functions of the bibliometrix package.

Usage

```r
biblioshiny(
  host = "127.0.0.1",
  port = NULL,
  launch.browser = TRUE,
  maxUploadSize = 200
)
```

Arguments

- `host` is a string. The IPv4 address that the application should listen on. Defaults to the shiny.host option, if set, or "127.0.0.1" if not.
- `port` is an integer. The TCP port that the application should listen on. If the port is not specified, and the shiny.port option is set (with options(shiny.port = XX)), then that port will be used. Otherwise, use a random port.
- `launch.browser` is a logical. If true, the system's default web browser will be launched automatically after the app is started. Defaults to true in interactive sessions only. This value of this parameter can also be a function to call with the application's URL.
- `maxUploadSize` is an integer. The max upload file size argument. Default value is 200 (megabyte).

Examples

```r
#biblioshiny()
```
Description

Data frame containing a list of tags and corresponding: WoS, SCOPUS and generic bibtex fields; and Dimensions.ai csv and xlsx fields.

Format

A data frame with 44 rows and 6 variables:

<table>
<thead>
<tr>
<th>TAG</th>
<th>Tag Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCOPUS</td>
<td>Scopus bibtex fields</td>
</tr>
<tr>
<td>ISI</td>
<td>WOS/ISI bibtex fields</td>
</tr>
<tr>
<td>GENERIC</td>
<td>Generic bibtex fields</td>
</tr>
<tr>
<td>DIMENSIONS_OLD</td>
<td>DIMENSIONS csv/xlsx old fields</td>
</tr>
<tr>
<td>DIMENSIONS</td>
<td>DIMENSIONS csv/xlsx fields</td>
</tr>
</tbody>
</table>

Usage

bradford(M)

Arguments

M is a bibliographic dataframe.

Details

Bradford’s law is a pattern first described by (Samuel C. Bradford, 1934) that estimates the exponentially diminishing returns of searching for references in science journals.

One formulation is that if journals in a field are sorted by number of articles into three groups, each with about one-third of all articles, then the number of journals in each group will be proportional to 1:n:n2.

Reference:
citations

Value

The function bradford returns a list containing the following objects:

- **table**: a dataframe with the source distribution partitioned in the three zones
- **graph**: the source distribution plot in ggplot2 format

See Also

biblioAnalysis function for bibliometric analysis
summary method for class 'bibliometrix'

Examples

```r
## Not run:
data(management, package = "bibliometrixData")
BR <- bradford(management)
## End(Not run)
```

citations

Citation frequency distribution

Description

It calculates frequency distribution of citations.

Usage

```r
citations(M, field = "article", sep = ";")
```

Arguments

- **M**: is a bibliographic data frame obtained by the converting function convert2df. It is a data matrix with cases corresponding to manuscripts and variables to Field Tag in the original SCOPUS and Clarivate Analytics Web of Science file.
- **field**: is a character. It can be "article" or "author" to obtain frequency distribution of cited citations or cited authors (only first authors for WoS database) respectively. The default is field = "article".
- **sep**: is the field separator character. This character separates citations in each string of CR column of the bibliographic data frame. The default is sep = ";;".

Value

an object of class "list" containing the following components:
cocMatrix

Cited the most frequent cited manuscripts or authors
Year the publication year (only for cited article analysis)
Source the journal (only for cited article analysis)

See Also
biblioAnalysis function for bibliometric analysis.
summary to obtain a summary of the results.
plot to draw some useful plots of the results.

Examples

EXAMPLE 1: Cited articles

data(scientometrics, package = "bibliometrixData")

CR <- citations(scientometrics, field = "article", sep = ";")

CR$Cited[1:10]
CR$Year[1:10]
CR$Source[1:10]

EXAMPLE 2: Cited first authors

data(scientometrics)

CR <- citations(scientometrics, field = "author", sep = ";")

CR$Cited[1:10]

cocMatrix

Bibliographic bipartite network matrices

Description

cocMatrix computes occurrences between elements of a Tag Field from a bibliographic data frame. Manuscript is the unit of analysis.

Usage

cocMatrix(
 M,
 Field = "AU",
 type = "sparse",
 n = NULL,
 sep = ";",
 binary = TRUE,
Arguments

\(\text{M} \)

is a data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to articles and variables to Field Tag in the original WoS or SCOPUS file.

\(\text{Field} \)

is a character object. It indicates one of the field tags of the standard ISI WoS Field Tag codify. Field can be equal to one of these tags:

- **AU**: Authors
- **SO**: Publication Name (or Source)
- **JI**: ISO Source Abbreviation
- **DE**: Author Keywords
- **ID**: Keywords associated by WoS or SCOPUS database
- **CR**: Cited References

for a complete list of filed tags see: **Field Tags used in bibliometrix**

\(\text{type} \)

indicates the output format of co-occurrences:

- `type = "matrix"` produces an object of class `matrix`
- `type = "sparse"` produces an object of class `dgMatrix` of the package `Matrix`. "sparse" argument generates a compact representation of the matrix.

\(n \)

is an integer. It indicates the number of items to select. If \(N = \text{NULL} \), all items are selected.

\(\text{sep} \)

is the field separator character. This character separates strings in each column of the data frame. The default is \(\text{sep} = ";" \).

\(\text{binary} \)

is a logical. If TRUE each cell contains a 0/1. if FALSE each cell contains the frequency.

\(\text{short} \)

is a logical. If TRUE all items with frequency<2 are deleted to reduce the matrix size.

\(\text{remove.terms} \)

is a character vector. It contains a list of additional terms to delete from the documents before term extraction. The default is \(\text{remove.terms} = \text{NULL} \).

\(\text{synonyms} \)

is a character vector. Each element contains a list of synonyms, separated by ";", that will be merged into a single term (the first word contained in the vector element). The default is \(\text{synonyms} = \text{NULL} \).

Details

This occurrence matrix represents a bipartite network which can be transformed into a collection of bibliographic networks such as coupling, co-citation, etc.
The function follows the approach proposed by Batagelj & Cerinsek (2013) and Aria & Cuccurullo (2017).

References:

Value

A function to create and plot country collaboration networks by Region.

See Also

convert2df to import and convert an ISI or SCOPUS Export file in a data frame.
biblioAnalysis to perform a bibliometric analysis.
biblioNetwork to compute a bibliographic network.

Examples

```r
# EXAMPLE 1: Articles x Authors occurrence matrix
data(scientometrics, package = "bibliometrixData")
WA <- cocMatrix(scientometrics, Field = "AU", type = "sparse", sep = ";")

# EXAMPLE 2: Articles x Cited References occurrence matrix
# data(scientometrics, package = "bibliometrixData")
# WCR <- cocMatrix(scientometrics, Field = "CR", type = "sparse", sep = ";")

# EXAMPLE 3: Articles x Cited First Authors occurrence matrix
# data(scientometrics, package = "bibliometrixData")
# scientometrics <- metaTagExtraction(scientometrics, Field = "CR_AU", sep = ";")
# WCR <- cocMatrix(scientometrics, Field = "CR_AU", type = "sparse", sep = ";")
```
Usage

collabByRegionPlot(
 NetMatrix,
 normalize = NULL,
 n = NULL,
 degree = NULL,
 type = "auto",
 label = TRUE,
 labelsize = 1,
 label.cex = FALSE,
 label.color = FALSE,
 label.n = Inf,
 halo = FALSE,
 cluster = "walktrap",
 community.repulsion = 0,
 vos.path = NULL,
 size = 3,
 size.cex = FALSE,
 curved = FALSE,
 noloops = TRUE,
 remove.multiple = TRUE,
 remove.isolates = FALSE,
 weighted = NULL,
 edgesize = 1,
 edges.min = 0,
 alpha = 0.5,
 verbose = TRUE
)

Arguments

NetMatrix is a country collaboration matrix obtained by the function \texttt{biblioNetwork}.

normalize is a character. It can be "association", "jaccard", "inclusion", "salton" or "equivalence" to obtain Association Strength, Jaccard, Inclusion, Salton or Equivalence similarity index respectively. The default is type = NULL.

n is an integer. It indicates the number of vertices to plot.

degree is an integer. It indicates the min frequency of a vertex. If degree is not NULL, n is ignored.

type is a character object. It indicates the network map layout:

type="auto" Automatic layout selection
 type="circle" Circle layout
 type="sphere" Sphere layout
 type="mds" Multidimensional Scaling layout
 type="fruchterman" Fruchterman-Reingold layout
 type="kamada" Kamada-Kawai layout
label is logical. If TRUE vertex labels are plotted.

labels is an integer. It indicates the label size in the plot. Default is labelsize=1

label.cex is logical. If TRUE the label size of each vertex is proportional to its degree.

label.color is logical. If TRUE, for each vertex, the label color is the same as its cluster.

label.n is an integer. It indicates the number of vertex labels to draw.

halo is logical. If TRUE communities are plotted using different colors. Default is halo=FALSE

cluster is a character. It indicates the type of cluster to perform among ("none", "optimal", "louvain", "leiden", "infomap", "edge_betweenness", "walktrap", "spinglass", "leading_eigen", "fast_greedy").

community.repulsion is a real. It indicates the repulsion force among network communities. It is a real number between 0 and 1. Default is community.repulsion = 0.1.

type is a character indicating the full path where VOSviewer.jar is located.

size is integer. It defines the size of each vertex. Default is size=3.

size.cex is logical. If TRUE the size of each vertex is proportional to its degree.

curved is a logical or a number. If TRUE edges are plotted with an optimal curvature. Default is curved=FALSE. Curved values are any numbers from 0 to 1.

noloops is logical. If TRUE loops in the network are deleted.

remove.multiple is logical. If TRUE multiple links are plotted using just one edge.

remove.isolates is logical. If TRUE isolates vertices are not plotted.

weighted This argument specifies whether to create a weighted graph from an adjacency matrix. If it is NULL then an unweighted graph is created and the elements of the adjacency matrix gives the number of edges between the vertices. If it is a character constant then for every non-zero matrix entry an edge is created and the value of the entry is added as an edge attribute named by the weighted argument. If it is TRUE then a weighted graph is created and the name of the edge attribute will be weight.

edgesize is an integer. It indicates the network edge size.

edges.min is an integer. It indicates the min frequency of edges between two vertices. If edges.min=0, all edges are plotted.

alpha is a number. Legal alpha values are any numbers from 0 (transparent) to 1 (opaque). The default alpha value usually is 0.5.

verbose is a logical. If TRUE, network will be plotted. Default is verbose = TRUE.

