Package ‘bigergm’

June 13, 2024

Title Fit, Simulate, and Diagnose Hierarchical Exponential-Family Models for Big Networks

Version 1.2.1

Description A toolbox for analyzing and simulating large networks based on hierarchical exponential-family random graph models (HERGMs). 'bigergm' implements the estimation for large networks efficiently building on the 'lighthergm' and 'hergm' packages. Moreover, the package contains tools for simulating networks with local dependence to assess the goodness-of-fit.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Depends R (>= 3.5.0), ergm (>= 4.5.0), Rcpp

LinkingTo Rcpp, RcppArmadillo (>= 0.10.5)

Imports RcppArmadillo (>= 0.10.5), network (>= 1.16.0), Matrix, cachem, tidyr, statnet.common, methods, stringr, intergraph, igraph, parallel, magrittr, purrr, dplyr, glue, readr, foreach, rlang, memoise, reticulate, ergm.multi

Suggests rmarkdown, knitr, testthat, sna, tibble

VignetteBuilder knitr

NeedsCompilation yes

Author Cornelius Fritz [aut, cre],
 Shota Komatsu [aut],
 Juan Nelson Martínez Dahbura [aut],
 Takanori Nishida [aut],
 Angelo Mele [aut],
 Michael Schweinberger [aut]

Maintainer Cornelius Fritz <corneliusfritz2010@gmail.com>

Repository CRAN

Date/Publication 2024-06-13 21:50:13 UTC
Compute the adjusted rand index (ARI) between two clusterings

This function computes the adjusted rand index (ARI) of the true and estimated block membership (its definition can be found here https://en.wikipedia.org/wiki/Rand_index). The adjusted rand index is used as a measure of association between two group membership vectors. The more similar the two partitions z_star and z are, the closer the ARI is to 1.

Usage

ari(z_star, z)

Arguments

z_star The true block membership
z The estimated block membership

Value

The adjusted rand index
Examples

```r
data(toyNet)
set.seed(123)
ari(z_star = toyNet$v %"block",
z = sample(c(1:4), size = 200, replace = TRUE))
```

bali

Bali terrorist network

Description

The network corresponds to the contacts between the 17 terrorists who carried out the bombing in Bali, Indonesia in 2002. The network is taken from Koschade (2006).

Format

A `statnet`'s network class object. `data(bali)`

References

bigergm

bigergm: Exponential-family random graph models for large networks with local dependence

Description

The function `bigergm` estimates and simulates three classes of exponential-family random graph models for large networks under local dependence:

1. The \(p_1 \) model of Holland and Leinhardt (1981) in exponential-family form and extensions by Vu, Hunter, and Schweinberger (2013), Schweinberger, Petrescu-Prahova, and Vu (2014), Dahbura et al. (2021), and Fritz et al. (2024) to both directed and undirected random graphs with additional model terms, with and without covariates.
3. The exponential-family random graph models with local dependence of Schweinberger and Handcock (2015), with and without covariates. The exponential-family random graph models with local dependence replace the long-range dependence of conventional exponential-family random graph models by short-range dependence. Therefore, exponential-family random graph models with local dependence replace the strong dependence of conventional exponential-family random graph models by weak dependence, reducing the problem of model
bigergm

bigergm

Arguments

object An R formula object or bigergm class object. If a formula is given, the function estimates a new model specified by it. It needs to be of the form $y \sim <model terms>$, where y is a network object. For the details on the possible <model terms>, see ergmTerm and Morris, Handcock and Hunter (2008). All terms that induce dependence are excluded from the between block model, while the within block model includes all terms. When you pass a bigergm class object to the function, you continue from the previous MM step. Note that the block allocation (which is either provided by parameter blocks or estimated in the first step) is saved as the vertex.attribute block of the network. This attribute can also be used in the specified formula. The L-ergmTerm is supported to

degeneracy (Handcock, 2003; Schweinberger, 2011) and improving goodness-of-fit (Schweinberger and Handcock, 2015). In addition, exponential-family random graph models with local dependence satisfy a weak form of self-consistency in the sense that these models are self-consistent under neighborhood sampling (Schweinberger and Handcock, 2015), which enables consistent estimation of neighborhood-dependent parameters (Schweinberger and Stewart, 2017; Schweinberger, 2017).

