Package ‘biclust’

May 25, 2021

Version 2.0.3
Date 2021-05-22
Author Sebastian Kaiser, Rodrigo Santamaria, Tatsiana Khamiakova, Martin Sill, Roberto Theron, Luis Quintales, Friedrich Leisch, Ewoud De Troyer and Sami Leon.
Maintainer Sebastian Kaiser <dr.sebastian.kaiser@gmail.com>
Title BiCluster Algorithms
Depends R (>= 2.10), MASS, grid, colorspace, lattice
Imports methods, flexclust, additivityTests, tidyr, ggplot2
Suggests isa2
License GPL-3
LazyLoad yes
NeedsCompilation yes
Repository CRAN
Date/Publication 2021-05-25 13:40:02 UTC

R topics documented:

BCBimax ... 2
BCCC ... 4
BCPlaid ... 5
BCQuest ... 6
BCSpectral .. 7
BCBimax

The Bimax Bicluster algorithm

Description

Performs Bimax Biclustering based on the framework by Prelic et al.(2006). It searches for submatrices of ones in a logical matrix. Uses the original C code of the authors.
Usage

```r
## S4 method for signature 'matrix,BCBimax'
biclust(x, method=BCBimax(), minr=2, minc=2, number=100)

## S4 method for signature 'matrix,BCrepBimax'
biclust(x, method=BCrepBimax(), minr=2, minc=2, number=100, maxc=12)
```

Arguments

- **x**: A logical matrix which represents the data.
- **method**: Here BCBimax, to perform Bimax algorithm.
- **minr**: Minimum row size of resulting bicluster.
- **minc**: Minimum column size of resulting bicluster.
- **number**: Number of Bicluster to be found.
- **maxc**: Maximum column size of resulting bicluster.

Value

Returns an object of class Biclust.

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

References

See Also

biclust, Biclust

Examples

```r
test <- matrix(rnorm(5000), 100, 50)
test[11:20,11:20] <- rnorm(100, 3, 0.1)
loma <- binarize(test,2)
res <- biclust(x=loma, method=BCBimax(), minr=4, minc=4, number=10)
res
```
The CC Bicluster algorithm

Description

Performs CC Biclustering based on the framework by Cheng and Church (2000). Searches for submatrices with a score lower than a specific threshold in a standardized data matrix.

Usage

```r
## S4 method for signature 'matrix,BCCC'
biclust(x, method=BCCC(), delta = 1.0, alpha=1.5, number=100)
```

Arguments

- `x` : Data matrix.
- `method` : Here BCCC, to perform CC algorithm
- `delta` : Maximum of accepted score.
- `alpha` : Scaling factor.
- `number` : Number of bicluster to be found.

Value

Returns an object of class `Biclust`.

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

References

Cheng, Y. & Church, G.M. Biclustering of Expression Data Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, 2000, 1, 93-103

See Also

- `biclust`, `Biclust`

Examples

```r
test <- matrix(rbinom(400, 50, 0.4), 20, 20)
res <- biclust(test, method=BCCC(), delta=1.5, alpha=1, number=10)
res
```
The Plaid Model Bicluster algorithm

Description

Performs Plaid Model Biclustering as described in Turner et al., 2003. This is an improvement of original 'Plaid Models for Gene Expression Data' (Lazzeroni and Owen, 2002). This algorithm models data matrices to a sum of layers, the model is fitted to data through minimization of error.

Usage

```r
# S4 method for signature 'matrix,BCPlaid'
biclust(x, method=BCPlaid(), cluster="b", fit.model = y ~ m + a + b,
background = TRUE, background.layer = NA, background.df = 1, row.release = 0.7,
col.release = 0.7, shuffle = 3, back.fit = 0, max.layers = 20, iter.startup = 5,
iter.layer = 10, verbose = TRUE)
```

Arguments

- **x**: The data matrix where biclusters have to be found
- **method**: Here BCPlaid, to perform Plaid algorithm
- **cluster**: ‘r’, ‘c’ or ‘b’, to cluster rows, columns or both (default ‘b’)
- **fit.model**: Model (formula) to fit each layer. Usually, a linear model is used, that estimates three parameters: m (constant for all elements in the bicluster), a (constant for all rows in the bicluster) and b (constant for all columns). Thus, default is: y ~ m + a + b.
- **background**: If ‘TRUE’ the method will consider that a background layer (constant for all rows and columns) is present in the data matrix.
- **background.layer**: If background='TRUE' a own background layer (Matrix with dimension of x) can be specified.
- **background.df**: Degrees of Freedom of background layer if background.layer is specified.
- **shuffle**: Before a layer is added, it’s statistical significance is compared against a number of layers obtained by random defined by this parameter. Default is 3, higher numbers could affect time performance.
- **iter.startup**: Number of iterations to find starting values
- **iter.layer**: Number of iterations to find each layer
- **back.fit**: After a layer is added, additional iterations can be done to refine the fitting of the layer (default set to 0)
- **row.release**: Scalar in [0,1](with interval recommended [0.5-0.7]) used as threshold to prune rows in the layers depending on row homogeneity
- **col.release**: As above, with columns
- **max.layers**: Maximum number of layer to include in the model
- **verbose**: If ‘TRUE’ prints extra information on progress.
Value

Returns an Biclust object.

Author(s)

Adaptation of original code from Heather Turner from Rodrigo Santamaria <rodri@usal.es>.

References

Examples

```r
# Random matrix with embedded bicluster
test <- matrix(rnorm(5000), 100, 50)
test[11:20, 11:20] <- rnorm(100, 3, 0.3)
res <- biclust(test, method=BCPlaid())
res

# microarray matrix
data(BicatYeast)
res <- biclust(BicatYeast, method=BCPlaid(), verbose=FALSE)
res
```

BCQuest

The Questmotif Bicluster algorithm

Description

Performs Questmotif Biclustering a Bicluster algorithm for questionairs based on the framework by Murali and Kasif (2003). Searches subgroups of questionairs with same or similar answer to some questions.

Usage

```r
## S4 method for signature 'matrix,BCQuest'
biclust(x, method=BCQuest(), ns=10, nd=10, sd=5, alpha=0.05, number=100)
## S4 method for signature 'matrix,BCQuestord'
biclust(x, method=BCQuestord(), d=1, ns=10, nd=10, sd=5, alpha=0.05, number=100)
## S4 method for signature 'matrix,BCQuestmet'
biclust(x, method=BCQuestmet(), quant=0.25, vari=1, ns=10, nd=10, sd=5,
alpha=0.05, number=100)
```
BCSpectral

Arguments

- **x**: Data Matrix.
- **method**: Here BCQuest, to perform Questmotif algorithm
- **ns**: Number of questions chosen.
- **nd**: Number of repetitions.
- **sd**: Sample size in repetitions.
- **alpha**: Scaling factor for column result.
- **number**: Number of bicluster to be found.
- **d**: Half margin of intervall question values should be in (Intervall is mean-d,mean+d).
- **quant**: Which quantile to use on metric data
- **vari**: Which varianz to use for metric data

Value

Returns an object of class Biclust.

Extends

Class "BiclustMethod", directly.