Value

It is a list containing the following elements:

- **graph** a network object of the class igraph
- **cluster_obj** a communities object of the package igraph
- **cluster_res** a data frame with main results of clustering procedure.

conceptualStructure

Examples

```r
## Not run:
data(management, package="bibliometrixData")
management <- metaTagExtraction(management, Field = "AU_CO")
NetMatrix <- biblioNetwork(management, analysis = "collaboration", network = "countries")
net <- collabByRegionPlot(NetMatrix, edgesize = 4, label.cex = TRUE, labelsize=2.5,
                           weighted = TRUE, size=0.5, size.cex=TRUE, community.repulsion = 0,
                           verbose=FALSE)

cbind(names(net))
plot(net[[4]]$graph)
## End(Not run)
```

conceptualStructure
Creating and plotting conceptual structure map of a scientific field

Description

The function `conceptualStructure` creates a conceptual structure map of a scientific field performing Correspondence Analysis (CA), Multiple Correspondence Analysis (MCA) or Metric Multidimensional Scaling (MDS) and Clustering of a bipartite network of terms extracted from keyword, title or abstract fields.

Usage

```r
classicalStructure(M,  
field = "ID",  
ngrams = 1,  
method = "MCA",  
quali.supp = NULL,  
quanti.supp = NULL,  
minDegree = 2,  
clust = "auto",  
k.max = 5,  
stemming = FALSE,  
labelsize = 10,  
documents = 2,  
graph = TRUE,  
remove.terms = NULL,  
synonyms = NULL)
```
Arguments

M is a data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to articles and variables to Field Tag in the original ISI or SCOPUS file.

field is a character object. It indicates one of the field tags of the standard ISI WoS Field Tag codify. field can be equal to one of these tags:

- **ID**: Keywords Plus associated by ISI or SCOPUS database
- **DE**: Author’s keywords
- **ID_Tm**: Keywords Plus stemmed through the Porter’s stemming algorithm
- **DE_Tm**: Author’s Keywords stemmed through the Porter’s stemming algorithm
- **TI**: Terms extracted from titles
- **AB**: Terms extracted from abstracts

ngrams is an integer between 1 and 3. It indicates the type of n-gram to extract from texts. An n-gram is a contiguous sequence of n terms. The function can extract n-grams composed by 1, 2, 3 or 4 terms. Default value is `ngrams=1`.

method is a character object. It indicates the factorial method used to create the factorial map. Use `method="CA"` for Correspondence Analysis, `method="MCA"` for Multiple Correspondence Analysis or `method="MDS"` for Metric Multidimensional Scaling. The default is `method="MCA"`

 quali.supp is a vector indicating the indexes of the categorical supplementary variables. It is used only for CA and MCA.

 quanti.supp is a vector indicating the indexes of the quantitative supplementary variables. It is used only for CA and MCA.

 minDegree is an integer. It indicates the minimum occurrences of terms to analyze and plot. The default value is 2.

 clust is an integer or a character. If `clust="auto"`, the number of cluster is chosen automatically, otherwise clust can be an integer between 2 and 8.

 k.max is an integer. It indicates the maximum number of cluster to keep. The default value is 5. The max value is 20.

 stemming is logical. If TRUE the Porter’s Stemming algorithm is applied to all extracted terms. The default is `stemming = FALSE`.

 labelsize is an integer. It indicates the label size in the plot. Default is `labelsize=10`.

 documents is an integer. It indicates the number of documents per cluster to plot in the factorial map. The default value is 2. It is used only for CA and MCA.

 graph is logical. If TRUE the function plots the maps otherwise they are saved in the output object. Default value is TRUE

 remove.terms is a character vector. It contains a list of additional terms to delete from the documents before term extraction. The default is `remove.terms = NULL`.

 synonyms is a character vector. Each element contains a list of synonyms, separated by ",", that will be merged into a single term (the first word contained in the vector element). The default is `synonyms = NULL`.
Value

It is an object of the class `list` containing the following components:

- `net`: bipartite network
- `res`: Results of CA, MCA or MDS method
- `km.res`: Results of cluster analysis
- `graph_terms`: Conceptual structure map (class "ggplot2")
- `graph_documents_Contrib`: Factorial map of the documents with the highest contributes (class "ggplot2")
- `graph_docuemnts_TC`: Factorial map of the most cited documents (class "ggplot2")

See Also

termExtraction to extract terms from a textual field (abstract, title, author’s keywords, etc.) of a bibliographic data frame.
biblioNetwork to compute a bibliographic network.
cocMatrix to compute a co-occurrence matrix.
biblioAnalysis to perform a bibliometric analysis.

Examples

```r
# EXAMPLE Conceptual Structure using Keywords Plus

data(scientometrics, package = "bibliometrixData")

CS <- conceptualStructure(scientometrics, field="ID", method="CA",
                           stemming=FALSE, minDegree=3, k.max = 5)
```

convert2df

Import and Convert bibliographic export files and API objects.

Description

It converts a SCOPUS, Clarivate Analytics WoS, Dimensions, Lens.org, PubMed and COCHRANE Database export files or pubmedR and dimensionsR JSON/XML objects into a data frame, with cases corresponding to articles and variables to Field Tags as used in WoS.

Usage

```r
convert2df(
  file,
  dbsource = "wos",
  format = "plaintext",
  remove.duplicates = TRUE
)
```
Arguments

- **file**: a character array containing a sequence of filenames coming from WoS, Scopus, Dimensions, Lens.org, and Pubmed. Alternatively, file can be an object resulting from an API query fetched from Dimensions, PubMed or OpenAlex databases:

 a) 'wos' : Clarivate Analytics WoS (in plaintext `.txt`, Endnote Desktop `.ciw`, or bibtex formats `.bib`);
 b) 'scopus' : SCOPUS (exclusively in bibtex format `.bib`);
 c) 'dimensions' : Digital Science Dimensions (in csv `.csv` or excel `.xlsx` formats);
 d) 'lens' : Lens.org (in csv `.csv`);
 e) 'pubmed' : an object of the class pubmedR (package pubmedR) containing a collection obtained from a query performed with pubmedR package;
 f) 'dimensions' : an object of the class dimensionsR (package dimensionsR) containing a collection obtained from a query performed with dimensionsR package;
 g) 'openalex' : OpenAlex `.csv` file;
 h) 'openalex_api' : a data frame object returned by openalexR package, containing a collection of works resulting from a query fetched from OpenAlex database.

- **dbsource**: is a character indicating the bibliographic database. dbsource can be `dbsource = c('cochrane', 'dimensions', 'generic', 'isi', 'openalex', 'pubmed', 'scopus', 'wos', 'lens')`. Default is `dbsource = "isi"`.

- **format**: is a character indicating the SCOPUS, Clarivate Analytics WoS, and other databases export file format. format can be `c(’api’, ’bibtex’, ’csv’, ’endnote’, ’excel’, ’plaintext’, ’pubmed’)`). Default is `format = "plaintext"`.

- **remove.duplicates**: is logical. If TRUE, the function will remove duplicated items checking by DOI and database ID.

Value

a data frame with cases corresponding to articles and variables to Field Tags in the original export file.

Let’s have three files download from Web of Science in plaintext format, file will be:

```r
file <- c("filename1.txt", "filename2.txt", "filename3.txt")
```

data frame columns are named using the standard Clarivate Analytics WoS Field Tag codify. The main field tags are:

- **AU** Authors
- **TI** Document Title
- **SO** Publication Name (or Source)
- **JJ** ISO Source Abbreviation
- **DT** Document Type
- **DE** Authors’ Keywords
- **ID** Keywords associated by SCOPUS or WoS database
- **AB** Abstract
- **CI** Author Address
- **RP** Reprint Address
- **CR** Cited References
- **TC** Times Cited
- **PY** Year
countries

<table>
<thead>
<tr>
<th>SC</th>
<th>Subject Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT</td>
<td>Unique Article Identifier</td>
</tr>
<tr>
<td>DB</td>
<td>Database</td>
</tr>
</tbody>
</table>

for a complete list of field tags see: Field Tags used in bibliometrix

Examples

Example:
Import and convert a Web of Science collection form an export file in plaintext format:

Not run:
files <- 'https://www.bibliometrix.org/datasets/wos_plaintext.txt'
M <- convert2df(file = files, dbsource = 'wos', format = "plaintext")
End(Not run)

countries

Index of Countries.

Description

Data frame containing a normalized index of countries.
Data are used by `biblioAnalysis` function to extract Country Field of Cited References and Authors.

Format

A data frame with 199 rows and 4 variables:

- `countries` country names
- `continent` continent names
- `Longitude` country centroid longitude
- `Latitude` country centroid latitude
couplingMap

Coupling Analysis

Description

It performs a coupling network analysis and plots community detection results on a bi-dimensional map (Coupling Map).

Usage

couplingMap(
 M,
 analysis = "documents",
 field = "CR",
 n = 500,
 label.term = NULL,
 ngrams = 1,
 impact.measure = "local",
 minfreq = 5,
 community.repulsion = 0.1,
 stemming = FALSE,
 size = 0.5,
 n.labels = 1,
 repel = TRUE,
 cluster = "walktrap"
)

Arguments

M is a bibliographic dataframe.

analysis is the textual attribute used to select the unit of analysis. It can be analysis = c("documents", "authors", "sources").

field is the textual attribute used to measure the coupling strength. It can be field = c("CR", "ID", "DE", "TI", "AB").

n is an integer. It indicates the number of units to include in the analysis.

label.term is a character. It indicates which content metadata have to use for cluster labeling. It can be label.term = c("ID", "DE", "TI", "AB"). If label.term = NULL cluster items will be use for labeling.

ngrams is an integer between 1 and 4. It indicates the type of n-gram to extract from texts. An n-gram is a contiguous sequence of n terms. The function can extract n-grams composed by 1, 2, 3 or 4 terms. Default value is ngrams=1.

impact.measure is a character. It indicates the impact measure used to rank cluster elements (documents, authors or sources). It can be impact.measure = c("local", "global"). With impact.measure = "local", couplingMap calculates elements impact using the Normalized Local Citation Score while using impact.measure = "global",...
the function uses the Normalized Global Citation Score to measure elements impact.

