Package ‘bigsplines’

May 25, 2018

Type Package
Title Smoothing Splines for Large Samples
Version 1.1-1
Date 2018-05-25
Author Nathaniel E. Helwig <helwig@umn.edu>
Maintainer Nathaniel E. Helwig <helwig@umn.edu>
Depends quadprog
Imports stats, graphics, grDevices
Description Fits smoothing spline regression models using scalable algorithms de-
signed for large samples. Seven marginal spline types are supported: linear, cubic, different cu-
bic, cubic periodic, cubic thin-plate, ordinal, and nominal. Random effects and parametric ef-
facts are also supported. Response can be Gaussian or non-Gaussian: Binomial, Pois-
son, Gamma, Inverse Gaussian, or Negative Binomial.
License GPL (>= 2)
NeedsCompilation yes
Repository CRAN
Date/Publication 2018-05-25 06:47:54 UTC

R topics documented:

bigsplines-package .. 2
bigspline ... 4
bigssa ... 9
bigssg ... 15
bigssp ... 22
bigtps ... 27
binsamp .. 31
imagebar .. 34
makessa .. 36
makessg .. 38
makessp .. 41
ordspline .. 43
bigsplines-package

Description

Fits smoothing spline regression models using scalable algorithms designed for large samples. Seven marginal spline types are supported: linear, cubic, different cubic, cubic periodic, cubic thin-plate, ordinal, and nominal. Random effects and parametric effects are also supported. Response can be Gaussian or non-Gaussian: Binomial, Poisson, Gamma, Inverse Gaussian, or Negative Binomial.

Details

The DESCRIPTION file:

Package: bigsplines
Type: Package
Title: Smoothing Splines for Large Samples
Version: 1.1-1
Date: 2018-05-25
Author: Nathaniel E. Helwig <helwig@umn.edu>
Maintainer: Nathaniel E. Helwig <helwig@umn.edu>
Depends: quadprog
Imports: stats, graphics, grDevices
Description: Fits smoothing spline regression models using scalable algorithms designed for large samples. Seven marginal
License: GPL (>=2)

Index of help topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bigspline</td>
<td>Fits Smoothing Spline</td>
</tr>
<tr>
<td>bigsplines-package</td>
<td>Smoothing Splines for Large Samples</td>
</tr>
<tr>
<td>bigssa</td>
<td>Fits Smoothing Spline ANOVA Models</td>
</tr>
<tr>
<td>bigssg</td>
<td>Fits Generalized Smoothing Spline ANOVA Models</td>
</tr>
</tbody>
</table>
bigsplines-package

bigssp Fits Smoothing Splines with Parametric Effects
bigtps Fits Cubic Thin-Plate Splines
binsamp Bin-Samples Strategic Knot Indices
imagebar Displays a Color Image with Colorbar
makessa Makes Objects to Fit Smoothing Spline ANOVA Models
makessg Makes Objects to Fit Generalized Smoothing Spline ANOVA Models
makessp Makes Objects to Fit Smoothing Splines with Parametric Effects
ordspline Fits Ordinal Smoothing Spline
plotbar Generic X-Y Plotting with Colorbar
plotci Generic X-Y Plotting with Confidence Intervals
predict.bigssp Predicts for "bigssp" Objects
predict.bigssa Predicts for "bigssa" Objects
predict.bigssg Predicts for "bigssg" Objects
predict.bigssp Predicts for "bigssp" Objects
predict.bigtps Predicts for "bigtps" Objects
predict.ordspline Predicts for "ordspline" Objects
print.bigspllne Prints Fit Information for bigsplines Model
ssBasis Smoothing Spline Basis for Polynomial Splines
summary.bigspline Summarizes Fit Information for bigsplines Model

The function **bigspline** fits one-dimensional cubic smoothing splines (unconstrained or periodic). The function **bigssa** fits Smoothing Spline Anova (SSA) models (Gaussian data). The function **bigssg** fits Generalized Smoothing Spline Anova (GSSA) models (non-Gaussian data). The function **bigssp** is for fitting Smoothing Splines with Parametric effects (semi-parametric regression). The function **bigtps** fits one-, two-, and three-dimensional cubic thin-plate splines. There are corresponding predict, print, and summary functions for these methods.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>
Maintainer: Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

See examples for bigspline, bigssa, bigssg, bigssp, and bigtps

bigspline

Fits Smoothing Spline

Description

Given a real-valued response vector \(y = \{y_i\}_{n \times 1} \) and a real-valued predictor vector \(x = \{x_i\}_{n \times 1} \) with \(a \leq x_i \leq b \ \forall i \), a smoothing spline model has the form

\[
y_i = \eta(x_i) + e_i
\]

where \(y_i \) is the \(i \)-th observation’s response, \(x_i \) is the \(i \)-th observation’s predictor, \(\eta \) is an unknown smooth function relating the response and predictor, and \(e_i \sim N(0, \sigma^2) \) is iid Gaussian error.

Usage

```
bigspline(x,y,type="cub",nknots=30,rparm=0.01,xmin=min(x),
            xmax=max(x),alpha=1,lambdas=NULL,se.fit=FALSE,
            rseed=1234,knotcheck=TRUE)
```

Arguments

- **x**: Predictor vector.
- **y**: Response vector. Must be same length as \(x \).
- **type**: Type of spline for \(x \). Options include `type="lin"` for linear, `type="cub"` for cubic, `type="cub0"` for different cubic, and `type="per"` for cubic periodic. See Spline Types section.
- **nknots**: Scalar giving maximum number of knots to bin-sample. Use more knots for more jagged functions.
- **rparm**: Rounding parameter for \(x \). Use `rparm=NA` to fit unrounded solution. Rounding parameter must be in interval (0,1].
- **xmin**: Minimum \(x \) value (i.e., \(a \)). Used to transform data to interval [0,1].
- **xmax**: Maximum \(x \) value (i.e., \(b \)). Used to transform data to interval [0,1].
alpha Manual tuning parameter for GCV score. Using $\alpha = 1$ gives unbiased estimate. Using a larger alpha enforces a smoother estimate.

lambdas Vector of global smoothing parameters to try. Default estimates smoothing parameter that minimizes GCV score.

se.fit Logical indicating if the standard errors of fitted values should be estimated.

rseed Random seed. Input to set.seed to reproduce same knots when refitting same model. Use rseed=NULL to generate a different sample of knots each time.

cnotcheck If TRUE, only unique knots are used (for stability).

Details

To estimate η I minimize the penalized least-squares functional

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \eta(x_i))^2 + \lambda \int [\dddot{\eta}(x)]^2 dx$$

where $\dddot{\eta}$ denotes the second derivative of η and $\lambda \geq 0$ is a smoothing parameter that controls the trade-off between fitting and smoothing the data.

Default use of the function estimates λ by minimizing the GCV score:

$$GCV(\lambda) = \frac{n \parallel (I_n - S_{\lambda})y \parallel^2}{[n - \text{tr}(S_{\lambda})]^2}$$

where I_n is the identity matrix and S_{λ} is the smoothing matrix (see Computational Details).

Using the rounding parameter input rparm can greatly speed-up and stabilize the fitting for large samples. When rparm is used, the spline is fit to a set of unique data points after rounding; the unique points are determined using the efficient algorithm described in Helwig (2013). For typical cases, I recommend using rparm=0.01, but smaller rounding parameters (e.g., rparm=0.001) may be needed for particularly jagged functions (or when x has outliers).

Value

fitted.values Vector of fitted values corresponding to the original data points in x (if rparm=NULL) or the rounded data points in xunique (if rparm is used).

se.fit Vector of standard errors of fitted.values (if input se.fit=TRUE).

x Predictor vector (same as input).

y Response vector (same as input).

type Type of spline that was used.

xunique Unique elements of x after rounding (if rparm is used).

yunique Mean of y for unique elements of x after rounding (if rparm is used).

funique Vector giving frequency of each element of xunique (if rparm is used).

sigma Estimated error standard deviation, i.e., $\hat{\sigma}$.

ndf Data frame with two elements: n is total sample size, and df is effective degrees of freedom of fit model (trace of smoothing matrix).
Model fit information: vector containing the GCV, multiple R-squared, AIC, and BIC of fit model (assuming Gaussian error).

Predictor range: \(x_{\text{rng}} = c(x_{\text{min}}, x_{\text{max}}) \).

Bin-sampled spline knots used for fit.

Rounding parameter for \(x \) (same as input).

Optimal smoothing parameter.

Spline basis function coefficients.

Matrix square-root of covariance matrix of \(\text{coef} \). Use \(\text{tcrossprod(coef.csqrt)} \) to get covariance matrix of \(\text{coef} \).

Warnings

Cubic and cubic periodic splines transform the predictor to the interval \([0,1]\) before fitting. So input \(x_{\text{min}} \) must be less than or equal to \(\min(x) \), and input \(x_{\text{max}} \) must be greater than or equal to \(\max(x) \).

When using rounding parameters, output \(\text{fittedNvalues} \) corresponds to unique rounded predictor scores in output \(x_{\text{unique}} \). Use \(\text{predict.bigspline} \) function to get fitted values for full \(y \) vector.

Computational Details

According to smoothing spline theory, the function \(\eta \) can be approximated as

\[
\eta(x) = d_0 + d_1 \phi_1(x) + \sum_{h=1}^{q} c_h \rho(x, x_h^*)
\]

where the \(\phi_1 \) is a linear function, \(\rho \) is the reproducing kernel of the contrast (nonlinear) space, and \(\{x_h^*\}_{h=1}^{q} \) are the selected spline knots.

This implies that the penalized least-squares functional can be rewritten as

\[
\|y - Kd - Jc\|^2 + n\lambda c'Qc
\]

where \(K = \{\phi(x_i)\}_{i=1}^{n} \) is the null space basis function matrix, \(J = \{\rho(x_i, x_{h}^*)\}_{i=1}^{n} \) is the contrast space basis function matrix, \(Q = \{\rho(x_{g}^*, x_{h}^*)\}_{g,h}^{q} \) is the penalty matrix, and \(d = (d_0, d_1)' \) and \(c = (c_1, \ldots, c_q)' \) are the unknown basis function coefficients.

Given the smoothing parameter \(\lambda \), the optimal basis function coefficients have the form

\[
\begin{pmatrix}
\hat{d} \\
\hat{c}
\end{pmatrix} =
\begin{pmatrix}
K'K & K'J \\
J'K & J'J + n\lambda Q
\end{pmatrix}^{\dagger}
\begin{pmatrix}
K' \\
J'
\end{pmatrix}y
\]

where \((\cdot)^\dagger\) denotes the pseudoinverse of the input matrix.

Given the optimal coefficients, the fitted values are given by \(\hat{y} = K\hat{d} + J\hat{c} = S_\lambda y \), where

\[
S_\lambda = \begin{pmatrix}
K & J
\end{pmatrix}
\begin{pmatrix}
K'K & K'J \\
J'K & J'J + n\lambda Q
\end{pmatrix}^{\dagger}
\begin{pmatrix}
K' \\
J'
\end{pmatrix}
\]

is the smoothing matrix, which depends on \(\lambda \).
Spline Types

For a linear spline (type="lin") with \(x \in [0,1] \), the needed functions are
\[
\phi_1(x) = 0 \quad \text{and} \quad \rho(x, z) = k_1(x)k_1(z) + k_2(|x - z|)
\]
where \(k_1(x) = x - 0.5 \), \(k_2(x) = \frac{1}{2} (k_1^2(x) - \frac{1}{12}) \); in this case \(K = 1_n \) and \(d = d_0 \).

For a cubic spline (type="cub") with \(x \in [0,1] \), the needed functions are
\[
\phi_1(x) = k_1(x) \quad \text{and} \quad \rho(x, z) = k_2(x)k_2(z) - k_4(|x - z|)
\]
where \(k_1 \) and \(k_2 \) are defined above, and \(k_4(x) = \frac{1}{24} \left(k_4^2(x) - \frac{k_2^2(x)}{2} + \frac{7}{240} \right) \).

For a different cubic spline (type="cub0") with \(x \in [0,1] \), the needed functions are
\[
\phi_1(x) = x \quad \text{and} \quad \rho(x, z) = (x \land z)^2[3(x \lor z) - (x \land z)]/6
\]
where \((x \land z) = \min(x, z) \) and \((x \lor z) = \max(x, z) \).

Note that type="cub" and type="cub0" use different definitions of the averaging operator in the null space. The overall spline estimates should be the same (up to approximation accuracy), but the null and constraint space effect functions will differ (see predict.bigspline). See Helwig (2013) and Gu (2013) for a further discussion of polynomial splines.

For a periodic cubic spline (type="per") with \(x \in [0,1] \), the needed functions are
\[
\phi_1(x) = 0 \quad \text{and} \quad \rho(x, z) = -k_4(|x - z|)
\]
where \(k_4(x) \) is defined as it was for type="cub"; in this case \(K = 1_n \) and \(d = d_0 \).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

EXAMPLE 1

define relatively smooth function
set.seed(773)
myfun <- function(x) { sin(2*pi*x) }
x <- runif(10^6)
y <- myfun(x) + rnorm(10^6)

linear, cubic, different cubic, and periodic splines
linmod <- bigspline(x,y,type="lin")
linmod
cubmod <- bigspline(x,y)
cubmod
cubPmod <- bigspline(x,y,type="cubP")
cubPmod
permod <- bigspline(x,y,type="per")
permod

EXAMPLE 2

define more jagged function
set.seed(773)
myfun <- function(x) { 2*x + cos(4*pi*x) }
x <- runif(10^6)*4
y <- myfun(x) + rnorm(10^6)

try different numbers of knots
r1mod <- bigspline(x,y,nknots=20)
crossprod(myfun(r1mod$xunique) - r1mod$fitted)/length(r1mod$fitted)
r2mod <- bigspline(x,y,nknots=30)
crossprod(myfun(r2mod$xunique) - r2mod$fitted)/length(r2mod$fitted)
r3mod <- bigspline(x,y,nknots=40)
crossprod(myfun(r3mod$xunique) - r3mod$fitted)/length(r3mod$fitted)

EXAMPLE 3

define more jagged function
set.seed(773)
myfun <- function(x) { 2*x + cos(4*pi*x) }
x <- runif(10^6)*4
y <- myfun(x) + rnorm(10^6)

try different rounding parameters
r1mod <- bigspline(x,y, rparm=0.05)
crossprod(myfun(r1mod$xunique) - r1mod$fitted)/length(r1mod$fitted)
r2mod <- bigspline(x,y, rparm=0.02)
crossprod(myfun(r2mod$xunique) - r2mod$fitted)/length(r2mod$fitted)
r3mod <- bigspline(x,y, rparm=0.01)
crossprod(myfun(r3mod$xunique) - r3mod$fitted)/length(r3mod$fitted)

bigssa Fits Smoothing Spline ANOVA Models

Description
Given a real-valued response vector \(y = \{y_i\}_{n \times 1} \), a Smoothing Spline Anova (SSA) has the form

\[
y_i = \eta(x_i) + e_i
\]

where \(y_i \) is the \(i \)-th observation’s response, \(x_i = (x_{i1}, \ldots, x_{ip}) \) is the \(i \)-th observation’s nonparametric predictor vector, \(\eta \) is an unknown smooth function relating the response and nonparametric predictors, and \(e_i \sim N(0, \sigma^2) \) is iid Gaussian error. Function can fit additive models, and also allows for 2-way and 3-way interactions between any number of predictors (see Details and Examples).

Usage

\[
\text{bigssa}(\text{formula}, \text{data}=\text{NULL}, \text{type}=\text{NULL}, \text{nknots}=\text{NULL}, \text{rparm}=\text{NA}, \text{lambdas}=\text{NULL}, \text{skip.__iter}=\text{TRUE}, \text{se.__fit}=\text{FALSE}, \text{rseed}=\text{1234}, \text{gcvopts}=\text{NULL}, \text{knotcheck}=\text{TRUE}, \text{gammas}=\text{NULL}, \text{weights}=\text{NULL}, \text{random}=\text{NULL}, \text{remlalg}=\text{c(“FS”, “NR”, “EM”, “none”), remliter}=\text{500, remltol}=10^-4, remltau=\text{NULL})
\]

Arguments

- **formula**: An object of class "formula": a symbolic description of the model to be fitted (see Details and Examples for more information).
- **data**: Optional data frame, list, or environment containing the variables in formula. Or an object of class "makessa", which is output from makessa.
- **type**: List of smoothing spline types for predictors in formula (see Details). Options include type="cub" for cubic, type="cub0" for another cubic, type="per" for cubic periodic, type="tps" for cubic thin-plate, type="ord" for ordinal, and type="nom" for nominal.
- **nknots**: Two possible options: (a) scalar giving total number of random knots to sample, or (b) vector indexing which rows of data to use as knots.
- **rparm**: List of rounding parameters for each predictor. See Details.
- **lambdas**: Vector of global smoothing parameters to try. Default lambdas=10^-c(9:0).
- **skip.iter**: Logical indicating whether to skip the iterative smoothing parameter update. Using skip.iter=FALSE should provide a more optimal solution, but the fitting time may be substantially longer. See Skip Iteration section.
- **se.fit**: Logical indicating if the standard errors of the fitted values should be estimated.
- **rseed**: Random seed for knot sampling. Input is ignored if nknots is an input vector of knot indices. Set rseed=\text{NULL} to obtain a different knot sample each time, or set rseed to any positive integer to use a different seed than the default.
gcvopts Control parameters for optimization. List with 3 elements: (a) maxit: maximum number of algorithm iterations, (b) gcvtol: convergence tolerance for iterative GCV update, and (c) alpha: tuning parameter for GCV minimization. Default: gcvopts=list(maxit=5, gcvtol=1e-5, alpha=1)

knotcheck If TRUE, only unique knots are used (for stability).

gammas List of initial smoothing parameters for each predictor. See Details.

weights Vector of positive weights for fitting (default is vector of ones).

random Adds random effects to model (see Random Effects section).

remlalg REML algorithm for estimating variance components (see Random Effects section). Input is ignored if random=NULL.

remliter Maximum number of iterations for REML estimation of variance components. Input is ignored if random=NULL.

remltol Convergence tolerance for REML estimation of variance components. Input is ignored if random=NULL.

remltau Initial estimate of variance parameters for REML estimation of variance components. Input is ignored if random=NULL.

