1 User guide

1.1 Small data

When the data size is small, the usage of biglasso package is very similar to that of ncvreg, except that biglasso requires the design matrix to be a big.matrix object. Below is a complete example to fit a lasso-penalized linear regression model.

```r
require(biglasso)
## Loading required package: biglasso
## Loading required package: bigmemory
## Loading required package: bigmemory.sri
## Loading required package: Matrix
## Loading required package: ncvreg
data(colon)
X <- colon$X
y <- colon$y
dim(X)
X[1:5, 1:5]
## Hsa.3004 Hsa.13491 Hsa.13491.1 Hsa.37254 Hsa.541
## t 8589.42 5468.24 4263.41 4064.94 1997.89
## n 9164.25 6719.53 4883.45 3718.16 2015.22
## t 3825.71 6970.36 5369.97 4705.65 1166.55
## n 6246.45 7823.53 5955.84 3975.56 2002.61
## t 3230.33 3694.45 3400.74 3463.59 2181.42

## convert X to a big.matrix object
X.bm <- as.big.matrix(X)
str(X.bm) ## X.bm is a pointer to the data matrix
## Formal class 'big.matrix' [package "bigmemory"] with 1 slot
## ..@ address:<externalptr>
dim(X.bm)
X.bm[1:5, 1:5] ## same results as X[1:5, 1:5]
## Hsa.3004 Hsa.13491 Hsa.13491.1 Hsa.37254 Hsa.541
## t 8589.42 5468.24 4263.41 4064.94 1997.89
## n 9164.25 6719.53 4883.45 3718.16 2015.22
## t 3825.71 6970.36 5369.97 4705.65 1166.55
## n 6246.45 7823.53 5955.84 3975.56 2002.61
## t 3230.33 3694.45 3400.74 3463.59 2181.42

## fit entire solution path, using our newly proposed screening rule "SSR-BEDPP"
fit <- biglasso(X.bm, y, screen = "SSR-BEDPP")
plot(fit)
```
10-fold cross-validation in parallel

```r
cvfit <- cv.biglasso(X.bm, y, seed = 1234, nfolds = 10, ncores = 4)
```

After cross-validation, a few things we can do:

- plot the cross-validation plots:

```r
par(mfrow = c(2, 2), mar = c(3.5, 3.5, 3, 1), mgp = c(2.5, 0.5, 0))
plot(cvfit, type = "all")
```
• Summarize CV object:

```r
summary(cvfit)
```
```
# lasso-penalized linear regression with n=62, p=2000  
# At minimum cross-validation error (lambda=0.0165):  
# -----------------------------------------------  
# Nonzero coefficients: 46  
# Cross-validation error (deviance): 0.12  
# R-squared: 0.49  
# Signal-to-noise ratio: 0.96  
# Scale estimate (sigma): 0.342
```

• Extract non-zero coefficients at the optimal λ value 0.016548:

```r
coef(cvfit)[which(coef(cvfit) != 0)]
```
```
# (Intercept)  Hsa.467  Hsa.1013.1  Hsa.832  Hsa.10358  
#  7.000690e-01  -1.068388e-05  -8.774821e-06  1.469851e-05  -1.279683e-05  
#  Hsa.2126  Hsa.11096.1  Hsa.36689  Hsa.16793  Hsa.10909  
#  Hsa.8010  Hsa.1920.1  Hsa.9972  Hsa.692.2  Hsa.7852  
#   1.905808e-05  5.447871e-05  1.168477e-04  -1.243593e-04  1.583372e-05  
#  Hsa.1272  Hsa.166  Hsa.1127  Hsa.31801  Hsa.579  
#  Hsa.24877  Hsa.3648  Hsa.1047  Hsa.13628  Hsa.1509
```
Hsa.3016 Hsa.5392 Hsa.16622 Hsa.1832 Hsa.12241
Hsa.44244 Hsa.9103 Hsa.2964 Hsa.1140 Hsa.9353
Hsa.127 Hsa.41159 Hsa.33268 Hsa.2012 Hsa.34937
Hsa.6814 Hsa.1660 Hsa.404 Hsa.36161 Hsa.1185
Hsa.43331 Hsa.41098.1
-1.822198e-03 -3.690431e-04

