Package ‘bibliometrix’

March 14, 2018

Type Package

Title An R-Tool for Comprehensive Science Mapping Analysis

Version 1.9.1

Date 2018-03-14

Description Tool for quantitative research in scientometrics and bibliometrics. It provides various routines for importing bibliographic data from SCOPUS (<http://scopus.com>) and Clarivate Analytics Web of Science (<http://www.webofknowledge.com/>) databases, performing bibliometric analysis and building data matrices for co-citation, coupling, scientific collaboration and co-word analysis.

License GPL-3

URL http://www.bibliometrix.org

LazyData FALSE

Encoding latin1

Depends R (>= 3.3.0)

Imports stats, factoextra, FactoMineR, ggplot2, ggrepel, igraph, Matrix, RColorBrewer, RISmed, rscopeus, SnowballC, stringdist, stringr

Suggests knitr, rmarkdown

RoxygenNote 6.0.1

NeedsCompilation no

Author Massimo Aria [cre, aut], Corrado Cuccurullo [aut]

Maintainer Massimo Aria <aria@unina.it>

VignetteBuilder knitr

Repository CRAN

Date/Publication 2018-03-14 13:39:24 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bibliometrix-package</td>
<td>3</td>
</tr>
<tr>
<td>biblio</td>
<td>4</td>
</tr>
<tr>
<td>biblioAnalysis</td>
<td>5</td>
</tr>
<tr>
<td>biblioNetwork</td>
<td>6</td>
</tr>
<tr>
<td>biblio_df</td>
<td>8</td>
</tr>
<tr>
<td>citations</td>
<td>9</td>
</tr>
<tr>
<td>cocMatrix</td>
<td>10</td>
</tr>
<tr>
<td>conceptualStructure</td>
<td>11</td>
</tr>
<tr>
<td>convert2df</td>
<td>13</td>
</tr>
<tr>
<td>countries</td>
<td>15</td>
</tr>
<tr>
<td>dominance</td>
<td>15</td>
</tr>
<tr>
<td>duplicatedMatching</td>
<td>16</td>
</tr>
<tr>
<td>garfield</td>
<td>17</td>
</tr>
<tr>
<td>Hindex</td>
<td>18</td>
</tr>
<tr>
<td>histNetwork</td>
<td>19</td>
</tr>
<tr>
<td>histPlot</td>
<td>20</td>
</tr>
<tr>
<td>idByAuthor</td>
<td>21</td>
</tr>
<tr>
<td>isi2df</td>
<td>22</td>
</tr>
<tr>
<td>isibib2df</td>
<td>23</td>
</tr>
<tr>
<td>isiCollection</td>
<td>24</td>
</tr>
<tr>
<td>keywordAssoc</td>
<td>25</td>
</tr>
<tr>
<td>KeywordGrowth</td>
<td>26</td>
</tr>
<tr>
<td>localCitations</td>
<td>27</td>
</tr>
<tr>
<td>lotka</td>
<td>28</td>
</tr>
<tr>
<td>mergeDbSources</td>
<td>29</td>
</tr>
<tr>
<td>metaTagExtraction</td>
<td>30</td>
</tr>
<tr>
<td>networkPlot</td>
<td>31</td>
</tr>
<tr>
<td>normalizeSimilarity</td>
<td>33</td>
</tr>
<tr>
<td>plot.bibliometrix</td>
<td>34</td>
</tr>
<tr>
<td>pubmed2df</td>
<td>35</td>
</tr>
<tr>
<td>readFiles</td>
<td>36</td>
</tr>
<tr>
<td>retrievalByAuthorID</td>
<td>37</td>
</tr>
<tr>
<td>scientometrics</td>
<td>38</td>
</tr>
<tr>
<td>scientometrics_text</td>
<td>39</td>
</tr>
<tr>
<td>scopus2df</td>
<td>40</td>
</tr>
<tr>
<td>scopusCollection</td>
<td>41</td>
</tr>
<tr>
<td>stopwords</td>
<td>42</td>
</tr>
<tr>
<td>summary.bibliometrix</td>
<td>42</td>
</tr>
<tr>
<td>tableTag</td>
<td>43</td>
</tr>
<tr>
<td>termExtraction</td>
<td>44</td>
</tr>
<tr>
<td>thematicEvolution</td>
<td>46</td>
</tr>
<tr>
<td>thematicMap</td>
<td>47</td>
</tr>
<tr>
<td>timeslice</td>
<td>48</td>
</tr>
<tr>
<td>trim</td>
<td>49</td>
</tr>
<tr>
<td>trim.leading</td>
<td>50</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
</tr>
</tbody>
</table>
bibliometrix-package

Description
It provides various routines for importing bibliographic data from SCOPUS and Thomson Reuters’ ISI Web of Knowledge databases, performing bibliometric analysis and building data matrices for co-citation, coupling and scientific collaboration analysis.

Details

Package: bibliometrix
Type: Package
Version: 0.1
Date: 2016-05-05
License: GPL-3

Author(s)
Massimo Aria <massimo.aria@unina.it>, Corrado Cuccurullo <corrado.cuccurullo@unina2.it>
Maintainer: Massimo Aria <massimo.aria@unina.it>

References
Examples

```r
## load scientometrics data set
# data(scientometrics_text)

## Convert text data into a bibliographic data frame
# scient_df <- convert2df(scientometrics_text, dbsource="isi", format="plaintext")

## Perform a bibliometric analysis of the bibliographic data frame
# results <- biblioAnalysis(scient_df)

## summarize results
# summary(results, k=10, pause=FALSE)

## plot results
# plot(results, k=10, pause=FALSE)

## Estimate Lotka's law coefficients
# L = lotka(results)
# L

## Perform authors' dominance analysis
# DF = dominance(results)
# DF
```

biblio
Dataset of "Bibliometrics" manuscripts.

Description

The set of manuscripts which the title containing the word "bibliometrics" and published in a journal indexed by ISI WoK database.

- **Period:** 2006 - 2015
- **Database:** ISI Web of Knowledge

Format

- A large character with 9014 rows.
- Data has been imported by an ISI Export file in bibtex format using the function `readLines`.

Source

http://www.webofknowledge.com
Description

It performs a bibliometric analysis of a dataset imported from SCOPUS and Thomson Reuters’ ISI Web of Knowledge databases.

Usage

biblioAnalysis(M, sep = ";")

Arguments

M is a bibliographic data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to manuscripts and variables to Field Tag in the original SCOPUS and Thomson Reuters’ ISI Web of Knowledge file.

sep is the field separator character. This character separates strings in each column of the data frame. The default is `sep = ";"`.

Value

biblioAnalysis returns an object of class "bibliometrix".

The functions summary and plot are used to obtain or print a summary and some useful plots of the results.

An object of class "bibliometrix" is a list containing the following components:

- **Articles**: the total number of manuscripts
- **Authors**: the authors’ frequency distribution
- **AuthorsFrac**: the authors’ frequency distribution (fractionalized)
- **FirstAuthors**: first author of each manuscript
- **nAUperPaper**: the number of authors per manuscript
- **Appearances**: the number of author appearances
- **nAuthors**: the number of authors
- **AuMultiAuthoredArt**: the number of authors of multi authored articles
- **MostCitedPapers**: The list of manuscripts sorted by citations
- **Years**: publication year of each manuscript
- **FirstAffiliation**: the affiliation of the first author
- **Affiliations**: the frequency distribution of affiliations (of all co-authors for each paper)
- **Aff_frac**: the fractionalized frequency distribution of affiliations (of all co-authors for each paper)
- **CO**: the affiliation country of first author
- **Countries**: the affiliation countries’ frequency distribution
- **CountryCollaboration**: Intracountry (SCP) and intercountry (MCP) collaboration indices
- **TotalCitation**: the number of times each manuscript has been cited
- **TCperYear**: the yearly average number of times each manuscript has been cited
- **Sources**: the frequency distribution of sources (journals, books, etc.)
- **DE**: the frequency distribution of authors’ keywords
- **ID**: the frequency distribution of keywords associated to the manuscript by SCOPUS and Thomson Reuters
See Also

- `convert2df` to import and convert an ISI or SCOPUS Export file in a bibliographic data frame.
- `summary` to obtain a summary of the results.
- `plot` to draw some useful plots of the results.