Usage

bigergm(
 object,
 add_intercepts = FALSE,
 n_blocks = NULL,
 n_cores = 1,
 blocks = NULL,
 estimate_parameters = TRUE,
 verbose = 0,
 n_MM_step_max = 100,
 tol_MM_step = 1e-04,
 initialization = "infomap",
 use_infomap_python = FALSE,
 virtualenv_python = "r-bigergm",
 seed_infomap = NULL,
 weight_for_initialization = 1000,
 seed = NULL,
 method_within = "MPLE",
 control_within = ergm::control.ergm(),
 clustering_with_features = TRUE,
 compute_pi = FALSE,
 check_alpha_update = FALSE,
 check_blocks = FALSE,
 cache = NULL,
 return_checkpoint = TRUE,
 only_use_preprocessed = FALSE,
 ...)

Arguments

object An R formula object or bigergm class object. If a formula is given, the function estimates a new model specified by it. It needs to be of the form $y \sim <model terms>$, where y is a network object. For the details on the possible <model terms>, see ergmTerm and Morris, Handcock and Hunter (2008). All terms that induce dependence are excluded from the between block model, while the within block model includes all terms. When you pass a bigergm class object to the function, you continue from the previous MM step. Note that the block allocation (which is either provided by parameter blocks or estimated in the first step) is saved as the vertex.attribute block of the network. This attribute can also be used in the specified formula. The L-ergmTerm is supported to
enable size-dependent coefficients for the within-blocks model. Note, however, that for size-dependent parameters of terms that are included in the between-blocks model, the intercept in the linear model provided to \texttt{L-ergmTerm} should not include the intercept. See the second example below for a demonstration.

\begin{itemize}
\item \texttt{add_intercepts}: Boolean value to indicate whether adequate intercepts should be added to the provided formula so that the model in the first stage of the estimation is a nested model of the estimated model in the second stage of the estimation.
\item \texttt{n_blocks}: The number of blocks. This must be specified by the user. When you pass a \texttt{bigergm} class object to the function, you don’t have to specify this argument.
\item \texttt{n_cores}: The number of CPU cores to use.
\item \texttt{blocks}: The pre-specified block memberships for each node. If \texttt{NULL}, the latent community structure is estimated, assuming that the number of communities is \texttt{n_blocks}.
\item \texttt{estimate_parameters}: If \texttt{TRUE}, both clustering and parameter estimation are implemented. If \texttt{FALSE}, only clustering is executed.
\item \texttt{verbose}: A logical or an integer: if this is \texttt{TRUE}/1, the program will print out additional information about the progress of estimation and simulation. A higher value yields lower level information.
\item \texttt{n_MM_step_max}: The maximum number of MM iterations. Currently, no early stopping criteria is introduced. Thus \texttt{n_MM_step_max} MM iterations are exactly implemented.
\item \texttt{tol_MM_step}: Tolerance regarding the relative change of the lower bound of the likelihood used to decide on the convergence of the clustering step.
\item \texttt{initialization}: How the blocks should be initialized. If \texttt{infomap} (the default), \texttt{igraph’} or Python’s \texttt{infomap} is implemented. If \texttt{random}, the initial clusters are randomly uniformly selected. If \texttt{spectral}, spectral clustering is conducted. If \texttt{walktrap}, the \texttt{walktrap} clustering algorithm as implemented in \texttt{cluster_walktrap} is conducted. If \texttt{initialization} is a vector of integers of the same length as the number of nodes in the provided network (in object), then the provided vector is used as the initial cluster assignment. If \texttt{initialization} is a string relating to a file path, \texttt{bigergm} will interpret it as block allocations saved in Python’s \texttt{infomap} .clu format under that path.
\item \texttt{use_infomap_python}: If \texttt{TRUE}, the cluster initialization is implemented using Python’s \texttt{infomap}.
\item \texttt{virtualenv_python}: Which virtual environment should be used for the \texttt{infomap} algorithm?
\item \texttt{seed_infomap}: seed value (integer) for the \texttt{infomap} algorithm, which can be used to initialize the estimation of the blocks.
\item \texttt{weight_for_initialization}: weight value used for cluster initialization. The higher this value, the more weight is put on the initialized block allocation.
\item \texttt{seed}: seed value (integer) for the random number generator.
\item \texttt{method_within}: If “MPLE” (the default), then the maximum pseudolikelihood estimator is implemented when estimating the within-block network model. If “MLE”, then an approximate maximum likelihood estimator is conducted. If “CD” (EXPERIMENTAL), the Monte-Carlo contrastive divergence estimate is returned.
\end{itemize}
control_within A list of control parameters for the \texttt{ergm} function used to estimate the parameters of the within model. See \texttt{control.ergm} for details.