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

References

Murali, T. & Kasif, S. Extracting Conserved Gene Expression Motifs from Gene Expression Data Pacific Symposium on Biocomputing, sullivan.bu.edu, 2003, 8, 77-88

See Also

biclust, Biclust

BCSpectral

The Spectral Bicluster algorithm

Description

Performs Spectral Biclustering as described in Kluger et al., 2003. Spectral biclustering supposes that normalized microarray data matrices have a checkerboard structure that can be discovered by the use of svd decomposition in eigenvectors, applied to genes (rows) and conditions (columns).
Usage

```r
## S4 method for signature 'matrix,BCSpectral'
bicluster(x, method=BCSpectral(), normalization="log", numberOfEigenvalues=6,
minr=2, minc=2, withinVar=1, n_clusters = NULL, n_best = 3)
```

Arguments

- **x**: The data matrix where biclusters are to be found.
- **method**: Here BCSpectral, to perform Spectral algorithm.
- **normalization**: Normalization method to apply to mat. Three methods are allowed as described by Kluger et al.: "log" (Logarithmic normalization), "irrc" (Independent Rescaling of Rows and Columns) and "bistochastization". If "log" normalization is used, be sure you can apply logarithm to elements in data matrix, if there are values under 1, it automatically will sum to each element in mat (1+abs(min(mat))) Default is "log", as recommended by Kluger et al.
- **numberOfEigenvalues**: the number of eigenValues considered to find biclusters. Each row (gene) eigenvector will be combined with all column (condition) eigenvectors for the first numberOfEigenvalues eigenvalues. Note that a high number could increase dramatically time performance. Usually, only the first eigenvectors are used. With "irrc" and "bistochastization" methods, first eigenvalue contains background (irrelevant) information, so it is ignored.
- **minr**: minimum number of rows that biclusters must have. The algorithm will not consider smaller biclusters.
- **minc**: minimum number of columns that biclusters must have. The algorithm will not consider smaller biclusters.
- **withinVar**: maximum within variation allowed. Since spectral biclustering outputs a checkerboard structure despite of relevance of individual cells, a filtering of only relevant cells is necessary by means of this within variation threshold.
- **n_clusters**: vector with first element the number of row clusters and second element the number of column clusters. If n_clusters = NULL, the number of clusters will be estimated.
- **n_best**: number of eigenvectors to which the data is projected for the final clustering step, recommended values are 2 or 3.

Value

Returns an object of class Biclust.

Author(s)

Sami Leon <Sami_Leon@URMC.Rochester.edu>
Rodrigo Santamaria <rodri@usal.es>
BCXmotifs

References

Examples

Random matrix with embedded bicluster
test <- matrix(rnorm(5000),100,50)
test[11:20,11:20] <- rnorm(100,10,0.1)
image(test)

shuffled_test <- test[sample(nrow(test)), sample(ncol(test))]
image(shuffled_test)

Without specifying the number of row and column clusters
res1 <- spectral(shuffled_test,normalization="log", numberOfEigenvalues=6,
 minr=2, minc=2, withinVar=1, n_clusters = NULL, n_best = 3)
res1
image(shuffled_test[order(res1@info$row_labels), order(res1@info$column_labels)])

Specifying the number of row and column clusters
res2 <- spectral(shuffled_test,normalization="log", numberOfEigenvalues=6,
 minr=2, minc=2, withinVar=1, n_clusters = 2, n_best = 3)
res2
image(shuffled_test[order(res2@info$row_labels), order(res2@info$column_labels)])

BCXmotifs

The Xmotifs Bicluster algorithm

Description

Performs XMotifs Biclustering based on the framework by Murali and Kasif (2003). Searches for a submatrix where each row as a similar motif through all columns. The Algorithm needs a discret matrix to perform.

Usage

S4 method for signature 'matrix,BCXmotifs'
biclust(x, method=BCXmotifs(), ns=10, nd=10, sd=5, alpha=0.05, number=100)
Arguments

- **x**: Data Matrix.
- **method**: Here BCXmotifs, to perform Xmotifs algorithm
- **ns**: Number of columns choosen.
- **nd**: Number of repetitions.
- **sd**: Sample size in repetitions.
- **alpha**: Scaling factor for column result.
- **number**: Number of bicluster to be found.

Value

Returns an object of class Biclust.

Extends

Class "BiclustMethod", directly.

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

References

Murali, T. & Kasif, S. Extracting Conserved Gene Expression Motifs from Gene Expression Data Pacific Symposium on Biocomputing, sullivan.bu.edu, 2003, 8, 77-88

See Also

biclust, Biclust

Examples

data(BicatYeast)
x<-discretize(BicatYeast)
res <- biclust(x, method=BCXmotifs(), ns=20, nd=20, sd=5, alpha=0.01, number=10)
res
BicatYeast

Description

Microarray data matrix for 80 experiments with Saccharomyces Cerevisiae organism extracted from BicAT example data set.

Usage

```r
data(BicatYeast)
```

Format

Data structure with information about the expression levels of 419 probesets over 70 conditions. Row names follow Affymetrix probeset notation.

Source

BicAT datasets at http://www.tik.ee.ethz.ch/sop/bicat/

biclust

The biclust Method

Description

The function `biclust` is the main function of the package. It calculates the bicluster in a data matrix using the algorithm specified in the method-argument. Currently the package contains 5 different methods for the use in biclust. For each algorithm see the class help files for further details. For some algorithms preprocessing is necessary, e.g. BCBimax only runs with a logical matrix.

Usage

```r
## S4 method for signature 'matrix,BiclustMethod'
biclust(x, method,...)
```

```r
## S4 method for signature 'matrix,character'
biclust(x, method,...)
```

Arguments

- `x` Data matrix.
- `method` An object of class "BiclustMethod" or a character string with the name of a "BiclustMethod"-class.
- `...` Additional Parameters of the "BiclustMethod"
Value

Returns an object of class Biclust.

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

Biclust-class, BCCC, BCXmotifs, BCPlaid, BCSpectral, BCBimax, BCQuest, BiclustMethod-class

Examples

test <- matrix(rbinom(400, 50, 0.4), 20, 20)
res1 <- biclust(test, method=BCCC(), delta=1.5, alpha=1, number=10)

Description

Biclust is the class structure for results of a bicluster algorithm. It contains all information needed for further processing. The show Method gives the Name of the Algorithm used and the first Bicluster found. The summary Method gives sizes of all bicluster found.

Objects from the Class

Objects can be created by performing a bicluster algorithm via the biclust() function.

Slots

Objects of class Biclust have the following slots:

Parameters: Saves input Parameters in a list
RowxNumber: Logical Matrix which contains 1 in [i,j] if Row i is in Bicluster j
NumberxCol: Logical Matrix which contains 1 in [i,j] if Col j is in Bicluster i
Number: Number of Bicluster
Info: Additional Outputs from the different bicluster algorithms

Details

RowxNumber and NumberxCol are named after the arrangement of the data they contain. The column results are transposed in order to ensure a easy processing.

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>
biclustbarchart

Description

Draws a barchart for a Bicluster result representing the columns.

Usage

biclustbarchart(x, Bicres, which=NULL, ...)

Arguments

x The data matrix
Bicres BiclustResult object with a bicluster result set. If this value is set to NULL, the data matrix is drawn as a heatmap, without any reordering. Default NULL.
which If specified gives the plotting order of the columns from bottom to top
... Additional plot options passed to barchart

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

biclust, BiclustMethod-class

Examples

set.seed(1)
x=matrix(rnorm(900),30,30)
x[1:5,1:5]=rnorm(25,3,0.3)
x[11:15,11:15]=rnorm(25,-3,0.3)
x[21:25,21:25]=rnorm(25,6,0.3)
colnames(x)<-paste("Var.",1:30)
bics <- biclust(x,BCPlaid(), back.fit = 2, shuffle = 3, fit.model = ~m + a + b, iter.startup = 5, iter.layer = 30, verbose = TRUE)
biclustbarchart(x,bics, col="#A3E0D8")
ord<-bicorder(bics, cols=TRUE, rev=TRUE)
biclustbarchart(x,bics,which=ord)
bicluster

Extract Bicluster

Description

Function to extract the bicluster or the row and column numbers from a given bicluster result.