Examples

data(scientometrics)

results <- biblioAnalysis(scientometrics)

summary(results, k = 10, pause = FALSE)

biblioNetwork

Creating Bibliographic networks

Description

biblioNetwork creates different bibliographic networks from a bibliographic data frame.

Usage

biblioNetwork(M, analysis = "coupling", network = "authors", sep = ":")

Arguments

- `M` is a bibliographic data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to manuscripts and variables to Field Tag in the original SCOPUS and Thomson Reuters’ ISI Web of Knowledge file.
- `analysis` is a character object. It indicates the type of analysis have to be performed. `analysis` argument can be "collaboration", "coupling", "co-occurrences" or "co-citation". Default is `analysis = "coupling"`.
- `network` is a character object. It indicates the network typology. The network argument can be "authors", "references", "sources", "countries", "keywords", "author_keywords", "titles", or "abstracts". Default is `network = "authors"`.
- `sep` is the field separator character. This character separates strings in each column of the data frame. The default is `sep = ":"`.

Details

The function `biblioNetwork` can create a collection of bibliographic networks following the approach proposed by Batagely and Cerinsek (2013).

Typical networks output of biblioNetwork are:
Collaboration Networks

- Authors collaboration (analysis = "collaboration", network = "authors")
- University collaboration (analysis = "collaboration", network = universities")
- Country collaboration (analysis = "collaboration", network = "countries")

Co-citation Networks

- Authors co-citation (analysis = "co-citation", network = "authors")
- Reference co-citation (analysis = "co-citation", network = "references")
- Source co-citation (analysis = "co-citation", network = "sources")

Coupling Networks

- Manuscript coupling (analysis = "coupling", network = "references")
- Authors coupling (analysis = "coupling", network = "authors")
- Source coupling (analysis = "coupling", network = "sources")
- Country coupling (analysis = "coupling", network = "countries")

Co-occurrences Networks

- Authors co-occurrences (analysis = "co-occurrences", network = "authors")
- Source co-occurrences (analysis = "co-occurrences", network = "sources")
- Keyword co-occurrences (analysis = "co-occurrences", network = "keywords")
- Author-Keyword co-occurrences (analysis = "co-occurrences", network = "author_keywords")
- Title content co-occurrences (analysis = "co-occurrences", network = "titles")
- Abstract content co-occurrences (analysis = "co-occurrences", network = "abstracts")

Value

It is a squared network matrix. It is an object of class dgMatrix of the package Matrix.

See Also

convert2df to import and convert a SCOPUS and Thomson Reuters’ ISI Web of Knowledge export file in a data frame.

cocMatrix to compute a co-occurrence matrix.

biblioAnalysis to perform a bibliometric analysis.

Examples

```r
# EXAMPLE 1: Authors collaboration network

data(scientometrics)

# NetMatrix <- biblioNetwork(scientometrics, analysis = "collaboration",
# network = "authors", sep = ";")

# net <- networkPlot(NetMatrix, n = 30, type = "kamada", Title = "Collaboration",labels=0.5)
```
EXAMPLE 2: Co-citation network

data(scientometrics)

NetMatrix <- biblioNetwork(scientometrics, analysis = "co-citation", network = "references", sep = ";")

net <- networkPlot(NetMatrix, n = 30, type = "kamada", Title = "Co-Citation", labelsize=0.5)

Dataset of "Bibliometrics" manuscripts.

Description

The set of manuscripts which the title containing the word "bibliometrics" and published in a journal indexed by ISI WoK database.

Period: 2006 - 2015

Database: ISI Web of Knowledge

Format

```
# A data frame with 99 rows (manuscripts) and 16 variables (ISI tag field):
AU Authors
TI Document Title
SO Publication Name (or Source)
JI ISO Source Abbreviation
DT Document Type
DE Author Keywords
ID Keywords associated by ISI or SCOPUS database
AB Abstract
CI Author Address
RP Reprint Address
CR Cited References
TC Times Cited
PY Year
SC Subject Category
UT Unique Article Identifier
DB Database
```

Source

http://www.webofknowledge.com
citations

Citation frequency distribution

Description
It calculates frequency distribution of citations.

Usage
citations(M, field = "article", sep = ";")

Arguments
M is a bibliographic data frame obtained by the converting function convert2df. It is a data matrix with cases corresponding to manuscripts and variables to Field Tag in the original SCOPUS and Thomson Reuters’ ISI Web of Knowledge file.
field is a character. It can be "article" or "author" to obtain frequency distribution of cited citations or cited authors (only first authors for ISI database) respectively. The default is field = "article".
sep is the field separator character. This character separates citations in each string of CR column of the bibliographic data frame. The default is sep = ";".

Value
an object of class "list" containing the following components:

Cited the most frequent cited manuscripts or authors
Year the publication year (only for cited article analysis)
Source the journal (only for cited article analysis)

See Also
biblioAnalysis function for bibliometric analysis.
summary to obtain a summary of the results.
pplot to draw some useful plots of the results.

Examples
EXAMPLE 1: Cited articles
data(scientometrics)

CR <- citations(scientometrics, field = "article", sep = ";")

CR$Cited[1:10]
CR$Year[1:10]
CR$Source[1:10]
cocMatrix

Description

 cocMatrix computes co-occurrences between elements of a Tag Field from a bibliographic data frame. Manuscript is the unit of analysis.

Usage

 cocMatrix(M, Field = "AU", type = "sparse", sep = ";")

Arguments

- **M** is a data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to articles and variables to Field Tag in the original ISI or SCOPUS file.
- **Field** is a character object. It indicates one of the field tags of the standard ISI WoS Field Tag codify. Field can be equal to one of this tags:
 - AU Authors
 - SO Publication Name (or Source)
 - JI ISO Source Abbreviation
 - DE Author Keywords
 - ID Keywords associated by ISI or SCOPUS database
 - CR Cited References

 for a complete list of filed tags see: Field Tags used in bibliometrix

- **type** indicates the output format of co-occurrences:
 - type = "matrix" produces an object of class `matrix`
 - type = "sparse" produces an object of class `dgMatrix` of the package Matrix. "sparse" argument generates a compact representation of the co-occurrence matrix.

- **sep** is the field separator character. This character separates strings in each column of the data frame. The default is sep = ";"."
conceptualStructure

Details

This co-occurrence matrix can be transformed into a collection of compatible networks. Through matrix multiplication you can obtain different networks. The function follows the approach proposed by Batagely and Cerinsek (2013).

Value

A co-occurrence matrix with cases corresponding to manuscripts and variables to the objects extracted from the Tag Field.

See Also

convert2df to import and convert an ISI or SCOPUS Export file in a data frame.
biblioAnalysis to perform a bibliometric analysis.
biblioNetwork to compute a bibliographic network.