- **minfreq** is an integer. It indicates the minimum frequency (per thousand) of a cluster. It is a number in the range (0,1000).

- **community.repulsion** is a real. It indicates the repulsion force among network communities. It is a real number between 0 and 1. Default is community.repulsion = 0.1.

- **stemming** is logical. If it is TRUE the word (from titles or abstracts) will be stemmed (using the Porter’s algorithm).

- **size** is numerical. It indicates the size of the cluster circles and is a number in the range (0.01,1).

- **n.labels** is integer. It indicates how many labels associate to each cluster. Default is n.labels = 1.

- **repel** is logical. If it is TRUE ggplot uses geom_label_repel instead of geom_label.

- **cluster** is a character. It indicates the type of cluster to perform among ("optimal", "louvain", "leiden", "infomap", "edge_betweenness", "walktrap", "spinglass", "leading_eigen", "fast_greedy").

Details

The analysis can be performed on three different units: documents, authors or sources and the coupling strength can be measured using the classical approach (coupled by references) or a novel approach based on unit contents (keywords or terms from titles and abstracts).

The x-axis measures the cluster centrality (by Callon’s Centrality index) while the y-axis measures the cluster impact by Mean Normalized Local Citation Score (MNLCS). The Normalized Local Citation Score (NLCS) of a document is calculated by dividing the actual count of local citing items by the expected citation rate for documents with the same year of publication.

Value

- a list containing:
 - **map** The coupling map as ggplot2 object
 - **clusters** Centrality and Density values for each cluster.
 - **data** A list of units following in each cluster
 - **nclust** The number of clusters
 - **NCS** The Normalized Citation Score dataframe
 - **net** A list containing the network output (as provided from the networkPlot function)

See Also

- [biblioNetwork](#) function to compute a bibliographic network.
- [cocMatrix](#) to compute a bibliographic bipartite network.
- [networkPlot](#) to plot a bibliographic network.
Examples

```r
## Not run:
data(management, package = "bibliometrixData")
res <- couplingMap(management, analysis = "authors", field = "CR", n = 250, impact.measure="local",
                   minfreq = 3, size = 0.5, repel = TRUE)
plot(res$map)
## End(Not run)
```

customTheme
Custom Theme variables for Biblioshiny.

Description

List containing a set of custom theme variables for Biblioshiny.

Format

A list with 3 elements:

- **name** object name
- **attribs** attributes
- **children** CSS style

dominance
Authors’ dominance ranking

Description

It calculates the authors’ dominance ranking from an object of the class 'bibliometrix' as proposed by Kumar & Kumar, 2008.

Usage

```r
dominance(results, k = 10)
```

Arguments

- **results** is an object of the class 'bibliometrix' for which the analysis of the authors’ dominance ranking is desired.
- **k** is an integer, used for table formatting (number of authors). Default value is 10.
Value

The function dominance returns a data frame with cases corresponding to the first k most productive authors and variables to typical field of a dominance analysis.

the data frame variables are:
duplicatedMatching

Author

Author's name

Dominance Factor

Dominance Factor (DF = FAA / MAA)

Tot Articles

N. of Authored Articles (TAA)

Single Authored

N. of Single Authored Articles (SAA)

Multi Authored

N. of Multi Authored Articles (MAA = TAA - SAA)

First Authored

N. of First Authored Articles (FAA)

Rank by Articles

Author Ranking by N. of Articles

Rank by DF

Author Ranking by Dominance Factor

See Also

- **biblioAnalysis** function for bibliometric analysis
- **summary** method for class 'bibliometrix'

Examples

```r
data(scientometrics, package = "bibliometrixData")
results <- biblioAnalysis(scientometrics)
DF <- dominance(results)
DF
```

duplicatedMatching

Searching of duplicated records in a bibliographic database

Description

Search duplicated records in a dataframe.

Usage

```r
duplicatedMatching(M, Field = "TI", exact = FALSE, tol = 0.95)
```

Arguments

- **M** is the bibliographic data frame.
- **Field** is a character object. It indicates one of the field tags used to identify duplicated records. Field can be equal to one of these tags: TI (title), AB (abstract), UT (manuscript ID).
- **exact** is logical. If exact = TRUE the function searches duplicates using exact matching. If exact=FALSE, the function uses the restricted Damerau-Levenshtein distance to find duplicated documents.
- **tol** is a numeric value giving the minimum relative similarity to match two manuscripts. Default value is tol = 0.95. To use the restricted Damerau-Levenshtein distance, exact argument has to be set as FALSE.
Details

A bibliographic data frame is obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to manuscripts and variables to Field Tag in the original SCOPUS and Clarivate Analytics WoS file. The function identifies duplicated records in a bibliographic data frame and deletes them. Duplicate entries are identified through the restricted Damerau-Levenshtein distance. Two manuscripts that have a relative similarity measure greater than `tol` argument are stored in the output data frame only once.

Value

the value returned from `duplicatedMatching` is a data frame without duplicated records.

See Also

`convert2df` to import and convert an WoS or SCOPUS Export file in a bibliographic data frame.

`biblioAnalysis` function for bibliometric analysis.

`summary` to obtain a summary of the results.

`plot` to draw some useful plots of the results.

Examples

```r
data(scientometrics, package = "bibliometrixData")
M=rbind(scientometrics[1:20,],scientometrics[10:30,])
newM <- duplicatedMatching(M, Field = "TI", exact=FALSE, tol = 0.95)
dim(newM)
```

fieldByYear
Field Tag distribution by Year

Description

It calculates the median year for each item of a field tag.

Usage

```r
fieldByYear(
  M,  
  field = "ID",  
  timespan = NULL,  
  min.freq = 2,  
  n.items = 5,
```

```
fieldByYear

labels = NULL,
remove.terms = NULL,
synonyms = NULL,
dynamic.plot = FALSE,
     graph = TRUE
)

Arguments

M is a bibliographic data frame obtained by convert2df function.
field is a character object. It indicates one of the field tags of the standard ISI WoS Field Tag codify.
timespan is a vector with the min and max year. If it is = NULL, the analysis is performed on the entire period. Default is timespan = NULL.
min.freq is an integer. It indicates the min frequency of the items to include in the analysis
n.items is an integer. I indicates the maximum number of items per year to include in the plot.
labels is deprecated argument. It will be removed in the next update.
remove.terms is a character vector. It contains a list of additional terms to delete from the documents before term extraction. The default is remove.terms = NULL.
synonyms is a character vector. Each element contains a list of synonyms, separated by ":", that will be merged into a single term (the first word contained in the vector element). The default is synonyms = NULL.
dynamic.plot is a logical. If TRUE plot aesthetics are optimized for plotly package.
graph is logical. If TRUE the function plots Filed Tag distribution by Year graph. Default is graph = TRUE.

Value

The function fieldByYear returns a list containing three objects:

    df is a data frame
    df_graph is a data frame with data used to build the graph
    graph a ggplot object

See Also

biblioAnalysis function for bibliometric analysis
summary method for class 'bibliometrix'

Examples

data(management, package = "bibliometrixData")
timespan=c(2005,2015)
res <- fieldByYear(management, field = "ID", timespan = timespan,
                   min.freq = 5, n.items = 5, graph = TRUE)
**Hindex**

**h-index calculation**

**Description**

It calculates the authors’ h-index and its variants.

**Usage**

```r
Hindex(M, field = "author", elements = NULL, sep = ";", years = Inf)
```

**Arguments**

- `M` is a bibliographic data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to manuscripts and variables to Field Tag in the original SCOPUS and Clarivate Analytics WoS file.

- `field` is character. It can be equal to c("author", "source"). field indicates if H-index have to be calculated for a list of authors or for a list of sources. Default value is `field = "author"`.

- `elements` is a character vector. It contains the authors’ names list or the source list for which you want to calculate the H-index. When the field is "author", the argument has the form C("SURNAME1 N", "SURNAME2 N", ...), in other words, for each author: surname and initials separated by one blank space. If `elements=NULL`, the function calculates impact indices for all elements contained in the data frame. i.e for the authors SEMPRONIO TIZIO CAIO and ARIA MASSIMO `elements` argument is `elements = c("SEMPRONIO TC", "ARIA M")`.

- `sep` is the field separator character. This character separates authors in each string of AU column of the bibliographic data frame. The default is `sep = ";"`.

- `years` is an integer. It indicates the number of years to consider for Hindex calculation. Default is Inf.

**Value**

an object of class "list". It contains two elements: H is a data frame with h-index, g-index and m-index for each author; CitationList is a list with the bibliographic collection for each author.

**See Also**

- `convert2df` to import and convert an WoS or SCOPUS Export file in a bibliographic data frame.
- `biblioAnalysis` function for bibliometric analysis.
- `summary` to obtain a summary of the results.
- `plot` to draw some useful plots of the results.
Examples

### EXAMPLE 1: ###

```
data(scientometrics, package = "bibliometrixData")
authors <- c("SMALL H", "CHEN DZ")
Hindex(scientometrics, field = "author", elements = authors, sep = ";")$H
Hindex(scientometrics, field = "source", elements = "SCIENTOMETRICS", sep = ";")$H
```

### EXAMPLE 2: Garfield h-index###

```
data(garfield, package = "bibliometrixData")
indices=Hindex(garfield, field = "author", elements = "GARFIELD E", years=Inf, sep = ";")
h-index, g-index and m-index of Eugene Garfield
indices$H
Papers and total citations
head(indices$CitationList[[1]])
```

---

histNetwork  
Historical co-citation network

Description
histNetwork creates a historical citation network from a bibliographic data frame.

Usage
```
histNetwork(M, min.citations, sep = ";", network = TRUE, verbose = TRUE)
```

Arguments

- **M**  
is a bibliographic data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to manuscripts and variables to Field Tag in the original SCOPUS, OpenAlex, Lens.org and Clarivate Analytics Web of Science file.

- **min.citations**  
DEPRECATED. New algorithm does not use this parameters. It will be remove in the next version of bibliometrix.

- **sep**  
is the field separator character. This character separates strings in CR column of the data frame. The default is `sep = ";"`.

- **network**  
is logical. If TRUE, function calculates and returns also the direct citation network. If FALSE, the function returns only the local citation table.

- **verbose**  
is logical. If TRUE, results are printed on screen.
histPlot

Value

histNetwork returns an object of class "list" containing the following components:

- **NetMatrix**: the historical co-citation network matrix
- **histData**: the set of n most cited references
- **M**: the bibliographic data frame

See Also

- `convert2df` to import and convert a supported export file in a bibliographic data frame.
- `summary` to obtain a summary of the results.
- `plot` to draw some useful plots of the results.
- `biblioNetwork` to compute a bibliographic network.

Examples