Usage

bicluster(x, BicRes, number= 1:BicRes@Number)
biclusternumber(BicRes, number= 1:BicRes@Number)

Arguments

- **x**: The data matrix
- **BicRes**: BiclustResult object
- **number**: Which bicluster to be extracted

Value

Returns a list containing all extracted bicluster

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

writeclust, writeBiclusterResults

Examples

```r
s2=matrix(rnorm(400),20,20)
s2[12:16,12:16]=rnorm(25,3,0.3)
set.seed(1)
bics <- biclust(s2,BCPlaid(), back.fit = 2, shuffle = 3, fit.model = ~m + a + b, iter.startup = 5, iter.layer = 30, verbose = TRUE)
bicluster(s2, bics)
biclusternumber(bics)
```
biclustmember

Description

Draws a membership graph cluster x columns

Usage

biclustmember(bicResult, x, mid = T, cl_label = "", which=NA,
main = "BiCluster Membership Graph", xlab="Cluster",
color=diverge_hcl(101, h = c(0, 130)), ...)

clustmember(res, x, mid = T, cl_label = "", which=NA,
main = "Cluster Membership Graph", xlab="Cluster",
color=diverge_hcl(101, h = c(0, 130)), ...)

bicorder(bicResult, cols=TRUE, rev=FALSE)

Arguments

- **x**: The data matrix
- **bicResult**: BiclustResult object with a bicluster result set.
- **res**: Cluster Result (is converted into a kcca object)
- **mid**: If TRUE, shows the value of the remaining objects inside the cluster value, else shows both aside each other.
- **cl_label**: Ticks of x-axis
- **which**: If specified gives the plotting order of the columns from bottom to top
- **main**: Gives the title of the plot
- **xlab**: Label of x-axis
- **color**: Range of colors for the plot
- **...**: Additional plot options or if neccessary option for as.kcca
- **cols**: If TRUE orders the column by appearance in the bicluster, else orders the rows.
- **rev**: If TRUE reverses the order

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

- bubbleplot for simultaneous representation of biclusters, parallelCoordinates for single representation of biclusters as lines of gene or condition profiles, drawHeatmap for Heatmap representation of biclusters and biclustbarchart for a barchart.
Examples

```r
set.seed(1)
x=matrix(rnorm(900),30,30)
x[1:5,1:5]=rnorm(25,3,0.3)
x[11:15,11:15]=rnorm(25,-3,0.3)
x[21:25,21:25]=rnorm(25,6,0.3)
colnames(x)<-paste("Var.",1:30)
bics <- biclust(x,BCPlaid(), back.fit = 2, shuffle = 3, fit.model = ~m + a + b, iter.startup = 5, iter.layer = 30, verbose = TRUE)
biclustmember(bics,x)

ord<-bicorder(bics, cols=TRUE, rev=TRUE)
biclustmember(bics,x,which=ord)
```

BiclustMethod-class

The BiclustMethod Virtual Class

Description

BiclustMethod is the virtual class structure for algorithms provided in the package. In order to use the biclust() function a algorithm has to have a class inherit from here.

Algorithms

Currently 6 classes inherit from BiclustMethod: BCCC, BCXmotifs, BCPlaid, BCSpectral, BCBimax, BCQuest

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

biclust, Biclust-class, BCCC, BCXmotifs, BCPlaid, BCSpectral, BCBimax, BCQuest, BiclustMethod-class
bimax.grid

Parameter Grid for BCBimax Biclustering

Description

Generates a list containing parameter settings for the ensemble algorithm.

Usage

```
bimax.grid(method = "BCBimax", minr = c(10, 11), minc = c(10, 11), number = 10)
```

Arguments

- `method`: Here BCBimax, to perform Bimax algorithm
- `minr`: Minimum row size of resulting bicluster.
- `minc`: Minimum column size of resulting bicluster.
- `number`: Number of Bicluster to be found.

Value

A list containing parameter settings

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

`ensemble`, `BCBimax`

Examples

```
bimax.grid()
```

binarize

Binarize

Description

Methods to convert a real matrix to a binary matrix.

Usage

```
binarize(x, threshold=NA)
binarizeByPercentage(x, percentage, error=0.2, gap=0.1)
densityOnes(x)
```
Arguments

- **x**: The data matrix to be binarized.
- **threshold**: Threshold used to binarize. Values over threshold will be set to 1, the rest to 0. If threshold is NA, median is used as threshold. Default NA.
- **percentage**: Percentage of ones against zeros desired in the binary matrix.
- **error**: Percentage of ones against zeros in the final matrix will be in \([\text{percentage}-\text{error}, \text{percentage}+\text{error}]\). Default 0.2
- **gap**: Value used for incremental search of threshold. Default 0.1

Details

The `binarize` function returns a matrix binarized by input threshold, or by the median if no threshold is given.

The `binarizeByPercentage` function returns a matrix binarized by input percentage, given as desired density of ones against zeros.

The `densityOnes` function returns the percentage of ones against zeros in a logical matrix.

Author(s)

Rodrigo Santamaria <rodri@usal.es>

Examples

```r
data(BicatYeast)
m1 = binarize(BicatYeast)
m2 = binarize(BicatYeast, 0.2)
m3 = binarizeByPercentage(BicatYeast, 5)
densityOnes(m3)
densityOnes(m2)
densityOnes(m1)
drawHeatmap(BicatYeast)
drawHeatmap(m1)
drawHeatmap(m2)
drawHeatmap(m3)
```

Description

Draws a bubble plot where each bicluster is represented as a circle (bubble). Color represents the bicluster set to which bicluster pertains (up to three bicluster sets can be represented simultaneously). Brightness represents the bicluster homogeneity (darker, less homogeneous). Size represents the size of the bicluster, as (number of genes) x (number of conditions). Location is a 2D-projection of gene and condition profiles.
Usage

bubbleplot(x, bicResult1, bicResult2=NULL, bicResult3=NULL, projection="mean",
showLabels=FALSE)

Arguments

x The data matrix from which biclusters were identified.
bicResult1 BiclustResult object with a bicluster result set whose biclusters will be drawn in
green.
bicResult2 BiclustResult object with an optional second bicluster result set. Will be drawn
in red (default NULL)
bicResult3 BiclustResult object with an optional third bicluster result set. Will be drawn in
blue (default NULL)
projection Projection algorithm used to position bubbles. Allowed projections are 'mean',
'isomds' and 'cmdscale' (default 'mean'). See details section for a broader ex-
planation.
showLabels If 'TRUE', puts a label over each bubble that tells the number within the corre-
sponding bicluster result (default 'FALSE').

Details

Position of circles depend on a 2D projection of the multidimensional point formed by rows and
columns present in the bicluster. For example, if we have a 3x3 matrix to analyze and we find
a bicluster with rows 1 and 3 and columns 2 and 3, the corresponding multidimensional point
will be p=(1,0,1,0,1,1). For this example, 'mean' projection will map the bicluster with the point
x=(1+3)/2=2 and y=(2+3)/2=2.5. Other projections will take the point p and project it following the
corresponding algorithms (see the corresponding help pages for details).

Note

Bubbleplot 2D-projection, as any multidimensional scaling, loses information, trying to take the
main relationships and trends of n-dimensional data. Thus, locations and intersections between
bubbles-biclusters are only an estimate of its similarity. This visualization should be used just as a
help to understand overall behavior of biclustering methods, detect trends and outliers, etc.

Author(s)

Rodrigo Santamaria <rodri@usal.es>

See Also

drawHeatmap for single representation of biclusters inside data matrix, parallelCoordinates for
single representation of biclusters as lines of gene or condition profiles, cmdscale,isomds for
multidimensional scaling and plot for other point representations.
Examples

```r
#Simplified yeast microarray data
## Not run:
data(BicatYeast)
set.seed(1)
bics1 <- biclust(BicatYeast,BCPlaid(), back.fit = 2, shuffle = 3, fit.model = ~m + a + b,
row.release = 0.7, col.release = 0.7,
verbose = FALSE, max.layers = 10, iter.startup = 5,
iter.layer = 30)
bubbleplot(BicatYeast,bics1, showLabels=TRUE)

loma=binarize(BicatYeast,2)
bics2=biclust(loma,BCBimax(), minr=4, minc=4, number=10)
bubbleplot(BicatYeast,bics1,bics2)
## End(Not run)
```

ChiaKaruturi

Chia and Karuturi Function

Description

Function computing scores as described in the paper of Chia and Karuturi (2010)

Usage

ChiaKaruturi(x, bicResult, number)

Arguments

- `x`: Data Matrix
- `bicResult`: Biclust object from biclust package
- `number`: Number of bicluster in the output for computing the scores

Details

The function computes row (T) and column (B) effects for a chosen bicluster. The scores for columns within bicluster have index 1, the scores for columns outside the bicluster have index 2. Ranking score is SB, stratification score is TS.