Details

The formula syntax is similar to that used in lm and many other R regression functions. Use y~x to predict the response y from the predictor x. Use y~x1+x2 to fit an additive model of the predictors x1 and x2, and use y~x1*x2 to fit an interaction model. The syntax y~x1*x2 includes the interaction and main effects, whereas the syntax y~x1:x2 is not supported. See Computational Details for specifics about how nonparametric effects are estimated.

See bigspline for definitions of type="cub", type="cub0", and type="per" splines, which can handle one-dimensional predictors. See Appendix of Helwig and Ma (2015) for information about type="tps" and type="nom" splines. Note that type="tps" can handle one-, two-, or three-dimensional predictors. I recommend using type="cub" if the predictor scores have no extreme outliers; when outliers are present, type="tps" may produce a better result.

Using the rounding parameter input rparm can greatly speed-up and stabilize the fitting for large samples. For typical cases, I recommend using rparm=0.01 for cubic and periodic splines, but smaller rounding parameters may be needed for particularly jagged functions. For thin-plate splines, the data are NOT transformed to the interval [0,1] before fitting, so the rounding parameter should be on the raw data scale. Also, for type="tps" you can enter one rounding parameter for each predictor dimension. Use rparm=1 for ordinal and nominal splines.

Value

fitted.values Vector of fitted values corresponding to the original data points in xvars (if rparm=NA) or the rounded data points in xunique (if rparm is used).

se.fit Vector of standard errors of fitted.values (if input se.fit=TRUE).

yvar Response vector.

xvars List of predictors.

type Type of smoothing spline that was used for each predictor.
Mean of `yvar` for unique points after rounding (if `rparm` is used).

Unique rows of `xvars` after rounding (if `rparm` is used).

Estimated error standard deviation, i.e., $\hat{\sigma}$.

Data frame with two elements: `n` is total sample size, and `df` is effective degrees of freedom of fit model (trace of smoothing matrix).

Model fit information: vector containing the GCV, multiple R-squared, AIC, and BIC of fit model (assuming Gaussian error).

List containing specifics of fit model (needed for prediction).

Convergence status: converged=TRUE if iterative update converged, converged=FALSE if iterative update failed to converge, and converged=NA if option `skip.iter=TRUE` was used.

Names of the terms in model.

Random effects formula (same as input).

Variance parameters such that $\sigma*\sqrt{\tau}$ gives standard deviation of random effects (if `AisNnull(random)`).

Best linear unbiased predictors (if `AisNnull(random)`).

Called model in input formula.

Cubic and cubic periodic splines transform the predictor to the interval $[0,1]$ before fitting.

When using rounding parameters, output fitted values corresponds to unique rounded predictor scores in output `xunique`. Use `predict.bigssa` function to get fitted values for full `yvar` vector.

To estimate η I minimize the penalized least-squares functional

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \eta(x_i))^2 + \lambda J(\eta)$$

where $J(\cdot)$ is a nonnegative penalty functional quantifying the roughness of η and $\lambda > 0$ is a smoothing parameter controlling the trade-off between fitting and smoothing the data. Note that for $p > 1$ nonparametric predictors, there are additional θ_k smoothing parameters embedded in J.

The penalized least squares functional can be rewritten as

$$\|y - Kd - J_\theta c\|^2 + n\lambda c'Q_\theta c$$

where $K = \{\phi(x_i)\}_{n \times m}$ is the null (parametric) space basis function matrix, $J_\theta = \sum_{k=1}^{s} \theta_k J_k$ with $J_k = \{\rho_k(x_i, x_h^*)\}_{n \times q}$ denoting the k-th contrast space basis function matrix, $Q_\theta = \sum_{k=1}^{s} \theta_k Q_k$ with $Q_k = \{\rho_k(x^*_p, x^*_h)\}_{q \times q}$ denoting the k-th penalty matrix, and $d = (d_0, \ldots, d_m)'$ and $c = (c_1, \ldots, c_q)'$ are the unknown basis function coefficients. The optimal smoothing parameters are chosen by minimizing the GCV score (see `bigspline`).

Note that this function uses the efficient SSA reparameterization described in Helwig (2013) and Helwig and Ma (2015); using is parameterization, there is one unique smoothing parameter per predictor (γ_j), and these γ_j parameters determine the structure of the θ_k parameters in the tensor product space. To evaluate the GCV score, this function uses the improved (scalable) SSA algorithm discussed in Helwig (2013) and Helwig and Ma (2015).
Skip Iteration

For \(p > 1 \) predictors, initial values for the \(\gamma_j \) parameters (that determine the structure of the \(\theta_k \) parameters) are estimated using the smart starting algorithm described in Helwig (2013) and Helwig and Ma (2015).

Default use of this function (\texttt{skip.iter=TRUE}) fixes the \(\gamma_j \) parameters after the smart start, and then finds the global smoothing parameter \(\lambda \) (among the input \texttt{lambdas}) that minimizes the GCV score. This approach typically produces a solution very similar to the more optimal solution using \texttt{skip.iter=FALSE}.

Setting \texttt{skip.iter=FALSE} uses the same smart starting algorithm as setting \texttt{skip.iter=TRUE}. However, instead of fixing the \(\gamma_j \) parameters after the smart start, using \texttt{skip.iter=FALSE} iterates between estimating the optimal \(\lambda \) and the optimal \(\gamma_j \) parameters. The R function \texttt{nlm} is used to minimize the GCV score with respect to the \(\gamma_j \) parameters, which can be time consuming for models with many predictors and/or a large number of knots.

Random Effects

The input \texttt{random} adds random effects to the model assuming a variance components structure. Both nested and crossed random effects are supported. In all cases, the random effects are assumed to be independent zero-mean Gaussian variables with the variance depending on group membership.

Random effects are distinguished by vertical bars ("|"), which separate expressions for design matrices (left) from group factors (right). For example, the syntax \(~1|\text{group}\) includes a random intercept for each level of \text{group}, whereas the syntax \(~1+x|\text{group}\) includes both a random intercept and a random slope for each level of \text{group}. For crossed random effects, parentheses are needed to distinguish different terms, e.g., \(~(1|\text{group}1)+(1|\text{group}2)\) includes a random intercept for each level of \text{group}1 and a random intercept for each level of \text{group}2, where both \text{group}1 and \text{group}2 are factors. For nested random effects, the syntax \(~\text{group}|\text{subject}\) can be used, where both \text{group} and \text{subject} are factors such that the levels of \text{subject} are nested within those of \text{group}.

The input \texttt{remlalg} determines the REML algorithm used to estimate the variance components. Setting \texttt{remlalg=FS} uses a Fisher Scoring algorithm (default). Setting \texttt{remlalg=NR} uses a Newton-Raphson algorithm. Setting \texttt{remlalg=EM} uses an Expectation Maximization algorithm. Use \texttt{remlalg=none} to fit a model with known variance components (entered through \texttt{remltau}).

The input \texttt{remliter} sets the maximum number of iterations for the REML estimation. The input \texttt{remltol} sets the convergence tolerance for the REML estimation, which is determined via relative change in the REML log-likelihood. The input \texttt{remltau} sets the initial estimates of variance parameters; default is \texttt{remltau = rep(1,ntau)} where \texttt{ntau} is the number of variance components.

Note

The spline is estimated using penalized least-squares, which does not require the Gaussian error assumption. However, the spline inference information (e.g., standard errors and fit information) requires the Gaussian error assumption.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>
References

Examples

```
# define univariate function and data
set.seed(77)
myfun <- function(x)( sin(2*pi*x) )
x <- runif(500)
y <- myfun(x) + rnorm(500)

cubmod <- bigssa(y~x,type="cub",nknots=20,se.fit=TRUE)
cubmod
permod <- bigssa(y~x,type="per",nknots=20,se.fit=TRUE)
permod
tpsmod <- bigssa(y~x,type="tps",nknots=20,se.fit=TRUE)
tpsmod

# function with two continuous predictors
set.seed(77)
myfun <- function(x1v,x2v)(sin(2*pi*x1v)+log(x2v+1)+cos(pi*(x1v-x2v)))
x1v <- runif(500)
x2v <- runif(500)
y <- myfun(x1v,x2v) + rnorm(500)

intmod <- bigssa(y~x1v+x2v,type=list(x1v="cub",x2v="cub"),nknots=50)
intmod
crossprod( myfun(x1v,x2v) - intmod$fitted.values )/500
```
fit additive model (with same knots)
addmod <- bigssa(y=x1v+x2v,type=list(x1v="cub",x2v="cub"),nknots=50)
crossprod(myfun(x1v,x2v) - addmod$fitted.values)/500

########### EXAMPLE 3 ###########

function with two continuous and one nominal predictor (3 levels)
set.seed(773)
myfun <- function(x1v,x2v,x3v){
 fval <- rep(0,length(x1v))
 xmeans <- c(-1,0,1)
 for(j in 1:3){
 idx <- which(x3v==letters[j])
 fval[idx] <- xmeans[j]
 }
 fval[idx] <- fval[idx] + cos(4*pi*(x1v[idx]))
 fval <- (fval + sin(3*pi*x1v*x2v*pi) / sqrt(2))
}
x1v <- runif(500)
x2v <- runif(500)
x3v <- sample(letters[1:3],500,replace=TRUE)
y <- myfun(x1v,x2v,x3v) + rnorm(500)

3-way interaction with 50 knots
cuimod <- bigssa(y=x1v*x2v*x3v,type=list(x1v="cub",x2v="cub",x3v="nom"),nknots=50)
crossprod(myfun(x1v,x2v,x3v) - cuimod$fitted.values)/500

fit correct interaction model with 50 knots
cubmod <- bigssa(y=x1v*x2v*x1v*x3v,type=list(x1v="cub",x2v="cub",x3v="nom"),nknots=50)
crossprod(myfun(x1v,x2v,x3v) - cubmod$fitted.values)/500

fit model using 2-dimensional thin-plate and nominal
x1new <- cbind(x1v,x2v)
x2new <- x3v
tpsmod <- bigssa(y=x1new*x2new,type=list(x1new="tps",x2new="nom"),nknots=50)
crossprod(myfun(x1v,x2v,x3v) - tpsmod$fitted.values)/500

########### EXAMPLE 4 ###########

function with four continuous predictors
set.seed(773)
myfun <- function(x1v,x2v,x3v,x4v){
 sin(2*pi*x1v) + log(x2v+.1) + x3v*cos(pi*(x4v))
}
x1v <- runif(500)
x2v <- runif(500)
x3v <- runif(500)
x4v <- runif(500)
y <- myfun(x1v,x2v,x3v,x4v) + rnorm(500)
bigssg

Fits Generalized Smoothing Spline ANOVA Models

Description

Given an exponential family response vector \(y = \{y_i\}_{n \times 1} \), a Generalized Smoothing Spline Anova (GSSA) has the form

\[
g(\mu_i) = \eta(x_i)
\]

where \(\mu_i \) is the expected value of the \(i \)-th observation's response, \(g(\cdot) \) is some invertible link function, \(x_i = (x_{i1}, \ldots, x_{ip}) \) is the \(i \)-th observation's nonparametric predictor vector, and \(\eta \) is an unknown smooth function relating the response and nonparametric predictors. Function can fit additive models, and also allows for 2-way and 3-way interactions between any number of predictors. Response can be one of five non-Gaussian distributions: Binomial, Poisson, Gamma, Inverse Gaussian, or Negative Binomial (see Details and Examples).

Usage

\[
\text{bigssg(formula, family, data=NULL, type=NULL, nknots=NULL, rparm=NA, lambdas=NULL, skip.iter=TRUE, se.lp=FALSE, rseed=1234, gcvopts=NULL, knotcheck=TRUE, gammas=NULL, weights=NULL, gcvtype=c("acv","gacv","gacv.old"))}
\]

Arguments

- formula: An object of class "formula": a symbolic description of the model to be fitted (see Details and Examples for more information).
- family: Distribution for response. One of five options: "binomial", "poisson", "Gamma", "inverse.gaussian", or "negbin". See Response section.
- data: Optional data frame, list, or environment containing the variables in formula. Or an object of class "makessg", which is output from makessg.
- type: List of smoothing spline types for predictors in formula (see Details). Options include type="cub" for cubic, type="cubp" for another cubic, type="per" for cubic periodic, type="tps" for cubic thin-plate, type="ord" for ordinal, and type="nom" for nominal.
- nknots: Two possible options: (a) scalar giving total number of random knots to sample, or (b) vector indexing which rows of data to use as knots.
- rparm: List of rounding parameters for each predictor. See Details.
- lambdas: Vector of global smoothing parameters to try. Default lambdas=10^-c(9:0).
- skip.iter: Logical indicating whether to skip the iterative smoothing parameter update. Using skip.iter=FALSE should provide a more optimal solution, but the fitting time may be substantially longer. See Skip Iteration section.
se.lp Logical indicating if the standard errors of the linear predictors (η) should be estimated.

rseed Random seed for knot sampling. Input is ignored if nknots is an input vector of knot indices. Set rseed=NULL to obtain a different knot sample each time, or set rseed to any positive integer to use a different seed than the default.

gcvopts Control parameters for optimization. List with 6 elements: (i) maxit: maximum number of outer iterations, (ii) gcvtol: convergence tolerance for iterative GACV update, (iii) alpha: tuning parameter for GACV minimization, (iv) inmaxit: maximum number of inner iterations for iteratively reweighted fitting, (v) intol: inner convergence tolerance for iteratively reweighted fitting, and (vi) insub: number of data points to subsample when checking inner convergence.

gcvopts=list(maxit=5,gcvtol=10^-5,alpha=1,inmaxit=100,intol=10^-5,insub=10^4)

knotcheck If TRUE, only unique knots are used (for stability).

gammas List of initial smoothing parameters for each predictor. See Details.

weights Vector of positive weights for fitting (default is vector of ones).

gcvtype Cross-validation criterion for selecting smoothing parameters (see Details).

Details

The formula syntax is similar to that used in lm and many other R regression functions. Use $y \sim x$ to predict the response y from the predictor x. Use $y \sim x_1 + x_2$ to fit an additive model of the predictors x_1 and x_2, and use $y \sim x_1 \times x_2$ to fit an interaction model. The syntax $y \sim x_1 \times x_2$ includes the interaction and main effects, whereas the syntax $y \sim x_1 : x_2$ is not supported. See Computational Details for specifics about how nonparametric effects are estimated.

See bigspline for definitions of type="cub", type="cub0", and type="per" splines, which can handle one-dimensional predictors. See Appendix of Helwig and Ma (2015) for information about type="tps" and type="nom" splines. Note that type="tps" can handle one-, two-, or three-dimensional predictors. I recommend using type="cub" if the predictor scores have no extreme outliers; when outliers are present, type="tps" may produce a better result.

Using the rounding parameter input rparm can greatly speed-up and stabilize the fitting for large samples. For typical cases, I recommend using rparm=0.01 for cubic and periodic splines, but smaller rounding parameters may be needed for particularly jagged functions. For thin-plate splines, the data are NOT transformed to the interval [0,1] before fitting, so rounding parameter should be on raw data scale. Also, for type="tps" you can enter one rounding parameter for each predictor dimension. Use rparm=1 for ordinal and nominal splines.

Value

fitted.values Vector of fitted values (data scale) corresponding to the original data points in xvars (if rparm=NA) or the rounded data points in xunique (if rparm is used).

linear.predictors Vector of fitted values (link scale) corresponding to the original data points in xvars (if rparm=NA) or the rounded data points in xunique (if rparm is used).

se.lp Vector of standard errors of linear.predictors (if input se.lp=TRUE).

yvar Response vector.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xvars</td>
<td>List of predictors.</td>
</tr>
<tr>
<td>type</td>
<td>Type of smoothing spline that was used for each predictor.</td>
</tr>
<tr>
<td>yunique</td>
<td>Mean of yvar for unique points after rounding (if rparm is used).</td>
</tr>
<tr>
<td>xunique</td>
<td>Unique rows of xvars after rounding (if rparm is used).</td>
</tr>
<tr>
<td>dispersion</td>
<td>Estimated dispersion parameter (see Response section).</td>
</tr>
<tr>
<td>rdf</td>
<td>Data frame with two elements: n is total sample size, and df is effective degrees of freedom of fit model (trace of smoothing matrix).</td>
</tr>
<tr>
<td>info</td>
<td>Model fit information: vector containing the GCV, multiple R-squared, AIC, and BIC of fit model.</td>
</tr>
<tr>
<td>modelspec</td>
<td>List containing specifics of fit model (needed for prediction).</td>
</tr>
<tr>
<td>converged</td>
<td>Convergence status: converged=TRUE if iterative update converged, converged=FALSE if iterative update failed to converge, and converged=NA if option skip.iter=TRUE was used.</td>
</tr>
<tr>
<td>tnames</td>
<td>Names of the terms in model.</td>
</tr>
<tr>
<td>family</td>
<td>Distribution family (same as input).</td>
</tr>
<tr>
<td>call</td>
<td>Called model in input formula.</td>
</tr>
</tbody>
</table>

Warnings

Cubic and cubic periodic splines transform the predictor to the interval [0,1] before fitting.