clustering_with_features
If \texttt{TRUE}, clustering is implemented using the discrete covariates specified in the formula.

compute_pi
If \texttt{TRUE}, this function keeps track of pi matrices at each MM iteration. If the network is large, we strongly recommend to set to be \texttt{FALSE}.

check_alpha_update
If \texttt{TRUE}, this function keeps track of alpha matrices at each MM iteration. If the network is large, we strongly recommend to set to be \texttt{FALSE}.

check_blocks
If \texttt{TRUE}, this function keeps track of estimated block memberships at each MM iteration.

cache
a \texttt{cachem} cache object used to store intermediate calculations such as eigenvector decomposition results.

return_checkpoint
If \texttt{TRUE}, the function returns the checkpoint list. For most applications, this should be set to \texttt{TRUE} but if memory space needed by the output is an issue, set to \texttt{FALSE}.

only_use_preprocessed
If \texttt{TRUE}, the function only uses the preprocessed data from a previous fit but does not continue the estimation from its final iteration, instead the estimation is started again from the provided initialization.

...
Additional arguments, to be passed to lower-level functions (mainly to the \texttt{ergm} function used for the estimation of within-block connections).

\textbf{Value}

An object of class ‘bigergm’ including the results of the fitted model. These include:

\texttt{call}: call of the mode

\texttt{block}: vector of the found block of the nodes into cluster

\texttt{initial_block}: vector of the initial block of the nodes into cluster

\texttt{sbm_pi}: Connection probabilities represented as a n_blocks x n_blocks matrix from the first stage of the estimation between all clusters

\texttt{MM_list_z}: list of cluster allocation for each node and each iteration

\texttt{MM_list_alpha}: list of posterior distributions of cluster allocations for all nodes for each iteration

\texttt{MM_change_in_alpha}: change in 'alpha' for each iteration

\texttt{MM_lower_bound}: vector of the evidence lower bounds from the MM algorithm

\texttt{alpha}: matrix representing the converged posterior distributions of cluster allocations for all nodes

\texttt{counter_e_step}: integer number indicating the number of iterations carried out

\texttt{adjacency_matrix}: sparse matrix representing the adjacency matrix used for the estimation

\texttt{estimation_status}: character stating the status of the estimation

\texttt{est_within}: \texttt{ergm} object of the model for within cluster connections
est_between: `ergm` object of the model for between cluster connections

checkpoint: list of information to continue the estimation (only returned if `return_checkpoint = TRUE`)

membership_before_kmeans: vector of the found blocks of the nodes into cluster before the final check for bad clusters

estimate_parameters: binary value if the parameters in the second step of the algorithm should be estimated or not