Value

Data.Frame with 6 slots: T, B scores for within and outside bicluster, SB and TS scores

Author(s)

Tatsiana KHAMIASKOVA <tatsiana.khamiakova@uhasselt.be>
coherence

References

goodness of biclusters and compare biclustering algorithms. Algorithms for Molecular Biology, 5, 23.

See Also

diagnosticPlot, computeObservedFstat, diagnoseColRow

Examples

```r
#---simulate dataset with 1 bicluster ---#
xmat<-matrix(rnorm(50*50,0,0.25),50,50) # background noise only
rowSize <- 20 # number of rows in a bicluster
colSize <- 10 # number of columns in a bicluster
a1<-rnorm(rowSize,1,0.1) # sample row effect from N(0,0.1)
b1<-rnorm(colSize,2,0.25) # sample column effect from N(0,0.05)
mu<-0.01 # constant value signal
for (i in 1 : rowSize){
  for(j in 1 : (colSize)){
    xmat[i,j] <- xmat[i,j] + mu + a1[i] + b1[j]
  }
}

#--obtain a bicluster by running an algorithm---#
plaidmab <- biclust(x=xmat, method=BCPlaid(), cluster="b", fit.model = y ~ m + a+ b,
background = TRUE, row.release = 0.6, col.release = 0.7, shuffle = 50, back.fit = 5,
max.layers = 1, iter.startup = 100, iter.layer = 100, verbose = TRUE)

#Get Chia and Karuturi scores:
ChiaKaruturi(x=xmat, bicResult = plaidmab, number = 1)
```

<table>
<thead>
<tr>
<th>coherence</th>
<th>Coherence measures</th>
</tr>
</thead>
</table>

Description

Different preliminary measures of how much constant or (additive, multiplicative, sign) coherent a
bicluster is, following Madeira and Oliveira classification of biclusters.

Usage

constantVariance(x, resultSet, number, dimension="both")
additiveVariance(x, resultSet, number, dimension="both")
multiplicativeVariance(x, resultSet, number, dimension="both")
signVariance(x, resultSet, number, dimension="both")
Arguments

x The data matrix from which biclusters were identified
resultSet BiclustResult object with a bicluster result set where is the bicluster to measure
number Number of the bicluster within the result set
dimension "both" for determining overall variance, "row" for gene variance and "col" for column variance. Default "both"

Details

Returns the corresponding variance of genes or conditions as the average of the sum of euclidean distances between all rows and/or columns of the bicluster. For additive, multiplicative and sign variance first a transformation of the bicluster is done, so variance is computed on a matrix that reflects difference, rest or change of sign between rows, columns or both.

The lower the value returned, the more constant or coherent the bicluster is. If the value returned is 0, the bicluster is ideally constant or coherent. Usually, a value above 1-1.5 is enough to determine the bicluster is not constant or coherent.

Note

There are preliminary measures for coherence. Since transformations are different, measures are not normalized and comparison between, for example, additive and multiplicative variance is not meaningful. Only comparisons between different measures of the same kind of variance are reliable by now.

Author(s)

Rodrigo Santamaria <rodri@usal.es>

Examples

#Simplified yeast microarray data
data(BicatYeast)
set.seed(1)
bics1 <- biclust(BicatYeast, BCPlaid(), back.fit = 2, shuffle = 3, fit.model = ~m + a + b, row.release = 0.7, col.release = 0.7, verbose = FALSE, max.layers = 10, iter.startup = 5, iter.layer = 30)
constantVariance(BicatYeast, bics1,1,"row")
constantVariance(BicatYeast, bics1,1,"col")
constantVariance(BicatYeast, bics1,1,"both")
additiveVariance(BicatYeast, bics1,1,"both")
multiplicativeVariance(BicatYeast, bics1,1,"both")
signVariance(BicatYeast, bics1,1,"both")
computeObservedFstat Diagnostic F Statistic Calculation

Description

Functions for obtaining F statistics within bicluster and the significance levels. The main effects considered are row, column and interaction effect.

Usage

computeObservedFstat(x, bicResult, number)

Arguments

x Data Matrix
bicResult Bicluster object from biclust package
number Number of bicluster in the output for computing observed statistics

Details

F-statistics are calculated from the two-way ANOVA mode with row and column effect. The full model with interaction is unidentifiable, thus, Tukey’s test for non-additivity is used to detect an interaction within a bicluster. p-values are obtained from asymptotic F distributions.

Value

Data frame with three rows ("Row Effect", "Column Effect", "Tukey test") and 2 columns for corresponding statistics (Fstat) and their p-values (PValue). 2

Author(s)

Tatsiana KHAMIAKOVA <tatsiana.khamiakova@uhasselt.be>

See Also

diagnosticTest, diagnosticPlot2, ChiaKaruturi, diagnoseColRow

Examples

#---simulate dataset with 1 bicluster ---#
xmat<-matrix(rnorm(50*50,0,0.25),50,50) # background noise only
rowSize <- 20 #number of rows in a bicluster
colSize <- 10 #number of columns in a bicluster
a1<-rnorm(rowSize,1,0.1) #sample row effect from N(0,0.1) #adding a coherent values bicluster:
b1<-rnorm((colSize),2,0.25) #sample column effect from N(0,0.05)
mu<-0.01 #constant value signal
for (i in 1 : rowSize){
 for(j in 1 : (colSize)){

```
diagnoseColRow

```r
xmat[i,j] <- xmat[i,j] + mu + a1[i] + b1[j]
```

#--obtain a bicluster by running an algorithm---#
plaidmab <- biclust(x=xmat, method=BCPlaid(), cluster="b", fit.model = y ~ m + a+ b, background = TRUE, row.release = 0.6, col.release = 0.7, shuffle = 50, back.fit = 5, max.layers = 1, iter.startup = 100, iter.layer = 100, verbose = TRUE)

#Calculate statistics and their p-values to infer about the structure within bicluster:
Structure <- computeObservedFstat(x=xmat, bicResult = plaidmab, number = 1)

---

### Bootstrap Procedure for Bicluster Diagnostics

**Description**

Calculate the significance of the discovered pattern in the data based on the bootstrapping procedure.

**Usage**

