Package ‘bigdatadist’

September 24, 2018

Version 1.1
Date 2018-09-23
Title Distances for Machine Learning and Statistics in the Context of Big Data
Author Gabriel Martos [aut, cre], Nicolas Hernandez [aut]
Depends R (>= 3.4.0)
Maintainer Gabriel Martos <gmartos@utdt.edu>
License GPL (>= 3)
Repository CRAN
Imports MASS, FNN, rrcov, pdist
NeedsCompilation yes
Date/Publication 2018-09-24 13:30:03 UTC

R topics documented:

Ausmale .. 2
entropy .. 2
entropy.fd ... 3
fdframe .. 4
gmdepth ... 5
gmdepth.fd .. 6
kmdepth.fd .. 7
levelsetdist ... 8
merval .. 9
rkhs ... 9
Index

| Ausmale | Australian Male Mortality Rates |

Description

The data consist of set of measurements across years of male mortality rates in Australia from package fds.

Usage

Ausmale

Format

A list with years in the first component and a 101 times 103 matrix, years in rows and cohorts in columns, in the second component.

Source

fds

entropy

Entropy Computation

Description

This function allows you to compute the family of alpha entropy as stated in Martos et al (2018).

Usage

entropy(X, alpha=2, k.neighbor, scale=FALSE)

Arguments

<table>
<thead>
<tr>
<th>X</th>
<th>data in a matrix where variables are in columns and observations are in rows.</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>a parameter defining the entropy function.</td>
</tr>
<tr>
<td>k.neighbor</td>
<td>number of neighbour points to consider in the computation of entropy.</td>
</tr>
<tr>
<td>scale</td>
<td>logical variable indicating if scaling is required.</td>
</tr>
</tbody>
</table>

Details

The function computes the alpha entropy and the local alpha entropy (see reference for further details) of a data set using a non parametric density estimator.
Value

- `local.entropy`: local entropy relative to each point in the sample.
- `entropy`: estimated entropy.

References

Examples

```r
require(MASS);
data = mvrnorm(100,c(0,0),diag(2));
entropy(data, alpha = 2, k.neighbor = 10, scale = FALSE)
```

Description

This function allows you to compute the family of alpha-Entropy for functional data as stated in Martos et al (2018).

Usage

```r
entropy.fd(fdframe, gamma = 1, kerfunc="rbf",
            kerpar = list(sigma = 1, bias=0,degree=2),
            alpha=2,d=2,resol,k.neighbor)
```

Arguments

- `fdframe`: functional data frame `fdframe` object.
- `gamma`: regularization parameter.
- `kerfunc`: kernel function (rbf or poly) to be used.
- `kerpar`: a list of kernel parameters where `sigma` is the scale with both kernels.
- `alpha`: Entropy parameter.
- `d`: Dimension truncation in the Reproducing Kernel Hilbert Space representation.
- `resol`: number of level sets used to compute the functional entropy.
- `k.neighbor`: number of points to estimate the support of the distribution.

Details

This function estimates the entropy of a stochastic process. To this aim, the raw functional data is projected onto a Reproducing Kernel Hilbert Space, and the entropy is estimated using the coefficient of these functions.
Value

- `local.entropy` local entropy relative to each curve in the sample.
- `entropy` estimated entropy of the set of functions.

Author(s)

Hernandez and Martos

References

Examples

data(Ausmale); t <- Ausmale[[1]]
t <- as.numeric((t - min(t)) / length(t))
raw.data <- fdframe(t=t, Y=Ausmale[[2]])

entropy.fd(raw.data, gamma=0.0001, kerfunc="rbf", kerpar=c(10),
 alpha=2, k.neighbor=15)

fdframe

Functional Data Frame

Description

This function is used to create multivariate functional data frame objects to be used in combination with the functions in the package bigdatadist.

Usage

`fdframe(t, Y)`

Arguments

- `t` abscissa values at which observations took place.
- `Y` matrix with functions in columns and observations in rows.

Examples

`t = 1:10; Y = cbind(sin(t),cos(t))
fddata = fdframe(t,Y)
plot(fddata, xlab='Time', ylab='')`
Description

This function allows you to compute the Generalized Kernel Mahalanobis depth measure as stated in Hernandez et al (2018, submitted) and the Generalized Mahalanobis distance in Martos et al (2014).