References

Examples

```r
# Load an embedded network object.
data(toyNet)

# Specify the model that you would like to estimate.
model_formula <- toyNet ~ edges + nodematch("x") + nodematch("y") + triangle

# Estimate the model
bigergm_res <- bigergm(
  object = model_formula,
  # The model you would like to estimate
  n_blocks = 4,
  # The number of blocks
  n_MM_step_max = 10,
  # The maximum number of MM algorithm steps
  estimate_parameters = TRUE,
  # Perform parameter estimation after the block recovery step
  clustering_with_features = TRUE,
  # Indicate that clustering must take into account nodematch on characteristics
  check_blocks = FALSE)

# Example with N() operator

## Not run:
set.seed(1)
# Prepare ingredients for simulating a network
N <- 500
K <- 10

list_within_params <- c(1, 2, 2,-0.5)
list_between_params <- c(-8, 0.5, -0.5)
formula <- g ~ edges + nodematch("x") + nodematch("y") + N(~edges,-log(n)-1)

memb <- sample(1:K,prob = c(0.1,0.2,0.05,0.05,0.10,0.1,0.1,0.1,0.1,0.1),
              size = N, replace = TRUE)
vertex_id <- as.character(11:(11 + N - 1))

x <- sample(1:2, size = N, replace = TRUE)
y <- sample(1:2, size = N, replace = TRUE)

df <- tibble::tibble(
  id = vertex_id,
  memb = memb,
  x = x,
  y = y)
```


```r

g <- network::network.initialize(n = N, directed = FALSE)
g %v% "vertex.names" <- df$id
g %v% "block" <- df$memb
g %v% "x" <- df$x
g %v% "y" <- df$y

# Simulate a network
g_sim <-
simulate_bigergm(
  formula = formula,
  coef_within = list_within_params,
  coef_between = list_between_params,
  nsim = 1,
  control_within = control.simulate.formula(MCMC.burnin = 200000))

estimation <- bigergm(update(formula,new = g_sim~.), n_blocks = 10,
  verbose = T)
summary(estimation)

## End(Not run)
```

bunt

Van de Bunt friendship network

Description

Van de Bunt (1999) and Van de Bunt et al. (1999) collected data on friendships between 32 freshmen at a European university at 7 time points. Here, the last time point is used. A directed edge from student i to j indicates that student i considers student j to be a friend or best friend.

Format

A statnet's network class object. data(bunt)

References

est_between

Estimate between-block parameters

Description

Function to estimate the between-block model by relying on the maximum likelihood estimator.

Usage

est_between(
 formula,
 network,
 add_intercepts = TRUE,
 clustering_with_features = FALSE
)

Arguments

formula An R formula object of the form y ~ <model terms>, where y is a network object. The network object must contain block information as a vertex attribute with the name 'block'. For the details on the possible <model terms>, see `ergmTerm` and Morris, Handcock and Hunter (2008). All terms that induce dependence are excluded from the between block model.

network a network object with one vertex attribute called 'block' representing which node belongs to which block

add_intercepts Boolean value to indicate whether adequate intercepts should be added to the provided formula so that the model in the first stage of the estimation is a nested model of the estimated model in the second stage of the estimation

clustering_with_features Boolean value to indicate if the clustering was carried out making use of the covariates or not (only important if add_intercepts = TRUE)

Value

'ergm' object of the estimated model.