```r
diagnoseColRow(x, bicResult, number, nResamplings, replace = TRUE)
```

**Arguments**

- `x` data matrix, which `biclust` function was applied to
- `bicResult` object of class `biclust`, containing result of a biclustering algorithm
- `number` number of bicluster from the output for the diagnostics
- `nResamplings` number of bootstrap replicates
- `replace` logical flag for bootstrap (TRUE), or sampling without replacement (FALSE)

**Details**

The function computes observed F statistics for row and column effect based on two-way ANOVA model. Bootstrap procedure is used to evaluate the significance of discovered bicluster. Based on `nResamplings` replicates, the distribution of F statistics for row and column effects are obtained. The p-value is computed as

$$P(A) = \frac{\# \{ F^*(A)_b > F(A)_{obs} \} }{nResamplings + 1}$$

Low p-values denote non-random selection of columns for a given bicluster. Large p-values show that in other columns for a given set of genes in the bicluster structure is similar. Hence, bicluster columns were just randomly picked by an algorithm for a set of co-regulated genes.
Value

bootstrapFstats
matrix with two columns, containing values of bootstrap F-statistics. The first
column corresponds to row, the second column corresponds to column.

observedFstatRow
observed F-statistics for the row effect

observedFstatCol
observed F-statistics for the column effect

bootstrapPvalueRow
bootstrap p value for row effect

bootstrapPvalueCol
bootstrap p value for column effect

Author(s)

Tatsiana KHAMIAKOVA <tatsiana.khamiakova@uhasselt.be>

See Also

diagnosticTest, diagnosticPlot2, diagnosticPlot, computeObservedFstat, ChiaKaruturi

Examples

#---simulate dataset with 1 bicluster ---#
xmat<-matrix(rnorm(50*50,0,0.25),50,50) # background noise only
rowSize <- 20 #number of rows in a bicluster
colSize <- 10 #number of columns in a bicluster
a1<-rnorm(rowSize,1,0.1) #sample row effect from N(0,0.1) #adding a coherent values bicluster:
b1<-rnorm((colSize),2,0.25) #sample column effect from N(0,0.05)
mu<-0.01 #constant value signal
for ( i in 1 : rowSize){
  for(j in 1: (colSize)){
    xmat[i,j] <- xmat[i,j] + mu + a1[i] + b1[j]
  }
}

#--obtain a bicluster by running an algorithm---#
plaidmab <- biclust(x=xmat, method=BCPlaid(), cluster="b", fit.model = y ~ m + a+ b,
background = TRUE, row.release = 0.6, col.release = 0.7, shuffle = 50, back.fit = 5,
max.layers = 1, iter.startup = 100, iter.layer = 100, verbose = TRUE)

#Run bootstrap procedure:
Bootstrap <- diagnoseColRow(x=xmat, bicResult = plaidmab, number = 1, nResamplings = 999,
replace = TRUE)
diagnosticPlot(bootstrapOutput = Bootstrap) # plotting distribution of bootstrap replicates
diagnosticPlot  

Diagnosis F Statistics Visualization

Description

Plots distributions of bootstrap replicates of F-statistics for row and column effect and highlights the observed statistics.

Usage

diagnosticPlot(bootstrapOutput)

Arguments

- bootstrapOutput: output of diagnoseColRow function, containing bootstrap replicates and observed F-statistics

Value

No value is returned. The plot is constructed in a current device.

Author(s)

Tatsiana KHAMIACKOVA <tatsiana.khamiakova@uhasselt.be>

See Also

diagnoseColRow, computeObservedFstat

Examples

```r
#---simulate dataset with 1 bicluster ---#
xmat<-matrix(rnorm(50*50,0,0.25),50,50) # background noise only
rowSize <- 20 # number of rows in a bicluster
colSize <- 10 # number of columns in a bicluster
a1<-rnorm(rowSize,1,0.1) # sample row effect from N(0,0.1) # adding a coherent values bicluster:
b1<-rnorm((colSize),2,0.25) # sample column effect from N(0,0.05)
mu<-0.01 # constant value signal
for (i in 1 : rowSize){
 for(j in 1 : (colSize)){
 xmat[i,j] <- xmat[i,j] + mu + a1[i] + b1[j]
 }
}
#--obtain a bicluster by running an algorithm---#
plaidmab <- biclust(x=xmat, method=BCPlaid(), cluster="b", fit.model = y ~ m + a+ b, background = TRUE, row.release = 0.6, col.release = 0.7, shuffle = 50, back.fit = 5, max.layers = 1, iter.startup = 100, iter.layer = 100, verbose = TRUE)
```
# Run bootstrap procedure:
Bootstrap <- diagnoseColRow(x=xmat, bicResult = plaidmab, number = 1,
  nResamplings = 999, replace = TRUE)

# plotting distribution of bootstrap replicates
diagnosticPlot(bootstrapOutput = Bootstrap)

diagnosticPlot2  

**Diagnostics F Statistics Visualization**

**Description**

Plots distributions of bootstrap replicates of F-statistics for row, column and multiplicative effects obtained from `diagnosticTest` (when `save_F=TRUE`). Contains an option to highlight the observed statistics.

**Usage**

diagnosticPlot2(diagnosticTest, number = 1, StatVal = TRUE,
  binwidth = NULL)

**Arguments**

- **diagnosticTest** output of `diagnosticTest` with `save_F=TRUE` which contains the F-statistics and sampling replicates.
- **number** Number of which BC to plot. This needs to be one of the Biclusters requested in `diagnosticTest`.
- **StatVal** Boolean value to draw the observed statistic on the distribution plots.
- **binwidth** The width of the bins.

**Value**

Returns a `ggplot` object.

**Author(s)**

Ewoud De Troyer

**Examples**

```r
Not run:
#Random matrix with embedded bicluster (with multiplicative effect)
test <- matrix(rnorm(5000),100,50)
```
roweff <- sample(1:5,10,replace=TRUE)
coleff <- sample(1:5,10,replace=TRUE)
  matrix(coleff,nrow=10,ncol=10,byrow=TRUE) +
  matrix(roweff,nrow=10,ncol=10) +
  roweff %*% t(coleff)

#Apply Plaid Biclustering
res <- biclust(test, method=BCPlaid())

#Apply default diagnosticTest
out <- diagnosticTest(BCresult=res, data=test, save_F=TRUE, number=1,
  statistics=c("F","Tukey"), samplingtypes=c("Permutation","SemiparPerm","SemiparBoot","PermutationCor","SamplingCor","NormSim"))

#Plot Distributions
diagnosticPlot2(out,number=1)

## End(Not run)

diagnosticTest | Testing Procedure for Bicluster Diagnostics

**Description**

Calculate the statistical value of the row, column and multiplicative effect based on discovered biclusters in the data. Additionally multiple sampling methods are available to compute the statistical significance through p-values.

**Usage**

```r
diagnosticTest(BCresult, data, number = 1:BCresult@Number, verbose = TRUE, statistics = c("F","Tukey"), sampling = TRUE, samplingtypes = NULL, nSim = 1000, alpha = 0.05, save_F = FALSE)
```

**Arguments**

- **BCresult**: An object of class biclust containing the result of a biclustering algorithm
- **data**: data matrix, which biclust function was applied to
- **number**: Vector of bicluster numbers of which the diagnostics should be calculated. (default = all available biclusters)
- **verbose**: Boolean value to print progression of computed statistics.
- **statistics**: Vector select which statistics to compute. (default = c("F","Tukey"))
  - "F" (Row and column F statistics of two-way ANOVA with one replicate for cell)
• "Tukey" (Tukey’s test for non-additivity)
• "ModTukey" (mtukey.test)
• "Tusell" (tusell.test)
• "Mandel" (mandel.test)
• "LBI" (lbi.test)
• "JandG" (johnson.graybill.test)

`sampling` Boolean value to apply sampling methods to compute statistical significance (default=TRUE). If FALSE only the "Theoretical" p-values are computed. If TRUE, both the "Theoretical" and sampling types p-values are computed.

`samplingtypes` Vector of sampling methods for sampling=TRUE. (default=NULL=c("Permutation","SemiparPerm"))

• "Permutation"
• "SemiparPermutation"
• "SemiparPerm"
• "SemiparBoot"
• "PermutationCor"
• "SamplingCor"
• "NormSim"

See Details for more info.

`nSim` Number of permutations/bootstraps.

`alpha` Significance level (default=0.05)

`save_F` Option to save the permuted/bootstrapped statistics. This is necessary for `diagnosticPlot2`

Details

Due to the uncertainty of discovering the true bicluster(s) in the data, it’s often advisable to not rely on the theoretical p-values but instead retrieve the p-values through a sampling procedure.

Available p-values/sampling types for each statistical method:

• "F": "Theoretical" and "Permutation" for both row and column effect.
• "Tukey": "Theoretical", "SemiparPerm" and "SemiparBoot".
• "ModTukey": "Theoretical", "SemiparPerm", "SemiparBoot", "PermutationCor" and "SamplingCor".
• "Tusell": "SemiparPerm", "SemiparBoot" and "NormSim".
• "Mandel": "Theoretical", "SemiparPerm" and "SemiparBoot".
• "LBI": "SemiparPerm", "SemiparBoot" and "NormSim".
• "JandG": "SemiparPerm", "SemiparBoot" and "NormSim".

More info on the sampling types can be found in the section below. If available, the "Theoretical" will always be computed. By default when sampling=TRUE, a sampling method without replacement is chosen, namely "Permutation" and "SemiparPerm".

When `save_F`=TRUE, the null distributions of the statistics can be visualised with `diagnosticPlot2`.

Disclaimer: While their functionality did not change, some functions of the `additivityTests` package were altered in order to be able to return the permuted/bootstrapped statistics and p-values.
Value

Returns a list with `length(number)` elements. Each element corresponds with the requested biclusters and is a list containing:

- **table**: a data frame where each row is statistics and sampling types (including theoretical combination). The data frame contains the `Method`, `Type` (p-value type), `StatVal` (statistical value), `CritVal` (critical value), `pVal` and `Sign` (0/1 significance indicator based on `alpha`).

- **save_F**: if `save_F=TRUE`, a (nSim x number of permuted/bootstrapped p-values) matrix contained the sampled statistics.

Sampling Types

For each sampling type a permuted/bootstrapped BC is created as following:

- **"Permutation"**: Sample a BC from the entire dataset with replacement.

- **"SemiparPerm"**: A semi-parametric permutation procedure. Two-way ANOVA is applied on the original BC and the residual matrix extracted. A new residual matrix is created by sampling without replacement from the original residual matrix. The sampled BC is then generated by adding this sampled residual matrix on top the mean, row and column effect of the ANOVA procedure of the original BC.

- **"SemiparBoot"**: A semi-parametric bootstrapping procedure. Two-way ANOVA is applied on the original BC and the residual matrix extracted. A new residual matrix is created by sampling with replacement from the original residual matrix. The sampled BC is then generated by adding this sampled residual matrix on top the mean, row and column effect of the ANOVA procedure of the original BC.

- **"PermutationCor"**: See `correction=1` parameter of `mtukey.test`. More info in Simecek and Simeckova (2012).

- **"SamplingCor"**: See `correction=2` parameter of `mtukey.test`. More info in Simecek and Simeckova (2012).

- **"NormSim"**: Sample a BC from a standard normal distribution. This sampling procedure is used for some methods in the `additivityTests` package.

Author(s)

Ewoud De Troyer

References


discretize

Examples