Examples

EXAMPLE 1: Articles x Authors co-occurrence matrix
data(scientometrics)
WA <- cocMatrix(scientometrics, Field = "AU", type = "sparse", sep = ";")

EXAMPLE 2: Articles x Cited References co-occurrence matrix
data(scientometrics)
WCR <- cocMatrix(scientometrics, Field = "CR", type = "sparse", sep = ";")

EXAMPLE 3: Articles x Cited First Authors co-occurrence matrix
data(scientometrics)
WCR <- cocMatrix(scientometrics, Field = "CR_AU", type = "sparse", sep = ";")

conceptualStructure Creating and plotting conceptual structure map of a scientific field

Description

The function conceptualStructure creates a conceptual structure map of a scientific field performing Multiple Correspondence Analysis (MCA) and Clustering of a bipartite network of terms extracted from keyword, title or abstract fields.
Usage

```r
contectualStructure(M, field = "ID", quali.sup = NULL, 
                      quanti.sup = NULL, minDegree = 2, k.max = 5, stemming = FALSE, 
                      labels = 3)
```

Arguments

- **M**: is a data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to articles and variables to Field Tag in the original ISI or SCOPUS file.
- **field**: is a character object. It indicates one of the field tags of the standard ISI WoS Field Tag codify. field can be equal to one of this tags:
 - `ID`: Keywords Plus associated by ISI or SCOPUS database
 - `DE`: Author’s keywords
 - `ID_TM`: Keywords Plus stemmed through the Porter’s stemming algorithm
 - `DE_TM`: Author’s Keywords stemmed through the Porter’s stemming algorithm
 - `TI`: Terms extracted from titles
 - `AB`: Terms extracted from abstracts

- **quali.sup**: is a vector indicating the indexes of the categorical supplementary variables.
- **quanti.sup**: is a vector indicating the indexes of the quantitative supplementary variables.
- **minDegree**: is an integer. It indicates the minimum occurrences of terms to analyze and plot. The default value is 2.
- **k.max**: is an integer. It indicates the maximum number of clusters to keep. The default value is 5. The max value is 8.
- **stemming**: is logical. If TRUE the Porter’s Stemming algorithm is applied to all extracted terms. The default is `stemming = FALSE`.
- **labels**: is an integer. It indicates the label size in the plot. Default is `labels = 2`

Value

It is an object of the class `list` containing the following components:

- **net**: bipartite network
- **res.mca**: Results of Multiple Correspondence Analysis
- **km.res**: Results of cluster analysis

See Also

- `termExtraction` to extract terms from a textual field (abstract, title, author’s keywords, etc.) of a bibliographic data frame.
- `biblioNetwork` to compute a bibliographic network.
- `cocMatrix` to compute a co-occurrence matrix.
- `biblioAnalysis` to perform a bibliometric analysis.
Examples

EXAMPLE Conceptual Structure using Keywords Plus

data(scientometrics)

S <- conceptualStructure(scientometrics, field="ID_TM", stemming=TRUE, minDegree=5, k.max = 5)

convert2df Convert a Clarivate Analytics WoS and SCOPUS Export files or RISmed PubMed/MedLine object into a data frame

Description

It converts a SCOPUS and Clarivate Analytics WoS export files or RISmed PubMed/MedLine object into a data frame, with cases corresponding to articles and variables to Field Tags as used in WoS.

Usage

convert2df(file, dbsource = "isi", format = "plaintext")

Arguments

file can be: a) a character array containing data read from a Clarivate Analytics WoS Export file (in plain text or bibtex format) or SCOPUS Export file (exclusively in bibtex format); b) an object of the class `pubmed` (package `RISmed`) containing a collection obtained from a query performed with RISmed package.

dbsource is a character indicating the bibliographic database. `dbsource` can be "isi", "scopus" or `pubmed`. Default is `dbsource = "isi"`.

format is a character indicating the format of the SCOPUS and Clarivate Analytics WoS export file. `format` can be "bibtex" or "plaintext". Default is `format = "plaintext"`.

Details

Actually the function allows to convert both SCOPUS/WoS files in bibtext format and just WoS files in plain text format.

Value

a data frame with cases corresponding to articles and variables to Field Tags in the original export file.

data frame columns are named using the standard Clarivate Analytics WoS Field Tag codify. The main field tags are:

- **AU** Authors
- **TI** Document Title
<table>
<thead>
<tr>
<th>Field Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>Publication Name (or Source)</td>
</tr>
<tr>
<td>JI</td>
<td>ISO Source Abbreviation</td>
</tr>
<tr>
<td>DT</td>
<td>Document Type</td>
</tr>
<tr>
<td>DE</td>
<td>Authors' Keywords</td>
</tr>
<tr>
<td>ID</td>
<td>Keywords associated by SCOPUS or WoS database</td>
</tr>
<tr>
<td>AB</td>
<td>Abstract</td>
</tr>
<tr>
<td>C1</td>
<td>Author Address</td>
</tr>
<tr>
<td>RP</td>
<td>Reprint Address</td>
</tr>
<tr>
<td>CR</td>
<td>Cited References</td>
</tr>
<tr>
<td>TC</td>
<td>Times Cited</td>
</tr>
<tr>
<td>PY</td>
<td>Year</td>
</tr>
<tr>
<td>SC</td>
<td>Subject Category</td>
</tr>
<tr>
<td>UT</td>
<td>Unique Article Identifier</td>
</tr>
<tr>
<td>DB</td>
<td>Database</td>
</tr>
</tbody>
</table>

for a complete list of field tags see: [Field Tags used in bibliometrix](#)

See Also

- `scopus2df` for converting SCOPUS Export file (in bibtex format)
- `isibib2df` for converting ISI Export file (in bibtex format)
- `isi2df` for converting ISI Export file (in plain text format)
- `pubmed2df` for converting an object of the class pubmed (RISmed package)

Other converting functions: `isi2df`, `isibib2df`, `pubmed2df`, `scopus2df`

Examples

```r
# An ISI or SCOPUS Export file can be read using \code{\link{readLines}} function:

# D <- readFiles('filename1.txt','filename2.txt','filename3.txt')

# filename1.txt, filename2.txt and filename3.txt are WoS or SCOPUS Export file
# in plain text or bibtex format.

# biblio <- readFiles('http://www.bibliometrix.org/datasets/bibliometrics_articles.txt')

data(biblio)

biblio_df_df <- convert2df(file = biblio, dbsource = "isi", format = "bibtex")
```
countries

Index of Countries.

Description

Data frame containing a normalized index of countries. Data are used by `biblioAnalysis` function to extract Country Field of Cited References and Authors.

Format

A data frame with 198 rows and 1 variable:

- **countries**: country names

dominance

Authors’ dominance ranking

Description

It calculates the authors’ dominance ranking from an object of the class 'bibliometrix' as proposed by Kumar & Kumar, 2008.

Usage

`dominance(results, k = 10)`

Arguments

- **results**: is an object of the class 'bibliometrix' for which the analysis of the authors’ dominance ranking is desired.
- **k**: is an integer, used for table formatting (number of authors). Default value is 10.

Value

The function `dominance` returns a data frame with cases corresponding to the first k most productive authors and variables to typical field of a dominance analysis.

The data frame variables are:

- Dominance Factor
- Multi Authored
- First Authored
- Rank by Articles
- Rank by DF

- Dominance Factor (DF = FAA / MAA)
- N. of Multi Authored Articles (MAA)
- N. of First Authored Articles (FAA)
- Author Ranking by N. of Articles
- Author Ranking by Dominance Factor
duplicatedMatching

Searching of duplicated records in a bibliographic database

Description

Search duplicated records in a dataframe.

Usage

duplicatedMatching(M, Field = "TI", tol = 0.95)

Arguments

M is the bibliographic data frame.
Field is a character object. It indicates one of the field tags used to identify duplicated records. Field can be equal to one of this tags: TI (title), AB (abstract), UT (manuscript ID).
tol is a numeric value giving the minimum relative similarity to match two manuscripts. Default value is tol = 0.95.

Details

A bibliographic data frame is obtained by the converting function convert2df. It is a data matrix with cases corresponding to manuscripts and variables to Field Tag in the original SCOPUS and Thomson Reuters’ ISI Web of Knowledge file. The function identifies duplicated records in a bibliographic data frame and deletes them. Duplicate entries are identified through the restricted Damerau-Levenshtein distance. Two manuscripts that have a relative similarity measure greater than tol argument are stored in the output data frame only once.

Value

the value returned from duplicatedMatching is a data frame without duplicated records.
garfield

See Also
cartridge to import and convert an ISI or SCOPUS Export file in a bibliographic data frame.
bibliographical function for bibliometric analysis.
summary to obtain a summary of the results.
plot to draw some useful plots of the results.

Examples

data(scientometrics)

M = rbind(scientometrics[1:20,], scientometrics[10:30,])

newM <- duplicatedMatching(M, Field = "TI", tol = 0.95)

dim(newM)

garfield

Eugene Garfield’s manuscripts.

