Package ‘bigsplines’

February 3, 2017

Type Package
Title Smoothing Splines for Large Samples
Version 1.1-0
Date 2017-02-01
Author Nathaniel E. Helwig <helwig@umn.edu>
Maintainer Nathaniel E. Helwig <helwig@umn.edu>
Depends quadprog
Imports stats, graphics, grDevices
Description Fits smoothing spline regression models using scalable algorithms designed for large samples. Seven marginal spline types are supported: linear, cubic, different cubic, cubic periodic, cubic thin-plate, ordinal, and nominal. Random effects and parametric effects are also supported. Response can be Gaussian or non-Gaussian: Binomial, Poisson, Gamma, Inverse Gaussian, or Negative Binomial.
License GPL (>= 2)
NeedsCompilation yes
Repository CRAN
Date/Publication 2017-02-03 14:32:57

R topics documented:

bigsplines-package .. 2
bigspline .. 3
bigssa ... 8
bigsgg ... 14
bigspp ... 21
bigtps ... 26
binsamp ... 30
imagebar ... 32
makessa ... 34
makessg ... 37
makessp ... 39
ordspline .. 42
Description

Fits smoothing spline regression models using scalable algorithms designed for large samples. Six marginal spline types are supported: cubic, different cubic, cubic periodic, cubic thin-plate, ordinal, and nominal. Random effects and parametric predictors are also supported. Response can be Gaussian or non-Gaussian: Binomial, Poisson, Gamma, Inverse Gaussian, or Negative Binomial.

Details

The function `bigspline` fits one-dimensional cubic smoothing splines (unconstrained or periodic). The function `bigssa` fits Smoothing Spline Anova (SSA) models (Gaussian data). The function `bigssg` fits Generalized Smoothing Spline Anova (GSSA) models (non-Gaussian data). The function `bigssp` is for fitting Smoothing Splines with Parametric effects (semi-parametric regression). The function `bigtps` fits one-, two-, and three-dimensional cubic thin-plate splines. There are corresponding predict, print, and summary functions for these methods.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

Maintainer: Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

See examples for bigspline, bigssa, bigssg, bigssp, and bigtps

bigspline
Fits Smoothing Spline

Description

Given a real-valued response vector \(y = \{y_i\}_{i=1}^n \) and a real-valued predictor vector \(x = \{x_i\}_{i=1}^n \) with \(a \leq x_i \leq b \ \forall i \), a smoothing spline model has the form

\[
y_i = \eta(x_i) + e_i
\]

where \(y_i \) is the \(i \)-th observation’s response, \(x_i \) is the \(i \)-th observation’s predictor, \(\eta \) is an unknown smooth function relating the response and predictor, and \(e_i \sim N(0, \sigma^2) \) is iid Gaussian error.

Usage

```r
bigspline(x,y,type=cub,nknots=30,rparm=0.01,xmin=min(x),
            xmax=max(x),alpha=1,lambdas=NULL,se.fit=FALSE,
            rseed=1234,knotcheck=TRUE)
```

Arguments

- **x**
 Predictor vector.

- **y**
 Response vector. Must be same length as \(x \).

- **type**
 Type of spline for \(x \). Options include type="lin" for linear, type="cub" for cubic, type="cub0" for different cubic, and type="per" for cubic periodic. See Spline Types section.

- **nknots**
 Scalar giving maximum number of knots to bin-sample. Use more knots for more jagged functions.

- **rparm**
 Rounding parameter for \(x \). Use rparm=NA to fit unrounded solution. Rounding parameter must be in interval (0,1].
xmin Minimum x value (i.e., \(a \)). Used to transform data to interval \([0,1]\).

xmax Maximum x value (i.e., \(b \)). Used to transform data to interval \([0,1]\).

alpha Manual tuning parameter for GCV score. Using \(\alpha = 1 \) gives unbiased estimate. Using a larger alpha enforces a smoother estimate.

lambdas Vector of global smoothing parameters to try. Default estimates smoothing parameter that minimizes GCV score.

se.fit Logical indicating if the standard errors of fitted values should be estimated.

rseed Random seed. Input to `set.seed` to reproduce same knots when refitting same model. Use `rseed=NULL` to generate a different sample of knots each time.

knotcheck If TRUE, only unique knots are used (for stability).

Details

To estimate \(\eta \) I minimize the penalized least-squares functional

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - \eta(x_i))^2 + \lambda \int [\ddot{\eta}(x)]^2 dx
\]

where \(\ddot{\eta} \) denotes the second derivative of \(\eta \) and \(\lambda \geq 0 \) is a smoothing parameter that controls the trade-off between fitting and smoothing the data.

Default use of the function estimates \(\lambda \) by minimizing the GCV score:

\[
\text{GCV}(\lambda) = \frac{\| (I_n - S_\lambda) y \|^2}{\| n - \text{tr}(S_\lambda) \|^2}
\]

where \(I_n \) is the identity matrix and \(S_\lambda \) is the smoothing matrix (see Computational Details).

Using the rounding parameter input `rparm` can greatly speed-up and stabilize the fitting for large samples. When `rparm` is used, the spline is fit to a set of unique data points after rounding; the unique points are determined using the efficient algorithm described in Helwig (2013). For typical cases, I recommend using `rparm=0.01`, but smaller rounding parameters (e.g., `rparm=0.001`) may be needed for particularly jagged functions (or when \(x \) has outliers).

Value

- **fitted.values** Vector of fitted values corresponding to the original data points in \(x \) (if `rparm=NA`) or the rounded data points in \(x_{unique} \) (if `rparm` is used).
- **se.fit** Vector of standard errors of `fitted.values` (if input `se.fit=TRUE`).
- **x** Predictor vector (same as input).
- **y** Response vector (same as input).
- **type** Type of spline that was used.
- **xunique** Unique elements of \(x \) after rounding (if `rparm` is used).
- **yunique** Mean of \(y \) for unique elements of \(x \) after rounding (if `rparm` is used).
- **funique** Vector giving frequency of each element of \(x_{unique} \) (if `rparm` is used).
- **sigma** Estimated error standard deviation, i.e., \(\hat{\sigma} \).
Data frame with two elements: \(n \) is total sample size, and \(df \) is effective degrees of freedom of fit model (trace of smoothing matrix).

Model fit information: vector containing the GCV, multiple R-squared, AIC, and BIC of fit model (assuming Gaussian error).

Predictor range: \(xrng = [\min(x), \max(x)] \).

Bin-sampled spline knots used for fit.

Rounding parameter for \(x \) (same as input).

Optimal smoothing parameter.

Spline basis function coefficients.

Matrix square-root of covariance matrix of \(\text{coef} \). Use \(\text{tcrossprod(coef.sqrt)} \) to get covariance matrix of \(\text{coef} \).

Cubic and cubic periodic splines transform the predictor to the interval \([0, 1]\) before fitting. So input \(\min(x) \) must be less than or equal to \(\min(x) \), and input \(\max(x) \) must be greater than or equal to \(\max(x) \).

When using rounding parameters, output \(\text{fitted.values} \) corresponds to unique rounded predictor scores in output \(xunique \). Use \(\text{predict.bigspline} \) function to get fitted values for full \(y \) vector.