```r
Not run:
#Random matrix with embedded bicluster (with multiplicative effect)
test <- matrix(rnorm(5000),100,50)
roweff <- sample(1:5,10,replace=TRUE)
colleff <- sample(1:5,10,replace=TRUE)
 matrix(coleff,nrow=10,ncol=10,byrow=TRUE) +
 matrix(roweff,nrow=10,ncol=10) +
 roweff %*% t(coleff)

#Apply Plaid Biclustering
res <- biclust(test, method=BCPlaid())

#Apply default diagnosticTest
out <- diagnosticTest(BCresult=res, data=test, save_F=TRUE, number=1,
 statistics=c("F","Tukey","ModTukey","Tusell","Mandel","LBI","JandG"),
 samplingtypes=c("Permutation","SemiparPerm","SemiparBoot",
 "PermutationCor","SamplingCor","NormSim"))

out[[1]]$table
End(Not run)
```

---

**discretize**  
*Create a discret matrix*

**Description**

Some biclustering algorithms need a discret matrix to perform well. This function delivers a discret matrix with either a given number of levels of equally spaced intervals from minimum to maximum, or levels of same size using the quantiles.

**Usage**

discretize(x,nof=10,quant=FALSE)

**Arguments**

- **x**  
The data matrix from which should be dicretized
- **nof**  
Number of levels
- **quant**  
If TRUE using the quantiles, else using equally spaced levels
Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

Examples

```r
Discretize yeast microarray data
data(BicatYeast)
discretize(BicatYeast[1:10,1:10])
```

drawHeatmap  

Draw Heatmap

Description

Draws a microarray data matrix as a heatmap, with rows and columns reordered so the rows and columns of the input bicluster will be at top-left of the matrix.

Usage

```r
drawHeatmap(x, bicResult=NULL, number=NA, local=TRUE, beamercolor=FALSE, paleta,...)
drawHeatmap2(x, bicResult=NULL, number=NA, plotAll=FALSE)
```

Arguments

- `x`: The data matrix where the bicluster is to be drawn.
- `bicResult`: BiclustResult object with a bicluster result set. If this value is set to NULL, the data matrix is drawn as a heatmap, without any reordering. Default NULL.
- `number`: Bicluster to be drawn from the result set `bicResult`. If `bicResult` is set to NULL, this value is ignored. Default NA.
- `local`: If TRUE, only rows and columns of the bicluster were drawn. Default NA.
- `plotAll`: If TRUE, all Bicluster of result set `bicResult` were drawn. Default FALSE.
- `beamercolor`: If TRUE, palette colors are used.
- `paleta`: Colors
- `...`: Additional plot options

Details

'plotAll' only works if there is a exclusive rows and column Result!

Author(s)

Rodrigo Santamaria <rodri@usal.es>, Sebastian Kaiser
See Also

`bubbleplot` for simultaneous representation of biclusters. `parallelCoordinates` for single representation of biclusters as lines of gene or condition profiles.

Examples

```r
#Random 100x50 matrix with a single, up-regulated 10x10 bicluster
s2=matrix(rnorm(5000),100,50)
s2[11:20,11:20]=rnorm(100,3,0.3)
set.seed(1)
bics <- biclust(s2,BCPlaid(), back.fit = 2, shuffle = 3, fit.model = ~m + a + b, iter.startup = 5, iter.layer = 30, verbose = TRUE)
drawHeatmap(s2,bics,1)
```

Data frame with information about the expression levels of 6221 genes over 80 conditions. Missing values have been imputed using k-nearest neighbor averaging implemented in impute.knn() from library 'impute' (using default k=10). Gene names follow ORF (Open Reading Format) notation.

Source

Eisen Lab at http://rana.lbl.gov/EisenData.htm
Description

Calculates an ensemble of biclusters from different parameter setting of possible different bicluster algorithms.

Usage

ensemble(x, confs, rep = 1, maxNum = 5, similar = jaccard2, thr = 0.8, simthr = 0.7, subs = c(1, 1), bootstrap = FALSE, support = 0, combine = firstcome, ...)

Arguments

x Data Matrix
confs Matrix containing parameter sets
rep Number of repetitions for each parameter set
maxNum Maximum number of biclusters taken from each run
similar Function to produce a similarity matrix of bicluster
thr Threshold for similarity
simthr Proportion of row column combinations in bicluster
subs Vector of proportion of rows and columns for subsampling. Default c(1,1) means no subsampling.
bootstrap Should bootstrap sampling be used (logical: replace=bootstrap).
support Which proportion of the runs must contain the bicluster to have enough support to report it (between 0 and 1).
combine Function to combine the single bicluster only firstcome and hcl for hierarchical clustering are possible at the moment.
... Arguments past to the combine function.

Details

Two different kinds (or both combined) of ensembling is possible. Ensemble of repeated runs or ensemble of runs on subsamples.

Value

Return an object of class Biclust

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>
See Also

Biclust-class, plaid.grid, bimax.grid

Examples

## Not run:
data(BicatYeast)
ensemble.plaid <- ensemble(BicatYeast,plaid.grid()[1:5],rep=1,maxNum=2, thr=0.5, subs = c(1,1))
ensemble.plaid
x <- binarize(BicatYeast)
ensemble.bimax <- ensemble(x,bimax.grid(),rep=10,maxNum=2,thr=0.5, subs = c(0.8,0.8))
ensemble.bimax
## End(Not run)

heatmapBC  

Overlapping Heatmap

Description

Other than drawHeatmap this function plots all or a chosen number of bicluster in one plot even if they were overlapping.

Usage

heatmapBC(x, bicResult, number = 0, local = TRUE, order = FALSE, 
outside = FALSE, ...)

Arguments

x  The data matrix where the bicluster is to be drawn.
bicResult  BiclustResult object with a bicluster result set.
number  Number of bicluster to be drawn from the result set 'bicResult'. If the default 0 is chosen all bicluster of the bicResult are drawn.
local  If TRUE, only rows and columns of the bicluster are drawn. This argument is only used if number is not set to 0.
order  If TRUE, rows and columns are ordered by their values.
outside  If TRUE, Boxes are drawn for overlapping
...  Additional plot options

Details

Overlap plotting only works for two neighbor bicluster defined by the order in the number slot.
isoverlapp

Author(s)
Sebastian Kaiser

See Also
drawHeatmap, parallelCoordinates

Examples