When using rounding parameters, output fitted.values corresponds to unique rounded predictor scores in output xunique. Use `predict.bigssg` function to get fitted values for full yvar vector.

Response

Only one link is permitted for each family:

- family="binomial" Logit link. Response should be vector of proportions in the interval [0,1]. If response is a sample proportion, the total count should be input through weights argument.
- family="poisson" Log link. Response should be vector of counts (non-negative integers).
- family="Gamma" Inverse link. Response should be vector of positive real-valued data. Estimated dispersion parameter is the inverse of the shape parameter, so that the variance of the response increases as dispersion increases.
- family="inverse.gaussian" Inverse-square link. Response should be vector of positive real-valued data. Estimated dispersion parameter is the inverse of the shape parameter, so that the variance of the response increases as dispersion increases.
- family="negbin" Log link. Response should be vector of counts (non-negative integers). Estimated dispersion parameter is the inverse of the size parameter, so that the variance of the response increases as dispersion increases.
- family="list("negbin",2) Log link. Response should be vector of counts (non-negative integers). Second element is the known (common) dispersion parameter (2 in this case). The input dispersion parameter should be the inverse of the size parameter, so that the variance of the response increases as dispersion increases.
Computational Details

To estimate η I minimize the (negative of the) penalized log likelihood

$$\frac{-1}{n} \sum_{i=1}^{n} \{ y_i \eta(x_i) - b(\eta(x_i)) \} + \frac{\lambda}{2} J(\eta)$$

where $J(\cdot)$ is a nonnegative penalty functional quantifying the roughness of η and $\lambda > 0$ is a smoothing parameter controlling the trade-off between fitting and smoothing the data. Note that for $p > 1$ nonparametric predictors, there are additional θ_k smoothing parameters embedded in $J(\cdot)$.

Following standard exponential family theory, $\mu_i = \dot{b}(\eta(x_i))$ and $v_i = \ddot{b}(\eta(x_i)) a(\xi)$, where $\dot{b}(\cdot)$ and $\ddot{b}(\cdot)$ denote the first and second derivatives of $b(\cdot)$. v_i is the variance of y_i, and ξ is the dispersion parameter. Given fixed smoothing parameters, the optimal η can be estimated by iteratively minimizing the penalized reweighted least-squares functional

$$\frac{1}{n} \sum_{i=1}^{n} v_i^* (y_i^* - \eta(x_i))^2 + \lambda J(\eta)$$

where $v_i^* = v_i / a(\xi)$ is the weight, $y_i^* = \hat{\eta}(x_i) + (y_i - \hat{\mu}_i) / v_i^*$ is the adjusted dependent variable, and $\hat{\eta}(x_i)$ is the current estimate of η.

The optimal smoothing parameters are chosen via direct cross-validation (see Gu & Xiang, 2001).

Setting `gcvtype=“acv”` uses the Approximate Cross-Validation (ACV) score:

$$\frac{-1}{n} \sum_{i=1}^{n} \{ y_i \hat{\eta}(x_i) - b(\hat{\eta}(x_i)) \} + \frac{1}{n} \sum_{i=1}^{n} \frac{s_{ii}}{1 - s_{ii}} y_i (y_i - \hat{\mu}_i)$$

where s_{ii} is the i-th diagonal of the smoothing matrix S_λ.

Setting `gcvtype=“gacv”` uses the Generalized ACV (GACV) score:

$$\frac{-1}{n} \sum_{i=1}^{n} \{ y_i \hat{\eta}(x_i) - b(\hat{\eta}(x_i)) \} + \frac{\text{tr}(S_{\lambda} V^{-1})}{n - \text{tr}(S_{\lambda})} \frac{1}{n} \sum_{i=1}^{n} y_i (y_i - \hat{\mu}_i)$$

where S_{λ} is the smoothing matrix, and $V = \text{diag}(v_1^*, \ldots, v_n^*)$.

Setting `gcvtype=“gacv.0ld”` uses an approximation of the GACV where $\frac{1}{n} \text{tr}(S_{\lambda} V^{-1})$ is approximated using $\frac{1}{n-\text{tr}(S_{\lambda})} \text{tr}(V^{-1})$. This option is included for back-compatibility (ver 1.0-4 and earlier), and is not recommended because the ACV or GACV often perform better.

Note that this function uses the efficient SSA reparameterization described in Helwig (2013) and Helwig and Ma (2015); using is parameterization, there is one unique smoothing parameter per predictor (γ_j), and these γ_j parameters determine the structure of the θ_k parameters in the tensor product space. To evaluate the ACV/GACV score, this function uses the improved (scalable) GSSA algorithm discussed in Helwig (in preparation).

Skip Iteration

For $p > 1$ predictors, initial values for the γ_j parameters (that determine the structure of the θ_k parameters) are estimated using an extension of the smart starting algorithm described in Helwig (2013) and Helwig and Ma (2015).
Default use of this function (skip.iter=TRUE) fixes the γ_j parameters after the smart start, and then finds the global smoothing parameter λ (among the input lambdas) that minimizes the GCV score. This approach typically produces a solution very similar to the more optimal solution using skip.iter=FALSE.

Setting skip.iter=FALSE uses the same smart starting algorithm as setting skip.iter=TRUE. However, instead of fixing the γ_j parameters after the smart start, using skip.iter=FALSE iterates between estimating the optimal λ and the optimal γ_j parameters. The R function nlm is used to minimize the approximate GACV score with respect to the γ_j parameters, which can be time consuming for models with many predictors and/or a large number of knots.

Note
The spline is estimated using penalized likelihood estimation. Standard errors of the linear predictors are formed using Bayesian confidence intervals.

Author(s)
Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

```
# define univariate function and data
set.seed(1)
myfun <- function(x){ sin(2*pi*x) }
ndpts <- 1000
x <- runif(ndpts)

# binomial response (no weights)
set.seed(773)
lp <- myfun(x)
p <- 1/(1+exp(-lp))
y <- rbinom(n=ndpts,size=1,p=p)     ## y is binary data
gmod <- bigssg(y~x,family="binomial",type="cub",nknots=20)
```
crossprod(lp - gmod$linear.predictor)/length(lp)

binomial response (with weights)
set.seed(773)
lp <- myfun(x)
p <- 1/(1+exp(-lp))
w <- sample(c(10,20,30,40,50),length(p),replace=TRUE)
y <- rbibinom(n=ndpts,size=w,p=p)/w ## y is proportion correct
gmod <- bigssg(y~x,family="binomial",type="cub",nknots=20,weights=w)
crossprod(lp - gmod$linear.predictor)/length(lp)

poisson response
set.seed(773)
lp <- myfun(x)
mu <- exp(lp)
y <- rpois(n=ndpts,lambda=m)
gmod <- bigssg(y~x,family="poisson",type="cub",nknots=20)
crossprod(lp - gmod$linear.predictor)/length(lp)

Gamma response
set.seed(773)
lp <- myfun(x) + 2
mu <- 1/lp
y <- rgamma(n=ndpts,shape=4,scale=m/4)
gmod <- bigssg(y~x,family="Gamma",type="cub",nknots=20)
1/gmod$dispersion ## dispersion = 1/shape
crossprod(lp - gmod$linear.predictor)/length(lp)

inverse gaussian response (not run: requires statmod package)
require(statmod)
set.seed(773)
lp <- myfun(x) + 2
mu <- sqrt(1/lp)
y <- rinvgauss(n=ndpts,mean=m,shape=2)
gmod <- bigssg(y~x,family="inverse.gaussian",type="cub",nknots=20)
1/gmod$dispersion ## dispersion = 1/shape
crossprod(lp - gmod$linear.predictor)/length(lp)

negative binomial response (known dispersion)
set.seed(773)
lp <- myfun(x)
mu <- exp(lp)
y <- rnbinom(n=ndpts,size=.5,mu=mu)
gmod <- bigssg(y~x,family=list("negbin",2),type="cub",nknots=20)
1/gmod$dispersion ## dispersion = 1/size
crossprod(lp - gmod$linear.predictor)/length(lp)

negative binomial response (unknown dispersion)
set.seed(773)
lp <- myfun(x)
mu <- exp(lp)
y <- rnbinom(n=ndpts,size=.5,mu=mu)
gmod <- bigssg(y~x,family="negbin",type="cub",nknots=20)
bigssg

```r
1/gmod$dispersion  ## dispersion = 1/size
crossprod( lp - gmod$linear.predictor )/length(lp)

## Not run:

################# EXAMPLE 2 (2-way GSSA) #################

# function with two continuous predictors
set.seed(1)
myfun <- function(x1v,x2v){
  sin(2*pi*x1v) + log(x2v+.1) + cos(pi*(x1v-x2v))
}
ndpts <- 1000
x1v <- runif(ndpts)
x2v <- runif(ndpts)

# binomial response (no weights)
set.seed(773)
lp <- myfun(x1v,x2v)
p <- 1/(1+exp(-lp))
y <- rbinom(n=ndpts,size=1,p=p)  ## y is binary data
gmod <- bigssg(y~x1v*x2v,family="binomial",type=list(x1v="cub",x2v="cub"),nknots=50)
crossprod( lp - gmod$linear.predictor )/length(lp)

# binomial response (with weights)
set.seed(773)
lp <- myfun(x1v,x2v)
p <- 1/(1+exp(-lp))
w <- sample(c(10,20,30,40,50),length(p),replace=TRUE)
y <- rbinom(n=ndpts,size=w,p=p)/w  ## y is proportion correct
gmod <- bigssg(y~x1v*x2v,family="binomial",type=list(x1v="cub",x2v="cub"),nknots=50,weights=w)
crossprod( lp - gmod$linear.predictor )/length(lp)

# poisson response
set.seed(773)
lp <- myfun(x1v,x2v)
mu <- exp(lp)
y <- rpois(n=ndpts,lambdamu)
gmod <- bigssg(y~x1v*x2v,family="poisson",type=list(x1v="cub",x2v="cub"),nknots=50)
crossprod( lp - gmod$linear.predictor )/length(lp)

# Gamma response
set.seed(773)
lp <- myfun(x1v,x2v)+6
mu <- 1/lp
y <- rgamma(n=ndpts,shape=4,scale=mu/4)
gmod <- bigssg(y~x1v*x2v,family="Gamma",type=list(x1v="cub",x2v="cub"),nknots=50)
1/gmod$dispersion  ## dispersion = 1/shape
crossprod( lp - gmod$linear.predictor )/length(lp)

# inverse gaussian response (not run: requires 'statmod' package)
# require(statmod)
# set.seed(773)
```
bigssp

Fits Smoothing Splines with Parametric Effects

Description

Given a real-valued response vector \(y = \{y_i\}_{n \times 1} \), a semiparametric regression model has the form

\[
y_i = \eta(x_i) + \sum_{j=1}^{t} b_j z_{ij} + e_i
\]

where \(y_i \) is the \(i \)-th observation’s response, \(x_i = (x_{i1}, \ldots, x_{ip}) \) is the \(i \)-th observation’s nonparametric predictor vector, \(\eta \) is an unknown smooth function relating the response and nonparametric predictors, \(z_i = (z_{i1}, \ldots, z_{it}) \) is the \(i \)-th observation’s parametric predictor vector, and \(e_i \sim N(0, \sigma^2) \) is iid Gaussian error. Function can fit both additive and interactive non/parametric effects, and allows for 2-way and 3-way interactions between nonparametric and parametric effects (see Details and Examples).

Usage

bigssp(formula, data=NULL, type=NULL, n knots=NULL, rparm=NULL, lambdas=NULL, skip.iter=TRUE, se.fit=FALSE, rseed=1234,
bigssp

```r
gcvopts=NULL, knotcheck=TRUE, thetas=NULL, weights=NULL, random=NULL, remlalg=c("FS","NR","EM","none"), remliter=500, remltol=10^-4, remltau=NULL
```

Arguments

- **formula**: An object of class "formula": a symbolic description of the model to be fitted (see Details and Examples for more information).
- **data**: Optional data frame, list, or environment containing the variables in `formula`. Or an object of class "makessp", which is output from `makessp`.
- **type**: List of smoothing spline types for predictors in `formula` (see Details). Options include `type="cub"` for cubic, `type="cub0"` for another cubic, `type="per"` for cubic periodic, `type="tps"` for cubic thin-plate, `type="ord"` for ordinal, and `type="nom"` for nominal. Use `type="prm"` for parametric effect.
- **nknots**: Two possible options: (a) scalar giving total number of random knots to sample, or (b) vector indexing which rows of `data` to use as knots.
- **rparm**: List of rounding parameters for each predictor. See Details.
- **lambdas**: Vector of global smoothing parameters to try. Default `lambdas=10^-c(9:0)`.
- **skip.iter**: Logical indicating whether to skip the iterative smoothing parameter update. Using `skip.iter=FALSE` should provide a more optimal solution, but the fitting time may be substantially longer. See Skip Iteration section.
- **se.fit**: Logical indicating if the standard errors of the fitted values should be estimated.
- **rseed**: Random seed for knot sampling. Input is ignored if `nknots` is an input vector of knot indices. Set `rseed=NULL` to obtain a different knot sample each time, or set `rseed` to any positive integer to use a different seed than the default.
- **gcvopts**: Control parameters for optimization. List with 3 elements: (a) `maxit`: maximum number of algorithm iterations, (b) `gcvtol`: coverage tolerance for iterative GCV update, and (c) `alpha`: tuning parameter for GCV minimization. Default: `gcvopts=list(maxit=5, gcvtol=10^-5, alpha=1)`
- **knotcheck**: If `TRUE`, only unique knots are used (for stability).
- **thetas**: List of initial smoothing parameters for each predictor subspace. See Details.
- **weights**: Vector of positive weights for fitting (default is vector of ones).
- **random**: Adds random effects to model (see Random Effects section).
- **remlalg**: REML algorithm for estimating variance components (see Random Effects section). Input is ignored if `random=NULL`.
- **remliter**: Maximum number of iterations for REML estimation of variance components. Input is ignored if `random=NULL`.
- **remltol**: Convergence tolerance for REML estimation of variance components. Input is ignored if `random=NULL`.
- **remltau**: Initial estimate of variance parameters for REML estimation of variance components. Input is ignored if `random=NULL`.
Details

The formula syntax is similar to that used in `lm` and many other R regression functions. Use `y~x` to predict the response `y` from the predictor `x`. Use `y~x1+x2` to fit an additive model of the predictors `x1` and `x2`, and use `y~x1:x2` to fit an interaction model. The syntax `y~x1*x2` includes the interaction and main effects, whereas the syntax `y~x1:x2` only includes the interaction. See Computational Details for specifics about how non/parametric effects are estimated.

See `bigspline` for definitions of type="cub", type="cub0", and type="per" splines, which can handle one-dimensional predictors. See Appendix of Helwig and Ma (2015) for information about type="tps" and type="nom" splines. Note that type="tps" can handle one-, two-, or three-dimensional predictors. I recommend using type="cub" if the predictor scores have no extreme outliers; when outliers are present, type="tps" may produce a better result.

Using the rounding parameter input `rparm` can greatly speed-up and stabilize the fitting for large samples. For typical cases, I recommend using `rparm=0.01` for cubic and periodic splines, but smaller rounding parameters may be needed for particularly jagged functions. For thin-plate splines, the data are NOT transformed to the interval [0,1] before fitting, so the rounding parameter should be on the raw data scale. Also, for type="tps" you can enter one rounding parameter for each predictor dimension. Use `rparm=1` for ordinal and nominal splines.

Value

- `fitted.values` Vector of fitted values corresponding to the original data points in `xvars` (if `rparm=NA`) or the rounded data points in `xunique` (if `rparm` is used).
- `se.fit` Vector of standard errors of `fitted.values` (if input `se.fit=TRUE`).
- `yvar` Response vector.
- `xvars` List of predictors.
- `type` Type of smoothing spline that was used for each predictor.
- `yunique` Mean of `yvar` for unique points after rounding (if `rparm` is used).
- `xunique` Unique rows of `xvars` after rounding (if `rparm` is used).
- `sigma` Estimated error standard deviation, i.e., $\hat{\sigma}$.
- `ndf` Data frame with two elements: `n` is total sample size, and `df` is effective degrees of freedom of fit model (trace of smoothing matrix).
- `info` Model fit information: vector containing the GCV, multiple R-squared, AIC, and BIC of fit model (assuming Gaussian error).
- `modelspec` List containing specifics of fit model (needed for prediction).
- `converged` Convergence status: `converged=TRUE` if iterative update converged, `converged=FALSE` if iterative update failed to converge, and `converged=NA` if option `skip.iter=TRUE` was used.
- `tnames` Names of the terms in model.
- `random` Random effects formula (same as input).
- `tau` Variance parameters such that `sigma*sqrt(tau)` gives standard deviation of random effects (if `!is.null(random)`).
- `blup` Best linear unbiased predictors (if `!is.null(random)`).
- `call` Called model in input formula.
Warnings
Cubic and cubic periodic splines transform the predictor to the interval [0,1] before fitting.
When using rounding parameters, output fitted values corresponds to unique rounded predictor scores in output xunique. Use predict.bigssp function to get fitted values for full yvar vector.

Computational Details
To estimate η I minimize the penalized least-squares functional

$$
\frac{1}{n} \sum_{i=1}^{n} \left(y_i - \eta(x_i) - \sum_{j=1}^{t} b_j z_{ij} \right)^2 + \lambda J(\eta)
$$

where $J(\cdot)$ is a nonnegative penalty functional quantifying the roughness of η and $\lambda > 0$ is a smoothing parameter controlling the trade-off between fitting and smoothing the data. Note that for $p > 1$ nonparametric predictors, there are additional θ_k smoothing parameters embedded in J.