```r
Not run:
data(management, package = "bibliometrixData")

histResults <- histNetwork(management, sep = ";")

End(Not run)
```

---

**histPlot**  
*Plotting historical co-citation network*

Description

histPlot plots a historical co-citation network.

Usage

```r
histPlot(
 histResults,
 n = 20,
 size = 5,
 labelsize = 5,
 remove.isolates = TRUE,
 title_as_label = FALSE,
 label = "short",
 verbose = TRUE
)
```

Arguments

- **histResults**: is an object of class "list" containing the following components:
NetMatrix: the historical citation network matrix
Degree: the min degree of the network
histData: the set of n most cited references
M: the bibliographic data frame

is a network matrix obtained by the function histNetwork.

n: is integer. It defines the number of vertices to plot.
size: is an integer. It defines the point size of the vertices. Default value is 5.
labelsize: is an integer. It indicates the label size in the plot. Default is labelsize=5.
remove.isolates: is logical. If TRUE isolates vertices are not plotted.
title_as_label: is a logical. DEPRECATED
label: is a character. It indicates which label type to use as node id in the historiograph. It can be label=c("short", "title", "keywords", "keywordsplus"). Default is label = "short".
verbose: is logical. If TRUE, results and plots are printed on screen.

Details
The function histPlot can plot a historical co-citation network previously created by histNetwork.

Value
It is list containing: a network object of the class igraph and a plot object of the class ggraph.

See Also
histNetwork to compute a historical co-citation network.
cocMatrix to compute a co-occurrence matrix.
biblioAnalysis to perform a bibliometric analysis.

Examples
# EXAMPLE Citation network
## Not run:
data(management, package = "bibliometrixData")

histResults <- histNetwork(management, sep = ";")

net <- histPlot(histResults, n=20, labelsize = 5)

## End(Not run)
**idByAuthor**

*Get Complete Author Information and ID from Scopus*

**Description**

Uses SCOPUS API author search to identify author identification information.

**Usage**

```r
idByAuthor(df, api_key)
```

**Arguments**

- **df**
  - is a dataframe composed of three columns:
    - lastname (author’s last name)
    - firstname (author’s first name)
    - affiliation (Part of the affiliation name (university name, city, etc.))

  *i.e. df[1,1:3]<-c("aria","massimo","naples")* When affiliation is not specified, the field df$affiliation have to be NA. *i.e. df[2,1:3]<-c("cuccurullo", "corrado", NA)*

- **api_key**
  - is a character. It contains the Elsevier API key. Information about how to obtain an API Key Elsevier API website

**Value**

a data frame with cases corresponding to authors and variables to author’s information and ID got from SCOPUS.

**See Also**

- `retrievalByAuthorID` for downloading the complete author bibliographic collection from SCOPUS

**Examples**

```r
Request a personal API Key to Elsevier web page https://dev.elsevier.com/sc_apis.html
api_key="your api key"

create a data frame with the list of authors to get information and IDs
i.e. df[1,1:3]<-c("aria","massimo","naples")
df[2,1:3]<-c("cuccurullo", "corrado", NA)

run idByAuthor function
#
authorsID <- idByAuthor(df, api_key)
```
ID and DE keyword associations

Description

It associates authors’ keywords to keywords plus.

Usage

```r
keywordAssoc(M, sep = ";", n = 10, excludeKW = NA)
```

Arguments

- `M` is a bibliographic data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to manuscripts and variables to Field Tag in the original SCOPUS and Clarivate Analytics WoS file.
- `sep` is the field separator character. This character separates keywords in each string of ID and DE columns of the bibliographic data frame. The default is `sep = ";"`.
- `n` is an integer. It indicates the number of authors’ keywords to associate to each keyword plus. The default is `n = 10`.
- `excludeKW` is a character vector. It contains authors’ keywords to exclude from the analysis.

Value

An object of class "list".

See Also

- `convert2df` to import and convert a WoS or SCOPUS Export file in a bibliographic data frame.
- `biblioAnalysis` function for bibliometric analysis.
- `summary` to obtain a summary of the results.
- `plot` to draw some useful plots of the results.

Examples

```r
data(scientometrics, package = "bibliometrixData")

KWlist <- keywordAssoc(scientometrics, sep = ";", n = 10, excludeKW = NA)

list of first 10 Keywords plus
names(KWlist)

list of first 10 authors' keywords associated to the first Keyword plus
KWlist[[1]][1:10]
```
**KeywordGrowth**

*Yearly occurrences of top keywords/terms*

**Description**

It calculates yearly occurrences of top keywords/terms.

**Usage**

```r
KeywordGrowth(
 M, # is a data frame obtained by the converting function convert2df. It is a data matrix with cases corresponding to articles and variables to Field Tag in the original WoS or SCOPUS file.
 Tag = "ID", # is a character object. It indicates one of the keyword field tags of the standard ISI WoS Field Tag codify (ID or DE) or a field tag created by termExtraction function (TI_TM, AB_TM, etc.).
 sep = ",", # is the field separator character. This character separates strings in each keyword column of the data frame. The default is sep = ";".
 top = 10, # is a numeric. It indicates the number of top keywords to analyze. The default value is 10.
 cdf = TRUE, # is a logical. If TRUE, the function calculates the cumulative occurrences distribution.
 remove.terms = NULL, # is a character vector. It contains a list of additional terms to delete from the documents before term extraction. The default is remove.terms = NULL.
 synonyms = NULL # is a character vector. Each element contains a list of synonyms, separated by ",", that will be merged into a single term (the first word contained in the vector element). The default is synonyms = NULL.
)
```

**Arguments**

- **M**: is a data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to articles and variables to Field Tag in the original WoS or SCOPUS file.
- **Tag**: is a character object. It indicates one of the keyword field tags of the standard ISI WoS Field Tag codify (ID or DE) or a field tag created by `termExtraction` function (TI_TM, AB_TM, etc.).
- **sep**: is the field separator character. This character separates strings in each keyword column of the data frame. The default is `sep = ";"`.
- **top**: is a numeric. It indicates the number of top keywords to analyze. The default value is 10.
- **cdf**: is a logical. If TRUE, the function calculates the cumulative occurrences distribution.
- **remove.terms**: is a character vector. It contains a list of additional terms to delete from the documents before term extraction. The default is `remove.terms = NULL`.
- **synonyms**: is a character vector. Each element contains a list of synonyms, separated by ",", that will be merged into a single term (the first word contained in the vector element). The default is `synonyms = NULL`.

**Value**

- an object of class `data.frame`
Examples

```r
data(scientometrics, package = "bibliometrixData")
topKW=KeywordGrowth(scientometrics, Tag = "ID", sep = ";", top=5, cdf=TRUE)
topKW

Plotting results
Not run:
install.packages("reshape2")
library(reshape2)
library(ggplot2)
DF=melt(topKW, id="Year")
ggplot(DF,aes(Year,value, group=variable, color=variable))+geom_line

End(Not run)
```

---

**localCitations**  
**Author local citations**

**Description**

It calculates local citations (LCS) of authors and documents of a bibliographic collection.

**Usage**

```r
localCitations(M, fast.search = FALSE, sep = ";", verbose = FALSE)
```

**Arguments**

- `M` is a bibliographic data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to manuscripts and variables to `Field Tag` in the original SCOPUS and Clarivate Analytics WoS file.
- `fast.search` is logical. If true, the function calculates local citations only for 25 percent top cited documents.
- `sep` is the field separator character. This character separates citations in each string of `CR` column of the bibliographic data frame. The default is `sep = ";"`.
- `verbose` is a logical. If TRUE, results are printed on screen.

**Details**

Local citations measure how many times an author (or a document) included in this collection have been cited by the documents also included in the collection.

**Value**

an object of class "list" containing author local citations and document local citations.
See Also

citations function for citation frequency distribution.
biblioAnalysis function for bibliometric analysis.
summary to obtain a summary of the results.
plot to draw some useful plots of the results.

Examples

data(scientometrics, package = "bibliometrixData")
CR <- localCitations(scientometrics, sep = ";")
CR$Authors[1:10,]
CR$Papers[1:10,]

---

logo  
Bibliometrix logo.

Description

The matrix contains the rgb format of the bibliometrix official logo.

Format

A matrix with 927 rows and 800 columns.

---

lotka  
Lotka’s law coefficient estimation

Description

It estimates Lotka’s law coefficients for scientific productivity (Lotka A.J., 1926).

Usage

lotka(results)

Arguments

results is an object of the class ‘bibliometrix’ for which the analysis of the authors’
dominance ranking is desired.
Details


Value

The function `lotka` returns a list of summary statistics of the Lotka’s law estimation of an object of class `bibliometrix`.

the list contains the following objects:

- **Beta**
- **C**
- **R2**
- **fitted**
- **p.value**
- **AuthorProd**

See Also

`biblioAnalysis` function for bibliometric analysis

`summary` method for class `bibliometrix`

Examples

```r
data(scientometrics, package = "bibliometrixData")
results <- biblioAnalysis(scientometrics)
L <- lotka(results)
L
```

mergeDbSources

`Merge bibliographic data frames from SCOPUS and WoS`

Description

Merge bibliographic data frames from different databases (WoS and SCOPUS) into a single one.

Usage