References

Examples

adj <- c(
c(0, 1, 0, 0, 1, 0),
c(1, 0, 1, 0, 0, 1),
c(0, 1, 0, 1, 0, 0),
c(0, 1, 0, 1, 1, 0),
c(0, 1, 0, 1, 0, 1),
c(0, 1, 0, 1, 1, 1))

adj
est_within

```
c(0, 0, 1, 0, 1, 1),
c(1, 0, 1, 1, 0, 1),
c(0, 1, 0, 1, 1, 0)
```

`adj <- matrix(data = adj, nrow = 6, ncol = 6)`

```
rownames(adj) <- as.character(1001:1006)
colnames(adj) <- as.character(1001:1006)
```

```
# Use non-consecutive block names
block <- c(50, 70, 95, 50, 95, 70)
g <- network::network(adj, matrix.type = "adjacency")
g %v% "block" <- block
est <- est_between(
    formula = g ~ edges,network = g,
    add_intercepts = FALSE, clustering_with_features = FALSE
)
```

est_within

Estimate a within-block network model.

Description

Function to estimate the within-block model. Both pseudo-maximum likelihood and monte carlo approximate maximum likelihood estimators are implemented.

Usage

```
est_within(
    formula,
    network,
    seed = NULL,
    method = "MPLE",
    add_intercepts = TRUE,
    clustering_with_features = FALSE,
    return_network = FALSE,
    ...
)
```

Arguments

- **formula** An R *formula* object of the form `y ~ <model terms>`, where `y` is a network object. The network object must contain block information as a vertex attribute with the name 'block'. For the details on the possible `<model terms>`, see `ergmTerm` and Morris, Handcock and Hunter (2008). The L-ergmTerm is supported to enable size-dependent coefficients.
- **network** a network object with one vertex attribute called 'block' representing which node belongs to which block
- **seed** seed value (integer) for the random number generator
method
If "MPLE" (the default), then the maximum pseudolikelihood estimator is returned. If "MLE", then an approximate maximum likelihood estimator is returned.

add_intercepts
Boolean value to indicate whether adequate intercepts should be added to the provided formula so that the model in the first stage of the estimation is a nested model of the estimated model in the second stage of the estimation.

clustering_with_features
Boolean value to indicate if the clustering was carried out making use of the covariates or not (only important if add_intercepts = TRUE).

return_network
Boolean value to indicate if the network object should be returned in the output. This is needed if the user wants to use, e.g., the gof function as opposed to the gof.bigergm function.

... Additional arguments, to be passed to the ergm function.

Value
'ergm' object of the estimated model.

References

Examples
adj <- c(
c(0, 1, 0, 0, 1, 0),
c(1, 0, 1, 0, 0, 1),
c(0, 1, 0, 1, 0, 0),
c(0, 0, 1, 0, 1, 1),
c(1, 0, 1, 1, 0, 0),
c(0, 1, 0, 1, 1, 0)
)
adj <- matrix(data = adj, nrow = 6, ncol = 6)
rownames(adj) <- as.character(1001:1006)
colnames(adj) <- as.character(1001:1006)

Use non-consecutive block names
block <- c(70, 70, 70, 70, 95, 95)
g <- network::network(adj, matrix.type = "adjacency", directed = FALSE)
g %v% "block" <- block
g %v% "vertex.names" <- 1:length(g %v% "vertex.names")
est <- est_within(
 formula = g ~ edges,
 network = g,
 parallel = FALSE,
 verbose = 0,
 initial_estimate = NULL,
 seed = NULL,
 method = "MPLE",
)
get_between_networks

```r
add_intercepts = FALSE,
clustering_with_features = FALSE
```

get_between_networks Obtain the between-block networks defined by the block attribute.

Description

Function to return a list of networks, each network representing the within-block network of a block.

Usage

```r
get_between_networks(network, block)
```

Arguments

- `network`: a network object
- `block`: a vector of integers representing the block of each node

Value

a list of networks

Examples

```r
# Load an embedded network object.
data(toyNet)
get_within_networks(toyNet, toyNet %v% "block")
```

get_within_networks Obtain the within-block networks defined by the block attribute.

Description

Function to return a list of networks, each network representing the within-block network of a block.