The penalized least squares functional can be rewritten as

$$
\|y - Kd - J_0c\|^2 + n\lambda c'Q_0c
$$

where $K = \{\phi(x_i), z_i\}_{n \times m}$ is the parametric space basis function matrix, $J_0 = \sum_{k=1}^{s} \theta_k J_k$ with $J_k = \{\rho_k(x_i, x_k^*)\}_{n \times q}$ denoting the k-th contrast space basis function matrix, $Q_0 = \sum_{k=1}^{s} \theta_k Q_k$ with $Q_k = \{\rho_k(x_k^*, x_k^*)\}_{q \times q}$ denoting the k-th penalty matrix, and $d = (d_0, \ldots, d_m)'$ and $c = (c_1, \ldots, c_q)'$ are the unknown basis function coefficients. The optimal smoothing parameters are chosen by minimizing the GCV score (see bigspline).

Note that this function uses the classic smoothing spline parameterization (see Gu, 2013), so there is more than one smoothing parameter per predictor (if interactions are included in the model). To evaluate the GCV score, this function uses the improved (scalable) SSA algorithm discussed in Helwig (2013) and Helwig and Ma (2015).

Skip Iteration
For $p > 1$ predictors, initial values for the θ_k parameters are estimated using Algorithm 3.2 described in Gu and Wahba (1991).

Default use of this function (skip.iter=TRUE) fixes the θ_k parameters after the smart start, and then finds the global smoothing parameter λ (among the input lambdas) that minimizes the GCV score. This approach typically produces a solution very similar to the more optimal solution using skip.iter=FALSE.

Setting skip.iter=FALSE uses the same smart starting algorithm as setting skip.iter=TRUE. However, instead of fixing the θ_k parameters after the smart start, using skip.iter=FALSE iterates between estimating the optimal λ and the optimal θ_k parameters. The R function nlm is used to minimize the GCV score with respect to the θ_k parameters, which can be time consuming for models with many predictors.

Random Effects
The input random adds random effects to the model assuming a variance components structure. Both nested and crossed random effects are supported. In all cases, the random effects are assumed to be independent zero-mean Gaussian variables with the variance depending on group membership.
Random effects are distinguished by vertical bars ("|"), which separate expressions for design matrices (left) from group factors (right). For example, the syntax \(\sim 1 | \text{group} \) includes a random intercept for each level of group, whereas the syntax \(\sim 1 + x | \text{group} \) includes both a random intercept and a random slope for each level of group. For crossed random effects, parentheses are needed to distinguish different terms, e.g., \(\sim (1 | \text{group1}) + (1 | \text{group2}) \) includes a random intercept for each level of group1 and a random intercept for each level of group2, where both group1 and group2 are factors. For nested random effects, the syntax \(\sim \text{group} | \text{subject} \) can be used, where both group and subject are factors such that the levels of subject are nested within those of group.

The input `remlalg` determines the REML algorithm used to estimate the variance components. Setting `remlalg="FS"` uses a Fisher Scoring algorithm (default). Setting `remlalg="NR"` uses a Newton-Raphson algorithm. Setting `remlalg="EM"` uses an Expectation Maximization algorithm. Use `remlalg="none"` to fit a model with known variance components (entered through `remltau`).

The input `remliter` sets the maximum number of iterations for the REML estimation. The input `remltol` sets the convergence tolerance for the REML estimation, which is determined via relative change in the REML log-likelihood. The input `remltau` sets the initial estimates of variance parameters; default is `remltau = rep(1, ntau)` where `ntau` is the number of variance components.

Note

The spline is estimated using penalized least-squares, which does not require the Gaussian error assumption. However, the spline inference information (e.g., standard errors and fit information) requires the Gaussian error assumption.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

function with four continuous predictors
set.seed(773)
myfun <- function(x1v,x2v,x3v,x4v){
 sin(2*pi*x1v) + log(x2v+.1) + x3v*cos(pi*(x4v))
}
x1v <- runif(500)
x2v <- runif(500)
x3v <- runif(500)
x4v <- runif(500)
y <- myfun(x1v,x2v,x3v,x4v) + rnorm(500)

fit cubic spline model with x3v*x4v interaction and x3v as "cub"
(includes x3v and x4v main effects)
cubmod <- bigssp(y=x1v+x2v+x3v*x4v,type=list(x1v="cub",x2v="cub",x3v="cub",x4v="cub"),nknots=50)
crossprod(myfun(x1v,x2v,x3v,x4v) - cubmod$fitted.values)/500

fit cubic spline model with x3v*x4v interaction and x3v as "cub0"
(includes x3v and x4v main effects)
cubmod <- bigssp(y=x1v+x2v+x3v*x4v,type=list(x1v="cub",x2v="cub",x3v="cub0",x4v="cub"),nknots=50)
crossprod(myfun(x1v,x2v,x3v,x4v) - cubmod$fitted.values)/500

fit model with x3v*x4v interaction treating x3v as parametric effect
(includes x3v and x4v main effects)
cubmod <- bigssp(y=x1v+x2v+x3v*x4v,type=list(x1v="cub",x2v="cub",x3v="prm",x4v="cub"),nknots=50)
crossprod(myfun(x1v,x2v,x3v,x4v) - cubmod$fitted.values)/500

fit cubic spline model with x3v:x4v interaction and x3v as "cub"
(excludes x3v and x4v main effects)
cubmod <- bigssp(y=x1v+x2v+x3v:x4v,type=list(x1v="cub",x2v="cub",x3v="cub",x4v="cub"),nknots=50)
crossprod(myfun(x1v,x2v,x3v,x4v) - cubmod$fitted.values)/500

fit cubic spline model with x3v:x4v interaction and x3v as "cub0"
(excludes x3v and x4v main effects)
cubmod <- bigssp(y=x1v+x2v+x3v:x4v,type=list(x1v="cub",x2v="cub",x3v="cub0",x4v="cub"),nknots=50)
crossprod(myfun(x1v,x2v,x3v,x4v) - cubmod$fitted.values)/500

fit model with x3v:x4v interaction treating x3v as parametric effect
(excludes x3v and x4v main effects)
cubmod <- bigssp(y=x1v+x2v+x3v:x4v,type=list(x1v="cub",x2v="cub",x3v="prm",x4v="cub"),nknots=50)
crossprod(myfun(x1v,x2v,x3v,x4v) - cubmod$fitted.values)/500

bigtps

Fits Cubic Thin-Plate Splines
Description

Given a real-valued response vector \(y = \{y_i\}_{n \times 1} \), a thin-plate spline model has the form

\[y_i = \eta(x_i) + e_i \]

where \(y_i \) is the \(i \)-th observation’s response, \(x_i = (x_{i1}, \ldots, x_{id}) \) is the \(i \)-th observation’s nonparametric predictor vector, \(\eta \) is an unknown smooth function relating the response and predictor, and \(e_i \sim N(0, \sigma^2) \) is iid Gaussian error. Function only fits interaction models.

Usage

```r
bigtps(x, y, nknots=NULL, nvec=NULL, rparm=NA, alpha=1, lambdas=NULL, se.fit=FALSE, rseed=1234, knotcheck=TRUE)
```

Arguments

- **x**: Predictor vector or matrix with three or less columns.
- **y**: Response vector. Must be same length as \(x \) has rows.
- **nknots**: Two possible options: (a) scalar giving total number of random knots to sample, or (b) vector indexing which rows of \(x \) to use as knots.
- **nvec**: Number of eigenvectors (and eigenvalues) to use in approximation. Must be less than or equal to the number of knots and greater than or equal to \(ncol(x) \). Default sets \(nvec < nknots \). Can also input \(0 < nvec < 1 \) to retain \(nvec \) percentage of eigenbasis variation.
- **rparm**: Rounding parameter(s) for \(x \). Use \(rparm = NA \) to fit unrounded solution. Can provide one (positive) rounding parameter for each column of \(x \).
- **alpha**: Manual tuning parameter for GCV score. Using \(alpha = 1 \) gives unbiased estimate. Using a larger alpha enforces a smoother estimate.
- **lambdas**: Vector of global smoothing parameters to try. Default estimates smoothing parameter that minimizes GCV score.
- **se.fit**: Logical indicating if the standard errors of fitted values should be estimated.
- **rseed**: Random seed for knot sampling. Input is ignored if \(nknots \) is an input vector of knot indices. Set \(rseed = NULL \) to obtain a different knot sample each time, or set \(rseed \) to any positive integer to use a different seed than the default.
- **knotcheck**: If TRUE, only unique knots are used (for stability).

Details

To estimate \(\eta \) I minimize the penalized least-squares functional

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - \eta(x_i))^2 + \lambda J(\eta)
\]

where \(J(\eta) \) is the thin-plate penalty (see Helwig and Ma) and \(\lambda \geq 0 \) is a smoothing parameter that controls the trade-off between fitting and smoothing the data. Default use of the function estimates \(\lambda \) by minimizing the GCV score (see `bigspline`).
Using the rounding parameter input `rparm` can greatly speed-up and stabilize the fitting for large samples. When `rparm` is used, the spline is fit to a set of unique data points after rounding; the unique points are determined using the efficient algorithm described in Helwig (2013). Rounding parameter should be on the raw data scale.

Value

- **fitted.values**: Vector of fitted values corresponding to the original data points in `x` (if `rparm` is `NA`) or the rounded data points in `xunique` (if `rparm` is used).
- **se.fit**: Vector of standard errors of `fitted.values` (if input `se.fit` is `TRUE`).
- **x**: Predictor vector (same as input).
- **y**: Response vector (same as input).
- **xunique**: Unique elements of `x` after rounding (if `rparm` is used).
- **yunique**: Mean of `y` for unique elements of `x` after rounding (if `rparm` is used).
- **funique**: Vector giving frequency of each element of `xunique` (if `rparm` is used).
- **sigma**: Estimated error standard deviation, i.e., $\hat{\sigma}$.
- **ndf**: Data frame with two elements: `n` is total sample size, and `df` is effective degrees of freedom of fit model (trace of smoothing matrix).
- **info**: Model fit information: vector containing the GCV, multiple R-squared, AIC, and BIC of fit model (assuming Gaussian error).
- **myknots**: Spline knots used for fit.
- **nvec**: Number of eigenvectors used for solution.
- **rparm**: Rounding parameter for `x` (same as input).
- **lambda**: Optimal smoothing parameter.
- **coef**: Spline basis function coefficients.
- **coef.csqrt**: Matrix square-root of covariance matrix of `coef`. Use `tcrossprod(coef.csqrt)` to get covariance matrix of `coef`.

Warnings

Input `nvec` must be greater than `ncol(x)+1`.

When using rounding parameters, output `fitted.values` corresponds to unique rounded predictor scores in output `xunique`. Use `predict.bigtps` function to get fitted values for full `y` vector.

Computational Details

According to thin-plate spline theory, the function η can be approximated as

$$
\eta(x) = \sum_{k=1}^{M} d_k \phi_k(x) + \sum_{h=1}^{q} c_h \xi(x, x_h^*)
$$

where the $\{\phi_k\}_{k=1}^{M}$ are linear functions, ξ is the thin-plate spline semi-kernel, $\{x_h^*\}_{h=1}^{q}$ are the knots, and the c_h coefficients are constrained to be orthogonal to the $\{\phi_k\}_{k=1}^{M}$ functions.
This implies that the penalized least-squares functional can be rewritten as

\[\|y - Kd - Jc\|^2 + n\lambda c'Qc \]

where \(K = \{\phi(x_i)\}_{n \times M} \) is the null space basis function matrix, \(J = \{\xi(x_i, x^*_h)\}_{n \times q} \) is the contrast space basis function matrix, \(Q = \{\xi(x^*_g, x^*_h)\}_{q \times q} \) is the penalty matrix, and \(d = (d_0, \ldots, d_M)' \) and \(c = (c_1, \ldots, c_q)' \) are the unknown basis function coefficients, where \(c \) are constrained to be orthogonal to the \(\{\phi_k\}_{k=1}^M \) functions.

See Helwig and Ma for specifics about how the constrained estimation is handled.

Note

The spline is estimated using penalized least-squares, which does not require the Gaussian error assumption. However, the spline inference information (e.g., standard errors and fit information) requires the Gaussian error assumption.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

```
# Example 1

# define relatively smooth function
set.seed(773)
myfun <- function(x){ sin(2*pi*x) }
x <- runif(500)
y <- myfun(x) + rnorm(500)

# fit thin-plate spline (default 1 dim: 30 knots)
tpsmod <- bigtps(x,y)
tpsmod
```

```
# Example 2

# define more jagged function
```
```r
set.seed(773)
myfun <- function(x){ 2*x*cos(2*pi*x) }
x <- runif(500)*4
y <- myfun(x) + rnorm(500)

# try different numbers of knots
r1mod <- bigtps(x,y,nknots=20,raparm=0.01)
crossprod( myfun(r1mod$xunique) - r1mod$fitted )/length(r1mod$fitted)

r2mod <- bigtps(x,y,nknots=35,raparm=0.01)
crossprod( myfun(r2mod$xunique) - r2mod$fitted )/length(r2mod$fitted)

r3mod <- bigtps(x,y,nknots=50,raparm=0.01)
crossprod( myfun(r3mod$xunique) - r3mod$fitted )/length(r3mod$fitted)


########### EXAMPLE 3 ###########

# function with two continuous predictors
set.seed(773)
myfun <- function(x1v,x2v){
  sin(2*pi*x1v) + log(x2v+1) + cos(pi*(x1v-x2v))
}
x <- cbind(runif(500),runif(500))
y <- myfun(x[,1],x[,2]) + rnorm(500)

# fit thin-plate spline with 50 knots (default 2 dim: 100 knots)
tpsmod <- bigtps(x,y,nknots=50)
tpsmod
crossprod( myfun(x[,1],x[,2]) - tpsmod$fitted.values )/500


########### EXAMPLE 4 ###########

# function with three continuous predictors
set.seed(773)
myfun <- function(x1v,x2v,x3v){
  sin(2*pi*x1v) + log(x2v+1) + cos(pi*x3v)
}
x <- cbind(runif(500),runif(500),runif(500))
y <- myfun(x[,1],x[,2],x[,3]) + rnorm(500)

# fit thin-plate spline with 50 knots (default 3 dim: 200 knots)
tpsmod <- bigtps(x,y,nknots=50)
tpsmod
crossprod( myfun(x[,1],x[,2],x[,3]) - tpsmod$fitted.values )/500
```
Description

Breaks the predictor domain into a user-specified number of disjoint subregions, and randomly samples a user-specified number of observations from each (nonempty) subregion.

Usage

`binsamp(x, xrng=NULL, nmbin=11, nsamp=1, alg=c("new","old"))`

Arguments

- **x**: Matrix of predictors $X = \{x_{ij}\}_{n \times p}$ where n is the number of observations, and p is the number of predictors.
- **xrng**: Optional matrix of predictor ranges: $R = \{r_{kj}\}_{2 \times p}$ where $r_{1j} = \min_i x_{ij}$ and $r_{2j} = \max_i x_{ij}$.
- **nmbin**: Vector $b = (b_1, \ldots, b_p)'$, where $b_j \geq 1$ is the number of marginal bins to use for the j-th predictor. If $\text{length}(\text{nmbin}) < \text{ncol}(x)$, then $\text{nmbin}[1]$ is used for all columns. Default is $\text{nmbin}=11$ marginal bins for each dimension.
- **nsamp**: Scalar $s \geq 1$ giving the number of observations to sample from each bin. Default is sample $\text{nsamp}=1$ observation from each bin.
- **alg**: Bin-sampling algorithm. New algorithm forms equidistant grid, whereas old algorithm forms approximately equidistant grid. New algorithm is default for versions 1.0-1 and later.

Value

Returns an index vector indicating the rows of x that were bin-sampled.

Warnings

If x_{ij} is nominal with g levels, the function requires $b_j = g$ and $x_{ij} \in \{1, \ldots, g\}$ for $i \in \{1, \ldots, n\}$.

Note

The number of returned knots will depend on the distribution of the covariate scores. The maximum number of possible bin-sampled knots is $s \prod_{j=1}^p b_j$, but fewer knots will be returned if one (or more) of the bins is empty (i.e., if there is no data in one or more bins).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

Examples

```
# create 2-dimensional predictor (both continuous)
set.seed(123)
xmat <- cbind(runif(10^6), runif(10^6))
```
Default use:
10 marginal bins for each predictor
sample 1 observation from each subregion
xind <- binsamp(xmat)

get the corresponding knots
bknots <- xmat[xind,]

compare to randomly-sampled knots
rknots <- xmat[sample(1:(10^6),100),]
par(mfrow=c(1,2))
plot(bknots,main="bin-sampled")
plot(rknots,main="randomly sampled")

######### EXAMPLE 2 #########

create 2-dimensional predictor (continuous and nominal)
set.seed(123)
xmat <- cbind(runif(10^6),sample(1:3,10^6,replace=TRUE))

use 10 marginal bins for x1 and 3 marginal bins for x2
and sample one observation from each subregion
xind <- binsamp(xmat,nmbin=c(10,3))

get the corresponding knots
bknots <- xmat[xind,]

compare to randomly-sampled knots
rknots <- xmat[sample(1:(10^6),30),]
par(mfrow=c(1,2))
plot(bknots,main="bin-sampled")
plot(rknots,main="randomly sampled")

######### EXAMPLE 3 #########

create 3-dimensional predictor (continuous, continuous, nominal)
set.seed(123)
xmat <- cbind(runif(10^6),runif(10^6),sample(1:2,10^6,replace=TRUE))

use 10 marginal bins for x1 and x2, and 2 marginal bins for x3
and sample one observation from each subregion
xind <- binsamp(xmat,nmbin=c(10,10,2))

get the corresponding knots
bknots <- xmat[xind,]

compare to randomly-sampled knots
rknots <- xmat[sample(1:(10^6),200),]
par(mfrow=c(2,2))
imagebar Displays a Color Image with Colorbar

Description

This is a modification to the R function `image` that adds a colorbar to the margin.