```r
mergeDbSources(..., remove.duplicated = TRUE)
```

Arguments

- `...` are the bibliographic data frames to merge.
- `remove.duplicated` is logical. If TRUE duplicated documents will be deleted from the bibliographic collection.
Details

bibliographic data frames are obtained by the converting function `convert2df`. The function merges data frames identifying common tag fields and duplicated records.

Value

the value returned from `mergeDbSources` is a bibliographic data frame.

See Also

`convert2df` to import and convert an ISI or SCOPUS Export file in a bibliographic data frame.

`biblioAnalysis` function for bibliometric analysis.

`summary` to obtain a summary of the results.

`plot` to draw some useful plots of the results.

Examples

data(isiCollection, package = "bibliometrixData")
data(scopusCollection, package = "bibliometrixData")
M <- mergeDbSources(isiCollection, scopusCollection, remove.duplicated=TRUE)
dim(M)

metaTagExtraction  Meta-Field Tag Extraction

Description

It extracts other field tags, different from the standard WoS/SCOPUS codify.

Usage

metaTagExtraction(M, Field = "CR_AU", sep = ";", aff.disamb = TRUE)

Arguments

M is a data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to articles and variables to Field Tag in the original WoS or SCOPUS file.

Field is a character object. New tag extracted from aggregated data is specified by this string. Field can be equal to one of these tags:
"CR_AU"  First Author of each cited reference
"CR.SO"  Source of each cited reference
"AU_CO"  Country of affiliation for co-authors
"AU1_CO" Country of affiliation for the first author
"AU_UN"  University of affiliation for each co-author and the corresponding author (AU1_UN)
"SR"    Short tag of the document (as used in reference lists)

sep is the field separator character. This character separates strings in each column of the data frame. The default is sep = ";".

aff.disamb is a logical. If TRUE and Field="AU_UN", then a disambiguation algorithm is used to identify and match scientific affiliations (univ, research centers, etc.). The default is aff.disamb=TRUE.

Value

the bibliometric data frame with a new column containing data about new field tag indicated in the argument Field.

See Also

convert2df for importing and converting bibliographic files into a data frame.
biblioAnalysis function for bibliometric analysis

Examples

# Example 1: First Authors for each cited reference

data(scientometrics, package = "bibliometrixData")
scientometrics <- metaTagExtraction(scientometrics, Field = "CR_AU", sep = ";")
unlist(strsplit(scientometrics$CR_AU[1], ";"))

#Example 2: Source for each cited reference

data(scientometrics)
scientometrics <- metaTagExtraction(scientometrics, Field = "CR_SO", sep = ";")
unlist(strsplit(scientometrics$CR_SO[1], ";"))

#Example 3: Affiliation country for co-authors

data(scientometrics)
scientometrics <- metaTagExtraction(scientometrics, Field = "AU_CO", sep = ";")
scientometrics$AU_CO[1:10]
missingData  
Completeness of bibliographic metadata

Description

It calculates the percentage of missing data in the metadata of a bibliographic data frame.

Usage

```r
missingData(M)
```

Arguments

`M` is a bibliographic data frame obtained by `convert2df` function.

Details

Each metadata is assigned a status (`"Excellent," "Good," "Acceptable," "Poor," "Critical," "Completely missing"`) depending on the percentage of missing data. In particular, the column *status* classifies the percentage of missing value in 5 categories: "Excellent" (0 "Poor" (from 20.01

The results of the function allow us to understand which analyses can be performed with bibliometrix and which cannot based on the completeness (or status) of different metadata.

Value

The function `missingData` returns a list containing two objects:

- `allTags` is a data frame including results for all original metadata tags from the collection
- `mandatoryTags` is a data frame that included only the tags needed for analysis with bibliometrix and biblioshiny.

Examples

```r
data(scientometrics, package = "bibliometrixData")
res <- missingData(scientometrics)
print(res$mandatoryTags)
```

---

net2Pajek  
Save a network graph object as Pajek files

Description

The function `net2Pajek` save a bibliographic network previously created by `networkPlot` as pajek files.
Usage

net2Pajek(net, filename = "my_pajek_network", path = NULL)

Arguments

- **net**: is a network graph object returned by the function `networkPlot`.
- **filename**: is a character. It indicates the filename for Pajek export files.
- **path**: is a character. It indicates the path where the files will be saved. When path="NULL, the files will be saved in the current folder. Default is NULL.

Value

The function returns no object but will save three Pajek files in the folder given in the "path" argument with the name "filename.clu," "filename.vec," and "filename.net."

See Also

- `net2VOSviewer` to export and plot the network with VOSviewer software.

Examples

```r
Not run:
data(management, package = "bibliometrixData")

NetMatrix <- biblioNetwork(management, analysis = "co-occurrences", network = "keywords", sep = ";")

net <- networkPlot(NetMatrix, n = 30, type = "auto", Title = "Co-occurrence Network", labelsize=1)

net2Pajek(net, filename="pajekfiles", path=NULL)
End(Not run)
```

---

**net2VOSviewer**

Open a bibliometrix network in VosViewer

Description

`net2VOSviewer` plots a network created with `networkPlot` using VOSviewer by Nees Jan van Eck and Ludo Waltman.

Usage

`net2VOSviewer(net, vos.path = NULL)`

Arguments

- **net**: is an object created by networkPlot function.
- **vos.path**: is a character indicating the full path where VOSviewer.jar is located.
The function `networkPlot` can plot a bibliographic network previously created by `biblioNetwork`. The network map can be plotted using internal R routines or using `VOSviewer` by Nees Jan van Eck and Ludo Waltman.

**Value**

It write a .net file that can be open in VOSviewer

**See Also**

- `biblioNetwork` to compute a bibliographic network.
- `networkPlot` to create and plot a network object

**Examples**

```r
EXAMPLE

VOSviewer.jar have to be present in the working folder
data(scientometrics, package = "bibliometrixData")
NetMatrix <- biblioNetwork(scientometrics, analysis = "co-citation",
network = "references", sep = ";")
net <- networkPlot(NetMatrix, n = 30, type = "kamada", Title = "Co-Citation",labelsize=0.5)
net2VOSviewer(net)
```

---

**networkPlot**  
*Plotting Bibliographic networks*

**Description**

`networkPlot` plots a bibliographic network.

**Usage**

```r
networkPlot(
 NetMatrix,
 normalize = NULL,
 n = NULL,
 degree = NULL,
 Title = "Plot",
 type = "auto",
 label = TRUE,
 labelsize = 1,
)```
label.cex = FALSE,
label.color = FALSE,
label.n = NULL,
halo = FALSE,
cluster = "walktrap",
community.repulsion = 0.1,
vos.path = NULL,
size = 3,
size.cex = FALSE,
curved = FALSE,
noloops = TRUE,
remove.multiple = TRUE,
remove.isolates = FALSE,
weighted = NULL,
edgesize = 1,
edges.min = 0,
alpha = 0.5,
verbose = TRUE
)

Arguments

NetMatrix is a network matrix obtained by the function biblioNetwork.

normalize is a character. It can be "association", "jaccard", "inclusion", "salton" or "equivalence" to obtain Association Strength, Jaccard, Inclusion, Salton or Equivalence similarity index respectively. The default is type = NULL.

n is an integer. It indicates the number of vertices to plot.

degree is an integer. It indicates the min frequency of a vertex. If degree is not NULL, n is ignored.

Title is a character indicating the plot title.

type is a character object. It indicates the network map layout:

 type="auto" Automatic layout selection
 type="circle" Circle layout
 type="sphere" Sphere layout
 type="mds" Multidimensional Scaling layout
 type="fruchterman" Fruchterman-Reingold layout
 type="kamada" Kamada-Kawai layout

label is logical. If TRUE vertex labels are plotted.

label.size is an integer. It indicates the label size in the plot. Default is label.size=1

label.cex is logical. If TRUE the label size of each vertex is proportional to its degree.

label.color is logical. If TRUE, for each vertex, the label color is the same as its cluster.

label.n is an integer. It indicates the number of vertex labels to draw.

halo is logical. If TRUE communities are plotted using different colors. Default is halo=FALSE
cluster is a character. It indicates the type of cluster to perform among ("none", "optimal", "louvain", "leiden", "infomap", "edge_betweenness", "walktrap", "spinglass", "leading_eigen", "fast_greedy").

community.repulsion is a real. It indicates the repulsion force among network communities. It is a real number between 0 and 1. Default is community.repulsion = 0.1.

vos.path is a character indicating the full path where VOSviewer.jar is located.

size is integer. It defines the size of each vertex. Default is size = 3.

size.cex is logical. If TRUE the size of each vertex is proportional to its degree.

curved is a logical or a number. If TRUE edges are plotted with an optimal curvature. Default is curved = FALSE. Curved values are any numbers from 0 to 1.

noloops is logical. If TRUE loops in the network are deleted.

remove.multiple is logical. If TRUE multiple links are plotted using just one edge.

remove.isolates is logical. If TRUE isolates vertices are not plotted.

weighted This argument specifies whether to create a weighted graph from an adjacency matrix. If it is NULL then an unweighted graph is created and the elements of the adjacency matrix gives the number of edges between the vertices. If it is a character constant then for every non-zero matrix entry an edge is created and the value of the entry is added as an edge attribute named by the weighted argument. If it is TRUE then a weighted graph is created and the name of the edge attribute will be weight.

edgesize is an integer. It indicates the network edge size.

edges.min is an integer. It indicates the min frequency of edges between two vertices. If edge.min = 0, all edges are plotted.

alpha is a number. Legal alpha values are any numbers from 0 (transparent) to 1 (opaque). The default alpha value usually is 0.5.

verbose is a logical. If TRUE, network will be plotted. Default is verbose = TRUE.

Details

The function networkPlot can plot a bibliographic network previously created by biblioNetwork.

Value

It is a list containing the following elements:

- graph a network object of the class igraph
- cluster_obj a communities object of the package igraph
- cluster_res a data frame with main results of clustering procedure.
networkStat

Calculating network summary statistics

Description

networkStat calculates main network statistics.

Usage

```r
networkStat(object, stat = "network", type = "degree")
```

Arguments

- **object**
 - is a network matrix obtained by the function `biblioNetwork` or an graph object of the class `igraph`.
- **stat**
 - is a character. It indicates which statistics are to be calculated. `stat = "network"` calculates the statistics related to the network; `stat = "all"` calculates the statistics related to the network and the individual nodes that compose it. Default value is `stat = "network"`.
- **type**
 - is a character. It indicates which centrality index is calculated. `type` values can be `c("degree", "closeness", "betweenness", "eigenvector", "pagerank", "hub", "authority", "all")`. Default is "degree".

Details

The function `networkStat` can calculate the main network statistics from a bibliographic network previously created by `biblioNetwork`.