According to smoothing spline theory, the function \(\eta \) can be approximated as

\[
\eta(x) = d_0 + d_1 \phi_1(x) + \sum_{h=1}^{q} c_h \rho(x, x_h^*)
\]

where \(\phi_1 \) is a linear function, \(\rho \) is the reproducing kernel of the contrast (nonlinear) space, and \(\{x_h^*\}_{h=1}^{q} \) are the selected spline knots.

This implies that the penalized least-squares functional can be rewritten as

\[
||y - Kd - Jc||^2 + n\lambda c'Qc
\]

where \(K = \{\phi(x_i)\}_{n \times 2} \) is the null space basis function matrix, \(J = \{\rho(x_i, x_h^*)\}_{n \times q} \) is the contrast space basis function matrix, \(Q = \{\rho(x_i^*, x_h^*)\}_{q \times q} \) is the penalty matrix, and \(d = (d_0, d_1)' \) and \(c = (c_1, \ldots, c_q)' \) are the unknown basis function coefficients.

Given the smoothing parameter \(\lambda \), the optimal basis function coefficients have the form

\[
\begin{pmatrix}
\hat{d} \\
\hat{c}
\end{pmatrix} = \left(\begin{array}{cc}
K'K & K'J \\
J'K & J'J + n\lambda Q
\end{array} \right)^{\dagger} \begin{pmatrix}
K' \\
J'
\end{pmatrix} y
\]

where \((\cdot)^\dagger \) denotes the pseudoinverse of the input matrix.

Given the optimal coefficients, the fitted values are given by \(\hat{y} = K\hat{d} + J\hat{c} = S_\lambda y \), where

\[
S_\lambda = \begin{pmatrix}
K & J
\end{pmatrix} \left(\begin{array}{cc}
K'K & K'J \\
J'K & J'J + n\lambda Q
\end{array} \right)^{\dagger} \begin{pmatrix}
K' \\
J'
\end{pmatrix}
\]

is the smoothing matrix, which depends on \(\lambda \).
Spline Types

For a linear spline (type="lin") with \(x \in [0, 1] \), the needed functions are
\[
\phi_1(x) = 0 \quad \text{and} \quad \rho(x, z) = k_1(x)k_1(z) + k_2(|x - z|)
\]
where \(k_1(x) = x - 0.5 \) and \(k_2(x) = \frac{1}{2} \left(k_1^2(x) - \frac{1}{4} \right) \); in this case \(K = I_n \) and \(d = d_0 \).

For a cubic spline (type="cub") with \(x \in [0, 1] \), the needed functions are
\[
\phi_1(x) = k_1(x) \quad \text{and} \quad \rho(x, z) = k_2(x)k_2(z) - k_4(|x - z|)
\]
where \(k_1 \) and \(k_2 \) are defined above, and \(k_4(x) = \frac{1}{24} \left(k_1^4(x) - \frac{k_2^2(x)}{2} + \frac{7}{240} \right) \).

For a different cubic spline (type="cub\theta") with \(x \in [0, 1] \), the needed functions are
\[
\phi_1(x) = x \quad \text{and} \quad \rho(x, z) = (x \wedge z)^2[3(x \vee z) - (x \wedge z)]/6
\]
where \((x \wedge z) = \min(x, z) \) and \((x \vee z) = \max(x, z) \).

Note that type="cub" and type="cub\theta" use different definitions of the averaging operator in the null space. The overall spline estimates should be the same (up to approximation accuracy), but the null and constraint space effect functions will differ (see predict.bigspline). See Helwig (2013) and Gu (2013) for a further discussion of polynomial splines.

For a periodic cubic spline (type="per") with \(x \in [0, 1] \), the needed functions are
\[
\phi_1(x) = 0 \quad \text{and} \quad \rho(x, z) = -k_4(|x - z|)
\]
where \(k_4(x) \) is defined as it was for type="cub"; in this case \(K = I_n \) and \(d = d_0 \).

Note

The spline is estimated using penalized least-squares, which does not require the Gaussian error assumption. However, the spline inference information (e.g., standard errors and fit information) requires the Gaussian error assumption.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

```
####### EXAMPLE 1 #######

# define relatively smooth function
set.seed(773)
myfun <- function(x) { sin(2*pi*x) }
x <- runif(1e6)
y <- myfun(x) + rnorm(1e6)

# linear, cubic, different cubic, and periodic splines
linmod <- bigspline(x, y, type="lin")
linmod
cubmod <- bigspline(x, y)
cubmod
cubPmod <- bigspline(x, y, type="cubP")
cubPmod
permod <- bigspline(x, y, type="per")
permod
```

```
####### EXAMPLE 2 #######

# define more jagged function
set.seed(773)
myfun <- function(x) { 2*x + cos(4*pi*x) }
x <- runif(1e6)*4
y <- myfun(x) + rnorm(1e6)

# try different numbers of knots
r1mod <- bigspline(x, y, nknots=20)
crossprod( myfun(r1mod$unique) - r1mod$fitted )/length(r1mod$fitted)
r2mod <- bigspline(x, y, nknots=30)
crossprod( myfun(r2mod$unique) - r2mod$fitted )/length(r2mod$fitted)
r3mod <- bigspline(x, y, nknots=40)
crossprod( myfun(r3mod$unique) - r3mod$fitted )/length(r3mod$fitted)
```

```
####### EXAMPLE 3 #######

# define more jagged function
set.seed(773)
myfun <- function(x) { 2*x + cos(4*pi*x) }
x <- runif(1e6)*4
y <- myfun(x) + rnorm(1e6)

# try different rounding parameters
r1mod <- bigspline(x, y, rparm=0.05)
crossprod( myfun(r1mod$unique) - r1mod$fitted )/length(r1mod$fitted)
r2mod <- bigspline(x, y, rparm=0.02)
crossprod( myfun(r2mod$unique) - r2mod$fitted )/length(r2mod$fitted)
r3mod <- bigspline(x, y, rparm=0.01)
```
crossprod(myfun(r3mod$xunique) - r3mod$fitted)/length(r3mod$fitted)

bigssa

Fits Smoothing Spline ANOVA Models

Description

Given a real-valued response vector \(y = \{y_i\}_{n \times 1} \), a Smoothing Spline Anova (SSA) has the form

\[
y_i = \eta(x_i) + e_i
\]

where \(y_i \) is the \(i \)-th observation’s response, \(x_i = (x_{i1}, \ldots, x_{ip}) \) is the \(i \)-th observation’s nonparametric predictor vector, \(\eta \) is an unknown smooth function relating the response and nonparametric predictors, and \(e_i \sim N(0, \sigma^2) \) is iid Gaussian error. Function can fit additive models, and also allows for 2-way and 3-way interactions between any number of predictors (see Details and Examples).