Usage

```r
get_within_networks(network, block, combined_networks = TRUE)
```

Arguments

- `network`: a network object
- `block`: a vector of integers representing the block of each node
- `combined_networks`: a boolean indicating whether the between-block networks should be returned as a combined_networks object or not (default is TRUE)
Value

a list of networks

Examples

Load an embedded network object.
data(toyNet)
get_within_networks(toyNet, toyNet %v% "block")

goф.bigergm Conduct Goodness-of-Fit Diagnostics on a Exponential Family Random Graph Model for big networks

Description

A sample of graphs is randomly drawn from the specified model. The first argument is typically the output of a call to bigergm and the model used for that call is the one fit.

By default, the sample consists of 100 simulated networks, but this sample size (and many other settings) can be changed using the ergm_control argument described above.

Usage

```r
## S3 method for class 'bigergm'
goф(
object,
...,
type = "full",
control_within = ergm::control.simulate.formula(),
seed = NULL,
nsim = 100,
compute_geodesic_distance = TRUE,
start_from_observed = TRUE,
simulate_sbm = FALSE
)
```

Arguments

- **object**: An bigergm object.
- **...**: Additional arguments, to be passed to simulate_bigergm, which, in turn, passes the information to simulate_formula. See documentation for bigergm.
- **type**: the type of evaluation to perform. Can take the values full or within. full performs the evaluation on all edges, and within only considers within-block edges.
- **control_within**: MCMC parameters as an instance of control.simulate.formula to be used for the within-block simulations.
- **seed**: the seed to be passed to simulate_bigergm. If NULL, a random seed is used.
The number of simulations to employ for calculating goodness of fit, default is 100.

if TRUE, the distribution of geodesic distances is also computed (considerably increases computation time on large networks. FALSE by default.)

if TRUE, MCMC uses the observed network as a starting point. If FALSE, MCMC starts from a random network.

if TRUE, the between-block connections are simulated from the estimated stochastic block model from the first stage not the estimated ERGM.

gof.bigergm returns a list with two entries. The first entry 'original' is another list of the network stats, degree distribution, edgewise-shared partner distribution, and geodesic distance distribution (if compute_geodesic_distance = TRUE) of the observed network. The second entry is called 'simulated' is also list compiling the network stats, degree distribution, edgewise-shared partner distribution, and geodesic distance distribution (if compute_geodesic_distance = TRUE) of all simulated networks.

Examples

data(toyNet)

Specify the model that you would like to estimate.
data(toyNet)

model_formula <- toyNet ~ edges + nodematch("x") + nodematch("y") + triangle

estimate <- bigergm(model_formula,n_blocks = 4)
gof_res <- gof(estimate,
nsim = 100
)

plot(gof_res)

Kapferer collaboration network

The network corresponds to collaborations between 39 workers in a tailor shop in Africa: an undirected edge between workers i and j indicates that the workers collaborated. The network is taken from Kapferer (1972).

A statnet’s network class object. data(kapferer)
References

plot.bigergm

Plot the network with the found clusters

Description

This function plots the network with the found clusters. The nodes are colored according to the found clusters. Note that the function uses the `network` package for plotting the network and should therefore not be used for large networks with more than 1-2 K vertices.

Usage

```r
## S3 method for class 'bigergm'
plot(x, ...)
```

Arguments

- **x**
 - The output of the `bigergm` function
- **...**
 - Additional arguments, to be passed to lower-level functions

py_dep

Install optional Python dependencies for bigergm

Description

Install Python dependencies needed for using the Python implementation of infomap. The code uses the `reticulate` package to install the Python packages `infomap` and `numpy`. These packages are needed for the `bigergm` function when `use_infomap_python = TRUE` else the Python implementation is not needed.

Usage

```r
py_dep(envname = "r-bigergm", method = "auto", ...)
```

Arguments

- **envname**
 - The name, or full path, of the environment in which Python packages are to be installed. When NULL (the default), the active environment as set by the `RETICULATE_PYTHON_ENV` variable will be used; if that is unset, then the `r-reticulate` environment will be used.
- **method**
 - Installation method. By default, "auto" automatically finds a method that will work in the local environment. Change the default to force a specific installation method. Note that the "virtualenv" method is not available on Windows.
- **...**
 - Additional arguments, to be passed to lower-level functions
Value

No return value, called for installing the Python dependencies 'infomap' and 'numpy'

reed

A network of friendships between students at Reed College.