Examples

```r
# EXAMPLE Keyword co-occurrence network

data(management, package = "bibliometrixData")

NetMatrix <- biblioNetwork(management, analysis = "co-occurrences",
                           network = "keywords", sep = ";")

net <- networkPlot(NetMatrix, n = 30, type = "auto", Title = "Co-occurrence Network", labelsize=1)
```

See Also

- `biblioNetwork` to compute a bibliographic network.
- `net2VOSviewer` to export and plot the network with VOSviewer software.
- `cocMatrix` to compute a co-occurrence matrix.
- `biblioAnalysis` to perform a bibliometric analysis.
normalizeCitationScore

Value

It is a list containing the following elements:

- **graph**: a network object of the class igraph
- **network**: a list with the main statistics of the network
- **vertex**: a data frame with the main measures of centrality and prestige of vertices.

See Also

- `biblioNetwork` to compute a bibliographic network.
- `cocMatrix` to compute a co-occurrence matrix.
- `biblioAnalysis` to perform a bibliometric analysis.

Examples

```r
# EXAMPLE Co-citation network

# to run the example, please remove # from the beginning of the following lines
# data(scientometrics, package = "bibliometrixData")

# NetMatrix <- biblioNetwork(scientometrics, analysis = "co-citation", 
#   network = "references", sep = ";")

# netstat <- networkStat(NetMatrix, stat = "all", type = "degree")
```

normalizeCitationScore

Calculate the normalized citation score metric

Description

It calculates the normalized citation score for documents, authors and sources using both global and local citations.

Usage

`normalizeCitationScore(M, field = "documents", impact.measure = "local")`

Arguments

- **M**: is a bibliographic data frame obtained by `convert2df` function.
- **field**: is a character. It indicates the unit of analysis on which calculate the NCS. It can be equal to `field = c("documents", "authors", "sources")`. Default is `field = "documents"`.

Value

It is a list containing the following elements:
impact.measure is a character. It indicates the impact measure used to rank cluster elements (documents, authors or sources). It can be impact.measure = c("local", "global"). With impact.measure = "local", normalizeCitationScore calculates elements impact using the Normalized Local Citation Score while using impact.measure = "global", the function uses the Normalized Global Citation Score to measure elements impact.

Details

The document Normalized Citation Score (NCS) of a document is calculated by dividing the actual count of citing items by the expected citation rate for documents with the same year of publication.

The MNCS of a set of documents, for example the collected works of an individual, or published on a journal, is the average of the NCS values for all the documents in the set.

The NGCS is the NCS calculated using the global citations (total citations that a document received considering the whole bibliographic database).

The NLCS is the NCS calculated using the local citations (total citations that a document received from a set of documents included in the same collection).

Value

a dataframe.

Examples

Not run:
data(management, package = "bibliometrixData")
NCS <- normalizeCitationScore(management, field = "authors", impact.measure = "local")

End(Not run)

normalizeSimilarity

Calculate similarity indices

Description

It calculates a relative measure of bibliographic co-occurrences.

Usage

normalizeSimilarity(NetMatrix, type = "association")

Arguments

NetMatrix is a coupling matrix obtained by the network functions bibliNetwork or cocMatrix.

type is a character. It can be "association", "jaccard", "inclusion", "salton" or "equivalence" to obtain Association Strength, Jaccard, Inclusion, Salton or Equivalence similarity index respectively. The default is type = "association".
Details

`normalizeSimilarity` calculates Association strength, Inclusion, Jaccard or Salton similarity from a co-occurrence bibliographic matrix.

The association strength is used by Van Eck and Waltman (2007) and Van Eck et al. (2006). Several works refer to the measure as the proximity index, while Leydesdorff (2008) and Zitt et al. (2000) refer to it as the probabilistic affinity (or activity) index.

The inclusion index, also called Simpson coefficient, is an overlap measure used in information retrieval.

The Jaccard index (or Jaccard similarity coefficient) gives us a relative measure of the overlap of two sets. It is calculated as the ratio between the intersection and the union of the reference lists (of two manuscripts).

The Salton index, instead, relates the intersection of the two lists to the geometric mean of the size of both sets. The square of Salton index is also called Equivalence index.

The indices are equal to zero if the intersection of the reference lists is empty.

References

Value

A similarity matrix.

See Also

- `biblioNetwork` function to compute a bibliographic network.
- `cocMatrix` to compute a bibliographic bipartite network.

Examples

```r
data(scientometrics, package = "bibliometrixData")
NetMatrix <- biblioNetwork(scientometrics, analysis = "co-occurrences",
                           network = "keywords", sep = ",", )```
S = normalizeSimilarity(NetMatrix, type = "association")

---

### plot.bibliodendrogram

**Plotting dendrogram resulting from Conceptual Structure Analysis**

**Description**

plot method for class 'bibliodendrogram'

**Usage**

```r
S3 method for class 'bibliodendrogram'
plot(x, ...)
```

**Arguments**

- `x` is the object for which plots are desired.
- `...` is a generic param for plot functions.

**Value**

The function plot draws a dendrogram.

---

### plot.bibliometrix

**Plotting bibliometric analysis results**

**Description**

plot method for class 'bibliometrix'

**Usage**

```r
S3 method for class 'bibliometrix'
plot(x, ...)
```

**Arguments**

- `x` is the object for which plots are desired.
- `...` can accept two arguments:
  - `k` is an integer, used for plot formatting (number of objects). Default value is 10.
  - `pause` is a logical, used to allow pause in screen scrolling of results. Default value is `pause = FALSE`. 

---
Value

The function `plot` returns a list of plots of class `ggplot2`.

See Also

The bibliometric analysis function `biblioAnalysis`. `summary` to compute a list of summary statistics of the object of class `bibliometrix`.

Examples

data(scientometrics, package = "bibliometrixData")

results <- biblioAnalysis(scientometrics)

plot(results, k = 10, pause = FALSE)

plotThematicEvolution `Plot a Thematic Evolution Analysis`

Description

It plot a Thematic Evolution Analysis performed using the `thematicEvolution` function.

Usage

plotThematicEvolution(Nodes, Edges, measure = "inclusion", min.flow = 0)

Arguments

- **Nodes** is a list of nodes obtained by `thematicEvolution` function.
- **Edges** is a list of edges obtained by `thematicEvolution` function.
- **measure** is a character. It can be measure=("inclusion","stability", "weighted").
- **min.flow** is numerical. It indicates the minimum value of measure to plot a flow.

Value

a sankeyPlot

See Also

`thematicMap` function to create a thematic map based on co-word network analysis and clustering.
`thematicMap` function to perform a thematic evolution analysis.
`networkPlot` to plot a bibliographic network.
readFiles

DEPRECATED: Load a sequence of ISI or SCOPUS Export files into a large character object

Description

The function readFiles is deprecated. You can import and convert your export files directly using the function convert2df.

Usage

readFiles(...)

Arguments

... is a sequence of names of files downloaded from WOS.(in plain text or bibtex format) or SCOPUS Export file (exclusively in bibtex format).

Value

a character vector of length the number of lines read.

See Also

convert2df for converting SCOPUS of ISI Export file into a dataframe

Examples

# WoS or SCOPUS Export files can be read using \code{\link(readFiles)} function:

# largechar <- readFiles('filename1.txt','filename2.txt','filename3.txt')

# filename1.txt, filename2.txt and filename3.txt are ISI or SCOPUS Export file
# in plain text or bibtex format.

# D <- readFiles('https://www.bibliometrix.org/datasets/bibliometrics_articles.txt')
retrievalByAuthorID  

Get Author Content on SCOPUS by ID

Description

Uses SCOPUS API search to get information about documents on a set of authors using SCOPUS ID.

Usage

retrievalByAuthorID(id, api_key, remove.duplicated = TRUE, country = TRUE)

Arguments

id is a vector of characters containing the author’s SCOPUS IDs. SCOPUS IDs can be obtained using the function idByAuthor.

api_key is a character. It contains the Elsevier API key. Information about how to obtain an API Key Elsevier API website

remove.duplicated is logical. If TRUE duplicated documents will be deleted from the bibliographic collection.

country is logical. If TRUE authors’ country information will be downloaded from SCOPUS.

Value

a list containing two objects: (i) M which is a data frame with cases corresponding to articles and variables to main Field Tags named using the standard ISI WoS Field Tag codify. M includes the entire bibliographic collection downloaded from SCOPUS. The main field tags are:

- AU Authors
- TI Document Title
- SO Publication Name (or Source)
- DT Document Type
- DE Authors’ Keywords
- IO Keywords associated by SCOPUS or ISI database
- AB Abstract
- CI Author Address
- RP Reprint Address
- TC Times Cited
- PY Year
- UT Unique Article Identifier
- DB Database

(ii) authorDocuments which is a list containing a bibliographic data frame for each author.
LIMITATIONS: Currently, SCOPUS API does not allow to download document references. As consequence, it is not possible to perform co-citation analysis (the field CR is empty).

See Also

`idByAuthor` for downloading author information and SCOPUS ID.

Examples

```r
Request a personal API Key to Elsevier web page https://dev.elsevier.com/sc_apis.html

api_key="your api key"

create a data frame with the list of authors to get information and IDs
i.e. df[1,1:3] <- c("aria","massimo","naples")
df[2,1:3] <- c("cuccurullo","corrado","naples")

run idByAuthor function
##
authorsID <- idByAuthor(df, api_key)
##
extract the IDs
##
id <- authorsID[,3]
##
create the bibliographic collection
##
res <- retrievalByAuthorID(id, api_key)
##
M <- res$M # the entire bibliographic data frame
M <- res$authorDocuments # the list containing a bibliographic data frame for each author
```

---

**rpys**

Reference Publication Year Spectroscopy

**Description**

`rpys` computes a Reference Publication Year Spectroscopy for detecting the Historical Roots of Research Fields. The method was introduced by Marx et al., 2014.

**Usage**