Usage

```r
bigssa(formula, data=NULL, type=NULL, nknots=NULL, rparm=NA, lambdas=NULL, skip.iter=TRUE, se.fit=FALSE, rseed=1234, gcvopts=NULL, knotcheck=TRUE, gammas=NULL, weights=NULL, random=NULL, remlalg=c("FS","NR","EM","none"), remliter=500, remltol=10^-4, remltau=NULL)
```

Arguments

- `formula`: An object of class "formula": a symbolic description of the model to be fitted (see Details and Examples for more information).
- `data`: Optional data frame, list, or environment containing the variables in `formula`. Or an object of class "makessa", which is output from `makessa`.
- `type`: List of smoothing spline types for predictors in `formula` (see Details). Options include `type="cub"` for cubic, `type="cub0"` for another cubic, `type="per"` for cubic periodic, `type="tps"` for cubic thin-plate, `type="ord"` for ordinal, and `type="nom"` for nominal.
- `nknots`: Two possible options: (a) scalar giving total number of random knots to sample, or (b) vector indexing which rows of data to use as knots.
- `rparm`: List of rounding parameters for each predictor. See Details.
- `lambdas`: Vector of global smoothing parameters to try. Default `lambdas=10^-c(9:0)`.
- `skip.iter`: Logical indicating whether to skip the iterative smoothing parameter update. Using `skip.iter=FALSE` should provide a more optimal solution, but the fitting time may be substantially longer. See Skip Iteration section.
- `se.fit`: Logical indicating if the standard errors of the fitted values should be estimated.
- `rseed`: Random seed for knot sampling. Input is ignored if `nknots` is an input vector of knot indices. Set `rseed=NULL` to obtain a different knot sample each time, or set `rseed` to any positive integer to use a different seed than the default.
bigssa

Control parameters for optimization. List with 3 elements: (a) maxit: maximum number of algorithm iterations, (b) gcvtol: convergence tolerance for iterative GCV update, and (c) alpha: tuning parameter for GCV minimization. Default: `gcvopts=list(maxit=5,gcvtol=1e-5,alpha=1)`

If TRUE, only unique knots are used (for stability).

List of initial smoothing parameters for each predictor. See Details.

Vector of positive weights for fitting (default is vector of ones).

Adds random effects to model (see Random Effects section).

REML algorithm for estimating variance components (see Random Effects section). Input is ignored if `random=NULL`.

Maximum number of iterations for REML estimation of variance components. Input is ignored if `random=NULL`.

Convergence tolerance for REML estimation of variance components. Input is ignored if `random=NULL`.

Initial estimate of variance parameters for REML estimation of variance components. Input is ignored if `random=NULL`.

The formula syntax is similar to that used in `lm` and many other R regression functions. Use `y~x` to predict the response `y` from the predictor `x`. Use `y~x1+x2` to fit an additive model of the predictors `x1` and `x2`, and use `y~x1*x2` to fit an interaction model. The syntax `y~x1*x2` includes the interaction and main effects, whereas the syntax `y~x1:x2` is not supported. See Computational Details for specifics about how nonparametric effects are estimated.

See `bigspline` for definitions of `type="cub"`, `type="cub0"`, and `type="per"` splines, which can handle one-dimensional predictors. See Appendix of Helwig and Ma (2015) for information about `type="tps"` and `type="nom"` splines. Note that `type="tps"` can handle one-, two-, or three-dimensional predictors. I recommend using `type="cub"` if the predictor scores have no extreme outliers; when outliers are present, `type="tps"` may produce a better result.

Using the rounding parameter input `rparm` can greatly speed-up and stabilize the fitting for large samples. For typical cases, I recommend using `rparm=0.01` for cubic and periodic splines, but smaller rounding parameters may be needed for particularly jagged functions. For thin-plate splines, the data are NOT transformed to the interval [0,1] before fitting, so the rounding parameter should be on the raw data scale. Also, for type="tps" you can enter one rounding parameter for each predictor dimension. Use `rparm=1` for ordinal and nominal splines.

Value

- `fitted.values`: Vector of fitted values corresponding to the original data points in `xvars` (if `rparm=NA`) or the rounded data points in `xunique` (if `rparm` is used).
- `se.fit`: Vector of standard errors of `fitted.values` (if input `se.fit=TRUE`).
- `yvar`: Response vector.
- `xvars`: List of predictors.
- `type`: Type of smoothing spline that was used for each predictor.
yunique Mean of yvar for unique points after rounding (if rparm is used).
xunique Unique rows of xvars after rounding (if rparm is used).
sigma Estimated error standard deviation, i.e., $\hat{\sigma}$.
ndf Data frame with two elements: n is total sample size, and df is effective degrees of freedom of fit model (trace of smoothing matrix).
info Model fit information: vector containing the GCV, multiple R-squared, AIC, and BIC of fit model (assuming Gaussian error).
modelspec List containing specifics of fit model (needed for prediction).
converged Convergence status: converged=TRUE if iterative update converged, converged=FALSE if iterative update failed to converge, and converged=NA if option skip.iter=TRUE was used.
tnames Names of the terms in model.
random Random effects formula (same as input).
tau Variance parameters such that $\sigma*\sqrt{tau}$ gives standard deviation of random effects (if !is.null(random)).
blup Best linear unbiased predictors (if !is.null(random)).
call Called model in input formula.

Warnings
Cubic and cubic periodic splines transform the predictor to the interval $[0,1]$ before fitting.

When using rounding parameters, output fitted.values corresponds to unique rounded predictor scores in output xunique. Use predict.bigssa function to get fitted values for full yvar vector.

Computational Details
To estimate η I minimize the penalized least-squares functional

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \eta(x_i))^2 + \lambda J(\eta)$$

where $J(\cdot)$ is a nonnegative penalty functional quantifying the roughness of η and $\lambda > 0$ is a smoothing parameter controlling the trade-off between fitting and smoothing the data. Note that for $p > 1$ nonparametric predictors, there are additional θ_k smoothing parameters embedded in J.

The penalized least squares functional can be rewritten as

$$\|y - Kd - J_\theta c\|^2 + n\lambda c'Q_\theta c$$

where $K = \{\phi(x_i)\}_{n \times m}$ is the null (parametric) space basis function matrix, $J_\theta = \sum_{k=1}^{s} \theta_kJ_k$ with $J_k = \{\rho_k(x_i, x_h^*)\}_{n \times q}$ denoting the k-th contrast space basis function matrix, $Q_\theta = \sum_{k=1}^{s} \theta_kQ_k$ with $Q_k = \{\rho_k(x_h^*, x_h^*)\}_{q \times q}$ denoting the k-th penalty matrix, and $d = (d_0, \ldots, d_m)'$ and $c = (c_1, \ldots, c_q)'$ are the unknown basis function coefficients. The optimal smoothing parameters are chosen by minimizing the GCV score (see bigspline).

Note that this function uses the efficient SSA reparameterization described in Helwig (2013) and Helwig and Ma (2015); using is parameterization, there is one unique smoothing parameter per predictor (γ_j), and these γ_j parameters determine the structure of the θ_k parameters in the tensor product space. To evaluate the GCV score, this function uses the improved (scalable) SSA algorithm discussed in Helwig (2013) and Helwig and Ma (2015).
Skip Iteration

For $p > 1$ predictors, initial values for the γ_j parameters (that determine the structure of the θ_k parameters) are estimated using the smart starting algorithm described in Helwig (2013) and Helwig and Ma (2015).

Default use of this function (skip.iter=TRUE) fixes the γ_j parameters after the smart start, and then finds the global smoothing parameter λ (among the input lambdas) that minimizes the GCV score. This approach typically produces a solution very similar to the more optimal solution using skip.iter(FALSE).