Description

All manuscripts published by Eugene Garfield.
Period: 1954 - 2014
Database: SCOPUS source

Format

A data frame with 147 rows and 15 variables:

AU Authors
TI Document Title
SO Publication Name (or Source)
JI ISO Source Abbreviation
DT Document Type
DE Author Keywords
ID Keywords associated by ISI or SCOPUS database
AB Abstract
C1 Author Address
RP Reprint Address
CR Cited References
TC Times Cited
PY Year
UT Unique Article Identifier
DB Database

Source

http://www.scopus.com

<table>
<thead>
<tr>
<th>Hindex</th>
<th>h-index calculation</th>
</tr>
</thead>
</table>

Description

It calculates the authors’ h-index and its variants.

Usage

Hindex(M, authors, sep = ";", years = 10)

Arguments

- **M** is a bibliographic data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to manuscripts and variables to Field Tag in the original SCOPUS and Thomson Reuters’ ISI Web of Knowledge file.
- **authors** is a character vector. It contains the the authors’ names list for which you want to calculate the H-index. The argument has the form C("SURNAME1 N","SURNAME2 N",...), in other words, for each author: surname and initials separated by one blank space. i.e for the auhtors SEMPRONIO TIZIO CAIO and ARIA MASSIMO authors argument is authors = c("SEMPRONIO TC", "ARIA M").
- **sep** is the field separator character. This character separates authors in each string of AU column of the bibliographic data frame. The default is sep = ";".
- **years** is a integer. It indicates the number of years to consider for Hindex calculation. Default is 10.

Value

an object of class "list". It contains two elements: H is a data frame with h-index, g-index and m-index for each author; CitationList is a list with the bibliographic collection for each author.

See Also

- `convert2df` to import and convert an ISI or SCOPUS Export file in a bibliographic data frame.
- `biblioAnalysis` function for bibliometric analysis.
- `summary` to obtain a summary of the results.
- `plot` to draw some useful plots of the results.
histNetwork

Examples

```r
### EXAMPLE 1: ###
data(scientometrics)
authors <- c("SMALL H", "CHEN DZ")
Hindex(scientometrics, authors, sep = ";")

### EXAMPLE 2: Garfield h-index###
data(garfield)
indices=Hindex(garfield, authors="GARFIELD E", sep = ";")
# h-index, g-index and m-index of Eugene Garfield
indices
# Papers and total citations
indices$CitationList[[1]]
```

histNetwork
Historical co-citation network

Description
histNetwork creates a historical citation network from a bibliographic data frame.

Usage
```r
histNetwork(M, n = 10, sep = ";")
```

Arguments
- **M**
 - is a bibliographic data frame obtained by the converting function **convert2df**.
 - It is a data matrix with cases corresponding to manuscripts and variables to Field Tag in the original SCOPUS and Thomson Reuters’ ISI Web of Knowledge file.
- **n**
 - is an integer, indicating the number of most cited references to select. Default value is 10.
- **sep**
 - is the field separator character. This character separates strings in CR column of the data frame. The default is **sep = ";"**.

Value
histNetwork returns an object of class "list" containing the following components:
histPlot

NetMatrix the historical co-citation network matrix
Degree the min degree of the network
histData the set of n most cited references
M the bibliographic data frame

See Also
convert2df to import and convert an ISI or SCOPUS Export file in a bibliographic data frame.
summary to obtain a summary of the results.
plot to draw some useful plots of the results.
biblioNetwork to compute a bibliographic network.

Examples

data(scientometrics)

histResults <- histNetwork(scientometrics, n = 10, sep = ";")

histPlot

Plotting historical co-citation network

Description
histPlot plots a historical co-citation network.

Usage

histPlot(histResults, remove.isolates = FALSE, size = F, labelsize = 0.8,
 label = TRUE, arrowsize = 0.1)

Arguments

histResults is an object of class "list" containing the following components:

NetMatrix the historical citation network matrix
Degree the min degree of the network
histData the set of n most cited references
M the bibliographic data frame

is a network matrix obtained by the function histNetwork.
remove.isolates is logical. If TRUE isolates vertices are not plotted.
size is logical. If TRUE the point size of each vertex is proportional to its degree.
labelsize is an integer. It indicates the label size in the plot. Default is labelsize=1
label is logical. If TRUE vertex labels are plotted.
arrowsize is numerical. It indicates the edge arrow size.

Details

The function histPlot can plot a historical co-citation network previously created by histNetwork.

Value

It is a network object of the class igraph.

See Also

histNetwork to compute a historical co-citation network.
cocMatrix to compute a co-occurrence matrix.
biblioAnalysis to perform a bibliometric analysis.

Examples

EXAMPLE Citation network
data(scientometrics)

histResults <- histNetwork(scientometrics, n = 20, sep = ";")

net <- histPlot(histResults, size = TRUE)

idByAuthor

Get Complete Author Information and ID from Scopus

Description

Uses SCOPUS API author search to identify author identification information.

Usage

idByAuthor(df, api_key)

Arguments

df is a dataframe composed of three columns:

<table>
<thead>
<tr>
<th>column</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lastname</td>
<td>author’s last name</td>
</tr>
<tr>
<td>firstname</td>
<td>author’s first name</td>
</tr>
<tr>
<td>affiliation</td>
<td>Part of the affiliation name (university name, city, etc.)</td>
</tr>
</tbody>
</table>

i.e. df[1,1:3]<-c("aria","massimo","naples") When affiliation is not specified,
the field df$affiliation have to be NA. i.e. df[2,1:3]<-c("cuccurullo","corrado", NA)

api_key is a character. It contains the Elsevier API key. Information about how to obtain an API Key Elsevier API website

Value

a data frame with cases corresponding to authors and variables to author’s information and ID got from SCOPUS.

See Also

retrievalByAuthorID for downloading the complete author bibliographic collection from SCOPUS

Examples

Request a personal API Key to Elsevier web page https://dev.elsevier.com/sc_apis.html
#
api_key="your api key"

create a data frame with the list of authors to get information and IDs
i.e. df[1,1:3]<-c("aria","massimo","naples")
df[2,1:3]<-c("cuccurullo","corrado", NA)

run idByAuthor function
#
authorsID <- idByAuthor(df, api_key)

isi2df

Convert an ISI WoK Export file into a data frame

Description

It converts an ISI WoK Export file and create a data frame from it, with cases corresponding to articles and variables to Field Tag in the original file.

Usage

isi2df(D)

Arguments

D is a character array containing data read from a ISI Export file (in plain text format).
Value

a data frame with cases corresponding to articles and variables to Field Tag in the original ISI file.

See Also

scopus2df for converting SCOPUS Export file (in bibtex format)
Other converting functions: convert2df, isibib2df, pubmed2df, scopus2df

Examples

An ISI Export file can be read using \code{\link{readLines}} function:

largechar <- readLines('filename.txt')

filename.txt is an ISI Export file in plain text format.
The file have to be saved without Byte order mark (U+FEFF) at the beginning
and EoF code at the end of file.
The original file (exported by ISI search web site) can be modified
using an advanced text editor like Notepad++ or Emacs.

scientometrics_text <- readLines('http://www.bibliometrix.org/datasets/scientometrics.txt')
data(scientometrics_text)
scient_df <- isi2df(scientometrics_text)
See Also

isi2df for converting ISI Export file (in plain text format)

Other converting functions: *convert2df, isi2df, pubmed2df, scopus2df*

Examples

```r
# A ISI Export file can be read using \code{\link{readLines}} function:

# largechar <- readFiles('filename1.bib','filename2.bib2,...)

# filename.bib is a Clarivate Analytics WoS Export file in plain text format.

# largechar <- readFiles('http://www.bibliometrix.org/datasets/ranking.bib')

# ranking <- isibib2df(largechar)
```

isiCollection

Bibliometrics manuscripts from ISI WOS.

Description

Manuscripts including the term "bibliometrics" in the title.