Usage

gmdepth(A,b,resol,k.neighbor)

Arguments

A data matrix where variables in columns, observations in rows.
b a new point in the support of the distribution to evaluate the depth. If omitted, the function compute the distances and depth between all points in the sample.
resol resolution level, i.e. number of density level sets to consider.
k.neighbor number of local neighbours to estimate the support.

Value

depth the generalized Mahalanobis depth measure.
distance the generalized Mahalanobis distance measure.

Author(s)

Hernandez and Martos

References

Examples

```r
require(MASS)
set.seed(1)
A=mvnorm(450,c(0,0),Sigma=diag(2))
b=mvnorm(50,c(10,10),Sigma=diag(c(0.1,0.1)))
C=rbind(A,b)
plot(C, pch=20, col=c(rep('black',450),rep('red',50)),
     xlab='x1',ylab='x2')

gmd.fit = gmdepth(A=C)
depth = gmd.fit$depth
```
```r
distance = gmd.fit$distance
plot(depth, distance, pch=20,
     col=c(rep('black',450),rep('red',50)))
gmdepth(A=A,b=mvrnorm(1,c(0,0),Sigma=diag(2)))
```

gmdepth.fd

Generalized Mahalanobis Kernel Depth and Distance for Functional Data

Description

This function allows you to compute the Generalized Kernel Mahalanobis depth measure as stated in Hernandez et al (2018, submitted) and the Generalized Mahalanobis distance in Martos et al (2014), for functional data represented in a Reproducing Kernel Hilbert Space.

Usage

```r
gmdepth.fd(fdframe, gamma = 1, kerfunc="rbf",
           kerpar=list(sigma=1,bias=0,degree=2),d=2,resol,k.neighbor)
```

Arguments

- `fdframe`: an `fdframe` object storing raw functional data.
- `gamma`: regularization parameter.
- `kerfunc`: kernel function to be used.
- `kerpar`: a list of kernel parameters where `sigma` is the scale with both kernels.
- `d`: truncation parameter in the Reproducing Kernel Hilbert Space representation.
- `resol`: resolution level to estimate the generalized Mahalanobis distance.
- `k.neighbor`: number of neighbours to estimate the support of the distribution.

Value

- `depth`: the generalized Mahalanobis depth measure for the curves in the sample.
- `distance`: the generalized Mahalanobis distance for the curves in the sample.

Author(s)

Hernandez and Martos

References

kmdepth.fd

Kernel Mahalanobis Depth for Functional Data

Description

This function allows you to compute the Generalized Kernel Mahalanobis depth measure for a sample of functional data as stated in Hernandez et al (2018, submitted).

Usage

kmdepth.fd(fdframe, gamma = 1, kerfunc = "rbf", kerpar = list(sigma = 1, bias = 0, degree = 2), d = 2, robust=TRUE, h=0.1, nsamp=250)

Arguments

fdframe an fdframe object storing raw functional data.
gamma regularization parameter.
kerfunc kernel function to be used.
kerpar a list of kernel parameters where sigma is the scale with both kernels.
d truncation parameter in the Reproducing Kernel Hilbert Space representation.
robust TRUE if the covariance matrix is estimated through Robust Maximum Likelihood method.
h numeric parameter controlling the a-priori percentage of outliers in the sample (value between 0 and 1, by def = 0.1).
nsamp number of subsets used for initial estimates (by def = 250).

Value

depth the kernel-mahalanobis depth measure for the curves in the sample.