```
rpys(M, sep = ";", timespan = NULL, graph = T)
```
Arguments

\( M \) is a data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to articles and variables to Field Tag in the original ISI or SCOPUS file.

\( \text{sep} \) is the cited-references separator character. This character separates cited-references in the CR column of the data frame. The default is \( \text{sep} = ";" \).

\( \text{timespan} \) is a numeric vector \((\text{min year}, \text{max year})\). The default value is NULL (the entire timespan is considered).

\( \text{graph} \) is a logical. If TRUE the function plot the spectroscopy otherwise the plot is created but not drawn down.

Details

Reference:

Value

a list containing the spectroscopy (class ggplot2) and three dataframes with the number of citations per year, the list of the cited references for each year, and the reference list with citations recorded year by year, respectively.

See Also

`convert2df` to import and convert an ISI or SCOPUS Export file in a data frame.

`biblioAnalysis` to perform a bibliometric analysis.

`biblioNetwork` to compute a bibliographic network.

Examples

data(scientometrics, package = "bibliometrixData")
res <- rpys(scientometrics, sep=";", graph = TRUE)
sourceGrowth

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>It calculates yearly published documents of the top sources.</td>
</tr>
</tbody>
</table>

Usage

sourceGrowth(M, top = 5, cdf = TRUE)

Arguments

- **M** is a data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to articles and variables to Field Tag in the original ISI or SCOPUS file.

- **top** is a numeric. It indicates the number of top sources to analyze. The default value is 5.

- **cdf** is a logical. If TRUE, the function calculates the cumulative occurrences distribution.

Value

an object of class data.frame

Examples

data(scientometrics, package = "bibliometrixData")
topSO=sourceGrowth(scientometrics, top=1, cdf=TRUE)
topSO

# Plotting results
## Not run:
install.packages("reshape2")
library(reshape2)
library(ggplot2)
DF=melt(topSO, id='Year')
ggplot(DF,aes(Year,value, group=variable, color=variable))+geom_line()

## End(Not run)
splitCommunities

Splitting Network communities

Description

networkPlot Create a network plot with separated communities.

Usage

splitCommunities(graph, n = NULL)

Arguments

graph is a network plot obtained by the function networkPlot.
n is an integer. It indicates the number of vertices to plot for each community.

Details

The function splitCommunities splits communities in separated subnetworks from a bibliographic network plot previously created by networkPlot.

Value

It is a network object of the class igraph

See Also

biblioNetwork to compute a bibliographic network.
networkPlot to plot a bibliographic network.
net2VOSviewer to export and plot the network with VOSviewer software.
cocMatrix to compute a co-occurrence matrix.
biblioAnalysis to perform a bibliometric analysis.

Examples

# EXAMPLE Keyword co-occurrence network
data(management, package = "bibliometrixData")

NetMatrix <- biblioNetwork(management, analysis = "co-occurrences",
network = "keywords", sep = ";")

net <- networkPlot(NetMatrix, n = 30, type = "auto",
Title = "Co-occurrence Network", labels = 1, verbose = FALSE)

graph <- splitCommunities(net$graph, n = 30)
## stopwords

List of English stopwords.

### Description

A character vector containing a complete list of English stopwords. Data are used by `biblioAnalysis` function to extract Country Field of Cited References and Authors.

### Format

A character vector with 665 rows.

---

## summary.bibliometrix

Summarizing bibliometric analysis results

### Description

Summary method for class `bibliometrix`.

### Usage

```r
S3 method for class 'bibliometrix'
summary(object, ...)
```

### Arguments

- `object` is the object for which a summary is desired.
- `...` can accept two arguments:
  - `k` integer, used for table formatting (number of rows). Default value is 10.
  - `pause` logical, used to allow pause in screen scrolling of results. Default value is `pause = FALSE`.
  - `width` integer, used to define screen output width. Default value is `width = 120`.
  - `verbose` logical, used to allow screen output. Default is `TRUE`.

### Value

The function `summary` computes and returns a list of summary statistics of the object of class bibliometrics. The list contains the following objects:

- `MainInformation` Main Information about Data
- `AnnualProduction` Annual Scientific Production
- `AnnualGrowthRate` Annual Percentage Growth Rate
MostProdAuthors  Most Productive Authors
MostCitedPapers  Top manuscripts per number of citations
MostProdCountries Corresponding Author’s Countries
TCperCountries  Total Citation per Countries
MostRelSources  Most Relevant Sources
MostRelKeywords  Most Relevant Keywords

See Also

biblioAnalysis function for bibliometric analysis
plot to draw some useful plots of the results.

Examples

data(scientometrics, package = "bibliometrixData")

results <- biblioAnalysis(scientometrics)

summary(results)

summary.bibliometrix_netstat

Summarying network analysis results

Description

summary method for class 'bibliometrix_netstat'

Usage

## S3 method for class 'bibliometrix_netstat'
summary(object, ...)

Arguments

object is the object for which a summary is desired.
...
can accept two arguments:
k integer, used for table formatting (number of rows). Default value is 10.

Value

The function summary computes and returns on display several statistics both at network and vertex level.
Examples

# to run the example, please remove # from the beginning of the following lines
#data(scientometrics, package = "bibliometrixData")

#NetMatrix <- biblioNetwork(scientometrics, analysis = "collaboration",
#    network = "authors", sep = ";")
#netstat <- networkStat(NetMatrix, stat = "all", type = "degree")
#summary(netstat)

---

tableTag

Tabulate elements from a Tag Field column

Description

It tabulates elements from a Tag Field column of a bibliographic data frame.

Usage

```r
tableTag(
 M,
 Tag = "CR",
 sep = ";",
 ngrams = 1,
 remove.terms = NULL,
 synonyms = NULL
)
```

Arguments

- **M** is a data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to articles and variables to Field Tag in the original WoS or SCOPUS file.
- **Tag** is a character object. It indicates one of the field tags of the standard ISI WoS Field Tag codify.
- **sep** is the field separator character. This character separates strings in each column of the data frame. The default is `sep = ";"`.
- **ngrams** is an integer between 1 and 3. It indicates the type of n-gram to extract from titles or abstracts.
- **remove.terms** is a character vector. It contains a list of additional terms to delete from the documents before term extraction. The default is `remove.terms = NULL`.
- **synonyms** is a character vector. Each element contains a list of synonyms, separated by "","", that will be merged into a single term (the first word contained in the vector element). The default is `synonyms = NULL`. 


termExtraction

Details

tableTag is an internal routine of main function bibliAnalysis.

Value

an object of class table

Examples

data(scientometrics, package = "bibliometrixData")
Tab <- tableTag(scientometrics, Tag = "CR", sep = ";")
Tab[1:10]

termExtraction Term extraction tool from textual fields of a manuscript

Description

It extracts terms from a text field (abstract, title, author’s keywords, etc.) of a bibliographic data frame.

Usage

termExtraction(
  M,
  Field = "TI",
  ngrams = 1,
  stemming = FALSE,
  language = "english",
  remove.numbers = TRUE,
  remove.terms = NULL,
  keep.terms = NULL,
  synonyms = NULL,
  verbose = TRUE
)

Arguments

M is a data frame obtained by the converting function convert2df. It is a data matrix with cases corresponding to articles and variables to Field Tag in the original WoS or SCOPUS file.

Field is a character object. It indicates the field tag of textual data:

"TI" Manuscript title
"AB" Manuscript abstract
"ID" Manuscript keywords plus
"DE" Manuscript author’s keywords
termExtraction

The default is Field = "TI".

ngrams is an integer between 1 and 3. It indicates the type of n-gram to extract from texts. An n-gram is a contiguous sequence of n terms. The function can extract n-grams composed by 1, 2, 3 or 4 terms. Default value is ngrams=1.

stemming is logical. If TRUE the Porter Stemming algorithm is applied to all extracted terms. The default is stemming = FALSE.

language is a character. It is the language of textual contents ("english", "german", "italian", "french", "spanish"). The default is language="english".

remove.numbers is logical. If TRUE all numbers are deleted from the documents before term extraction. The default is remove.numbers = TRUE.

remove.terms is a character vector. It contains a list of additional terms to delete from the documents before term extraction. The default is remove.terms = NULL.

keep.terms is a character vector. It contains a list of compound words "formed by two or more terms" to keep in their original form in the term extraction process. The default is keep.terms = NULL.

synonyms is a character vector. Each element contains a list of synonyms, separated by ";", that will be merged into a single term (the first word contained in the vector element). The default is synonyms = NULL.

verbose is logical. If TRUE the function prints the most frequent terms extracted from documents. The default is verbose=TRUE.

Value

the bibliometric data frame with a new column containing terms about the field tag indicated in the argument Field.

See Also

convert2df to import and convert an WoS or SCOPUS Export file in a bibliographic data frame.
biblioAnalysis function for bibliometric analysis

Examples

# Example 1: Term extraction from titles
data(scientometrics, package = "bibliometrixData")

# vector of compound words
keep.terms <- c("co-citation analysis","bibliographic coupling")

# term extraction
scientometrics <- termExtraction(scientometrics, Field = "TI", ngrams = 1, remove.numbers=TRUE, remove.terms=NULL, keep.terms=keep.terms, verbose=TRUE)

# terms extracted from the first 10 titles
scientometrics$TI_TM[1:10]
# Example 2: Term extraction from abstracts

data(scientometrics)

# term extraction
scientometrics <- termExtraction(scientometrics, Field = "AB", ngrams = 2,
stemming=TRUE, language="english",
remove.numbers=TRUE, remove.terms=NULL, keep.terms=NULL, verbose=TRUE)

# terms extracted from the first abstract
scientometrics$AB_TM[1]

# Example 3: Term extraction from keywords with synonyms

data(scientometrics)

# vector of synonyms
synonyms <- c("citation; citation analysis", "h-index; index; impact factor")

# term extraction
scientometrics <- termExtraction(scientometrics, Field = "ID", ngrams = 1,
synonyms=synonyms, verbose=TRUE)

---

**thematicEvolution**  
*Perform a Thematic Evolution Analysis*

**Description**

It performs a Thematic Evolution Analysis based on co-word network analysis and clustering. The methodology is inspired by the proposal of Cobo et al. (2011).

**Usage**