```r
set.seed(1234)
data(BicatYeast)
resplaid <- biclust(BicatYeast, BCPlaid(), verbose = FALSE)
heatmapBC(x = BicatYeast, bicResult = resplaid)
```

<table>
<thead>
<tr>
<th>isoverlapp</th>
<th>Is Bicresult overlapping?</th>
</tr>
</thead>
</table>

Description
Checks if Biclusterresult includes overlapping rows or columns

Usage

```
isoverlapp(bicResult)
```

Arguments
bicResult Result of biclust function

Value

- Overlapping Is there overlapping
- Max.bicluster.Rows Maximal number of bicluster a single row is in
- Max.bicluster.Cols Maximal number of bicluster a single col is in

Author(s)
Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also
drawHeatmap
Description

An adaptation of the Jaccard Index for clustering is calculated.

Usage

\texttt{jaccardind(bicres1, bicres2)}
\texttt{jaccard2(Rows, Cols)}

Arguments

- \texttt{bicres1}: A object of class Biclust
- \texttt{bicres2}: A object of class Biclust
- \texttt{Rows}: Matrix containing rows of biclusters
- \texttt{Cols}: Matrix containing cols of biclusters

Details

The function calculates the percentage of datapoints in the same bicluster structure from all datapoints at least included in one bicluster.

Value

\texttt{jaccardind} calculates the Jaccard index \texttt{jaccard2} returns a similarity matrix containing the Jaccard index between all biclusters (upper triangle matrix)

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

Examples

```r
Not run:
data(BicatYeast)
res1<-biclust(BicatYeast, method=BCPlaid(), back.fit = 2, shuffle = 3,
 fit.model = ~m + a + b, iter.startup = 5, iter.layer = 30, verbose = TRUE)
res2<-biclust(BicatYeast, method=BCCC())
jaccardind(res1,res2)
```

## End(Not run)
parallelCoordinates  Parallel Coordinates

Description

Represents expression levels through gene and/or condition profiles in a bicluster as lines.

Usage

parallelCoordinates(x, bicResult, number, plotBoth = FALSE, plotcol = TRUE,
compare = TRUE, info = F, bothlab = c("Rows", "Columns"), order = FALSE,
order2 = 0, ylab = "Value", col=1,...)

Arguments

x  The data matrix of the bicluster to be drawn
bicResult  BiclustResult object with a bicluster result set
number  Bicluster to be drawn from the result set 'bicResult'
plotBoth  If 'TRUE', Parallel Coordinates of rows (Genes) and columns (Conditions) were
drawn one below the other.
plotcol  If 'TRUE', columns profiles are drawn, so each line represents one of the columns
in the bicluster. Otherwise, row profiles are drawn. Default 'TRUE'
compare  If 'TRUE', values of the complete data matrix are considered and drawn as
shaded lines. Default 'TRUE'
info  If 'TRUE', a prepared Title is drawn
bothlab  Names of the x Axis if PlotBoth
order  Rows and/or Columns are in increasing order.
order2  Which ordering.
ylab  ylab
col  col
...  Plot Parameters

Author(s)

Rodrigo Santamaria, Martin Sill and Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

drawHeatmap for alternative representation of biclusters and bubbleplot for simultaneous representation of biclusters.
Examples

#Random 100x50 matrix with a single, up-regulated 10x10 bicluster
s2=matrix(rnorm(5000),100,50)
s2[11:20,11:20]=rnorm(100,3,0.3)
set.seed(1)
bics <- biclust(s2,BCPlaid(), back.fit = 2, shuffle = 3, fit.model = ~m + a + b, iter.startup = 5, iter.layer = 30, verbose = TRUE)
parallelCoordinates(x=s2,bicResult=bics,number=1, plotBoth=TRUE, plotcol=TRUE, compare=TRUE, info=TRUE)
parallelCoordinates(x=s2,bicResult=bics,number=1, plotBoth=FALSE, plotcol=TRUE, compare=FALSE, info=TRUE)

plaid.grid

Parameter Grid for BCPlaid Biclustering

Description

Generates a list containing parameter settings for the ensemble algorithm.

Usage

plaid.grid(method = "BCPlaid", cluster = "b", fit.model = y ~ m + a + b, background = TRUE, background.layer = NA, background.df = 1, row.release = c(0.5, 0.6, 0.7), col.release = c(0.5, 0.6, 0.7), shuffle = 3, back.fit = 0, max.layers = 20, iter.startup = 5, iter.layer = 10, verbose = FALSE)

Arguments

method Here BCPlaid, to perform Plaid algorithm
cluster 'r', 'c' or 'b', to cluster rows, columns or both (default 'b')
fit.model Model (formula) to fit each layer. Usually, a linear model is used, that estimates three parameters: m (constant for all elements in the bicluster), a (constant for all rows in the bicluster) and b (constant for all columns). Thus, default is: y ~ m + a + b.
background If 'TRUE' the method will consider that a background layer (constant for all rows and columns) is present in the data matrix.
background.layer If background='TRUE' a own background layer (Matrix with dimension of x) can be specified.
background.df Degrees of Freedom of background layer if background.layer is specified.
shuffle Before a layer is added, its statistical significance is compared against a number of layers obtained by random defined by this parameter. Default is 3, higher numbers could affect time performance.
plotclust

iter.startup Number of iterations to find starting values
iter.layer Number of iterations to find each layer
back.fit After a layer is added, additional iterations can be done to refine the fitting of the layer (default set to 0)
row.release Scalar in [0,1][with interval recommended [0.5-0.7)] used as threshold to prune rows in the layers depending on row homogeneity
col.release As above, with columns
max.layers Maximum number of layer to include in the model
verbose If 'TRUE' prints extra information on progress.

Value
A list containing parameter settings

Author(s)
Sebastian Kaiser <sebastian.kaiser@stat.stat.uni-muenchen.de>

See Also
ensemble, BCPlaid

Examples
plaid.grid()

plotclust Barplot of Bicluster

Description
Draws a graph to compare the values inside the different biclusters with the values outside the bicluster

Usage
plotclust(res, x, bicluster=TRUE, legende=FALSE, noC=5, wyld=3, Titel="Plotclust", ...)

Arguments
x The data matrix
res BiclustResult object if bicluster=TRUE else a normal kcca object.
bicluster If TRUE,res is treated as a BiclustResult object
legende Draws a legend.
noC Number of Clusters drawn
wyld Gives the distance between plot and axis.
Titel Gives the title of the plot.
... Additional plot options
predictBimax

Author(s)
Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also
bubbleplot for simultaneous representation of biclusters. parallelCoordinates for single representation of biclusters as lines of gene or condition profiles. drawHeatmap for Heatmap representation of biclusters.

Examples

s2 = matrix(rnorm(400), 20, 20)
s2[12:16, 12:16] = rnorm(25, 3, 0.3)
set.seed(1)
bics <- biclust(s2, BCPlaid(), back.fit = 2, shuffle = 3, fit.model = ~m + a + b,
iter.startup = 5, iter.layer = 30, verbose = TRUE)
plotclust(bics, s2)

predictBimax(BCrepBimax, x)

Arguments
BCrepBimax Result of biclust function with method BCrepBimax
x The data matrix which clustermembership should be predicted

Value
Returns a vector with clustermembership of data x of class.

Author(s)
Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also
BCrepBimax
**writeBiclusterResults**

<table>
<thead>
<tr>
<th>SyntrenEcoli</th>
<th>SynTReN E. coli</th>
</tr>
</thead>
</table>

**Description**

Synthetic microarray data matrix generated by Syntren for 20 experiments using 200 genes from Transcription Regulatory Network of Shen-Orr et al. (2002).

**Usage**

```r
data(SyntrenEcoli)
```

**Format**

Data structure with information about the expression levels of 200 genes over 20 conditions. Conditions are named as C1... C20

**Source**

SynTReN software can be downloaded at http://homes.esat.kuleuven.be/~kmarchal/SynTReN/index.html

**References**


---

**writeBiclusterResults**

**Description**

Write bicluster results to a file

**Usage**