Examples

data(Ausmale); t <- Ausmale[[1]]
t = as.numeric((t - min(t)) / length(t))
raw.data = fdframe(t=t, Y=Ausmale[[2]])

gmd.fit.fd = gmddepth.fd(raw.data,gamma=0.001,
kerfunc="rbf",kerpar=list(sigma = 10))

gmd.fit.fd$distance
gmd.fit.fd$depth

rbPal <- colorRampPalette(c('red','black'))
color = rbPal(5)[as.numeric(cut(gmd.fit.fd$depth,breaks = 5))] plot(rkhs(raw.data,gamma=0.0001,kerfunc="rbf",kerpar=list(sigma = 10)),
col = color, xlab='time',ylab='')
Author(s)
Hernandez and Martos

References

Examples

data(Ausmale); t <- Ausmale[[1]]
t = as.numeric((t - min(t)) / length(t))
raw.data = data.frame(t=t, y=Ausmale[[2]])

kmd.fit.fd = kmdepth.fd(raw.data, gamma = 0.0001, kerfunc = "rbf",
 kerpar = list(sigma = 10), d = 2, robust=TRUE)

kmd.fit.fd$depth

rbPal <- colorRampPalette(c('red', 'black'))
color = rbPal(5)[as.numeric(cut(kmd.fit.fd$depth,breaks = 5))]
plot(rkhs(raw.data, gamma=0.0001, kerfunc="rbf", kerpar=list(sigma = 10)),
 col = color, xlab='time', ylab='')

levelsetdist

Level Set Distances

Description
This function allows you to compute the alpha level set distances as proposed in Martos et al. Nonparametric distances for probability measures with applications, 2018 (submitted).

Usage
levelsetdist(A,B,n.level=10,k.neighbor=10)

Arguments
A data set in a matrix where variables are in columns and observations are in rows.
B data set in a matrix where variables are in columns and observations are in rows.
n.level the number of level sets to consider for distance computation.
k.neighbor number of neighbour points to consider in the estimation of the support of the distribution on each class.

Details
The function computes the alpha level set distance between two (samples from) different probability measures. Details about the distance and the criterion to fix its hyperparameter can be found in Martos et al (2018, submitted).
Value

Value distance estimation between the two data sets or distributions.

References

Examples

```r
require(MASS)
set.seed(1)
A = mvrnorm(100, c(0,0), diag(2));  B = mvrnorm(150, c(1,1), diag(2));
levelsetdist(A, B)
```

merval Merval Index

Description

The data consist of low and high values of the Merval Index stock market from Argentina; the data were gathered from Yahoo Finance.

Usage

```r
merval
```

Format

A dataframe with 5269 observations with daily minimum, maximum, open and close index values.

Source

Yahoo Finance

rkhs RKHS Representation

Description

This function allows you to fit discrete functional data (fdframe) as functions in RKHS solving a regularization problem as stated in Munoz (2010).

Usage

```r
rkhs(fdframe, gamma=1, kerfunc='rbf',
     kerpar=list(sigma=1, bias=0, degree=2))
```
Arguments

- fdframe: functional data fdframe object.
- gamma: regularization parameter.
- kerfunc: kernel function rbf or poly to be used.
- kerpar: a list of kernel parameters where sigma is the scale with both kernels.

Value

- fdframe: raw data in an fdframe object.
- f: estimated functional data.
- alpha: coefficients for the linear combination.
- lambda.star: reduced coefficients for the linear combination.

Author(s)

Hernandez and Martos

References

Examples

data(merval); t <- as.Date(merval[1:100,1])
t <- as.numeric((t - min(t)) / 154)
raw.data <- fdframe(t = t, Y = merval[1:100,2:5])
plot(raw.data, xlab='time', ylab='Merval raw data')

f.data <- rkhs(raw.data, gamma = 0.001, kerpar = list(sigma = 8))

print(f.data)

plot(f.data, xlab='time', ylab='Merval data')
Index

*Topic **Entropy**
 entropy, 2
*Topic **Generalized Mahalanobis depth and distance.**
 gmdepth, 5
*Topic **Kernel depth**
 gmdepth.fd, 6
 kmdepth.fd, 7
*Topic **Probability metrics**
 levelsetdist, 8
*Topic **datasets**
 Ausmale, 2
 merval, 9
*Topic **multivariate time series formatting.**
 fdframe, 4
*Topic **rkhs, Entropy**
 entropy.fd, 3
*Topic **rkhs**
 rkhs, 9

Ausmale, 2
entropy, 2
entropy.fd, 3
fdframe, 4
gmdepth, 5
gmdepth.fd, 6
kmdepth.fd, 7
levelsetdist, 8
merval, 9
rkhs, 9