Setting skip.iter=FALSE uses the same smart starting algorithm as setting skip.iter=TRUE. However, instead of fixing the γ_j parameters after the smart start, using skip.iter=FALSE iterates between estimating the optimal λ and the optimal γ_j parameters. The R function nlm is used to minimize the GCV score with respect to the γ_j parameters, which can be time consuming for models with many predictors and/or a large number of knots.

Random Effects

The input random adds random effects to the model assuming a variance components structure. Both nested and crossed random effects are supported. In all cases, the random effects are assumed to be independent zero-mean Gaussian variables with the variance depending on group membership.

Random effects are distinguished by vertical bars ("|"), which separate expressions for design matrices (left) from group factors (right). For example, the syntax ~1|group includes a random intercept for each level of group, whereas the syntax ~1+x|group includes both a random intercept and a random slope for each level of group. For crossed random effects, parentheses are needed to distinguish different terms, e.g., ~(1|group1)+(1|group2) includes a random intercept for each level of group1 and a random intercept for each level of group2, where both group1 and group2 are factors. For nested random effects, the syntax ~group|subject can be used, where both group and subject are factors such that the levels of subject are nested within those of group.

The input remlalg determines the REML algorithm used to estimate the variance components. Setting remlalg="FS" uses a Fisher Scoring algorithm (default). Setting remlalg="NR" uses a Newton-Raphson algorithm. Setting remlalg="EM" uses an Expectation Maximization algorithm. Use remlalg="none" to fit a model with known variance components (entered through remltau).

The input remliter sets the maximum number of iterations for the REML estimation. The input remltol sets the convergence tolerance for the REML estimation, which is determined via relative change in the REML log-likelihood. The input remltau sets the initial estimates of variance parameters; default is remltau = rep(1,ntau) where ntau is the number of variance components.

Note

The spline is estimated using penalized least-squares, which does not require the Gaussian error assumption. However, the spline inference information (e.g., standard errors and fit information) requires the Gaussian error assumption.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>
References

Examples

########## EXAMPLE 1 ##########

define univariate function and data
set.seed(773)
myfun <- function(x){ sin(2*pi*x) }
x <- runif(500)
y <- myfun(x) + rnorm(500)

cubic, periodic, and thin-plate spline models with 20 knots
intmod <- bigssa(y~x,type="cub",nknots=20,se.fit=TRUE)
cubmod
permod <- bigssa(y~x,type="per",nknots=20,se.fit=TRUE)
permod
tpsmod <- bigssa(y~x,type="tps",nknots=20,se.fit=TRUE)
tpsmod

########## EXAMPLE 2 ##########

function with two continuous predictors
set.seed(773)
myfun <- function(x1v,x2v)(sin(2*pi*x1v)+log(x2v)+cos(pi*(x1v-x2v)))
x1v <- runif(500)
x2v <- runif(500)
y <- myfun(x1v,x2v) + rnorm(500)

cubic splines with 50 randomly selected knots
intmod <- bigssa(y~x1v+x2v,type=list(x1v="cub",x2v="cub"),nknots=50)
intmod
crossprod(myfun(x1v,x2v) - intmod$fitted.values)/500

fit additive model (with same knots)
addmod <- bigssa(y~x1v+x2v,type=list(x1v="cub",x2v="cub"),nknots=50)
addmod
```r
crossprod( myfun(x1v,x2v) - addmod$fitted.values )/500

# function with two continuous and one nominal predictor (3 levels)
set.seed(773)
myfun <- function(x1v,x2v,x3v){
  fval <- rep(0,length(x1v))
  xmeans <- c(-1,0,1)
  for(j in 1:3){
    idx <- which(x3v==letters[j])
    fval[idx] <- xmeans[j]
  }
  fval[idx] <- fval[idx] + cos(4*pi*(x1v[idx]))
  fval <- (fval + sin(3*pi*x1v*x2v+pi)) / sqrt(2)
}
x1v <- runif(500)
x2v <- runif(500)
x3v <- sample(letters[1:3],500,replace=TRUE)
y <- myfun(x1v,x2v,x3v) + rnorm(500)

# 3-way interaction with 50 knots
cuimod <- bigssa(y~x1v*x2v*x3v,type=list(x1v="cub",x2v="cub",x3v="nom"),nknots=50)
crossprod( myfun(x1v,x2v,x3v) - cuimod$fitted.values )/500

# fit correct interaction model with 50 knots
cubmod <- bigssa(y~x1v*x2v+x1v*x3v,type=list(x1v="cub",x2v="cub",x3v="nom"),nknots=50)
crossprod( myfun(x1v,x2v,x3v) - cubmod$fitted.values )/500

# fit model using 2-dimensional thin-plate and nominal
x1new <- cbind(x1v,x2v)
x2new <- x3v
tpsmod <- bigssa(y~x1new*x2new,type=list(x1new="tps",x2new="nom"),nknots=50)
crossprod( myfun(x1v,x2v,x3v) - tpsmod$fitted.values )/500

# function with four continuous predictors
set.seed(773)
myfun <- function(x1v,x2v,x3v,x4v){
  sin(2*pi*x1v) + log(x2v+.1) + x3v*cos(pi*(x4v))
}
x1v <- runif(500)
x2v <- runif(500)
x3v <- runif(500)
x4v <- runif(500)
y <- myfun(x1v,x2v,x3v,x4v) + rnorm(500)

# fit cubic spline model with x3v*x4v interaction
cubmod <- bigssa(y~x1v*x2v+x3v*x4v,type=list(x1v="cub",x2v="cub",x3v="cub",x4v="cub"),nknots=50)
crossprod( myfun(x1v,x2v,x3v,x4v) - cubmod$fitted.values )/500
```
Description

Given an exponential family response vector \(y = \{y_i\}_{n \times 1} \), a Generalized Smoothing Spline Anova (GSSA) has the form

\[
g(\mu_i) = \eta(x_i)
\]

where \(\mu_i \) is the expected value of the \(i \)-th observation’s response, \(g(\cdot) \) is some invertible link function, \(x_i = (x_{i1}, \ldots, x_{ip}) \) is the \(i \)-th observation’s nonparametric predictor vector, and \(\eta \) is an unknown smooth function relating the response and nonparametric predictors. Function can fit additive models, and also allows for 2-way and 3-way interactions between any number of predictors. Response can be one of five non-Gaussian distributions: Binomial, Poisson, Gamma, Inverse Gaussian, or Negative Binomial (see Details and Examples).