Usage

```r
imagebar(x, y, z, xlim = NULL, ylim = NULL, zlim = NULL, 
          zlab = NULL, zcex.axis = NULL, zcex.lab = NULL, 
          zaxis.at = NULL, zaxis.labels = TRUE, 
          col = NULL, ncolor = 21, drawbar = TRUE, zline = 2, 
          pltimage = c(0.2, 0.8, 0.2, 0.8), pltbar = c(0.82, 0.85, 0.2, 0.8), ...)
```

Arguments

- **x, y** Locations of grid lines at which the values in `z` are measured. These must be finite, non-missing and in (strictly) ascending order. If only `x` is given, the input `x` is treated as `z`.
- **z** A matrix containing the values to be plotted (NAs are allowed). If `x` and `y` are missing, a sequence from 0 to 1 is used for plotting.
- **xlim, ylim** Ranges for the plotted `x` and `y` values, defaulting to the ranges of `x` and `y`.
- **zlim** The minimum and maximum `z` values for which colors should be plotted, defaulting to the range of the finite values of `z`.
- **zlab** Label for the colorbar.
- **zcex.axis** The magnification to be used for the `z`-axis annotation (colorbar scale).
- **zcex.lab** The magnification to be used for the `z`-axis label (`zlab`).
- **zaxis.at** The points at which tick-marks are to be drawn for the colorbar. Points outside of the range of `zlim` will not be plotted.
- **zaxis.labels** This can either be a logical value specifying whether (numerical) annotations are to be made at the tickmarks, or a character or expression vector of labels to be placed at the tickpoints.
- **col** Color scheme to use. Default is from blueviolet (low) to red (high).
- **ncolor** The number of colors to use in the color scheme.
- **drawbar** Logical indicating if the colorbar should be drawn.
- **zline** Number of lines into the margin at which the axis line will be drawn (see `axis`).
pltimage A vector of the form c(x1, x2, y1, y2) giving the coordinates of the image region as fractions of the current figure region (see par).

pltbar A vector of the form c(x1, x2, y1, y2) giving the coordinates of the colorbar region as fractions of the current figure region (see par).

... Additional arguments to be passed to image (e.g., xlab, ylab, main, cex, cex.axis, cex.lab, etc.)

Value

Produces an image plot with a colorbar.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

Examples

########### EXAMPLE 1 ###########

myfun <- function(x){
 2*sin(sqrt(x[,1]^2+x[,2]^2+.1))/sqrt(x[,1]^2+x[,2]^2+.1)
}
x <- expand.grid(seq(-8,8,l=100),seq(-8,8,l=100))
imagebar(seq(-8,8,l=100),seq(-8,8,l=100),matrix(myfun(x),100,100),
 xlab=expression(italic(x[1])),ylab=expression(italic(x[2])),
 zlab=expression(hat(italic(y))),zlim=c(-0.5,2),zaxis.at=seq(-0.5,2,by=0.5))

########### EXAMPLE 2 ###########

myfun <- function(x1v,x2v){
 sin(2*pi*x1v) + 2*sin(sqrt(x2v^2+.1))/sqrt(x2v^2+.1)
}
x <- expand.grid(x1v=seq(0,1,l=100),x2v=seq(-8,8,l=100))
imagebar(seq(0,1,l=100),seq(-8,8,l=100),matrix(myfun(x1v,x2v),100,100),
 col=c("red","orange","yellow","white"),xlab="x1v",ylab="x2v",
 zlab=expression(hat(italic(y))),zlim=c(-1.5,3),zaxis.at=seq(-1.5,3,by=0.5))

########### EXAMPLE 3 ###########

myfun <- function(x1v,x2v){
 sin(3*pi*x1v) + 3*cos(pi*(x1v-x2v))
}
x <- expand.grid(x1v=seq(-1,1,l=100),x2v=seq(-1,1,l=100))
imagebar(seq(-1,1,l=100),seq(-1,1,l=100),matrix(myfun(x1v,x2v),100,100),
 col=c("blue","green","light green","yellow"),xlab="x1v",ylab="x2v",
 zlab=expression(hat(italic(y))),zlim=c(-5,5),zaxis.at=c(-5,0,5),
 zaxis.labels=c("low","med","high"))
makessa

Makes Objects to Fit Smoothing Spline ANOVA Models

Description

This function creates a list containing the necessary information to fit a smoothing spline anova model (see bigssa).

Usage

makessa(formula, data=NULL, type=NULL, nknots=NULL, rparm=NA, lambdas=NULL, skip.iter=TRUE, se.fit=FALSE, rseed=1234, gcvopts=NULL, knotcheck=TRUE, gammas=NULL, weights=NULL, random=NULL, remlalg=c("FS","NR","EM","none"), remliter=500, remltol=10^-4, remltau=NULL)

Arguments

formula An object of class "formula": a symbolic description of the model to be fitted (see Details and Examples for more information).

data Optional data frame, list, or environment containing the variables in formula.

type List of smoothing spline types for predictors in formula (see Details). Options include type="cub" for cubic, type="acub" for another cubic, type="per" for cubic periodic, type="tps" for cubic thin-plate, and type="nom" for nominal.

nknots Two possible options: (a) scalar giving total number of random knots to sample, or (b) vector indexing which rows of data to use as knots.

rparm List of rounding parameters for each predictor. See Details.

lambdas Vector of global smoothing parameters to try. Default uses lambdas=10^-c(9:0)

skip.iter Logical indicating whether to skip the iterative smoothing parameter update. Using skip.iter=FALSE should provide a more optimal solution, but the fitting time may be substantially longer. See Computational Details.

se.fit Logical indicating if the standard errors of the fitted values should be estimated.

rseed Random seed for knot sampling. Input is ignored if nknots is an input vector of knot indices. Set rseed=NULL to obtain a different knot sample each time, or set rseed to any positive integer to use a different seed than the default.

gcvopts Control parameters for optimization. List with 3 elements: (a) maxit: maximum number of algorithm iterations, (b) gcvtol: convergence tolerance for iterative GCV update, and (c) alpha: tuning parameter for GCV minimization. Default: gcvopts=list(maxit=5, gcvtol=10^-5, alpha=1)

knotcheck If TRUE, only unique knots are used (for stability).

gammas List of initial smoothing parameters for each predictor. See Details.

weights Vector of positive weights for fitting (default is vector of ones).

random Adds random effects to model (see Random Effects section).
makessa

remlalg REML algorithm for estimating variance components (see Random Effects section). Input is ignored if is.null(random).

remliter Maximum number of iterations for REML estimation of variance components. Input is ignored if random=NULL.

remltol Convergence tolerance for REML estimation of variance components. Input is ignored if random=NULL.

remltau Initial estimate of variance parameters for REML estimation of variance components. Input is ignored if random=NULL.

Details

See bigssa and below example for more details.

Value

An object of class "makessa", which can be input to bigssa.

Warning

When inputting a "makessa" class object into bigssa, the formula input to bigssa must be a nested version of the original formula input to makessa. In other words, you cannot add any new effects after a "makessa" object has been created, but you can drop (remove) effects from the model.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

makessg

makessg

Makes Objects to Fit Generalized Smoothing Spline ANOVA Models

Description

This function creates a list containing the necessary information to fit a generalized smoothing spline anova model (see `bigssg`).

Usage

```r
makessg(formula, family, data, type=NULL, nknots=NULL, rparm=NA, lambdas=NULL, skip.iter=TRUE, se.lp=FALSE, rseed=1234, gcv.opts=NULL, knotcheck=TRUE, gammas=NULL, weights=NULL, gcv.type=c("acv","gacv","gacv.old"))
```
Arguments

- **formula**: An object of class "formula": a symbolic description of the model to be fitted (see Details and Examples for more information).
- **family**: Distribution for response. One of five options: "binomial", "poisson", "Gamma", "inverse.gaussian", or "negbin". See `bigssg`.
- **data**: Optional data frame, list, or environment containing the variables in `formula`.
- **type**: List of smoothing spline types for predictors in `formula` (see Details). Options include type="cub" for cubic, type="acub" for another cubic, type="per" for cubic periodic, type="tps" for cubic thin-plate, and type="nom" for nominal.
- **nknots**: Two possible options: (a) scalar giving total number of random knots to sample, or (b) vector indexing which rows of `data` to use as knots.
- **rparm**: List of rounding parameters for each predictor. See Details.
- **lambdas**: Vector of global smoothing parameters to try. Default uses lambdas=10^-c(9:0)
- **skip.iter**: Logical indicating whether to skip the iterative smoothing parameter update. Using `skip.iter=FALSE` should provide a more optimal solution, but the fitting time may be substantially longer. See Computational Details.
- **se.lp**: Logical indicating if the standard errors of the linear predictors (\(\eta \)) should be estimated.
- **rseed**: Random seed for knot sampling. Input is ignored if `nknots` is an input vector of knot indices. Set `rseed=NULL` to obtain a different knot sample each time, or set `rseed` to any positive integer to use a different seed than the default.
- **gcvopts**: Control parameters for optimization. List with 6 elements: (i) `maxit`: maximum number of outer iterations, (ii) `gcvtol`: convergence tolerance for iterative GACV update, (iii) `alpha`: tuning parameter for GACV minimization, (iv) `inmaxit`: maximum number of inner iterations for iteratively reweighted fitting, (v) `intol`: inner convergence tolerance for iteratively reweighted fitting, and (vi) `insub`: number of data points to subsample when checking inner convergence.
- **knotcheck**: If TRUE, only unique knots are used (for stability).
- **gammas**: List of initial smoothing parameters for each predictor. See Details.
- **weights**: Vector of positive weights for fitting (default is vector of ones).
- **gcvtype**: Cross-validation criterion for selecting smoothing parameters (see Details).

Details

See `bigssg` and below example for more details.

Value

An object of class "makessg", which can be input to `bigssg`.

Warning

When inputting a "makessg" class object into `bigssg`, the formula input to `bigssg` must be a nested version of the original formula input to `makessg`. In other words, you cannot add any new effects after a "makessg" object has been created, but you can drop (remove) effects from the model.
Author(s)
Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

```
########### EXAMPLE ###########

# function with two continuous predictors
set.seed(1)
myfun <- function(x1v,x2v){
  sin(2*pi*x1v) + log(x2v+.1) + cos(pi*(x1v-x2v))
}
ndpts <- 1000
x1v <- runif(ndpts)
x2v <- runif(ndpts)

# binomial response (no weights)
set.seed(77)
lp <- myfun(x1v,x2v)
p <- 1/(1+exp(-lp))
y <- rbinom(n=ndpts,size=1,p=p)

# fit 2 possible models (create information 2 separate times)
system.time(
  intmod <- bigssg(y~x1v*x2v,family="binomial",type=list(x1v="cub",x2v="cub"),nknots=50)
  addmod <- bigssg(y~x1v+x2v,family="binomial",type=list(x1v="cub",x2v="cub"),nknots=50))

# fit 2 possible models (create information 1 time)
system.time(
  makemod <- makessg(y~x1v*x2v,family="binomial",type=list(x1v="cub",x2v="cub"),nknots=50)
  int2mod <- bigssg(y~x1v+x2v,data=makemod)
  add2mod <- bigssg(y~x1v+x2v,data=makemod))

# check difference (no difference)
```
Description

This function creates a list containing the necessary information to fit a smoothing spline with parametric effects (see bigssp).

Usage

makessp(formula, data=NULL, type=NULL, nknots=NULL, rparm=NA, lambdas=NULL, skip.iter=TRUE, se.fit=FALSE, rseed=1234, gcvopts=NULL, knotcheck=TRUE, thetas=NULL, weights=NULL, random=NULL, remlalg=c("FS","NR","EM","none"), remliter=500, remltol=10^-4, remltau=NULL)

Arguments

- **formula**: An object of class "formula": a symbolic description of the model to be fitted (see Details and Examples for more information).
- **data**: Optional data frame, list, or environment containing the variables in formula.
- **type**: List of smoothing spline types for predictors in formula (see Details). Options include type="cub" for cubic, type="acub" for another cubic, type="per" for cubic periodic, type="tps" for cubic thin-plate, and type="nom" for nominal. Use type="prm" for parametric effect.
- **nknots**: Two possible options: (a) scalar giving total number of random knots to sample, or (b) vector indexing which rows of data to use as knots.
- **rparm**: List of rounding parameters for each predictor. See Details.
- **lambdas**: Vector of global smoothing parameters to try. Default uses lambdas=10^-c(9:0)
- **skip.iter**: Logical indicating whether to skip the iterative smoothing parameter update. Using skip.iter=FALSE should provide a more optimal solution, but the fitting time may be substantially longer. See Computational Details.
- **se.fit**: Logical indicating if the standard errors of the fitted values should be estimated.
- **rseed**: Random seed for knot sampling. Input is ignored if nknots is an input vector of knot indices. Set rseed=NULL to obtain a different knot sample each time, or set rseed to any positive integer to use a different seed than the default.
- **gcvopts**: Control parameters for optimization. List with 3 elements: (a) maxit: maximum number of algorithm iterations, (b) gcvtol: convergence tolerance for iterative GCV update, and (c) alpha: tuning parameter for GCV minimization. Default: gcvopts=list(maxit=5, gcvtol=10^-5, alpha=1)
knotcheck If TRUE, only unique knots are used (for stability).

thetas List of initial smoothing parameters for each predictor subspace. See Details.

weights Vector of positive weights for fitting (default is vector of ones).

random Adds random effects to model (see Random Effects section).

remlalg REML algorithm for estimating variance components (see Random Effects section). Input is ignored if is.null(random).

remliter Maximum number of iterations for REML estimation of variance components. Input is ignored if random=NULL.

remltol Convergence tolerance for REML estimation of variance components. Input is ignored if random=NULL.

remltau Initial estimate of variance parameters for REML estimation of variance components. Input is ignored if random=NULL.

Details

See bigssp and below example for more details.

Value

An object of class "makessp", which can be input to bigssp.

Warning

When inputting a "makessp" class object into bigssp, the formula input to bigssp must be a nested version of the original formula input to makessp. In other words, you cannot add any new effects after a "makessp" object has been created, but you can drop (remove) effects from the model.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

```
# function with two continuous predictors
set.seed(773)
myfun <- function(x1v,x2v){
  sin(2*pi*x1v) + log(x2v+.1) + cos(pi*(x1v-x2v))
}
x1v <- runif(500)
x2v <- runif(500)
y <- myfun(x1v,x2v) + rnorm(500)

# fit 2 possible models (create information 2 separate times)
system.time(
  intmod <- bigssp(y~x1v*x2v,type=list(x1v="cub",x2v="cub"),nknots=50)
  addmod <- bigssp(y~x1v+x2v,type=list(x1v="cub",x2v="cub"),nknots=50)
)

# fit 2 possible models (create information 1 time)
system.time(
  makemod <- makessp(y~x1v*x2v,type=list(x1v="cub",x2v="cub"),nknots=50)
  int2mod <- bigssp(y~x1v+x2v,makemod)
  add2mod <- bigssp(y~x1v+x2v,makemod)
)

# check difference (no difference)
crossprod( intmod$fitted.values - int2mod$fitted.values )
crossprod( add2mod$fitted.values - add2mod$fitted.values )
```

ordspline

Fits Ordinal Smoothing Spline

Description

Given a real-valued response vector \(y = \{y_i\}_{n \times 1} \) and an ordinal predictor vector \(x = \{x_i\}_{n \times 1} \), with \(x_i \in \{1, \ldots, K\} \) \(\forall i \), an ordinal smoothing spline model has the form

\[
y_i = \eta(x_i) + e_i
\]

where \(y_i \) is the \(i \)-th observation’s response, \(x_i \) is the \(i \)-th observation’s predictor, \(\eta \) is an unknown function relating the response and predictor, and \(e_i \sim N(0, \sigma^2) \) is iid Gaussian error.

Usage

```r
ordspline(x, y, knots, weights, lambda, monotone=FALSE)
```
Argument

x Predictor vector.
y Response vector. Must be same length as x.
knots Either a scalar giving the number of equidistant knots to use, or a vector of values to use as the spline knots. If left blank, the number of knots is \(\min(50, \text{nu}) \) where \(\text{nu} = \text{length(\text{unique}(x))} \).
weights Weights vector (for weighted penalized least squares). Must be same length as x and contain non-negative values.
lambda Smoothing parameter. If left blank, lambda is tuned via Generalized Cross-Validation.
monotone If TRUE, the relationship between x and y is constrained to be monotonic increasing.

Details

To estimate \(\eta \) I minimize the penalized least-squares functional

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - \eta(x_i))^2 + \lambda \sum_{x=2}^{K} [\eta(x) - \eta(x-1)]^2 dx
\]

where \(\lambda \geq 0 \) is a smoothing parameter that controls the trade-off between fitting and smoothing the data.

Default use of the function estimates \(\lambda \) by minimizing the GCV score:

\[
\text{GCV}(\lambda) = \frac{n \| (I_n - S_\lambda)y \|^2}{n - \text{tr}(S_\lambda)}
\]

where \(I_n \) is the identity matrix and \(S_\lambda \) is the smoothing matrix.