- Period: 1985 - 2017
- Database: ISI Web of Knowledge
- Format: bibtex

Format

A data frame with 329 rows and 16 variables:

- **AU** Authors
- **TI** Document Title
- **SO** Publication Name (or Source)
- **JI** ISO Source Abbreviation
- **DT** Document Type
- **DE** Author Keywords
- **ID** Keywords associated by ISI or SCOPUS database
- **AB** Abstract
- **C1** Author Address
- **RP** Reprint Address
- **CR** Cited References
- **TC** Times Cited
keywordAssoc

<table>
<thead>
<tr>
<th>PY</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC</td>
<td>Subject Category</td>
</tr>
<tr>
<td>UT</td>
<td>Unique Article Identifier</td>
</tr>
<tr>
<td>DB</td>
<td>Database</td>
</tr>
</tbody>
</table>

Source

http://www.webofknowledge.com

keywordAssoc
ID and DE keyword associations

Description

It associates authors’ keywords to keywords plus.

Usage

```r
keywordAssoc(M, sep = ";", n = 10, excludeKW = NA)
```

Arguments

- **M** is a bibliographic data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to manuscripts and variables to Field Tag in the original SCOPUS and Thomson Reuters’ ISI Web of Knowledge file.
- **sep** is the field separator character. This character separates keywords in each string of ID and DE columns of the bibliographic data frame. The default is `sep = ";"`.
- **n** is a integer. It indicates the number of authors’ keywords to associate to each keyword plus. The default is `n = 10`.
- **excludeKW** is character vector. It contains authors’ keywords to exclude from the analysis.

Value

An object of class "list".

See Also

- `convert2df` to import and convert an ISI or SCOPUS Export file in a bibliographic data frame.
- `biblioAnalysis` function for bibliometric analysis.
- `summary` to obtain a summary of the results.
- `plot` to draw some useful plots of the results.
Examples

```r
data(scientometrics)
KWlist <- keywordAssoc(scientometrics, sep = ";", n = 10, excludeKW = NA)

# list of first 10 Keywords plus
names(KWlist)

# list of first 10 authors' keywords associated to the first Keyword plus
KWlist[[1]][1:10]
```

KeywordGrowth
Yearly occurrences of top keywords/terms

Description

It calculates yearly occurrences of top keywords/terms.

Usage

```r
KeywordGrowth(M, Tag = "ID", sep = ";", top = 10, cdf = TRUE)
```

Arguments

- **M** is a data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to articles and variables to Field Tag in the original ISI or SCOPUS file.
- **Tag** is a character object. It indicates one of the keyword field tags of the standard ISI WoS Field Tag codify (ID or DE) or a field tag created by `termExtraction` function (TI_TM, AB_TM, etc.).
- **sep** is the field separator character. This character separates strings in each keyword column of the data frame. The default is `sep = ";"`.
- **top** is a numeric. It indicates the number of top keywords to analize. The default value is 10.
- **cdf** is a logical. If TRUE, the function calculates the cumulative occurrences distribution.

Value

an object of class `data.frame`
localCitations

Examples

data(scientometrics)
topKW=KeywordGrowth(scientometrics, Tag = "ID", sep = ";", top=5, cdf=TRUE)
topKW

Plotting results
#
library(reshape2)
library(ggplot2)
DF=melt(topKW, id='Year')
ggplot(DF,aes(Year,value, group=variable, color=variable))+geom_line()

localCitations

Author local citations

Description

It calculates local citations (LCS) of authors and documents of a bibliographic collection.

Usage

localCitations(M, sep = ";")

Arguments

M is a bibliographic data frame obtained by the converting function convert2df. It is a data matrix with cases corresponding to manuscripts and variables to Field Tag in the original SCOPUS and Thomson Reuters’ ISI Web of Knowledge file.

sep is the field separator character. This character separates citations in each string of CR column of the bibliographic data frame. The default is sep = ";;".

Details

Local citations measure how many times an author (or a document) included in this collection have been cited by the documents also included in the collection.

Value

an object of class "list" containing author local citations and document local citations.

See Also

citations function for citation frequency distribution.
biblioAnalysis function for bibliometric analysis.
summary to obtain a summary of the results.
plot to draw some useful plots of the results.
Examples

data(scientometrics)

CR <- localCitations(scientometrics, sep = ":")

CR$Authors[1:10,]
CR$Papers[1:10,]

lotka

Lotka's law coefficient estimation

Description

It estimates Lotka’s law coefficients for scientific productivity (Lotka A.J., 1926)

Usage

lotka(results)

Arguments

results is an object of the class 'bibliometrix' for which the analysis of the authors’ dominance ranking is desired.

Value

The function lotka returns a list of summary statistics of the Lotka’s law estimation of an object of class bibliometrix.

the list contains the following objects:

- Beta Beta coefficient
- C Constant coefficient
- R2 Goodness of Fit
- fitted Fitted Values
- p.value Pvalue of two-sample Kolmogorov-Smirnov test between the empirical and theorical Lotka’s Law distribution
- AuthorProd Authors’ Productivity frequency table

See Also

biblioAnalysis function for bibliometric analysis
summary method for class 'bibliometrix'

Examples

data(scientometrics)
Description

Merge bibliographic data frames from different databases (ISI and SCOPUS) into a single one.

Usage

```r
mergeDbSources(..., remove.duplicated = TRUE)
```

Arguments

- `...` are the bibliographic data frames to merge.
- `remove.duplicated` is logical. If TRUE duplicated documents will be deleted from the bibliographic collection.

Details

Bibliographic data frames are obtained by the converting function `convert2df`. The function merges data frames identifying common tag fields and duplicated records.

Value

The value returned from `mergeDbSources` is a bibliographic data frame.

See Also

- `convert2df` to import and convert an ISI or SCOPUS Export file in a bibliographic data frame.
- `biblioAnalysis` function for bibliometric analysis.
- `summary` to obtain a summary of the results.
- `plot` to draw some useful plots of the results.

Examples

```r
data(isiCollection)

data(scopusCollection)

M <- mergeDbSources(isiCollection, scopusCollection, remove.duplicated=TRUE)
```
metaTagExtraction

Description

It extracts other field tags, different from the standard ISI/SCOPUS codify.

Usage

```r
metaTagExtraction(M, Field = "CR_AU", sep = ";")
```

Arguments

- `M` is a data frame obtained by the converting function `convert2df`. It is a data matrix with cases corresponding to articles and variables to Field Tag in the original ISI or SCOPUS file.
- `Field` is a character object. New tag extracted from aggregated data is specified by this string. Field can be equal to one of these tags:
 - "CR_AU" First Author of each cited reference
 - "CR_SO" Source of each cited reference
 - "AU_CO" Country of affiliation for each co-author
 - "AU1_CO" Country of affiliation for the first author
 - "AU_UN" University of affiliation for each co-author
 - "SR" Short tag of the document (as used in reference lists)
- `sep` is the field separator character. This character separates strings in each column of the data frame. The default is `sep = ";"`.

Value

the bibliometric data frame with a new column containing data about new field tag indicated in the argument `Field`.

See Also

- `scopus2df` for converting ISO or SCOPUS Export file into a data frame.
- `biblioAnalysis` function for bibliometric analysis

Examples

```
# Example 1: First Authors for each cited reference
```
data(scientometrics)
scientometrics <- metaTagExtraction(scientometrics, Field = "CR_AU", sep = ";")
unlist(strsplit(scientometrics$CR_AU[1], ";"))

#Example 2: Source for each cited reference

data(scientometrics)
scientometrics <- metaTagExtraction(scientometrics, Field = "CR_SO", sep = ";")
unlist(strsplit(scientometrics$CR_SO[1], ";"))

#Example 3: Affiliation country for co-author

data(scientometrics)
scientometrics <- metaTagExtraction(scientometrics, Field = "AU_CO", sep = ";")
scientometrics$AU_CO[1:10]

networkPlot

Plotting Bibliographic networks

Description

`networkPlot` plots a bibliographic network.