Usage

\[
\text{bigssg(formula, family, data=NULL, type=NULL, nknots=NULL, rparam=NA, lambdas=NULL, skip.iter=TRUE, se.lp=FALSE, rseed=1234, gcvopts=NULL, knotcheck=TRUE, gammas=NULL, weights=NULL, gcvtype=c("acv","gacv","gacv.old"))}
\]

Arguments

- formula: An object of class "formula": a symbolic description of the model to be fitted (see Details and Examples for more information).
- family: Distribution for response. One of five options: "binomial", "poisson", "Gamma", "inverse.gaussian", or "negbin". See Response section.
- data: Optional data frame, list, or environment containing the variables in formula. Or an object of class "makessg", which is output from \text{makessg}.
- type: List of smoothing spline types for predictors in formula (see Details). Options include type="cub" for cubic, type="cub0" for another cubic, type="per" for cubic periodic, type="tps" for cubic thin-plate, type="ord" for ordinal, and type="nom" for nominal.
- nknots: Two possible options: (a) scalar giving total number of random knots to sample, or (b) vector indexing which rows of data to use as knots.
- rparam: List of rounding parameters for each predictor. See Details.
- lambdas: Vector of global smoothing parameters to try. Default lambdas=10^-c(9:0).
- skip.iter: Logical indicating whether to skip the iterative smoothing parameter update. Using skip.iter=FALSE should provide a more optimal solution, but the fitting time may be substantially longer. See Skip Iteration section.
- se.lp: Logical indicating if the standard errors of the linear predictors (\(\eta \)) should be estimated.
random seed for knot sampling. Input is ignored if nknots is an input vector of knot indices. Set rseed=NULL to obtain a different knot sample each time, or set rseed to any positive integer to use a different seed than the default.

gcvopts
Control parameters for optimization. List with 6 elements: (i) maxit: maximum number of outer iterations, (ii) gcvtol: convergence tolerance for iterative GACV update, (iii) alpha: tuning parameter for GACV minimization, (iv) inmaxit: maximum number of inner iterations for iteratively reweighted fitting, (v) intol: inner convergence tolerance for iteratively reweighted fitting, and (vi) insub: number of data points to subsample when checking inner convergence. gcvopts=list(maxit=5,gcvtol=10^-5,alpha=1,inmaxit=100,intol=10^-5,insub=10^4)

knotcheck
If TRUE, only unique knots are used (for stability).

gammas
List of initial smoothing parameters for each predictor. See Details.

weights
Vector of positive weights for fitting (default is vector of ones).

gcvtype
Cross-validation criterion for selecting smoothing parameters (see Details).

Details
The formula syntax is similar to that used in lm and many other R regression functions. Use y~x to predict the response y from the predictor x. Use y~x1+x2 to fit an additive model of the predictors x1 and x2, and use y~x1*x2 to fit an interaction model. The syntax y~x1*x2 includes the interaction and main effects, whereas the syntax y~x1:x2 is not supported. See Computational Details for specifics about how nonparametric effects are estimated.

See bigspline for definitions of type="cub", type="cub0", and type="per" splines, which can handle one-dimensional predictors. See Appendix of Helwig and Ma (2015) for information about type="tps" and type="nom" splines. Note that type="tps" can handle one-, two-, or three-dimensional predictors. I recommend using type="cub" if the predictor scores have no extreme outliers; when outliers are present, type="tps" may produce a better result.

Using the rounding parameter input rparm can greatly speed-up and stabilize the fitting for large samples. For typical cases, I recommend using rparm=0.01 for cubic and periodic splines, but smaller rounding parameters may be needed for particularly jagged functions. For thin-plate splines, the data are NOT transformed to the interval [0,1] before fitting, so rounding parameter should be on raw data scale. Also, for type="tps" you can enter one rounding parameter for each predictor dimension. Use rparm=1 for ordinal and nominal splines.

Value
fitted.values
Vector of fitted values (data scale) corresponding to the original data points in xvars (if rparm=NA) or the rounded data points in xunique (if rparm is used).

linear.predictors
Vector of fitted values (link scale) corresponding to the original data points in xvars (if rparm=NA) or the rounded data points in xunique (if rparm is used).

se.lp
Vector of standard errors of linear.predictors (if input se.lp=TRUE).

yvar
Response vector.

xvars
List of predictors.

type
Type of smoothing spline that was used for each predictor.
yunique Mean of yvar for unique points after rounding (if rparm is used).
xunique Unique rows of xvars after rounding (if rparm is used).
dispersion Estimated dispersion parameter (see Response section).
ndf Data frame with two elements: n is total sample size, and df is effective degrees of freedom of fit model (trace of smoothing matrix).
info Model fit information: vector containing the GCV, multiple R-squared, AIC, and BIC of fit model.
modelspec List containing specifics of fit model (needed for prediction).
converged Convergence status: converged=TRUE if iterative update converged, converged=FALSE if iterative update failed to converge, and converged=NA if option skip.iter=TRUE was used.
tnames Names of the terms in model.
family Distribution family (same as input).
call Called model in input formula.

Warnings

Cubic and cubic periodic splines transform the predictor to the interval [0,1] before fitting.

When using rounding parameters, output fitted.values corresponds to unique rounded predictor scores in output xunique. Use predict.bigssg function to get fitted values for full yvar vector.

Response

Only one link is permitted for each family:

family="binomial" Logit link. Response should be vector of proportions in the interval [0,1]. If response is a sample proportion, the total count should be input through weights argument.

family="poisson" Log link. Response should be vector of counts (non-negative integers).

family="Gamma" Inverse link. Response should be vector of positive real-valued data. Estimated dispersion parameter is the inverse of the shape parameter, so that the variance of the response increases as dispersion increases.

family="inverse.gaussian" Inverse-square link. Response should be vector of positive real-valued data. Estimated dispersion parameter is the inverse of the shape parameter, so that the variance of the response increases as dispersion increases.

family="negbin" Log link. Response should be vector of counts (non-negative integers). Estimated dispersion parameter is the inverse of the size parameter, so that the variance of the response increases as dispersion increases.

family=list("negbin",2) Log link. Response should be vector of counts (non-negative integers). Second element is the known (common) dispersion parameter (2 in this case). The input dispersion parameter should be the inverse of the size parameter, so that the variance of the response increases as dispersion increases.
Computational Details

To estimate η I minimize the (negative of the) penalized log likelihood

$$-\frac{1}{n} \sum_{i=1}^{n} \{y_i \eta(x_i) - b(\eta(x_i))\} + \frac{\lambda}{2} J(\eta)$$

where $J(\cdot)$ is a nonnegative penalty functional quantifying the roughness of η and $\lambda > 0$ is a smoothing parameter controlling the trade-off between fitting and smoothing the data. Note that for $p > 1$ nonparametric predictors, there are additional θ_k smoothing parameters embedded in J.

Following standard exponential family theory, $\mu_i = \dot{b}(\eta(x_i))$ and $\nu_i = \ddot{b}(\eta(x_i))a(\xi)$, where $\dot{b}(\cdot)$ and $\ddot{b}(\cdot)$ denote the first and second derivatives of $b(\cdot)$, ν_i is the variance of y_i, and ξ is the dispersion parameter. Given fixed smoothing parameters, the optimal η can be estimated by iteratively minimizing the penalized reweighted least-squares functional

$$\frac{1}{n} \sum_{i=1}^{n} v_i^* (y_i^* - \eta(x_i))^2 + \lambda J(\eta)$$

where $v_i^* = v_i/a(\xi)$ is the weight, $y_i^* = \hat{\eta}(x_i) + (y_i - \hat{\mu}_i)/v_i^*$ is the adjusted dependent variable, and $\hat{\eta}(x_i)$ is the current estimate of η.

The optimal smoothing parameters are chosen via direct cross-validation (see Gu & Xiang, 2001). Setting gcvtpe="acv" uses the Approximate Cross-Validation (ACV) score:

$$-\frac{1}{n} \sum_{i=1}^{n} \{y_i \hat{\eta}(x_i) - b(\hat{\eta}(x_i))\} + \frac{1}{n} \sum_{i=1}^{n} s_{ii} \nu_i y_i (y_i - \hat{\mu}_i)$$

where s_{ii} is the i-th diagonal of the smoothing matrix S_λ.