Value

fitted.values Vector of fitted values.
se.fit Vector of standard errors of fitted.values.
sigma Estimated error standard deviation, i.e., \(\hat{\sigma} \).
lambda Chosen smoothing parameter.
info Model fit information: vector containing the GCV, R-squared, AIC, and BIC of fit model (assuming Gaussian error).
coef Spline basis function coefficients.
coef.csqrt Matrix square-root of covariance matrix of coef. Use tcrossprod(coef.csqrt) to get covariance matrix of coef.
n Number of data points, i.e., length(x).
df Effective degrees of freedom (trace of smoothing matrix).
xunique Unique elements of x.
x Predictor vector (same as input).
ordspline

\[y \] Response vector (same as input).

\[\text{residuals} \] Residual vector, i.e., \[y - \text{fitted.values} \].

\[\text{knots} \] Spline knots used for fit.

\[\text{monotone} \] Logical (same as input).

Warnings

When inputting user-specified knots, all values in knots must match a corresponding value in \(x \).

Note

The spline is estimated using penalized least-squares, which does not require the Gaussian error assumption. However, the spline inference information (e.g., standard errors and fit information) requires the Gaussian error assumption.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

```r
### EXAMPLE ###

# generate some data
n <- 100
nk <- 50
x <- seq(-3,3,length.out=n)
eta <- (sin(2*pi/x) + 0.25*x^3 + 0.05*x^5)/15
set.seed(1)
y <- eta + rnorm(n, sd=0.5)

# plot data and true eta
plot(x, y)
lines(x, eta, col="blue", lwd=2)

# fit ordinal smoothing spline
```
plotbar <- ordspline(x, y, knots=nk)
lines(plotbar$x, plotbar$fit, col="red", lwd=2)

fit monotonic smoothing spline
mssmod <- ordspline(x, y, knots=nk, monotone=TRUE)
lines(mssmod$x, mssmod$fit, col="purple", lwd=2)

plotbar Generic X-Y Plotting with Colorbar

Description

This is a modification to the R function plot that adds a colorbar to the margin.

Usage

plotbar(x, y, z, xlim=NULL, ylim=NULL, zlim=NULL, zlab=NULL, zcex.axis=NULL, zcex.lab=NULL, zaxis.at = NULL, zaxis.labels = TRUE, col=NULL, ncolor=21, drawbar=TRUE, zline=2, pltimage=c(.2, .8, .2, .8), plotbar=c(.82, .85, .2, .8),...)

Arguments

x, y The x and y coordinates of the points to plot.

z Numeric vector the same length as x and y containing the values to be plotted in color.

xlim, ylim Ranges for the plotted x and y values, defaulting to the ranges of x and y.

zlim The minimum and maximum z values for which colors should be plotted, defaulting to the range of the finite values of z.

zlab Label for the colorbar.

zcex.axis The magnification to be used for the z-axis annotation (colorbar scale).

zcex.lab The magnification to be used for the z-axis label (zlab).

zaxis.at The points at which tick-marks are to be drawn for the colorbar. Points outside of the range of zlim will not be plotted.

zaxis.labels This can either be a logical value specifying whether (numerical) annotations are to be made at the tickmarks, or a character or expression vector of labels to be placed at the tickpoints.

col Color scheme to use. Default is from blueviolet (low) to red (high).

ncolor The number of colors to use in the color scheme.

drawbar Logical indicating if the colorbar should be drawn.

zline Number of lines into the margin at which the axis line will be drawn (see axis).
A vector of the form c(x1, x2, y1, y2) giving the coordinates of the image region as fractions of the current figure region (see `par`).

A vector of the form c(x1, x2, y1, y2) giving the coordinates of the colorbar region as fractions of the current figure region (see `par`).

Additional arguments to be passed to `plot` (e.g., `xlab`, `ylab`, `main`, `cex`, `cex.axis`, `cex.lab`, etc.)

Value

Produces a plot with a colorbar.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

Examples

```
# EXAMPLE 1
myfun <- function(x1v,x2v){
  2*sin(sqrt(x1v[1]^2+x2v[1]^2+1))/sqrt(x1v[1]^2+x2v[1]^2+1)
}
x <- expand.grid(seq(-8,8,l=100),seq(-8,8,l=100))
plotbar(x[,1],x[,2],myfun(x),
  xlab=expression(italic(x)[1]),
  ylab=expression(italic(x)[2]),
  zlab=expression(hat(italic(y))))

# EXAMPLE 2
myfun <- function(x1v,x2v){
  sin(2*pi*x1v) + 2*sin(sqrt(x2v^2+1))/sqrt(x2v^2+1)
}
x <- expand.grid(x1v=seq(0,1,l=100),x2v=seq(-8,8,l=100))
plotbar(x[,1],x[,2],myfun(x1v,x2v),
  col=c("red","orange","yellow","white"),
  xlab="x1v",ylab="x2v",zlab=expression(hat(italic(y))))

# EXAMPLE 3
myfun <- function(x1v,x2v){
  sin(3*pi*x1v) + sin(2*pi*x2v) + 3*cos(pi*(x1v-x2v))
}
x <- expand.grid(x1v=seq(-1,1,l=100),x2v=seq(-1,1,l=100))
plotbar(x[,1],x[,2],myfun(x1v,x2v),
  col=c("blue","green","light green","yellow"),
  xlab="x1v",ylab="x2v",zlab=expression(hat(italic(y))))
```
plotci

Generic X-Y Plotting with Confidence Intervals

Description

This is a modification to the R function `plot` that adds confidence intervals to the plot.

Usage

```r
plotci(x, y, se, level=0.95, cval=NULL, col="blue",
       col.ci="cyan", alpha=0.65, add=FALSE,
       type="l", link=function(y)(y), axes=TRUE,
       bars=FALSE, barlty=1, barlwd=2, bw=0.2, ...)
```

Arguments

- `x, y`: The x and y coordinates of the points to plot.
- `se`: Numeric vector the same length as `x` and `y` containing the standard errors of the `y` values.
- `level`: Significance level for the confidence interval. Default forms 95% interval.
- `cval`: Critical value for the confidence interval. Default uses `cval = qnorm(1-(1-level)/2)`.
- `col`: Color for plotting the relationship between `x` and `y`.
- `col.ci`: Color for plotting the confidence interval.
- `alpha`: Transparency used for plotting confidence polygons. Only used when `bars=FALSE`.
- `add`: Logical indicating whether lines should be added to current plot.
- `type`: Type of plot to create (defaults to "l" for lines).
- `link`: Link function to apply. See Details.
- `axes`: Logical indicating if the axes should be drawn.
- `bars`: Logical indicating if confidence bars should be plotted instead of polygons.
- `barlty, barlwd`: Line type and width for confidence bars. Only used when `bars=TRUE`.
- `bw`: Positive scalar giving the width of the confidence bars. Only used when `bars=TRUE`.
- `...`: Additional arguments to be passed to `plot` (e.g., `xlab, ylab, main, cex, cex.axis, cex.lab`, etc.)

Details

The plotted confidence interval is \(\text{c(link}(y-cval*se), \text{link}(y+cval*se)) \) where `link` is the user-specified link function and `cval` is the user-specified critical value, which defaults to `cval = qnorm(1-(1-level)/2)`.

Value

Produces a plot with a colorbar.
Examples

```
# define relatively smooth function
set.seed(773)
myfun <- function(x) { sin(2*pi*x) }
x <- runif(10^4)
y <- myfun(x) + rnorm(10^4)

# fit cubic smoothing spline
cubmod <- bigspline(x, y)
newdata <- data.frame(x=seq(0,1,length=20))
ypred <- predict(cubmod, newdata, se.fit=TRUE)

# plot predictions with CIs in two ways
plotci(newdata$x, ypred$fit, ypred$se.fit)
plotci(newdata$x, ypred$fit, ypred$se.fit, type="p", bars=TRUE, bw=0.02)
```

predict.bigspline

Predicts for "bigspline" Objects

Description

Get fitted values and standard error estimates for cubic smoothing splines.

Usage

```
## S3 method for class 'bigspline'
predict(object, newdata=NULL, se.fit=FALSE,
        effect=c("all","0","lin","non"),
        design=FALSE, smoothMatrix=FALSE,...)
```

Arguments

- **object**: Object of class "bigspline", which is output from `bigspline`
- **newdata**: Vector containing new data points for prediction. See Details and Example. Default of newdata=NULL uses original data in object input.
- **se.fit**: Logical indicating whether the standard errors of the fitted values should be estimated. Default is se.fit=FALSE.
- **effect**: Which effect to estimate: effect="all" gives full \(\hat{y} \), effect="0" gives the intercept (constant) portion of \(\hat{y} \), effect="lin" gives linear portion of \(\hat{y} \), and effect="non" gives nonlinear portion of \(\hat{y} \).
design Logical indicating whether the design matrix should be returned.
smoothMatrix Logical indicating whether the smoothing matrix should be returned.
... Ignored.

Details
Uses the coefficient and smoothing parameter estimates from a fit cubic smoothing spline (estimated by `bigspline`) to predict for new data.

Value
If `se.fit=FALSE`, `design=FALSE`, and `smoothMatrix=FALSE`, returns vector of fitted values.
Otherwise returns list with elements:

- fit Vector of fitted values
- se.fit Vector of standard errors of fitted values (if `se.fit=TRUE`)
- X Design matrix used to create fitted values (if `design=TRUE`)
- ix Index vector such that `fit=X%*%object$coef[ix]` (if `design=TRUE`)
- S Smoothing matrix corresponding to fitted values (if `smoothMatrix=TRUE`)

Author(s)
Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

```r
# define univariate function and data
set.seed(773)
myfun <- function(x){ 2 + x + sin(2*pi*x) }
x <- runif(10^4)
```

```
predict.bigspline

y <- myfun(x) + rnorm(10^4)

# fit cubic spline model
cubmod <- bigspline(x,y)
crossprod(predict(cubmod) - myfun(x)) / 10^4

# define new data for prediction
newdata <- data.frame(x=seq(0,1,length.out=100))

# get fitted values and standard errors for new data
yc <- predict(cubmod,newdata,se.fit=TRUE)

# plot results with 95% Bayesian confidence interval
plot(newdata$x,yc$fit,type="l")
lines(newdata$x,yc$fit+qnorm(.975)*yc$se.fit,lty=3)
lines(newdata$x,yc$fit-qnorm(.975)*yc$se.fit,lty=3)

# predict constant, linear, and nonlinear effects
yc0 <- predict(cubmod,newdata,se.fit=TRUE,effect="0")
yc1 <- predict(cubmod,newdata,se.fit=TRUE,effect="lin")
ycn <- predict(cubmod,newdata,se.fit=TRUE,effect="non")
crossprod(yc$fit - (yc0$fit + yc1$fit + yc$n$fit))

# plot results with 95% Bayesian confidence intervals
par(mfrow=c(1,2))
plot(newdata$x,yc1$fit,type="l",main="Linear effect")
lines(newdata$x,yc1$fit+qnorm(.975)*yc1$se.fit,lty=3)
lines(newdata$x,yc1$fit-qnorm(.975)*yc1$se.fit,lty=3)
plot(newdata$x,ycn$fit,type="l",main="Nonlinear effect")
lines(newdata$x,ycn$fit+qnorm(.975)*ycn$se.fit,lty=3)
lines(newdata$x,ycn$fit-qnorm(.975)*ycn$se.fit,lty=3)

####### EXAMPLE 2 #######

# define (same) univariate function and data
set.seed(773)
myfun <- function(x){ 2 + x + sin(2*pi*x) }
x <- runif(10^4)
y <- myfun(x) + rnorm(10^4)

# fit a different cubic spline model
cubamod <- bigspline(x,y,type="cub0")
crossprod(predict(cubamod) - myfun(x)) / 10^4

# define (same) new data for prediction
newdata <- data.frame(x=seq(0,1,length.out=100))

# get fitted values and standard errors for new data
ya <- predict(cubamod,newdata,se.fit=TRUE)

# plot results with 95% Bayesian confidence interval
plot(newdata$x,ya$fit,type="l")
```

predict.bigssa

Predicts for "bigssa" Objects

Description

Get fitted values and standard error estimates for smoothing spline anova models.

Usage

S3 method for class 'bigssa'
predict(object, newdata=NULL, se.fit=FALSE, include=object$tnames,
 effect=c("all","0","lin","non"), includeint=FALSE,
 design=FALSE, smoothMatrix=FALSE, intercept=NULL,...)

Arguments

- **object**: Object of class "bigssa", which is output from bigssa.
- **newdata**: Data frame or list containing the new data points for prediction. Variable names must match those used in the formula input of bigssa. See Details and Example. Default of newdata=NULL uses original data in object input.
- **se.fit**: Logical indicating whether the standard errors of the fitted values should be estimated. Default is se.fit=FALSE.
- **include**: Which terms to include in the estimate. You can get fitted values for any combination of terms in the tnames element of an "bigssa" object.
- **effect**: Which effect to estimate: effect="all" gives \(\hat{y} \) for given terms in include, effect="lin" gives linear portion of \(\hat{y} \) for given terms in include, and effect="non" gives nonlinear portion of \(\hat{y} \) for given terms in include. Use effect="0" to return the intercept.

```r
lines(newdata$x, ya$fit+qnorm(.975)*ya$se.fit, lty=3)
lines(newdata$x, ya$fit-qnorm(.975)*ya$se.fit, lty=3)

# predict constant, linear, and nonlinear effects
ya0 <- predict(cubamod, newdata, se.fit=TRUE, effect="0")
yal <- predict(cubamod, newdata, se.fit=TRUE, effect="lin")
yan <- predict(cubamod, newdata, se.fit=TRUE, effect="non")
crossprod( ya$fit - (ya0$fit + yal$fit + yan$fit) )

# plot results with 95% Bayesian confidence intervals
par(mfrow=c(1,2))
plot(newdata$x, yal$fit, type="l", main="Linear effect")
lines(newdata$x, yal$fit+qnorm(.975)*yal$se.fit, lty=3)
lines(newdata$x, yal$fit-qnorm(.975)*yal$se.fit, lty=3)
plot(newdata$x, yan$fit, type="l", main="Nonlinear effect")
lines(newdata$x, yan$fit+qnorm(.975)*yan$se.fit, lty=3)
lines(newdata$x, yan$fit-qnorm(.975)*yan$se.fit, lty=3)
```
predict.bigssa

includeint Logical indicating whether the intercept should be included in the prediction. If include=object$tnames and effect="all" (default), then this input is ignored and the intercept is automatically included in the prediction.

design Logical indicating whether the design matrix should be returned.

smoothMatrix Logical indicating whether the smoothing matrix should be returned.

intercept Logical indicating whether the intercept should be included in the prediction. When used, this input overrides the includeint input.

... Ignored.

Details

Uses the coefficient and smoothing parameter estimates from a fit smoothing spline anova (estimated by bigssa) to predict for new data.

Value

If se.fit=FALSE, design=FALSE, and smoothMatrix=FALSE, returns vector of fitted values. Otherwise returns list with elements:

- **fit** Vector of fitted values
- **se.fit** Vector of standard errors of fitted values (if se.fit=TRUE)
- **X** Design matrix used to create fitted values (if design=TRUE)
- **ix** Index vector such that fit=X%*%object$modelspec$coef[ix] (if design=TRUE)
- **S** Smoothing matrix corresponding to fitted values (if smoothMatrix=TRUE)

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

########## EXAMPLE 1 ##########

define univariate function and data
set.seed(773)
myfun <- function(x){ 2 + x + sin(2*pi*x) }
x <- runif(500)
y <- myfun(x) + rnorm(500)

fit cubic spline model
cubmod <- bigssa(y~x,type="cub",nknots=30)
crossprod(predict(cubmod) - myfun(x))/500

define new data for prediction
newdata <- data.frame(x=seq(0,1,length.out=100))

get fitted values and standard errors for new data
yc <- predict(cubmod,newdata,se.fit=TRUE)

plot results with 95% Bayesian confidence interval
plot(newdatax,ycfit,type="l")
lines(newdatax,ycfit+qnorm(.975)*yc$se.fit,lty=3)
lines(newdatax,ycfit-qnorm(.975)*yc$se.fit,lty=3)

predict constant, linear, and nonlinear effects
yc0 <- predict(cubmod,newdata,se.fit=TRUE,effect="0")
yc1 <- predict(cubmod,newdata,se.fit=TRUE,effect="lin")
ycn <- predict(cubmod,newdata,se.fit=TRUE,effect="non")
crossprod(yc$fit - (yc0$fit + yc1$fit + ycn$fit))

plot results with 95% Bayesian confidence intervals
par(mfrow=c(1,2))
plot(newdata$x,yc1$fit,type="l",main="Linear effect")
lines(newdata$x,yc1$fit+qnorm(.975)*yc1$se.fit,lty=3)
lines(newdata$x,yc1$fit-qnorm(.975)*yc1$se.fit,lty=3)
plot(newdatax,ycnfit,type="l",main="Nonlinear effect")
lines(newdatax,ycnfit+qnorm(.975)*ycn$se.fit,lty=3)
lines(newdatax,ycnfit-qnorm(.975)*ycn$se.fit,lty=3)

########## EXAMPLE 2 ##########

define bivariate function and data
set.seed(773)
myfun<-function(x){
 2 + x[1]^10 - x[1,2]/5 + 2*sin(sqrt(x[1,1]^[2]+x[1,2]^2+.1))/sqrt(x[1,1]^2+x[1,2]^2+.1)
}
x1v <- runif(500)*16-8
x2v <- runif(500)*16-8
y <- myfun(cbind(x1v,x2v)) + rnorm(500)
tensor product cubic splines with 50 knots
cubmod <- bigssa(y=x1v*x2v,type=list(x1v="cub",x2v="cub"),nknobs=50)
crossprod(predict(cubmod) - myfun(cbind(x1v,x2v))) / 500

define new data for prediction
xnew <- as.matrix(expand.grid(seq(-8,8,l=50),seq(-8,8,l=50)))
newdata <- list(x1v=xnew[,1],x2v=xnew[,2])

get fitted values for new data
yp <- predict(cubmod,newdata)

plot results
imagebar(seq(-8,8,l=50),seq(-8,8,l=50),matrix(yp,50,50),
 xlab=expression(italic(x)[1]),ylab=expression(italic(x)[2]),
 zlab=expression(hat(italic(y))))

predict linear and nonlinear effects for x1v
newdata <- list(x1v=seq(-8,8,length.out=100))
yl <- predict(cubmod,newdata,include="x1v",effect="lin",se.fit=TRUE)
yn <- predict(cubmod,newdata,include="x1v",effect="non",se.fit=TRUE)

plot results with 95% Bayesian confidence intervals
par(mfrow=c(1,2))
plot(newdata$x1v,yl$fit,type="l",main="Linear effect")
lines(newdata$x1v,yl$fit+qnorm(.975)*yl$se.fit,lt=3)
lines(newdata$x1v,yl$fit-qnorm(.975)*yl$se.fit,lt=3)
plot(newdata$x1v,yn$fit,type="l",main="Nonlinear effect",ylim=c(-.3,.4))
lines(newdata$x1v,yn$fit+qnorm(.975)*yn$se.fit,lt=3)
lines(newdata$x1v,yn$fit-qnorm(.975)*yn$se.fit,lt=3)

predict.bigssg
Predicts for "bigssg" Objects

Description

Get fitted values and standard error estimates for generalized smoothing spline anova models.