Usage

```r
networkPlot(NetMatrix, normalize = NULL, n = NULL, degree = NULL, 
Title = "Plot", type = "kamada", label = TRUE, labelfsize = 1, 
label.cex = FALSE, label.short = TRUE, label.n = NULL, halo = FALSE, 
cluster = "walktrap", vos.path = NULL, size = 3, curved = FALSE, 
noloops = TRUE, remove.multiple = TRUE, remove.isolates = FALSE, 
weighted = NULL, edgesize = 1, edges.min = 0)
```

Arguments

- **NetMatrix** is a network matrix obtained by the function `biblioNetwork`.
- **normalize** is a character. It can be "association", "jaccard", "inclusion", "salton" or "equivalence" to obtain Association Strength, Jaccard, Inclusion, Salton or Equivalence similarity index respectively. The default is type = NULL.
- **n** is an integer. It indicates the number of vertices to plot.
- **degree** is an integer. It indicates the min frequency of a vertex. If degree is not NULL, n is ignored.
- **Title** is a character indicating the plot title.
type is a character object. It indicates the network map layout:

- `type="circle"` Circle layout
- `type="sphere"` Sphere layout
- `type="mds"` Multidimensional Scaling layout
- `type="fruchterman"` Fruchterman-Reingold layout
- `type="kamada"` Kamada-Kawai layout
- `type="vosviewer"` Network is plotted using VOSviewer software

label is logical. If TRUE vertex labels are plotted.

labelsize is an integer. It indicates the label size in the plot. Default is `labelsize=1`

label.cex is logical. If TRUE the label size of each vertex is proportional to its degree.

label.short is a logical. If TRUE label are plotted in short format.

label.n is an integer. It indicates the number of vertex labels to draw.

halo is logical. If TRUE communities are plotted using different colors. Default is `halo=FALSE`

cluster is a character. It indicates the type of cluster to perform among ("none", "optimal", "lovain", "infomap", "edge_betweenness", "walktrap").

vos.path is a character indicating the full path where VOSviewer.jar is located.

size is integer or logical. If TRUE the point size of each vertex is proportional to its degree. If it is a integer, the point size of each vertex is constant equal to `size`. Default is `size=3`.

curved is a logical. If TRUE edges are plotted with an optimal curvature. Default is `curved=FALSE`

noloops is logical. If TRUE loops in the network are deleted.

remove.multiple is logical. If TRUE multiple links are plotted using just one edge.

remove.isolates is logical. If TRUE isolates vertices are not plotted.

weighted This argument specifies whether to create a weighted graph from an adjacency matrix. If it is NULL then an unweighted graph is created and the elements of the adjacency matrix gives the number of edges between the vertices. If it is a character constant then for every non-zero matrix entry an edge is created and the value of the entry is added as an edge attribute named by the weighted argument. If it is TRUE then a weighted graph is created and the name of the edge attribute will be `weight`.

edgesize is an integer. It indicates the network edge size.

edges.min is an integer. It indicates the min frequency of edges between two vertices. If `edge.min=0`, all edges are plotted.

Details

The function `networkPlot` can plot a bibliographic network previously created by `biblioNetwork`. The network map can be plotted using internal R routines or using `VOSviewer` by Nees Jan van Eck and Ludo Waltman.
normalizeSimilarity

Value

It is a list containing the following elements:

- `graph` a network object of the class igraph
- `cluster_obj` a communities object of the package igraph
- `cluster_res` a data frame with main results of clustering procedure.

See Also

biblioNetwork to compute a bibliographic network.
cocMatrix to compute a co-occurrence matrix.
biblioAnalysis to perform a bibliometric analysis.

Examples

```r
# EXAMPLE Co-citation network

data(scientometrics)

NetMatrix <- biblioNetwork(scientometrics, analysis = "co-citation",
                           network = "references", sep = ";")

net <- networkPlot(NetMatrix, n = 30, type = "kamada", Title = "Co-Citation", labels = TRUE)
```

normalizeSimilarity Calculate similarity indices

Description

It calculates a relative measure of bibliographic co-occurrences.

Usage

`normalizeSimilarity(NetMatrix, type = "association")`

Arguments

- `NetMatrix` is a coupling matrix obtained by the network functions biblioNetwork or cocMatrix.
- `type` is a character. It can be "association", "jaccard", "inclusion", "salton" or "equivalence" to obtain Association Strength, Jaccard, Inclusion, Salton or Equivalence similarity index respectively. The default is `type = "association".`
couplingSimilarity calculates Association strength, Inclusion, Jaccard or Salton similarity from a co-occurrence bibliographic matrix.

The association strength is used by Van Eck and Waltman (2007) and Van Eck et al. (2006). Several works refer to the measure as the proximity index, while Leydesdorff (2008) and Zitt et al. (2000) refer to it as the probabilistic affinity (or activity) index.

The inclusion index, also called Simpson coefficient, is an overlap measure used in information retrieval.

The Jaccard index (or Jaccard similarity coefficient) gives us a relative measure of the overlap of two sets. It is calculated as the ratio between the intersection and the union of the reference lists (of two manuscripts).

The Salton index, instead, relates the intersection of the two lists to the geometric mean of the size of both sets. The square of Salton index is also called Equivalence index.

The indices are equal to zero if the intersection of the reference lists is empty.

Value

a similarity matrix.

See Also

`biblioNetwork` function to compute a bibliographic network.

`cocMatrix` to compute a bibliographic bipartite network.

Examples

data(scientometrics)
NetMatrix <- biblioNetwork(scientometrics, analysis = "co-occurrences",
network = "keywords", sep = ",")
S=normalizeSimilarity(NetMatrix, type = "association")

plot.bibliometrix Plotting bibliometric analysis results

Description

plot method for class 'bibliometrix'

Usage

```r
## S3 method for class 'bibliometrix'
plot(x, ...)
```
Arguments

\(x \) is the object for which plots are desired.

... can accept two arguments:

\(k \) is an integer, used for plot formatting (number of objects). Default value is 10.

\(\text{pause} \) is a logical, used to allow pause in screen scrolling of results. Default value is \(\text{pause} = \text{FALSE} \).

Value

none. The function \(\text{plot} \) returns a set of plots of the object of class \(\text{bibliometrix} \).

See Also

The bibliometric analysis function \(\text{biblioAnalysis} \).

\(\text{summary} \) to compute a list of summary statistics of the object of class \(\text{bibliometrix} \).

Examples

```r
data(scientometrics)
results <- biblioAnalysis(scientometrics)
plot(results, k = 10, pause = FALSE)
```

pubmed2df

Convert a PubMed/MedLine collection into a data frame

Description

It converts a PubMed/MedLine collection (obtained through a query performed with RISmed package) and create a data frame from it, with cases corresponding to articles and variables to Field Tags as proposed by Clarivate Analytics WoS.

Usage

```r
pubmed2df(D)
```

Arguments

\(D \) is an object of class MedLine (package "RISmed") containing data resulting of a query performed on MedLine using the package RISmed.

Value

a data frame with cases corresponding to articles and variables to Field Tags as proposed by Clarivate Analytics WoS.
See Also

scopus2df for converting SCOPUS Export file (in bibtex format)
isi2df for converting Clarivate Analitics WoS Export file (in plaintext format)
isibib2df for converting Clarivate Analitics WoS Export file (in bibtex format)
Other converting functions: convert2df, isi2df, isibib2df, scopus2df

Examples

```r
# library(RISmed)
# search_topic <- 'epidermolysis bullosa'
# search_query <- EUtilsSummary(search_topic, retmax=200, mindate=2014, maxdate=2014)
# summary(search_query)
# D <- EUtilsGet(search_query)

# M <- pubmed2df(D)
```

```r
table(readFiles)

| readFiles | Load a sequence of ISI or SCOPUS Export files into a large character object |
```

Description

It loads a sequence of SCOPUS and Thomson Reuters’ ISI Web of Knowledge export files and create a large character vector from it.