1.2 Big data

When the raw data file is very large, it’s better to convert the raw data file into a file-backed `big.matrix` by using a file cache. We can call function `setupX`, which reads the raw data file and creates a backing file (.bin) and a descriptor file (.desc) for the raw data matrix:

```r
# Note: (1) simulated data, 1000 observations, 100,000 variables, 
# (2) the first 10 variables have non-zero coefficient 2.
xfname <- 'x_e3_e5.txt' # raw data file for design matrix, ~ 1GB
time <- system.time(
  X <- setupX(xfname, sep = '\t') # create backing files (.bin, .desc)
)
## Reading data from file, and creating file-backed big.matrix...
## This should take a while if the data is very large...
## Start time: 2016-12-16 12:49:16
## End time: 2016-12-16 12:50:51
## DONE!
##
## Note: This function needs to be called only one time to create two backing 
## files (.bin, .desc) in current dir. Once done, the data can be 
## 'loaded' using function 'attach.big.matrix'. See details in doc.
print(time)
## user  system elapsed
## 71.866  3.370  95.206
dim(X)
## [1] 1e+03 1e+05
X[1:5, 1:5]
## [1,] 1.601592 -0.259093 0.174768 -1.498961 -0.302023
## [2,] -0.637744 -0.095101 -0.317369 1.248830 -0.712442
## [3,] -0.231440 -0.106024 0.799767 0.536773 -0.695111
## [4,] 0.842769 0.659977 -0.148627 0.149582 1.597956
## [5,] -0.356504 -0.718464 -0.581049 0.201162 0.392043

object.size(X) # X is merely a pointer. The data is stored on the disk!
## 664 bytes
```

It’s important to note that the above operation is just one-time execution. Once done, the data can always be retrieved seamlessly by attaching its descriptor file (.desc) in any new R session:
rm(list = ls()) # start a new session
xdesc <- 'x_e3_e5.desc'
system.time(X <- attach.big.matrix(xdesc))
user system elapsed
0.001 0.000 0.001

dim(X)
[1] 1e+03 1e+05
X[1:5, 1:5]
[1,] 1.6015920 -0.2590930 0.1747683 -1.4989607 -0.3020234
[2,] -0.6377443 -0.0951013 -0.3173689 1.2488300 -0.7124418
[3,] -0.2314401 -0.1060238 0.7997667 0.5367721 -0.6951110
[4,] 0.8427689 0.6599768 -0.1486268 0.1495822 1.5979563
[5,] -0.3565041 -0.7184645 -0.5810486 0.2011618 0.3920427

object.size(X)
664 bytes

This is very appealing for big data analysis in that we don’t need to "read" the raw data again in a
R session, which would be very time-consuming.

The code below again fits a lasso-penalized linear model, and runs 10-fold cross-validation:

yfname <- 'y_e3_e5.txt' # response vector
y <- as.matrix(read.table(yfname, header = F))
time.fit <- system.time(
 fit <- biglasso(X, y, family = 'gaussian', screen = 'SSR-BEDPP')
)
print(time.fit)
user system elapsed
9.473 0.138 9.622

plot(fit)
10-fold cross validation in parallel

time.cvfit <- system.time(
 cvfit <- cv.biglasso(X, y, screen = 'SSR-BEDPP', seed = 1234, ncores = 4, nfolds = 10)
)
print(time.cvfit)

user system elapsed
9.602 0.040 45.574

par(mfrow = c(2, 2), mar = c(3.5, 3.5, 3, 1), mgp = c(2.5, 0.5, 0))
plot(cvfit, type = "all")
summary(cvfit)

```
## lasso-penalized linear regression with n=1000, p=1e+05
## At minimum cross-validation error (lambda=0.1065):  
##---------------------------------------------------
## Nonzero coefficients: 10
## Cross-validation error (deviance): 0.12
## R-squared: 1.00
## Signal-to-noise ratio: 313.30
## Scale estimate (sigma): 0.349
```

ccoef(cvfit)[which(coef(cvfit) != 0)]

```
## (Intercept) V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
## 0.0284291 1.8846876 1.8912635 1.8818264 1.8955174 1.8808297 1.8889880 1.8905549 1.8996113 1.8785133 1.8955111
```

2 Useful references

- **biglasso** R manual: https://cran.rstudio.com/web/packages/biglasso/biglasso.pdf
- **biglasso** on GitHub for benchmarking experiments: https://github.com/YaohuiZeng/biglasso
- **big.matrix** manipulation: https://cran.r-project.org/web/packages/bigmemory/index.html