```r
thematicEvolution(
 M,
 field = "ID",
 years,
 n = 250,
 minFreq = 2,
 size = 0.5,
 ngrams = 1,
 stemming = FALSE,
 n.labels = 1,
 repel = TRUE,
 remove.terms = NULL,
 synonyms = NULL,
 cluster = "walktrap"
)
```
thematicEvolution

Arguments

M is a bibliographic data frame obtained by the converting function convert2df.
field is a character object. It indicates the content field to use. Field can be one of c(“ID”, “DE”, “TI”, “AB”). Default value is field = “ID”.
years is a numeric vector of one or more unique cut points.
n is numerical. It indicates the number of words to use in the network analysis
minFreq is numerical. It indicates the min frequency of words included in to a cluster.
size is numerical. It indicates del size of the cluster circles and is a number in the range (0.01, 1).
ngrams is an integer between 1 and 4. It indicates the type of n-gram to extract from texts. An n-gram is a contiguous sequence of n terms. The function can extract n-grams composed by 1, 2, 3 or 4 terms. Default value is ngrams = 1.
stemming is logical. If it is TRUE the word (from titles or abstracts) will be stemmed (using the Porter’s algorithm).
n.labels is integer. It indicates how many labels associate to each cluster. Default is n.labels = 1.
repel is logical. If it is TRUE ggplot uses geom_label_repel instead of geom_label.
remove.terms is a character vector. It contains a list of additional terms to delete from the documents before term extraction. The default is remove.terms = NULL.
synonyms is a character vector. Each element contains a list of synonyms, separated by “;”, that will be merged into a single term (the first word contained in the vector element). The default is synonyms = NULL.
cluster is a character. It indicates the type of cluster to perform among ("optimal", "louvain", "leiden", "infomap", "edge_betweenness", "walktrap", "spinglass", "leading_eigen", "fast_greedy").

Details

thematicEvolution starts from two or more thematic maps created by thematicMap function.

Reference:

Value

a list containing:

nets The thematic nexus graph for each comparison
incMatrix Some useful statistics about the thematic nexus
thematicMap

See Also

thematicMap function to create a thematic map based on co-word network analysis and clustering.
cocMatrix to compute a bibliographic bipartite network.
networkPlot to plot a bibliographic network.

Examples

```r
Not run:
data(managemeent, package = "bibliometrixData")
nexus <- thematicEvolution(management,field="ID",years=years,n=100,minFreq=2)
End(Not run)
```

thematicMap Create a thematic map

Description

It creates a thematic map based on co-word network analysis and clustering. The methodology is inspired by the proposal of Cobo et al. (2011).

Usage

```
themeicMap(
 M,
 field = "ID",
 n = 250,
 minfreq = 5,
 ngrams = 1,
 stemming = FALSE,
 size = 0.5,
 n.labels = 1,
 community.repulsion = 0.1,
 repel = TRUE,
 remove.terms = NULL,
 synonyms = NULL,
 cluster = "walktrap",
 subgraphs = FALSE
)
```
Arguments

\( M \) is a bibliographic dataframe.

\( \text{field} \) is the textual attribute used to build up the thematic map. It can be field = \( c(\text{"ID"}, \text{"DE"}, \text{"TI"}, \text{"AB"}) \). \text{biblioNetwork} or \text{cocMatrix}.

\( \text{n} \) is an integer. It indicates the number of terms to include in the analysis.

\( \text{minfreq} \) is a integer. It indicates the minimum frequency (per thousand) of a cluster. It is a number in the range \((0,1000)\).

\( \text{ngrams} \) is an integer between 1 and 4. It indicates the type of n-gram to extract from texts. An n-gram is a contiguous sequence of n terms. The function can extract n-grams composed by 1, 2, 3 or 4 terms. Default value is \( \text{ngrams}=1 \).

\( \text{stemming} \) is logical. If it is TRUE the word (from titles or abstracts) will be stemmed (using the Porter’s algorithm).

\( \text{size} \) is numerical. It indicates del size of the cluster circles and is a number in the range \((0.01,1)\).

\( \text{n.labels} \) is integer. It indicates how many labels associate to each cluster. Default is \( \text{n.labels} = 1 \).

\( \text{community.repulsion} \) is a real. It indicates the repulsion force among network communities. It is a real number between 0 and 1. Default is \( \text{community.repulsion} = 0.1 \).

\( \text{repel} \) is logical. If it is TRUE \text{ggplot} uses \text{geom.label}_{\text{repel}} instead of \text{geom.label}.

\( \text{remove.terms} \) is a character vector. It contains a list of additional terms to delete from the documents before term extraction. The default is \( \text{remove.terms} = \text{NULL} \).

\( \text{synonyms} \) is a character vector. Each element contains a list of synonyms, separated by ";", that will be merged into a single term (the first word contained in the vector element). The default is \( \text{synonyms} = \text{NULL} \).

\( \text{cluster} \) is a character. It indicates the type of cluster to perform among ("optimal", "louvain", "leiden", "infomap", "edge_betweenness", "walktrap", "spinglass", "leading.eigen", "fast_greedy").

\( \text{subgraphs} \) is a logical. If TRUE cluster subgraphs are returned.

Details

\text{thematicMap} starts from a co-occurrence keyword network to plot in a two-dimensional map the typological themes of a domain.

Reference:

Value

a list containing:
map The thematic map as ggplot2 object
clusters Centrality and Density values for each cluster.
words A list of words following in each cluster
nclust The number of clusters
net A list containing the network output (as provided from the networkPlot function)

See Also

biblioNetwork function to compute a bibliographic network.
cocMatrix to compute a bibliographic bipartite network.
networkPlot to plot a bibliographic network.

Examples

## Not run:
data(scientometrics, package = "bibliometrixData")
res <- thematicMap(scientometrics, field = "ID", n = 250, minfreq = 5, size = 0.5, repel = TRUE)
plot(res$map)
## End(Not run)
Examples

```r
#data(scientometrics, package = "bibliometrixData")
#threeFieldsPlot(scientometrics, fields=c("DE","AU","CR"),n=c(20,20,20))
```

---

**timeslice**

*Bibliographic data frame time slice*

**Description**

Divide a bibliographic data frame into time slice

**Usage**

```r
timeslice(M, breaks = NA, k = 5)
```

**Arguments**

- **M**: is a bibliographic data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to manuscripts and variables to Field Tag in the original SCOPUS and Clarivate Analytics WoS file.
- **breaks**: is a numeric vector of two or more unique cut points.
- **k**: is an integer value giving the number of intervals into which the data frame is to be cut. k is used only in case breaks argument is not provided. The default is `k = 5`.

**Value**

the value returned from `split` is a list containing the data frames for each sub-period.

**See Also**

- `convert2df` to import and convert an ISI or SCOPUS Export file in a bibliographic data frame.
- `biblioAnalysis` function for bibliometric analysis.
- `summary` to obtain a summary of the results.
- `plot` to draw some useful plots of the results.

**Examples**

```r
data(scientometrics, package = "bibliometrixData")
list_df <- timeslice(scientometrics, breaks = c(1995, 2005))
names(list_df)
```
trim

Deleting leading and ending white spaces

Description
Deleting leading and ending white spaces from a character object.

Usage
trim(x)

Arguments
x is a character object.

Details
tableTag is an internal routine of bibliometrics package.

Value
an object of class character

Examples
char <- c(" Alfred", "Mary", " John")
char
trim(char)

trim.leading

Deleting leading white spaces

Description
Deleting leading white spaces from a character object.

Usage
trim.leading(x)

Arguments
x is a character object.
Details

tableTag is an internal routine of bibliometrics package.

Value

an object of class character

Examples

char <- c(" Alfred", "Mary", " John")
char
trim.leading(char)

trimES
 Deleting extra white spaces

Description

Deleting extra white spaces from a character object.

Usage

trimES(x)

Arguments

x is a character object.

Details

tableTag is an internal routine of bibliometrics package.

Value

an object of class character

Examples

char <- c("Alfred BJ", "Mary Beth", "John John")
char
trimES(char)
Index

* Clarivate Analytics Web of Science
  bibliometrix-package, 3
* Science Mapping
  bibliometrix-package, 3
* Scopus
  bibliometrix-package, 3
* citations
  bibliometrix-package, 3
* co-authors
  bibliometrix-package, 3
* co-citations
  bibliometrix-package, 3
* co-occurrences
  bibliometrix-package, 3
* co-word analysis
  bibliometrix-package, 3
* collaboration
  bibliometrix-package, 3
* network
  bibliometrix-package, 3

authorProdOverTime, 6
biblioAnalysis, 7, 7, 10, 13, 14, 16, 21, 23,
28–31, 34, 36, 39–42, 48, 49, 53, 57,
59–61, 63, 64, 70
bibliometrix(bibliometrix-package), 3
bibliometrix-package, 3
biblioNetwork, 8, 9, 16, 17, 21, 25, 33,
45–51, 57, 59, 68, 69
biblishiny, 11
bibtag, 12
bradford, 12

citations, 13, 39
cocMatrix, 10, 14, 21, 25, 34, 48–51, 59,
67–69
collabByRegionPlot, 16
communities, 18, 47, 49
conceptualStructure, 19
convert2df, 6–10, 13, 15, 16, 20, 21, 29–33,
36–38, 41–43, 49, 54, 57, 58, 62–64,
66, 69, 70
countries, 23
couplingMap, 24, 24
customTheme, 26
dominance, 26
duplicatedMatching, 28
fieldByYear, 29
Hindex, 31
histNetwork, 32, 34
histPlot, 33, 34
idByAuthor, 35, 55, 56
keywordAssoc, 36
KeywordGrowth, 37
localCitations, 36
logo, 39
lotka, 39
Matrix, 10, 15
mergeDbSources, 40
metaTagExtraction, 41
missingData, 43
net2Pajek, 43, 43
net2VOSviewer, 44, 44, 48, 59
networkPlot, 25, 43–45, 45, 47, 53, 59, 67, 69
networkStat, 48, 48
normalizeCitationScore, 49, 50
normalizeSimilarity, 50
plot, 7, 8, 14, 29, 31, 33, 36, 39, 41, 61, 70
plot.bibliodendrogram, 52
plot.bibliometrix, 52
plotThematicEvolution, 53
readFiles, 54
retrievalByAuthorID, 35, 55
rpys, 56

sourceGrowth, 58
splitCommunities, 59, 59
stopwords, 60
summary, 7, 8, 13, 14, 28–31, 33, 36, 39–41, 53, 70
summary.bibliometrix, 60
summary.bibliometrix_netstat, 61

tableTag, 62
termExtraction, 21, 37, 63
thematicEvolution, 53, 65, 66
thematicMap, 53, 66, 67, 67
threeFieldsPlot, 69
timeslice, 70
trim, 71
trim.leading, 71
trimES, 72