```r
writeBiclusterResults(fileName, bicResult, bicName, geneNames, arrayNames, append=FALSE, delimiter=" ")
```
Arguments

fileName Path to the file were biclusters are written.
bicResult Biclusters results as a Biclust class.
bicName Brief description for the biclustering algorithm used.
geneNames Array of strings with gene (row) names in the analyzed data matrix
arrayNames Array of strings with condition (column) names in the analyzed data matrix
append If true, adds the bicluster results to previous information in the text file, if it exists. Default false.
delimiter delimiter string between gene and condition names. Default " ".

Author(s)

Rodrigo Santamaria <rodri@usal.es>

Examples

## Not run:
data(BicatYeast)
res <- biclust(BicatYeast, method=BCCC(), delta=1.5, alpha=1, number=10)
writeBiclusterResults("results.txt", res,"CC with delta 1.5", dimnames(BicatYeast)[1][[1]],
dimnames(BicatYeast)[2][[1]])

## End(Not run)
Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

Examples

```r
s2 = matrix(rnorm(400), 20, 20)
s2[12:16, 12:16] = rnorm(25, 3, 0.3)
set.seed(1)
bics <- biclust(s2, BCPlaid(), back.fit = 2, shuffle = 3, fit.model = ~m + a + b,
iter.startup = 5, iter.layer = 30, verbose = TRUE)
writeclust(bics)
```
Index

* **array**
  - binarize, 17
  - coherence, 21
  - writeBiclusterResults, 42
* **bicluster**
  - diagnoseColRow, 24
* **bootstrap**
  - diagnoseColRow, 24
* **classes**
  - Biclust-class, 12
  - BiclustMethod-class, 16
* **classify**
  - BCBimax, 2
  - BCCC, 4
  - BCPlaid, 5
  - BCQuest, 6
  - BCXmotifs, 9
  - isoverlapp, 36
  - predictBimax, 41
* **cluster**
  - BCBimax, 2
  - BCCC, 4
  - BCPlaid, 5
  - BCQuest, 6
  - BCSpectral, 7
  - BCXmotifs, 9
  - biclust, 11
  - biclustbarchart, 13
  - bicluster, 14
  - biclustmember, 15
  - bimax.grid, 17
  - bubbleplot, 18
  - ChiaKaruturi, 20
  - coherence, 21
  - discretize, 31
  - drawHeatmap, 32
  - ensemble, 34
  - heatmapBC, 35
  - isoverlapp, 36
  - jaccardind, 37
  - parallelCoordinates, 38
  - plaid.grid, 39
  - plotclust, 40
  - predictBimax, 41
  - writeclust, 43
* **datasets**
  - BicatYeast, 11
  - EisenYeast, 33
  - SyntrenEcoli, 42
* **hplot**
  - biclustbarchart, 13
  - biclustmember, 15
  - bubbleplot, 18
  - drawHeatmap, 32
  - heatmapBC, 35
  - parallelCoordinates, 38
  - plotclust, 40
  - writeclust, 43
* **manip**
  - binarize, 17
  - writeBiclusterResults, 42
* **models**
  - BCPlaid, 5
* **multivariate**
  - BCSpectral, 7
  - additiveVariance (coherence), 21
  - additivityTests, 29, 30
  - BCBimax, 2, 12, 16, 17
  - BCBimax-class (BCBimax), 2
  - BCCC, 4, 12, 16
  - BCCC-class (BCCC), 4
  - BCPlaid, 5, 12, 16, 40
  - BCPlaid-class (BCPlaid), 5
  - BCQuest, 6, 12, 16
  - BCQuest-class (BCQuest), 6
  - BCQuestmet (BCQuest), 6
  - BCQuestmet-class (BCQuest), 6
BCQuestord (BCQuest), 6
BCQuestord-class (BCQuest), 6
BCrepBimax, 41
BCrepBimax (BCBimax), 2
BCrepBimax-class (BCBimax), 2
BCSpectral, 7, 12, 16
BCSpectral-class (BCSpectral), 7
BCXmotifs, 9, 12, 16
BCXmotifs-class (BCXmotifs), 9
BicatYeast, 11
Biclust, 3, 4, 7, 10
Biclust (Biclust-class), 12
biclust, 3, 4, 7, 10, 11, 13, 16
biclust, matrix, CBixBimax-method (BCBimax), 2
biclust, matrix, BCCC-method (BCCC), 4
biclust, matrix, BCPlaid-method (BCPlaid), 5
biclust, matrix, BCQuest-method (BCQuest), 6
biclust, matrix, BCQuestmet-method (BCQuest), 6
biclust, matrix, BCQuestord-method (BCQuest), 6
biclust, matrix, BCrepBimax-method (BCBimax), 2
biclust, matrix, BCSpectral-method (BCSpectral), 7
biclust, matrix, BCXmotifs-method (BCXmotifs), 9
biclust, matrix, BiclustMethod-method (biclust), 11
biclust, matrix, character-method (biclust), 11
biclust, matrix, function-method (biclust), 11
Biclust-class, 12
biclust-method (biclust), 11
biclustbarchart, 13, 15
bicluster, 14
biclusternumber (bicluster), 14
biclustmember, 13, 15
BiclustMethod, 7, 10
BiclustMethod (BiclustMethod-class), 16
BiclustMethod-class, 16
BiclustResult (Biclust-class), 12
bicorder (biclustmember), 15
Bimax (BCBimax), 2
bimax.grid, 17, 35
binarize, 17
binarizeByPercentage (binarize), 17
bubble plot (bubbleplot), 18
bubbleplot, 13, 15, 18, 33, 38, 41
CC (BCCC), 4
ChiaKaruturi, 20, 23, 25
clustmember (biclustmember), 15
cohere, 21
computeObservedFstat, 21, 23, 25, 26
countVariance (coherence), 21
densityOnes (binarize), 17
diagnoseColRow, 21, 23, 24, 26
diagnosticPlot, 21, 25, 26
diagnosticPlot2, 23, 25, 27, 29
diagnosticTest, 23, 25, 27, 28
discretize, 31
drawHeatmap, 13, 15, 19, 32, 35, 36, 38, 41
drawHeatmap2 (drawHeatmap), 32
E. coli microarray synthetic data matrix (SyntrenEcoli), 42
EisenYeast, 33
ensemble, 17, 34, 40
Escherichia Coly data matrix generated by SynTReN (SyntrenEcoli), 42
heatmap (drawHeatmap), 32
heatmapBC, 35
isoverlapp, 36
jaccard2 (jaccardind), 37
jaccardind, 37
johnson.graybill.test, 29
Kluger biclustering (BCSpectral), 7
lbi.test, 29
mandel.test, 29
mtukey.test, 29, 30
multiplicativeVariance (coherence), 21
parallel coordinates (parallelCoordinates), 38
parallelCoordinates, 13, 15, 19, 33, 36, 38, 41
plaid (BCPlaid), 5
plaid model (BCPlaid), 5
plaid.grid, 35, 39
plotclust, 40
predictBimax, 41

Quest (BCQuest), 6

repBimax (BCBimax), 2

Saccharomices Cerevisiae data matrix (EisenYeast), 33
Saccharomices Cerevisiae reduced data matrix (BicatYeast), 11
show,Biclust-method (Biclust-class), 12
signVariance (coherence), 21
spectral (BCSpectral), 7
spectral biclustering (BCSpectral), 7
star graph (bubbleplot), 18
summary,Biclust-method (Biclust-class), 12
SynthrenEcoli, 42
turner biclustering (BCPlaid), 5
tusell.test, 29

writeBiclusterResults, 14, 42
writeBiclusters
   (writeBiclusterResults), 42
writeclust, 14, 43
Xmotif (BCXmotifs), 9

yeast microarray data matrix (EisenYeast), 33
yeast microarray reduced data matrix (BicatYeast), 11