Description

The data was collected by Facebook and provided as part of Traud et al. (2012)

Format

A *statnet*’s network class object. It has three nodal features.

- **doorm** anonymized dorm in which each node lives.
- **gender** gender of each node.
- **high.school** anonymized highschool to which each node went to.
- **year** year of graduation of each node.

```
data(reed)
```

References

rice

A network of friendships between students at Rice University.

Description

The data was collected by Facebook and provided as part of Traud et al. (2012)

Format

A *statnet*’s network class object. It has three nodal features.

- **doorm** anonymized dorm in which each node lives.
- **gender** gender of each node.
- **high.school** anonymized highschool to which each node went to.
- **year** year of graduation of each node.

```
data(rice)
```

References

simulate.bigergm

Simulate networks under Exponential Random Graph Models (ERGMs) under local dependence

Description

This function simulates networks under the Exponential Random Graph Model (ERGM) with local dependence with all parameters set according to the estimated model (object). See simulate_bigergm for details of the simulation process.

Usage

```r
## S3 method for class 'bigergm'
simulate(
  object, 
  nsim = 1, 
  seed = NULL, 
  ..., 
  output = "network", 
  control_within = ergm::control.simulate.formula(), 
  verbose = 0
)
```

Arguments

- `object`: an object of class bigergm
- `nsim`: number of networks to be randomly drawn from the given distribution on the set of all networks.
- `seed`: seed value (integer) for network simulation.
- `...`: Additional arguments, passed to `simulate_formula`.
- `output`: Normally character, one of "network" (default), "stats", "edgelist", to determine the output of the function.
- `control_within`: `control.simulate.formula` object for fine-tuning ERGM simulation of within-block networks.
- `verbose`: If this is TRUE/1, the program will print out additional information about the progress of simulation.

Value

Simulated networks, the output form depends on the parameter `output` (default is a list of networks).
simulate_bigergm
Simulate networks under Exponential Random Graph Models (ERGMs) under local dependence

Description

This function simulates networks under Exponential Random Graph Models (ERGMs) with local dependence. There is also an option to simulate only within-block networks and a S3 method for the class bigergm.

Usage

```r
simulate_bigergm(
  formula,
  coef_within,
  coef_between,
  network = ergm::getnetwork(formula),
  control_within = ergm::control.simulate.formula(),
  only_within = FALSE,
  seed = NULL,
  nsim = 1,
  output = "network",
  verbose = 0,
  ...
)
```

Arguments

- `formula`: An R formula object of the form `y ~ <model terms>`, where `y` is a network object. The network object must contain block information as a vertex attribute with the name 'block'. For the details on the possible `<model terms>`, see `ergmTerm` and Morris, Handcock and Hunter (2008). All terms that induce dependence are excluded from the between block model, while the within block model includes all terms. The L-ergmTerm is supported to enable size-dependent coefficients for the within-blocks model. Note, however, that for size-dependent parameters of terms that are included in the between-blocks model, the intercept in the linear model provided to L-ergmTerm should not include the intercept. See the second example of bigergm for a demonstration.

- `coef_within`: a vector of within-block parameters. The order of the parameters should match that of the formula.

- `coef_between`: a vector of between-block parameters. The order of the parameters should match that of the formula without externality terms.

- `network`: a network object to be used as a seed network for the simulation (if none is provided, the network on the lhs of the formula is used).