Setting gcvtpe="gacv" uses the Generalized ACV (GACV) score:

$$-\frac{1}{n} \sum_{i=1}^{n} \{y_i \hat{\eta}(x_i) - b(\hat{\eta}(x_i))\} + \frac{\text{tr}(S_\lambda V^{-1})}{n - \text{tr}(S_\lambda)} \frac{1}{n} \sum_{i=1}^{n} y_i (y_i - \hat{\mu}_i)$$

where S_λ is the smoothing matrix, and $V = \text{diag}(v_1^*, \ldots, v_n^*)$.

Setting gcvtpe="gacv.old" uses an approximation of the GACV where $\frac{1}{n} \text{tr}(S_\lambda V^{-1})$ is approximated using $\frac{1}{n^2} \text{tr}(S_\lambda) \text{tr}(V^{-1})$. This option is included for back-compatibility (ver 1.0-4 and earlier), and is not recommended because the ACV or GACV often perform better.

Note that this function uses the efficient SSA reparameterization described in Helwig (2013) and Helwig and Ma (2015); using is parameterization, there is one unique smoothing parameter per predictor (γ_j), and these γ_j parameters determine the structure of the θ_k parameters in the tensor product space. To evaluate the ACV/GACV score, this function uses the improved (scalable) GSSA algorithm discussed in Helwig (in preparation).

Skip Iteration

For $p > 1$ predictors, initial values for the γ_j parameters (that determine the structure of the θ_k parameters) are estimated using an extension of the smart starting algorithm described in Helwig (2013) and Helwig and Ma (2015).
Default use of this function (skip.iter=TRUE) fixes the γ_j parameters after the smart start, and then finds the global smoothing parameter λ (among the input lambdas) that minimizes the GCV score. This approach typically produces a solution very similar to the more optimal solution using skip.iter=FALSE.

Setting skip.iter=FALSE uses the same smart starting algorithm as setting skip.iter=TRUE. However, instead of fixing the γ_j parameters after the smart start, using skip.iter=FALSE iterates between estimating the optimal λ and the optimal γ_j parameters. The R function nlm is used to minimize the approximate GACV score with respect to the γ_j parameters, which can be time consuming for models with many predictors and/or a large number of knots.

Note

The spline is estimated using penalized likelihood estimation. Standard errors of the linear predictors are formed using Bayesian confidence intervals.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

```
# define univariate function and data
set.seed(1)
myfun <- function(x) { sin(2*pi*x) }
ndpts <- 1000
x <- runif(ndpts)

# binomial response (no weights)
set.seed(773)
lp <- myfun(x)
p <- 1/(1+exp(-lp))
y <- rbinom(n=ndpts,size=1,p=p)     ## y is binary data
gmod <- bigssg(y~x,family="binomial",type="cub",nknots=20)
crossprod(lp - gmod$linear.predictor )/length(lp)

# binomial response (with weights)
```
set.seed(773)
lp <- myfun(x)
p <- 1/(1+exp(-lp))
w <- sample(c(10,20,30,40,50),length(p),replace=TRUE)
y <- rbinom(n=ndpts,size=w,p=p)/w ## y is proportion correct
gmod <- bigssg(y~x,family="binomial",type="cub",nknots=20,weights=w)
crossprod(lp - gmod$linear.predictor)/length(lp)

poisson response
set.seed(773)
lp <- myfun(x)
mu <- exp(lp)
y <- rpois(n=ndpts,lambda=mu)
gmod <- bigssg(y~x,family="poisson",type="cub",nknots=20)
crossprod(lp - gmod$linear.predictor)/length(lp)

Gamma response
set.seed(773)
lp <- myfun(x) + 2
mu <- 1/lp
y <- rgamma(n=ndpts,shape=4,scale=mu/4)
gmod <- bigssg(y~x,family="Gamma",type="cub",nknots=20)
1/gmod$dispersion ## dispersion = 1/shape
crossprod(lp - gmod$linear.predictor)/length(lp)

inverse gaussian response (not run: requires statmod package)
require(statmod)
set.seed(773)
lp <- myfun(x) + 2
mu <- sqrt(1/lp)
y <- rinvgauss(n=ndpts,mean=mu,shape=2)
gmod <- bigssg(y~x,family="inverse.gaussian",type="cub",nknots=20)
1/gmod$dispersion ## dispersion = 1/shape
crossprod(lp - gmod$linear.predictor)/length(lp)

negative binomial response (known dispersion)
set.seed(773)
lp <- myfun(x)
u <- exp(lp)
y <- rnbinom(n=ndpts,size=.5,mu=mu)
gmod <- bigssg(y~x,family=list("negbin",2),type="cub",nknots=20)
1/gmod$dispersion ## dispersion = 1/size
crossprod(lp - gmod$linear.predictor)/length(lp)

negative binomial response (unknown dispersion)
set.seed(773)
lp <- myfun(x)
u <- exp(lp)
y <- rnbinom(n=ndpts,size=.5,mu=mu)
gmod <- bigssg(y~x,family="negbin",type="cub",nknots=20)
1/gmod$dispersion ## dispersion = 1/size
crossprod(lp - gmod$linear.predictor)/length(lp)
Not run:

```
### EXAMPLE 2 (2-way GSA) ###

# function with two continuous predictors
set.seed(1)
myfun <- function(x1v, x2v){
  sin(2*pi*x1v) + log(x2v+1) + cos(pi*(x1v-x2v))
}
ndpts <- 1000
x1v <- runif(ndpts)
x2v <- runif(ndpts)

# binomial response (no weights)
set.seed(777)
lp <- myfun(x1v, x2v)
p <- 1/(1+exp(-lp))
y <- rbinom(n=ndpts, size=1, p=p)  ## y is binary data
gmod <- bigssg(y~x1v*x2v, family="binomial", type=list(x1v="cub", x2v="cub"), nknots=50)
crossprod(lp - gmod$linear.predictor)/length(lp)

# binomial response (with weights)
set.seed(777)
lp <- myfun(x1v, x2v)
p <- 1/(1+exp(-lp))
w <- sample(c(1,2,3,4,5), length(p), replace=TRUE)
y <- rbinom(n=ndpts, size=w, p=p)/w  ## y is proportion correct
gmod <- bigssg(y~x1v*x2v, family="binomial", type=list(x1v="cub", x2v="cub"), nknots=50, weights=w)
crossprod(lp - gmod$linear.predictor)/length(lp)

# poisson response
set.seed(777)
lp <- myfun(x1v, x2v)
mu <- exp(lp)
y <- rpois(n=ndpts, lambda=mu)
gmod <- bigssg(y~x1v*x2v, family="poisson", type=list(x1v="cub", x2v="cub"), nknots=50)
crossprod(lp - gmod$linear.predictor)/length(lp)

# Gamma response
set.seed(777)
lp <- myfun(x1v, x2v)+6
mu <- 1/lp
y <- rgamma(n=ndpts, shape=4, scale=mu/4)
gmod <- bigssg(y~x1v*x2v, family="Gamma", type=list(x1v="cub", x2v="cub"), nknots=50)
1/gmod$dispersion  ## dispersion = 1/shape
crossprod(lp - gmod$linear.predictor)/length(lp)

# inverse gaussian response (not run: requires 'statmod' package)
# require(statmod)
# set.seed(777)
# lp <- myfun(x1v, x2v)+6
# mu <- sqrt(1/lp)
# y <- rinvgauss(n=ndpts, mean=mu, shape=2)
```
bigssp