Usage

```r
## S3 method for class 'bigssg'
predict(object,newdata=NULL,se.1p=FALSE,include=object$tnames,
effect=c("all","0","lin","non"),includeint=FALSE,
design=FALSE,smoothMatrix=FALSE,intercept=TRUE,...)
```

Arguments

- `object`
 Object of class "bigssg", which is output from `bigssg`.

newdata

Data frame or list containing the new data points for prediction. Variable names must match those used in the formula input of bigssg. See Details and Example. Default of newdata=NULL uses original data in object input.

se.lp

Logical indicating if the standard errors of the linear predictors (η) should be estimated. Default is se.lp=FALSE.

include

Which terms to include in the estimate. You can get fitted values for any combination of terms in the tnames element of an "bigssg" object.

effect

Which effect to estimate: effect="all" gives \(\hat{y} \) for given terms in include, effect="lin" gives linear portion of \(\hat{y} \) for given terms in include, and effect="non" gives nonlinear portion of \(\hat{y} \) for given terms in include. Use effect="0" to return the intercept.

includeint

Logical indicating whether the intercept should be included in the prediction. If include=object$tnames and effect="all" (default), then this input is ignored and the intercept is automatically included in the prediction.

design

Logical indicating whether the design matrix should be returned.

smoothMatrix

Logical indicating whether the smoothing matrix should be returned.

intercept

Logical indicating whether the intercept should be included in the prediction. When used, this input overrides the includeint input.

...

Ignored.

Details

Uses the coefficient and smoothing parameter estimates from a fit generalized smoothing spline anova (estimated by bigssg) to predict for new data.

Value

Returns list with elements:

fitted.values

Vector of fitted values (on data scale)

linear.predictors

Vector of fitted values (on link scale)

se.lp

Vector of standard errors of linear predictors (if se.lp=TRUE)

X

Design matrix used to create linear predictors (if design=TRUE)

ix

Index vector such that linear.predictors=X%*%object$modelspec$coef[ix] (if design=TRUE)

S

Smoothing matrix corresponding to fitted values (if smoothMatrix=TRUE)

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>
References

Examples

```
# define univariate function and data
set.seed(1)
myfun <- function(x) { sin(2*pi*x) }
dpts <- 1000
x <- runif(dpts)

# negative binomial response (unknown dispersion)
set.seed(773)
lp <- myfun(x)
mu <- exp(lp)
y <- rnbinom(n=dpts, size=2, mu=mu)

# fit cubic spline model
cubmod <- bigssg(y~x, family="negbin", type="cub", nknots=20)
1/cubmod$dispersion  # dispersion = 1/size
crossprod( lp - cubmod$linear.predictor )/length(lp)

# define new data for prediction
newdata <- data.frame(x=seq(0,1,length.out=100))

# get fitted values and standard errors for new data
yc <- predict(cubmod, newdata, se.lp=TRUE)

# plot results with 95% Bayesian confidence interval (link scale)
plot(newdata$x, yc$linear.predictor, type="l")
lines(newdata$x, yc$linear.predictor + qnorm(.975)*yc$se.lp, lty=3)
lines(newdata$x, yc$linear.predictor - qnorm(.975)*yc$se.lp, lty=3)

# plot results with 95% Bayesian confidence interval (data scale)
plot(newdata$x, yc$fitted, type="l")
lines(newdata$x, exp(yc$linear.predictor + qnorm(.975)*yc$se.lp), lty=3)
lines(newdata$x, exp(yc$linear.predictor - qnorm(.975)*yc$se.lp), lty=3)
```
predict constant, linear, and nonlinear effects
yc0 <- predict(cubmod,newdata.se.lp=TRUE,effect="0")
yc1 <- predict(cubmod,newdata.se.lp=TRUE,effect="lin")
ycn <- predict(cubmod,newdata.se.lp=TRUE,effect="non")
crossprod(yc$linear - (yc$linear + yc1$linear + ycn$linear))

plot results with 95% Bayesian confidence intervals (link scale)
par(mfrow=c(1,2))
plot(newdata$x,yc1$linear,type="l",main="Linear effect")
lines(newdata$x,yc1$linear+qnorm(.975)*yc1$se.lp,lty=3)
lines(newdata$x,yc1$linear-qnorm(.975)*yc1$se.lp,lty=3)
plot(newdatax,ycnlinear,type="l",main="Nonlinear effect")
lines(newdatax,ycnlinear+qnorm(.975)*ycn$se.lp,lty=3)
lines(newdatax,ycnlinear-qnorm(.975)*ycn$se.lp,lty=3)

plot results with 95% Bayesian confidence intervals (data scale)
par(mfrow=c(1,2))
plot(newdata$x,yc1$fitted,type="l",main="Linear effect")
lines(newdata$x,exp(yc1$linear+qnorm(.975)*yc1$se.lp),lty=3)
lines(newdata$x,exp(yc1$linear-qnorm(.975)*yc1$se.lp),lty=3)
plot(newdatax,ycnfitted,type="l",main="Nonlinear effect")
lines(newdata$x,exp(ycn$linear+qnorm(.975)*ycn$se.lp),lty=3)
lines(newdata$x,exp(ycn$linear-qnorm(.975)*ycn$se.lp),lty=3)

define bivariate function and data
set.seed(1)
myfun <- function(x1v,x2v){
 sin(2*pi*x1v) + log(x2v+.1) + cos(pi*(x1v-x2v))
}
ndpts <- 1000
x1v <- runif(ndpts)
x2v <- runif(ndpts)

binomial response (with weights)
set.seed(773)
lp <- myfun(x1v,x2v)
p <- 1/(1+exp(-lp))
w <- sample(c(10,20,30,40,50),length(p),replace=TRUE)
y <- rbinom(n=ndpts,size=w,p=p)/w ## y is proportion correct
cubmod <- bigssg(y~x1v*x2v,family="binomial",type=list(x1v="cub",x2v="cub"),nknots=100,weights=w)
crossprod(lp - cubmod$linear.predictor)/length(lp)

define new data for prediction
xnew <- as.matrix(expand.grid(seq(0,1,length=50),seq(0,1,length=50)))
newdata <- list(x1v=xnew[,1],x2v=xnew[,2])

get fitted values for new data
yp <- predict(cubmod,newdata)
predict.linear predictor and fitted values
par(mfrow=c(2,2))
imagebar(seq(0,1,1=50),seq(0,1,1=50),matrix(myfun(newdata$x1v,newdata$x2v),50,50),
 xlab=expression(italic(x)[1]),ylab=expression(italic(y)(2)),
 zlab=expression(hat(italic(y))),zlim=c(-4.5,1.5),main="True Linear Predictor")
imagebar(seq(0,1,1=50),seq(0,1,1=50),matrix(newprob,newprob),
 xlab=expression(italic(x)[1]),ylab=expression(italic(y)),
 zlab=expression(hat(italic(y))),zlim=c(0,0.8),main="Estimated Linear Predictor")
newprob <- 1/(1+exp(-myfun(newdata$x1v,newdata$x2v)))
imagebar(seq(0,1,1=50),seq(0,1,1=50),matrix(newprob,newprob),
 xlab=expression(italic(x)[1]),ylab=expression(italic(y)),
 zlab=expression(hat(italic(y))),zlim=c(0,0.8),main="True Probabilities")
imagebar(seq(0,1,1=50),seq(0,1,1=50),matrix(newprob,newprob),
 xlab=expression(italic(x)[1]),ylab=expression(italic(y)),
 zlab=expression(hat(italic(y))),zlim=c(0,0.8),main="Estimated Probabilities")

predict linear and nonlinear effects for x1v (link scale)
nednew <- list(x1v=seq(0,1,length.out=100))
yl <- predict(cubmod,newdata,include="x1v",effect="lin",se.lp=TRUE)
yl <- predict(cubmod,newdata,include="x1v",effect="lin",se.lp=TRUE)

plot results with 95% Bayesian confidence intervals (link scale)
par(mfrow=c(1,2))
plot(newdata$x1v,yl,linear,type="l",main="Linear effect")
lines(newdata$x1v,yl+qnorm(.975)*yl$se.lp,lt=3)
lines(newdata$x1v,yl-qnorm(.975)*yl$se.lp,lt=3)
plot(newdata$x1v,yn,linear,type="l",main="Nonlinear effect")
lines(newdata$x1v,yn+qnorm(.975)*yn$se.lp,lt=3)
lines(newdata$x1v,yn-qnorm(.975)*yn$se.lp,lt=3)

predict.bigssp

predict.bigssp

Description

Get fitted values and standard error estimates for smoothing splines with parametric effects.

Usage

```
## S3 method for class 'bigssp'
predict(object,newdata=NULL,se.fit=NULL,include=object$tnames,
  effect=c("all","0","lin","non"),includeint=FALSE,
  design=FALSE,smoothMatrix=TRUE,intercept=NULL,...)
```

Arguments

- **object**
 - Object of class "bigssp", which is output from `bigssp`.

predict.bigssp

Predicts for "bigssp" Objects

Description

Get fitted values and standard error estimates for smoothing splines with parametric effects.

Usage

```
## S3 method for class 'bigssp'
predict(object,newdata=NULL,se.fit=NULL,include=object$tnames,
  effect=c("all","0","lin","non"),includeint=FALSE,
  design=FALSE,smoothMatrix=TRUE,intercept=NULL,...)
```

Arguments

- **object**
 - Object of class "bigssp", which is output from `bigssp`.
newdata Data frame or list containing the new data points for prediction. Variable names must match those used in the formula input of bigssp. Default of newdata=NULL uses original data in object input.

se.fit Logical indicating whether the standard errors of the fitted values should be estimated. Default is se.fit=FALSE.

include Which terms to include in the estimate. You can get fitted values for any combination of terms in the tnames element of an "bigssp" object.

effect Which effect to estimate: effect="all" gives \(\hat{y} \) for given terms in include, effect="lin" gives linear portion of \(\hat{y} \) for given terms in include, and effect="non" gives nonlinear portion of \(\hat{y} \) for given terms in include. Use effect="0" to return the intercept.

includeint Logical indicating whether the intercept should be included in the prediction. If include=object$tnames and effect="all" (default), then this input is ignored and the intercept is automatically included in the prediction.

design Logical indicating whether the design matrix should be returned.

smoothMatrix Logical indicating whether the smoothing matrix should be returned.

intercept Logical indicating whether the intercept should be included in the prediction. When used, this input overrides the includeint input.

Details

Uses the coefficient and smoothing parameter estimates from a fit smoothing spline with parametric effects (estimated by bigssp) to predict for new data.

Value

If se.fit=FALSE, design=FALSE, and smoothMatrix=FALSE, returns vector of fitted values. Otherwise returns list with elements:

fit Vector of fitted values

se.fit Vector of standard errors of fitted values (if se.fit=TRUE)

X Design matrix used to create fitted values (if design=TRUE)

ix Index vector such that fit=X%*%object$modelspec$coef[ix] (if design=TRUE)

S Smoothing matrix corresponding to fitted values (if smoothMatrix=TRUE)

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

```
# define univariate function and data
set.seed(773)
myfun <- function(x) { 2 + x + sin(2*pi*x) }
x <- runif(500)
y <- myfun(x) + rnorm(500)

# fit cubic spline model
cubmod <- bigssp(y~x,type="cub",nknots=30)
crossprod( predict(cubmod) - myfun(x) )/500

# define new data for prediction
newdata <- data.frame(x=seq(0,1,length.out=100))

# get fitted values and standard errors for new data
yc <- predict(cubmod,newdata,se.fit=TRUE)

# plot results with 95% Bayesian confidence interval
plot(newdata$x,yc$fit,type="l")
lines(newdata$x,yc$fit+qnorm(.975)*yc$se.fit,lty=3)
lines(newdata$x,yc$fit-qnorm(.975)*yc$se.fit,lty=3)

# predict constant, linear, and nonlinear effects
yc0 <- predict(cubmod,newdata,se.fit=TRUE,effect="0")
ycl <- predict(cubmod,newdata,se.fit=TRUE,effect="lin")
ycn <- predict(cubmod,newdata,se.fit=TRUE,effect="non")
sum( yc$fit - (yc0$fit + ycl$fit + ycn$fit) )

# plot results with 95% Bayesian confidence intervals
par(mfrow=c(1,2))
plot(newdata$x,ycl$fit,type="l",main="Linear effect")
lines(newdata$x,ycl$fit+qnorm(.975)*ycl$se.fit,lty=3)
lines(newdata$x,ycl$fit-qnorm(.975)*ycl$se.fit,lty=3)
```
define bivariate function and data
set.seed(773)
myfun <- function(x) {
 2 + x[,1]/10 - x[,2]/5 + 2*sin(sqrt(x[,1]^2+x[,2]^2+.1))/sqrt(x[,1]^2+x[,2]^2+.1)
}
x <- cbind(runif(500),runif(500))*16 - 8
y <- myfun(x)+rnorm(500)

bidimensional thin-plate spline with 50 knots
tpsmod <- bigssp(y~x,type="tps",nknots=50)
crossprod(predict(tpsmod) - myfun(x))/500

define new data for prediction
xnew <- as.matrix(expand.grid(seq(-8,8,length=50),seq(-8,8,length=50)))
newdata <- list(x=xnew)

get fitted values for new data
yp <- predict(tpsmod,newdata)

plot results
imagebar(seq(-8,8,l=50),seq(-8,8,l=50),matrix(yp,50,50),
xlab=expression(italic(x)[1]),ylab=expression(italic(x)[2]),
zlab=expression(hat(italic(y))))

predict linear and nonlinear effects
yl <- predict(tpsmod,newdata,effect="lin")
yn <- predict(tpsmod,newdata,effect="non")

plot results
par(mfrow=c(1,2))
imagebar(seq(-8,8,l=50),seq(-8,8,l=50),matrix(yl,50,50),
main="Linear effect",xlab=expression(italic(x)[1]),
ylab=expression(italic(x)[2]),zlab=expression(hat(italic(y))))
imagebar(seq(-8,8,l=50),seq(-8,8,l=50),matrix(yn,50,50),
main="Nonlinear effect",xlab=expression(italic(x)[1]),
ylab=expression(italic(x)[2]),zlab=expression(hat(italic(y))))

predict.bigtps

Predicts for "bigtps" Objects

Description

Get fitted values and standard error estimates for thin-plate splines.
predict.bigtps

Usage

S3 method for class 'bigtps'
predict(object, newdata = NULL, se.fit = FALSE,
 effect = c("all", "0", "lin", "non"),
 design = FALSE, smoothMatrix = FALSE, ...)

Arguments

object Object of class "bigtps", which is output from bigtps.
newdata Vector or matrix containing new data points for prediction. See Details and
 Example. Default of newdata=NULL uses original data in object input.
se.fit Logical indicating whether the standard errors of the fitted values should be
 estimated. Default is se.fit = FALSE.
effect Which effect to estimate: effect="all" gives full \(\hat{y} \), effect="0" gives the
 intercept (constant) portion of \(\hat{y} \), effect="lin" gives linear portion of \(\hat{y} \), and
 effect="non" gives nonlinear portion of \(\hat{y} \).
design Logical indicating whether the design matrix should be returned.
smoothMatrix Logical indicating whether the smoothing matrix should be returned.
...
Ignored.

Details

Uses the coefficient and smoothing parameter estimates from a fit thin-plate spline (estimated by
bigtps) to predict for new data.