- `control_within`: auxiliary function as user interface for fine-tuning ERGM simulation for within-block networks.
only_within
If this is TRUE, only within-block networks are simulated.

seed
seed value (integer) for network simulation.

nsim
number of networks generated.

output
Normally character, one of "network" (default), "stats", "edgelist", to determine the output format.

verbose
If this is TRUE/1, the program will print out additional information about the progress of simulation.

... Additional arguments, passed to `simulate_formula`.

Value
Simulated networks, the output form depends on the parameter output (default is a list of networks).

References

Examples
```r
data(toyNet)
# Specify the model that you would like to estimate.
model_formula <- toyNet ~ edges + nodematch("x") + nodematch("y") + triangle
# Simulate network stats
sim_stats <- bigergm::simulate_bigergm(
  formula = model_formula,
  coef_between = c(-4.5,0.8, 0.4),
  # The coefficients for the between connections
  coef_within = c(-1.7,0.5,0.6,0.15),
  # The coefficients for the within connections
  nsim = 10,
  # Number of simulations to return
  output = "stats",
  # Type of output
)
```

`state_twitter` Twitter (X) network of U.S. state legislators
toyNet

Description
The network includes the Twitter (X) following interactions between U.S. state legislators. The data was collection by Gopal et al. (2022) and Kim et al. (2022). For this network, we only include the largest connected component of state legislators that were active on Twitter in the six months leading up to and including the insurrection at the United States Capitol on January 6, 2021. All state senate and state representatives for states with a bicameral system are included and all state legislators for state (Nebraska) with a unicameral system are included.

Usage
data(state_twitter)

Format
A statnet's network class object. It has the following categorical attributes for each state legislator.

- **gender** factor stating whether the legislator is 'female' or 'male'.
- **party** party affiliation of the legislator, which is 'Democratic', 'Independent' or 'Republican'.
- **race** race with the following levels: 'Asian or Pacific Islander', 'Black', 'Latino', 'MENA(Middle East and North Africa)', 'Multiracial', 'Native American', and 'White'.
- **state** character of the state that the legislator represents.

References
Gopal, Kim, Nakka, Boehmke, Harden, Desmarais. The National Network of U.S. State Legislators on Twitter. Political Science Research & Methods, Forthcoming.

toyNet

A toy network to play bigergm with.

Description
This network has a clear cluster structure. The number of clusters is four, and which cluster each node belongs to is defined in the variable "block".

Usage
data(toyNet)
Format

A statnet's network class object. It has three nodal features.

- **block** block membership of each node
- **x** a covariate. It has 10 labels.
- **y** a covariate. It has 10 labels. ...

1 and 2 are not variables with any particular meaning.

yule

Compute Yule's Phi-coefficient

Description

This function computes Yule's Phi-coefficient between the true and estimated block membership (its definition can be found here https://en.wikipedia.org/wiki/Phi_coefficient). In this context, the Phi Coefficient is a measure of association between two group membership vectors.

Usage

```r
yule(z_star, z)
```

Arguments

- **z_star** a true block membership
- **z** an estimated block membership

Value

Real value of Yule’s Phi-coefficient between the true and estimated block membership is returned.

Examples

```r
data(toyNet)
yule(z_star = toyNet$v "block",
    z = sample(c(1:4), size = 200, replace = TRUE))
```
Index

ari, 2
bali, 3
bigergm, 3, 4, 5, 14, 19
bunt, 9
cluster_walktrap, 5
control.ergm, 6
control.simulate.formula, 18

ergm, 6, 7, 12
ergmTerm, 4, 10, 11, 19
est_between, 10
est_within, 11
formula, 4, 10, 11, 19

get_between_networks, 13
get_within_networks, 13
gof, 12
gof.bigergm, 12, 14, 15

kapferer, 15
network, 4, 10, 11, 19
plot.bigergm, 16
py_dep, 16

reed, 17
rice, 17

simulate.bigergm, 18
simulate_bigergm, 14, 18, 19
simulate_formula, 14, 18, 20
state_twitter, 20

toyNet, 21

yule, 22