Fits Smoothing Splines with Parametric Effects

Description

Given a real-valued response vector \(\mathbf{y} = \{y_i\}_{n \times 1} \), a semiparametric regression model has the form

\[
y_i = \eta(x_i) + \sum_{j=1}^{t} b_j z_{ij} + e_i
\]

where \(y_i \) is the \(i \)-th observation's response, \(x_i = (x_{i1}, \ldots, x_{ip}) \) is the \(i \)-th observation's nonparametric predictor vector, \(\eta \) is an unknown smooth function relating the response and nonparametric predictors, \(z_i = (z_{i1}, \ldots, z_{it}) \) is the \(i \)-th observation's parametric predictor vector, and \(e_i \sim N(0, \sigma^2) \) is iid Gaussian error. Function can fit both additive and interactive non/parametric effects, and allows for 2-way and 3-way interactions between nonparametric and parametric effects (see Details and Examples).

Usage

```r
bigssp(formula, data=NULL, type=NULL, nknots=NULL, rparm=NA, lambdas=NULL, skip.iter=TRUE, se.fit=FALSE, rseed=1234, gcvopts=NULL, knotcheck=TRUE, thetas=NULL, weights=NULL, random=NULL, remlalg=c("FS", "NR", "EM", "none"), remliter=500, remltol=10^-4, remltau=NULL)
```

```r
# gmod <- bigssg(y~x1v+x2v, family="inverse.gaussian", type=list(x1v="cub", x2v="cub"), nknots=50)
# 1/gmod$dispersion  # dispersion = 1/shape
# crossprod( lp - gmod$linear.predictor )/length(lp)

# negative binomial response (known dispersion)
set.seed(773)
lp <- myfun(x1v,x2v)
mu <- exp(lp)
y <- rnbinom(n=ndpts, size=.5, mu=mu)
gmod <- bigssg(y~x1v+x2v, family=list("negbin",2), type=list(x1v="cub", x2v="cub"), nknots=50)
1/gmod$dispersion  # dispersion = 1/size
crossprod( lp - gmod$linear.predictor )/length(lp)

# negative binomial response (unknown dispersion)
set.seed(773)
lp <- myfun(x1v,x2v)
mu <- exp(lp)
y <- rnbinom(n=ndpts, size=.5, mu=mu)
gmod <- bigssg(y~x1v+x2v, family="negbin", type=list(x1v="cub", x2v="cub"), nknots=50)
1/gmod$dispersion  # dispersion = 1/size
crossprod( lp - gmod$linear.predictor )/length(lp)

## End(Not run)
```
Arguments

formula
An object of class "formula": a symbolic description of the model to be fitted (see Details and Examples for more information).

data
Optional data frame, list, or environment containing the variables in formula. Or an object of class "makessp", which is output from `makessp`.

type
List of smoothing spline types for predictors in formula (see Details). Options include type="cub" for cubic, type="cub0" for another cubic, type="per" for cubic periodic, type="tps" for cubic thin-plate, type="ord" for ordinal, and type="nom" for nominal. Use type="prm" for parametric effect.

nknots
Two possible options: (a) scalar giving total number of random knots to sample, or (b) vector indexing which rows of data to use as knots.

rparm
List of rounding parameters for each predictor. See Details.

lambdas
Vector of global smoothing parameters to try. Default lambdas=10^-c(9:0).

skip.iter
Logical indicating whether to skip the iterative smoothing parameter update. Using `skip.iter=FALSE` should provide a more optimal solution, but the fitting time may be substantially longer. See Skip Iteration section.

se.fit
Logical indicating if the standard errors of the fitted values should be estimated.

rseed
Random seed for knot sampling. Input is ignored if `nknots` is an input vector of knot indices. Set `rseed=NULL` to obtain a different knot sample each time, or set `rseed` to any positive integer to use a different seed than the default.

gcvopts
Control parameters for optimization. List with 3 elements: (a) `maxit`: maximum number of algorithm iterations, (b) `gcvtol`: convergence tolerance for iterative GCV update, and (c) `alpha`: tuning parameter for GCV minimization. Default: `gcvopts=list(maxit=5,gcvtol=10^-5,alpha=1)`

knotcheck
If TRUE, only unique knots are used (for stability).

thetas
List of initial smoothing parameters for each predictor subspace. See Details.

weights
Vector of positive weights for fitting (default is vector of ones).

random
Adds random effects to model (see Random Effects section).

remlalg
REML algorithm for estimating variance components (see Random Effects section). Input is ignored if `random=NULL`.

remliter
Maximum number of iterations for REML estimation of variance components. Input is ignored if `random=NULL`.

remltol
Convergence tolerance for REML estimation of variance components. Input is ignored if `random=NULL`.

remltau
Initial estimate of variance parameters for REML estimation of variance components. Input is ignored if `random=NULL`.

Details

The formula syntax is similar to that used in `lm` and many other R regression functions. Use `y~x` to predict the response `y` from the predictor `x`. Use `y~x1+x2` to fit an additive model of the predictors `x1` and `x2`, and use `y~x1*x2` to fit an interaction model. The syntax `y~x1*x2` includes the interaction
and main effects, whereas the syntax `y~x1:x2` only includes the interaction. See Computational Details for specifics about how non/parametric effects are estimated.

See `bigspline` for definitions of type="cub", type="cub0", and type="per" splines, which can handle one-dimensional predictors. See Appendix of Helwig and Ma (2015) for information about type="tps" and type="nom" splines. Note that type="tps" can handle one-, two-, or three-dimensional predictors. I recommend using type="cub" if the predictor scores have no extreme outliers; when outliers are present, type="tps" may produce a better result.

Using the rounding parameter input `rparm` can greatly speed-up and stabilize the fitting for large samples. For typical cases, I recommend using `rparm=0.01` for cubic and periodic splines, but smaller rounding parameters may be needed for particularly jagged functions. For thin-plate splines, the data are NOT transformed to the interval [0,1] before fitting, so the rounding parameter should be on the raw data scale. Also, for type="tps" you can enter one rounding parameter for each predictor dimension. Use `rparm=1` for ordinal and nominal splines.

Value

- **fitted.values**: Vector of fitted values corresponding to the original data points in `xvars` (if `rparm=NA`) or the rounded data points in `xunique` (if `rparm` is used).
- **se.fit**: Vector of standard errors of `fitted.values` (if input `se.fit=TRUE`).
- **yvar**: Response vector.
- **xvars**: List of predictors.
- **type**: Type of smoothing spline that was used for each predictor.
- **yunique**: Mean of `yvar` for unique points after rounding (if `rparm` is used).
- **xunique**: Unique rows of `xvars` after rounding (if `rparm` is used).
- **sigma**: Estimated error standard deviation, i.e., $\hat{\sigma}$.
- **ndf**: Data frame with two elements: `n` is total sample size, and `df` is effective degrees of freedom of fit model (trace of smoothing matrix).
- **info**: Model fit information: vector containing the GCV, multiple R-squared, AIC, and BIC of fit model (assuming Gaussian error).
- **modelspec**: List containing specifics of fit model (needed for prediction).
- **converged**: Convergence status: `converged=TRUE` if iterative update converged, `converged=FALSE` if iterative update failed to converge, and `converged=NA` if option `skip.iter=TRUE` was used.
- **tnames**: Names of the terms in model.
- **random**: Random effects formula (same as input).
- **tau**: Variance parameters such that $\sigma \sqrt{\tau}$ gives standard deviation of random effects (if `!is.null(random)`).
- **blup**: Best linear unbiased predictors (if `!is.null(random)`).
- **call**: Called model in input formula.