Usage

```r
readFiles(...)```

Arguments

... is a sequence of names of files downloaded from ISI WOS (in plain text or bibtex format) or SCOPUS Export file (exclusively in bibtex format).

Value

a character vector of length the number of lines read.

See Also

convert2df for converting SCOPUS of ISI Export file into a dataframe
**retrievalByAuthorID**

*Get Author Content on SCOPUS by ID*

**Description**

Uses SCOPUS API search to get information about documents on a set of authors using SCOPUS ID.

**Usage**

`retrievalByAuthorID(id, api_key, remove.duplicated = TRUE)`

**Arguments**

- `id` is a vector of characters containing the author’s SCOPUS IDs. SCOPUS IDs can be obtained using the function `idByAuthor`.
- `api_key` is a character. It contains the Elsevier API key. Information about how to obtain an API Key [Elsevier API website](http://www.bibliometrix.org/datasets/bibliometrics_articles.txt).
- `remove.duplicated` is logical. If TRUE duplicated documents will be deleted from the bibliographic collection.

**Value**

A list containing two objects: (i) `M` which is a data frame with cases corresponding to articles and variables to main Field Tags named using the standard ISI WoS Field Tag codify. `M` includes the entire bibliographic collection downloaded from SCOPUS. The main field tags are:

- **AU** Authors
- **TI** Document Title
- **SO** Publication Name (or Source)
- **DT** Document Type
- **DE** Authors’ Keywords
- **ID** Keywords associated by SCOPUS or ISI database
- **AB** Abstract
- **C1** Author Address
(ii) authorDocuments which is a list containing a bibliographic data frame for each author.

LIMITATIONS: Currently, SCOPUS API does not allow to download document references. As consequence, it is not possible to perform co-citation analysis (the field CR is empty).

See Also

idByAuthor for downloading auhtor information and SCOPUS ID.

Examples

```r
Request a personal API Key to Elsevier web page https://dev.elsevier.com/sc_apis.html

api_key="your api key"

create a data frame with the list of authors to get information and IDs
i.e. df[1,1:3] <- c("aria","massimo","naples")
df[2,1:3] <- c("cuccurullo","corrado","naples")

run idByAuthor function
#
authorsID <- idByAuthor(df, api_key)
#

extract the IDs
#
id <- authorsID[,3]
#

create the bibliographic collection
#
res <- retrievalByAuthor(id, api_key)
#
M <- res$M # the entire bibliographic data frame
M <- res$authorDocuments # the list containing a bibliographic data frame for each author
```

"Co-citation analysis" and "Coupling analysis" manuscripts.
Description

Manuscripts about the topics "co-citation analysis" and "coupling analysis" published on Scientometrics Journal.
Period: 1985 - 2015
Database: ISI Web of Knowledge

Format

A data frame with 147 rows and 16 variables:

AU Authors
TI Document Title
SO Publication Name (or Source)
JI ISO Source Abbreviation
DT Document Type
DE Author Keywords
ID Keywords associated by ISI or SCOPUS database
AB Abstract
C1 Author Address
RP Reprint Address
CR Cited References
TC Times Cited
PY Year
SC Subject Category
UT Unique Article Identifier
DB Database

Source

http://www.webofknowledge.com
Format

A large character with 12731 rows.
Data has been imported by an ISI Export file in plain text format using the function readLines.

Source

http://www.webofknowledge.com

scopus2df

Convert a SCOPUS Export file into a data frame

Description

It converts a SCOPUS Export file and create a data frame from it, with cases corresponding to articles and variables to Field Tag in the original file.

Usage

scopus2df(D)

Arguments

D is a character array containing data read from a SCOPUS Export file (in bibtex format).

Value

a data frame with cases corresponding to articles and variables to Field Tag in the original SCOPUS file.

See Also

isi2df for converting ISI Export file (in plain text format)
Other converting functions: convert2df, isi2df, isibib2df, pubmed2df

Examples

# A SCOPUS Export file can be read using \code{\link(readFiles)} function:

# largechar <- readFiles('filename1.bib','filename2.bib2,...)

# filename.bib is a SCOPUS Export file in plain text format.

#largechar <- readFiles('http://www.bibliometrix.org/datasets/scopus.bib')

#scopus_df <- scopus2df(largechar)
"Bibliometrics" manuscripts from SCOPUS.

Description

Manuscripts including the term "bibliometrics" in the title.
Period: 1975 - 2017
Database: SCOPUS
Format: bibtex

Format

A data frame with 487 rows and 15 variables:

- **AU** Authors
- **TI** Document Title
- **SO** Publication Name (or Source)
- **JI** ISO Source Abbreviation
- **DT** Document Type
- **DE** Author Keywords
- **ID** Keywords associated by ISI or SCOPUS database
- **AB** Abstract
- **CI** Author Address
- **RP** Reprint Address
- **CR** Cited References
- **TC** Times Cited
- **PY** Year
- **UT** Unique Article Identifier
- **DB** Database

Source

http://www.scopus.com
stopwords  

*List of English stopwords.*

**Description**

A character vector containing a complete list of English stopwords. Data are used by the `biblioAnalysis` function to extract Country Field of Cited References and Authors.

**Format**

A character vector with 665 rows.

---

**summary.bibliometrix**  

*Summarizing bibliometric analysis results*

**Description**

`summary` method for class `bibliometrix`.

**Usage**