Value

If se.fit=FALSE, design=FALSE, and smoothMatrix=FALSE, returns vector of fitted values.
Otherwise returns list with elements:

 fit Vector of fitted values
 se.fit Vector of standard errors of fitted values (if se.fit=TRUE)
 X Design matrix used to create fitted values (if design=TRUE)
 ix Index vector such that fit=X%*%object$coef[ix] (if design=TRUE)
 S Smoothing matrix corresponding to fitted values (if smoothMatrix=TRUE)

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>
References

Examples

EXAMPLE 1

define univariate function and data
set.seed(773)
myfun <- function(x){ 2 + x + sin(2*pi*x) }
x <- runif(10^4)
y <- myfun(x) + rnorm(10^4)

fit thin-plate spline (default 1 dim: 30 knots)
tpsmod <- bigtps(x,y)
crossprod(predict(tpsmod) - myfun(x))/10^4

define new data for prediction
newdata <- data.frame(x=seq(0,1,length.out=100))

get fitted values and standard errors for new data
yc <- predict(tpsmod,newdata,se.fit=TRUE)

plot results with 95% Bayesian confidence interval
plot(newdatax,ycfit,type="l")
lines(newdatax,ycfit+qnorm(.975)*yc$se.fit,ty=3)
lines(newdatax,ycfit-qnorm(.975)*yc$se.fit,ty=3)

predict constant, linear, and nonlinear effects
yc0 <- predict(tpsmod,newdata,se.fit=TRUE,effect="0")
cy1 <- predict(tpsmod,newdata,se.fit=TRUE,effect="lin")
ycn <- predict(tpsmod,newdata,se.fit=TRUE,effect="non")
crossprod(yc$fit - (yc0$fit + yc1$fit + ycn$fit))

plot results with 95% Bayesian confidence intervals
par(mfrow=c(1,2))
plot(newdata$x,yc1$fit,type="l",main="Linear effect")
lines(newdata$x,yc1$fit+qnorm(.975)*yc1$se.fit,ty=3)
lines(newdata$x,yc1$fit-qnorm(.975)*yc1$se.fit,ty=3)
plot(newdatax,ycnfit,type="l",main="Nonlinear effect")
lines(newdatax,ycnfit+qnorm(.975)*ycn$se.fit,ty=3)
lines(newdatax,ycnfit-qnorm(.975)*ycn$se.fit,ty=3)
predict.ordspline

EXAMPLE 2

```r
# function with two continuous predictors
set.seed(773)
myfun <- function(x1v,x2v){
  sin(2*pi*x1v) + log(x2v+.1) + cos(pi*(x1v-x2v))
}
x <- cbind(runif(10^4),runif(10^4))
y <- myfun(x[,1],x[,2]) + rnorm(10^4)

# fit thin-plate spline (default 2 dim: 100 knots)
tpmsmod <- bigtps(x,y)

# define new data
newdata <- as.matrix(expand.grid(seq(0,1,length=50),seq(0,1,length=50)))

# get fitted values for new data
yp <- predict(tpmsmod,newdata)

# plot results
imagebar(seq(0,1,length=50),seq(0,1,length=50),matrix(yp,50,50),
  xlab=expression(italic(x)[1]),ylab=expression(italic(x)[2]),
  zlab=expression(hat(italic(y))))

# predict linear and nonlinear effects
yl <- predict(tpmsmod,newdata,ef"=lin")
yn <- predict(tpmsmod,newdata,ef"=non")

# plot results
par(mfrow=c(1,2))
imagebar(seq(0,1,length=50),seq(0,1,length=50),matrix(yl,50,50),
  xlab=expression(italic(x)[1]),
  main="Linear effect",ylab=expression(italic(x)[2]),
  zlab=expression(hat(italic(y))))
imagebar(seq(0,1,length=50),seq(0,1,length=50),matrix(yn,50,50),
  xlab=expression(italic(x)[1]),
  main="Nonlinear effect",ylab=expression(italic(x)[2]),
  zlab=expression(hat(italic(y))))
```

predict.ordspline
Predicts for "ordspline" Objects

Description

Get fitted values and standard error estimates for ordinal smoothing splines.

Usage

```r
## S3 method for class 'ordspline'
predict(object,newdata=NULL,se.fit=FALSE,...)
```
predict.ordspline

Arguments

- **object**: Object of class "ordspline", which is output from `ordspline`.
- **newdata**: Vector containing new data points for prediction. See Details and Example. Default of `newdata=NULL` uses original data in `object` input.
- **se.fit**: Logical indicating whether the standard errors of the fitted values should be estimated. Default is `se.fit=FALSE`.
- ... Ignored.

Details

Uses the coefficient and smoothing parameter estimates from a fit ordinal smoothing spline (estimated by `ordspline`) to predict for new data.

Value

If `se.fit=FALSE`, returns vector of fitted values.
Otherwise returns list with elements:

- **fit**: Vector of fitted values
- **se.fit**: Vector of standard errors of fitted values

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

```
# define univariate function and data
set.seed(773)
myfun <- function(x) { 2 + x/2 + sin(x) }
x <- sample(1:20, size=500, replace=TRUE)
y <- myfun(x) + rnorm(500)
```
C fit ordinal spline model
ordmod <- ordspline(x, y)
monmod <- ordspline(x, y, monotone=TRUE)
crossprod(predict(ordmod) - myfun(x)) / 500
crossprod(predict(monmod) - myfun(x)) / 500

C plot truth and predictions
ordfit <- predict(ordmod, 1:20, se.fit=TRUE)
monfit <- predict(monmod, 1:20, se.fit=TRUE)
plotci(1:20, ordfit$fit, ordfit$se.fit, ylab="f(x)")
plotci(1:20, monfit$fit, monfit$se.fit, col="red", col.ci="pink", add=TRUE)
points(1:20, myfun(1:20))

prints fit information for bigsplines model

print

Prints Fit Information for bigsplines Model

Description

This function prints basic model fit information for a fit bigsplines model.

Usage

```r
## S3 method for class 'bigspline'
print(x,...)
## S3 method for class 'bigssa'
print(x,...)
## S3 method for class 'bigssg'
print(x,...)
## S3 method for class 'bigssp'
print(x,...)
## S3 method for class 'bigtps'
print(x,...)
## S3 method for class 'ordspline'
print(x,...)
## S3 method for class 'summary.bigspline'
print(x,digits=4,...)
## S3 method for class 'summary.bigssa'
print(x,digits=4,...)
## S3 method for class 'summary.bigssg'
print(x,digits=4,...)
## S3 method for class 'summary.bigssp'
print(x,digits=4,...)
## S3 method for class 'summary.bigtps'
print(x,digits=4,...)
```

Arguments

x Object of class "bigspline" (output from bigspline), class "summary.bigspline" (output from summary.bigspline), class "bigssa" (output from bigssa), class "summary.bigssa" (output from summary.bigssa), class "bigssg" (output from bigssg), class "summary.bigssg" (output from summary.bigssg), class "bigssp" (output from bigssp), class "summary.bigssp" (output from summary.bigssp), class "bigtps" (output from bigtps), class "summary.bigtps" (output from summary.bigtps), or class "ordspline" (output from ordspline).

digits Number of decimal places to print.

Details

See bigspline, bigssa, bigssg, bigssp, bigtps, and ordspline for more details.

Value

"bigspline" objects: prints Spline Type, Fit Statistic information, and Smoothing Parameter.
"summary.bigspline" objects: prints Spline Type, five number summary of Residuals, Error Standard Deviation Estimate, Fit Statistics, and Smoothing Parameter.
"bigssa" objects: prints Spline Types, Fit Statistic information, and Algorithm Convergence status.
"summary.bigssa" objects: prints the formula Call, five number summary of Residuals, Error Standard Deviation Estimate, Fit Statistics, and Smoothing Parameters.
"bigssg" objects: prints Family, Spline Types, Fit Statistic information, and Algorithm Convergence status.
"summary.bigssg" objects: prints the Family, formula Call, five number summary of Residuals, Dispersion Estimate, Fit Statistics, and Smoothing Parameters (with selection criterion).
"bigssp" objects: prints Predictor Types, Fit Statistic information, and Algorithm Convergence status.
"summary.bigssp" objects: prints formula Call, five number summary of Residuals, Error Standard Deviation Estimate, Fit Statistics, and Smoothing Parameters.
"bigtps" objects: prints Spline Type, Fit Statistic information, and Smoothing Parameter.
"summary.bigtps" objects: prints Spline Type, five number summary of Residuals, Error Standard Deviation Estimate, Fit Statistics, and Smoothing Parameter.
"ordspline" objects: prints Monotonic, Fit Statistic information, and Smoothing Parameter.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

Examples

see examples for bigspline, bigssa, bigssg, bigssp, bigtps, and ordspline
Description

Generate the smoothing spline basis matrix for a polynomial spline.

Usage

\[
\text{ssBasis}(x, \text{knots}, m=2, d=0, \text{xmin}=\min(x), \text{xmax}=\max(x), \text{periodic}=\text{FALSE}, \text{intercept}=\text{FALSE})
\]

Arguments

- **x**: Predictor variable.
- **knots**: Spline knots.
- **m**: Penalty order. 'm=1' for linear smoothing spline, 'm=2' for cubic, and 'm=3' for quintic.
- **d**: Derivative order. 'd=0' for smoothing spline basis, 'd=1' for 1st derivative of basis, and 'd=2' for 2nd derivative of basis.
- **xmin**: Minimum value of 'x'.
- **xmax**: Maximum value of 'x'.
- **periodic**: If TRUE, the smoothing spline basis is periodic w.r.t. the interval \([\text{xmin}, \text{xmax}]\).
- **intercept**: If TRUE, the first column of the basis will be a column of ones.

Value

- **x**: Spline Basis.
- **knots**: Spline knots.
- **m**: Penalty order.
- **d**: Derivative order.
- **xlim**: Inputs xmin and xmax.
- **periodic**: Same as input.
- **intercept**: Same as input.

Note

Inputs x and knots should be within the interval \([\text{xmin}, \text{xmax}]\).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>
References

Examples

```
### EXAMPLE ###

# define function and its derivatives
n <- 500
x <- seq(0, 1, length.out=n)
knots <- seq(0, 1, length=20)
y <- sin(4 * pi * x)
d1y <- 4 * pi * cos(4 * pi * x)
d2y <- -(4 * pi)^2 * sin(4 * pi * x)

# linear smoothing spline
linmat0 <- ssBasis(x, knots, m=1)
lincoef <- pinvs(crossprod(linmat0%*%X)) %*% crossprod(linmat0%*%X, y)
linyhat <- linmat0%*%X %*% lincoef
linmat1 <- ssBasis(x, knots, m=1, d=1)
linyd1 <- linmat1%*%X %*% lincoef

# plot linear smoothing spline results
par(mfrow=c(1,2))
plot(x, y, type="l", main="Function")
lines(x, linyhat, lty=2, col="red")
plot(x, d1y, type="l", main="First Derivative")
lines(x, linyd1, lty=2, col="red")

# cubic smoothing spline

cubmat0 <- ssBasis(x, knots)
cubcoef <- pinvs(crossprod(cubmat0%*%X)) %*% crossprod(cubmat0%*%X, y)
cubhat <- cubmat0%*%X %*% cubcoef
cubmat1 <- ssBasis(x, knots, d=1)
cubd1 <- cubmat1%*%X %*% cubcoef
cubmat2 <- ssBasis(x, knots, d=2)
cubd2 <- cubmat2%*%X %*% cubcoef

# plot cubic smoothing spline results
par(mfrow=c(1,3))
plot(x, y, type="l", main="Function")
lines(x, cubhat, lty=2, col="red")
```
plot(x, d1y, type="l", main="First Derivative")
lines(x, cubyd1, lty=2, col="red")
plot(x, d2y, type="l", main="Second Derivative")
lines(x, cubyd2, lty=2, col="red")

quintic smoothing spline
quimat0 <- ssBasis(x, knots, m=3)
quicoef <- pinvsm(crossprod(quimat0$X)) %*% crossprod(quimat0$X, y)
quihat <- quimat0$X %*% quicoef
quimat1 <- ssBasis(x, knots, m=3, d=1)
quidy1 <- quimat1$X %*% quicoef
quimat2 <- ssBasis(x, knots, m=3, d=2)
quidy2 <- quimat2$X %*% quicoef

plot quintic smoothing spline results
par(mfrow=c(1,3))
plot(x, y, type="l", main="Function")
lines(x, quiyat, lty=2, col="red")
plot(x, d1y, type="l", main="First Derivative")
lines(x, quiyd1, lty=2, col="red")
plot(x, d2y, type="l", main="Second Derivative")
lines(x, quiyd2, lty=2, col="red")

summary

Summarizes Fit Information for bigsplines Model

Description
This function summarizes basic model fit information for a fit bigsplines model.

Usage

S3 method for class 'bigspline'
summary(object, fitresid = TRUE, chunksize = 10000, ...)
S3 method for class 'bigssa'
summary(object, fitresid = TRUE, chunksize = 10000, diagnostics = FALSE,...)
S3 method for class 'bigssg'
summary(object, fitresid = TRUE, chunksize = 10000, diagnostics = FALSE,...)
S3 method for class 'bigssp'
summary(object, fitresid = TRUE, chunksize = 10000, diagnostics = FALSE,...)
S3 method for class 'bigtps'
summary(object, fitresid = TRUE, chunksize = 10000, ...)

Arguments

object Object of class "bigspline" (output from bigspline), class "bigssa" (output from bigssa), class "bigssg" (output from bigssg), class "bigssp" (output from bigssp), or class "bigtps" (output from bigtps).
fitresid Logical indicating whether the fitted values and residuals should be calculated for all data points in input object.
chunksize If fitresid=TRUE, fitted values are calculated in chunks of size chunksize.
diagnostics If diagnostics=TRUE, cosine diagnostics are calculated for each term in the model. These give an approximate break-down of the model R-squared into that accounted for by each term in the model.

... Ignored.

Details
See bigspline, bigssa, bigssg, bigssp, and bigtps for more details.

Value
call Called model in input formula.
type Type of smoothing spline that was used for each predictor.
fitted.values Vector of fitted values (if fitresid=TRUE).
linear.predictors Vector of linear predictors (only for class "bigssg" with fitresid=TRUE).
residuals Vector of residuals (if fitresid=TRUE). For class "bigssg" these are deviance residuals.
sigma Estimated error standard deviation.
deviance Model deviance (only for class "bigssg").
dispersion Estimated dispersion parameter (only for class "bigssg").
n Total sample size.
df Effective degrees of freedom of the model.
info Model fit information: vector containing the GCV, multiple R-squared, AIC, and BIC of fit model.
converged Convergence status: converged=TRUE if the iterative theta update converged, converged=FALSE if the iterative theta update failed to converge, and converged=NA if option skip.iter=TRUE was used.
iter Number of iterative updates (iter=NA if option skip.iter=TRUE was used).
rparm Rounding parameters used for model fitting.
lambda Global smoothing parameter used for model fitting.
gammas Vector of additional smoothing parameters (only for class "bigssa").
thesas Vector of additional smoothing parameters (only for class "bigssp").
pi Vector of cosine diagnostics.
family Distribution family (only for class "bigssg").
gcvtype Smoothing parameter selection criterion (only for class "bigssg").

Note
For "bigspline" and "bigtps" objects, the outputs call, converged, and iter are NA.
Author(s)
Nathaniel E. Helwig <helwig@umn.edu>

Examples

####### EXAMPLE 1 #######

define relatively smooth function
set.seed(773)
myfun <- function(x){ sin(2*pi*x) }
x <- runif(10^4)
y <- myfun(x) + rnorm(10^4)

cubic spline
cubmod <- bigspline(x,y)
summary(cubmod)

####### EXAMPLE 2 #######

function with two continuous predictors
set.seed(773)
myfun <- function(x1v,x2v){
 sin(2*pi*x1v) + log(x2v+.1) + cos(pi*(x1v-x2v))
}
x1v <- runif(10^4)
x2v <- runif(10^4)
y <- myfun(x1v,x2v) + rnorm(10^4)

cubic splines with 100 randomly selected knots (efficient parameterization)
cubmod <- bigssa(y=x1v*x2v,type=list(x1v="cub",x2v="cub"),nknots=100)
summary(cubmod)

####### EXAMPLE 3 #######

function with two continuous predictors
set.seed(1)
myfun <- function(x1v,x2v){
 sin(2*pi*x1v) + log(x2v+.1) + cos(pi*(x1v-x2v))
}
ndpts <- 1000
x1v <- runif(ndpts)
x2v <- runif(ndpts)

poisson response
set.seed(773)
lp <- myfun(x1v,x2v)
mu <- exp(lp)
y <- rpois(n=ndpts,lambda=mu)
generalized smoothing spline anova

genmod <- bigssg(y=x1v*x2v,family="poisson",type=list(x1v="cub",x2v="cub"),n knots=50)
summary(genmod)

########### EXAMPLE 4 ###########

function with two continuous predictors
set.seed(773)
myfun <- function(x1v,x2v){
 sin(2*pi*x1v) + log(x2v+.1) + cos(pi*(x1v-x2v))
}
x1v <- runif(10^4)
x2v <- runif(10^4)
y <- myfun(x1v,x2v) + rnorm(10^4)

cubic splines with 100 randomly selected knots (classic parameterization)
cubmod <- bigssp(y=x1v*x2v,type=list(x1v="cub",x2v="cub"),n knots=100)
summary(cubmod)

########### EXAMPLE 5 ###########

define relatively smooth function
set.seed(773)
myfun <- function(x){ sin(2*pi*x) }
x <- runif(10^4)
y <- myfun(x) + rnorm(10^4)

thin-plate with default (30 knots)
tpsmod <- bigtps(x,y)
summary(tpsmod)
Index

*Title package
 bigsplines-package, 2

axis, 34, 46
bigspline, 3, 4, 10, 11, 16, 24, 25, 28, 49, 50, 68, 71, 72
bigsplines (bigsplines-package), 2
bigsplines-package, 2
bigssa, 3, 9, 36, 37, 52, 53, 68, 71, 72
bigssg, 3, 15, 38, 39, 55, 56, 68, 71, 72
bigssp, 3, 22, 41, 42, 59, 60, 68, 71, 72
bigtps, 3, 27, 63, 68, 71, 72
binsamp, 31

image, 34
imagebar, 34

lm, 10, 16, 24

makessa, 9, 36
makessg, 15, 38
makessp, 23, 41

nlm, 12, 19, 25

ordspline, 43, 66, 68

par, 35, 47
plot, 46, 48
plotbar, 46
plotci, 48
predict.bigspline, 6, 7, 49
predict.bigssa, 11, 52
predict.bigssg, 17, 55
predict.bigssp, 25, 59
predict.bigtps, 29, 62
predict.ordspline, 65
print, 67

set.seed, 5