```r
S3 method for class 'bibliometrix'
summary(object, ...)
```

**Arguments**

- `object` is the object for which a summary is desired.
- `...` can accept two arguments:
  - `k` integer, used for table formatting (number of rows). Default value is 10.
  - `pause` logical, used to allow pause in screen scrolling of results. Default value is `pause = FALSE`.

**Value**

The function `summary` computes and returns a list of summary statistics of the object of class `bibliometrics`. The list contains the following objects:

- `MainInformation`  
- `AnnualProduction`  
- `AnnualGrowthRate`  
- `MostProdAuthors`  
- `MostCitedPapers`  

Main Information about Data
Annual Scientific Production
Annual Percentage Growth Rate
Most Productive Authors
Top manuscripts per number of citations
tableTag

<table>
<thead>
<tr>
<th>MostProdCountries</th>
<th>Most Productive Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCperCountries</td>
<td>Total Citation per Countries</td>
</tr>
<tr>
<td>MostRelSources</td>
<td>Most Relevant Sources</td>
</tr>
<tr>
<td>MostRelKeywords</td>
<td>Most Relevant Keywords</td>
</tr>
</tbody>
</table>

See Also

biblioAnalysis function for bibliometric analysis
plot to draw some useful plots of the results.

Examples

data(scientometrics)
results <- biblioAnalysis(scientometrics)
summary(results)

tableTag

Tabulate elements from a Tag Field column

Description

It tabulates elements from a Tag Field column of a bibliographic data frame.

Usage

tableTag(M, Tag = "CR", sep = ";")

Arguments

M is a data frame obtained by the converting function convert2df. It is a data matrix with cases corresponding to articles and variables to Field Tag in the original ISI or SCOPUS file.

Tag is a character object. It indicates one of the field tags of the standard ISI WoS Field Tag codify.

sep is the field separator character. This character separates strings in each column of the data frame. The default is sep = ";".

Details

tableTag is an internal routine of main function biblioAnalysis.

Value

an object of class table
Examples

data(scientometrics)
Tab <- tableTag(scientometrics, Tag = "CR", sep = ";")
Tab[1:10]

termExtraction  Term extraction tool from textual fields of a manuscript

Description

It extracts terms from a textual field (abstract, title, author’s keywords, etc.) of a bibliographic data frame.

Usage

termExtraction(M, Field = "TI", stemming = FALSE, language = "english",
remove.numbers = TRUE, remove.terms = NULL, keep.terms = NULL,
synonyms = NULL, verbose = TRUE)

Arguments

M is a data frame obtained by the converting function convert2df. It is a data matrix with cases corresponding to articles and variables to Field Tag in the original ISI or SCOPUS file.

Field is a character object. It indicates the field tag of textual data:

"TI"  Manuscript title
"AB"  Manuscript abstract
"ID"  Manuscript keywords plus
"DE"  Manuscript author’s keywords

The default is Field = "TI".

stemming is logical. If TRUE the Porter Stemming algorithm is applied to all extracted terms. The default is stemming = FALSE.

language is a character. It is the language of textual contents ("english", "german", "italian", "french", "spanish"). The default is language = "english".

remove.numbers is logical. If TRUE all numbers are deleted from the documents before term extraction. The default is remove.numbers = TRUE.

remove.terms is a character vector. It contains a list of additional terms to delete from the documents before term extraction. The default is remove.terms = NULL.

keep.terms is a character vector. It contains a list of compound words “formed by two or more terms” to keep in their original form in the term extraction process. The default is keep.terms = NULL.
termExtraction

synonyms is a character vector. Each element contains a list of synonyms, separated by ";", that will be merged into a single term (the first word contained in the vector element). The default is synonyms = NULL.

verbose is logical. If TRUE the function prints the most frequent terms extracted from documents. The default is verbose=TRUE.

Value

the bibliometric data frame with a new column containing terms about the field tag indicated in the argument Field.

See Also

convert2df to import and convert an ISI or SCOPUS Export file in a bibliographic data frame.

biblioAnalysis function for bibliometric analysis

Examples

# Example 1: Term extraction from titles
data(scientometrics)

# vector of compound words
keep.terms <- c("co-citation analysis","bibliographic coupling")

# term extraction
scientometrics <- termExtraction(scientometrics, Field = "TI", remove.numbers=TRUE, remove.terms=NULL, keep.terms=keep.terms, verbose=TRUE)

# terms extracted from the first 10 titles
scientometrics$TI_TM[1:10]

#Example 2: Term extraction from abstracts
data(scientometrics)

# vector of terms to remove
remove.terms=c("analysis","bibliographic")

# term extraction
scientometrics <- termExtraction(scientometrics, Field = "AB", stemming=TRUE,language="english", remove.numbers=TRUE, remove.terms=remove.terms, keep.terms=NULL, verbose=TRUE)

# terms extracted from the first abstract
scientometrics$AB_TM[1]

# Example 3: Term extraction from keywords with synonyms
data(scientometrics)
thematicEvolution

Create an Evolution Thematic Map

Description

It creates an Evolution thematic map based on co-word network analysis and clustering. The methodology is inspired by the proposal of Cobo et al. (2011).

Usage

thematicEvolution(..., weighted = FALSE)

Arguments

... is a sequence of names of thematic maps created by thematicMap function.
weighted is a logical. If FALSE, a thematic nexus is measures by the classical inclusion index (calculated using the number of keywords). If TRUE, the inclusion index is calculated considering the occurrences of keywords.

Details

thematicEvolution starts from two or more thematic maps created by thematicMap function.

Value

a list containing:

- nets The thematic nexus graph for each comparison
- incMatrix Some useful statistics about the thematic nexus

See Also

thematicMap function to create a thematic map based on co-word network analysis and clustering.
cocMatrix to compute a bibliographic bipartite network.
networkPlot to plot a bibliographic network.

Examples

# vector of synonyms
synonyms <- c("citation; citation analysis", "h-index; index; impact factor")

# term extraction
scientometrics <- termExtraction(scientometrics, Field = "ID",
synonyms=synonyms, verbose=TRUE)
Create a thematic map

**Description**
It creates a thematic map based on co-word network analysis and clustering. The methodology is inspired by the proposal of Cobo et al. (2011).

**Usage**
```r
thematicMap(Net, NetMatrix, S = NULL, minfreq = 5)
```

**Arguments**

- **Net** is a igraph object created by `networkPlot` function.
- **NetMatrix** is a co-occurrence matrix obtained by the network functions `biblioNetwork` or `cocMatrix`.
- **S** is a similarity matrix obtained by the `normalizeSimilarity` function. If S is NULL, map is created using co-occurrence counts.
- **minfreq** is an integer. It indicates the minimum frequency of a cluster.
Details

thematicMap starts from a co-occurrence keyword network to plot in a two-dimesional map the typological themes of a domain.

Value

a list containing:

- **map**: The thematic map as ggplot2 object
- **clusters**: Centrality and Density values for each cluster.
- **words**: A list of words following in each cluster

See Also

- biblioNetwork function to compute a bibliographic network.
- cocMatrix to compute a bibliographic bipartite network.
- networkPlot to plot a bibliographic network.

Examples

```r
data(scientometrics)
NetMatrix <- biblioNetwork(scientometrics, analysis = "co-occurrences",
 network = "keywords", sep = ";")
S <- normalizeSimilarity(NetMatrix, type = "association")
net <- networkPlot(S, n = 100, Title = "co-occurrence network", type="fruchterman",
 labelsize = 0.7, halo = FALSE, cluster = "walktrap", remove.isolates=FALSE,
 remove.multiple=FALSE, noloops=TRUE, weighted=TRUE)
res <- thematicMap(net, NetMatrix, S)
plot(res$map)
```

Description

Divide a bibliographic data frame into time slice

Usage

```r
timeslice(M, breaks = NA, k = 5)
```
trim

Arguments

M is a bibliographic data frame obtained by the converting function convert2df. It is a data matrix with cases corresponding to manuscripts and variables to Field Tag in the original SCOPUS and Thomson Reuters’ ISI Web of Knowledge file.

breaks is a numeric vector of two or more unique cut points.

k is an integer value giving the number of intervals into which the data frame is to be cut. k is used only in case breaks argument is not provided. The default is k = 5.

Value

the value returned from split is a list containing the data frames for each sub-period.

See Also

correct2df to import and convert an ISI or SCOPUS Export file in a bibliographic data frame.
biblioAnalysis function for bibliometric analysis.

summary to obtain a summary of the results.

plot to draw some useful plots of the results.

Examples

data(scientometrics)

list_df <- timeslice(scientometrics, breaks = c(1995, 2005))

names(list_df)

trim

Deleting leading and ending white spaces

Description

Deleting leading and ending white spaces from a character object.

Usage

trim(x)

Arguments

x is a character object.
Details

    tableTag is an internal routine of bibliometrics package.

Value

    an object of class character

Examples

```r
char <- c(" Alfred", "Mary", " John")
char
trim(char)
```

---

**trim.leading**

*p Deleting leading white spaces*

Description

Deleting leading white spaces from a character object.

Usage

```
trim.leading(x)
```

Arguments

- `x` is a character object.

Details

    tableTag is an internal routine of bibliometrics package.

Value

    an object of class character

Examples

```
char <- c(" Alfred", "Mary", " John")
char
trim.leading(char)
```
Index

*Topic package
  bibliometrix-package, 3

biblio, 4
biblio_df, 8
biblioAnalysis, 5, 7, 9, 11, 12, 15–18, 21, 25, 27–30, 33, 35, 42, 43, 45, 49
bibliometrix (bibliometrix-package), 3
bibliometrix-package, 3
biblioNetwork, 6, 6, 11, 12, 20, 31–34, 47, 48
citations, 9, 27
cocMatrix, 7, 10, 12, 21, 33, 34, 46–48
communities, 33
contextualStructure, 11
convert2df, 5–7, 9–12, 13, 16–20, 23–27, 29, 30, 36, 40, 43–45, 49
countries, 15
dominance, 15
duplicatedMatching, 16
garfield, 17
Hindex, 18
histNetwork, 19, 20, 21
histPlot, 20, 21
idByAuthor, 21, 37, 38
isi2df, 14, 22, 24, 36, 40
isibib2df, 14, 23, 23, 36, 40
isiCollection, 24
keywordAssoc, 25
KeywordGrowth, 26
localCitations, 27
lotka, 28
Matrix, 7, 10
mergeDbSources, 29

metaTagExtraction, 30
networkPlot, 31, 32, 46–48
normalizeSimilarity, 33, 47
plot, 5, 6, 9, 17, 18, 20, 25, 27, 29, 43, 49
plot.bibliometrix, 34
pubmed2df, 14, 23, 24, 35, 40
readFiles, 36
readLines, 4, 40
retrievalByAuthorID, 22, 37
scientometrics, 38
scientometrics_text, 39
scopus2df, 14, 23, 24, 30, 36, 40
scopusCollection, 41
stopwords, 42
summary, 5, 6, 9, 16–18, 20, 25, 27–29, 35, 49
summary.bibliometrix, 42
tableTag, 43
termExtraction, 12, 26, 44
thematicEvolution, 46, 46
thematicMap, 46, 47
timeslice, 48
trim, 49
trim-leading, 50