Warnings

Cubic and cubic periodic splines transform the predictor to the interval [0,1] before fitting.

When using rounding parameters, output `fitted.values` corresponds to unique rounded predictor scores in output `xunique`. Use `predict.bigspp` function to get fitted values for full `yvar` vector.
Computational Details

To estimate \(\eta \) I minimize the penalized least-squares functional

\[
\frac{1}{n} \sum_{i=1}^{n} \left(y_i - \eta(x_i) - \sum_{j=1}^{t} b_j z_{ij} \right)^2 + \lambda J(\eta)
\]

where \(J(\cdot) \) is a nonnegative penalty functional quantifying the roughness of \(\eta \) and \(\lambda > 0 \) is a smoothing parameter controlling the trade-off between fitting and smoothing the data. Note that for \(p > 1 \) nonparametric predictors, there are additional \(\theta_k \) smoothing parameters embedded in \(J \).

The penalized least squares functional can be rewritten as

\[
\| y - Kd - J_{\theta}c \|^2 + n\lambda c'Q_{\theta}c
\]

where \(K = \{ \phi(x_i), z_i \}_{n \times m} \) is the parametric space basis function matrix, \(J_{\theta} = \sum_{k=1}^{s} \theta_k J_k \) with \(J_k = \{ \rho_k(x_i, x_k) \}_{n \times q} \) denoting the \(k \)-th contrast space basis function matrix, \(Q_{\theta} = \sum_{k=1}^{s} \theta_k Q_k \) with \(Q_k = \{ \rho_k(x_i, x_k) \}_{q \times q} \) denoting the \(k \)-th penalty matrix, and \(d = (d_0, \ldots, d_m)' \) and \(c = (c_1, \ldots, c_q)' \) are the unknown basis function coefficients. The optimal smoothing parameters are chosen by minimizing the GCV score (see bigspline).

Note that this function uses the classic smoothing spline parameterization (see Gu, 2013), so there is more than one smoothing parameter per predictor (if interactions are included in the model). To evaluate the GCV score, this function uses the improved (scalable) SSA algorithm discussed in Helwig (2013) and Helwig and Ma (2015).

Skip Iteration

For \(p > 1 \) predictors, initial values for the \(\theta_k \) parameters are estimated using Algorithm 3.2 described in Gu and Wahba (1991).

Default use of this function (\texttt{skip.iter=TRUE}) fixes the \(\theta_k \) parameters after the smart start, and then finds the global smoothing parameter \(\lambda \) (among the input \texttt{lambdas}) that minimizes the GCV score. This approach typically produces a solution very similar to the more optimal solution using \texttt{skip.iter=FALSE}.

Setting \texttt{skip.iter=FALSE} uses the same smart starting algorithm as setting \texttt{skip.iter=TRUE}. However, instead of fixing the \(\theta_k \) parameters after the smart start, using \texttt{skip.iter=FALSE} iterates between estimating the optimal \(\lambda \) and the optimal \(\theta_k \) parameters. The R function \texttt{nlm} is used to minimize the GCV score with respect to the \(\theta_k \) parameters, which can be time consuming for models with many predictors.

Random Effects

The input \texttt{random} adds random effects to the model assuming a variance components structure. Both nested and crossed random effects are supported. In all cases, the random effects are assumed to be independent zero-mean Gaussian variables with the variance depending on group membership.

Random effects are distinguished by vertical bars ("|"), which separate expressions for design matrices (left) from group factors (right). For example, the syntax \(\sim 1 | \text{group} \) includes a random intercept for each level of group, whereas the syntax \(\sim 1 + x | \text{group} \) includes both a random intercept and a random slope for each level of group. For crossed random effects, parentheses are needed to distinguish different terms, e.g., \(\sim (1 | \text{group1}) + (1 | \text{group2}) \) includes a random intercept for each level
of group1 and a random intercept for each level of group2, where both group1 and group2 are factors. For nested random effects, the syntax `~group1|subject` can be used, where both group and subject are factors such that the levels of subject are nested within those of group.

The input remlalg determines the REML algorithm used to estimate the variance components. Setting `remlalg="FS"` uses a Fisher Scoring algorithm (default). Setting `remlalg="NR"` uses a Newton-Raphson algorithm. Setting `remlalg="EM"` uses an Expectation Maximization algorithm. Use `remlalg="none"` to fit a model with known variance components (entered through `remltau`).

The input remlter sets the maximum number of iterations for the REML estimation. The input `remltol` sets the convergence tolerance for the REML estimation, which is determined via relative change in the REML log-likelihood. The input `remltau` sets the initial estimates of variance parameters; default is `remltau = rep(1, ntau)` where `ntau` is the number of variance components.

Note

The spline is estimated using penalized least-squares, which does not require the Gaussian error assumption. However, the spline inference information (e.g., standard errors and fit information) requires the Gaussian error assumption.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

```
# function with four continuous predictors
set.seed(773)
myfun <- function(x1v,x2v,x3v,x4v){
  sin(2*pi*x1v) + log(x2v+.1) + x3v*cos(pi*(x4v))
}
```
x1v <- runif(500)
x2v <- runif(500)
x3v <- runif(500)
x4v <- runif(500)
y <- myfun(x1v,x2v,x3v,x4v) + rnorm(500)

fit cubic spline model with x3v*x4v interaction and x3v as "cub"
(includes x3v and x4v main effects)
cubmod <- bigssp(y~x1v+x2v+x3v+x4v,type=list(x1v="cub",x2v="cub",x3v="cub",x4v="cub"),nknots=50)
crossprod(myfun(x1v,x2v,x3v,x4v) - cubmod$fitted.values)/500

fit cubic spline model with x3v*x4v interaction and x3v as "cub0"
(includes x3v and x4v main effects)
cubmod <- bigssp(y~x1v+x2v+x3v+x4v,type=list(x1v="cub",x2v="cub",x3v="cub0",x4v="cub"),nknots=50)
crossprod(myfun(x1v,x2v,x3v,x4v) - cubmod$fitted.values)/500

fit model with x3v*x4v interaction treating x3v as parametric effect
(includes x3v and x4v main effects)
cubmod <- bigssp(y~x1v+x2v+x3v+x4v,type=list(x1v="cub",x2v="cub",x3v="prm",x4v="cub"),nknots=50)
crossprod(myfun(x1v,x2v,x3v,x4v) - cubmod$fitted.values)/500

fit cubic spline model with x3v:x4v interaction and x3v as "cub"
(excludes x3v and x4v main effects)
cubmod <- bigssp(y~x1v+x2v+x3v:x4v,type=list(x1v="cub",x2v="cub",x3v="cub",x4v="cub"),nknots=50)
crossprod(myfun(x1v,x2v,x3v,x4v) - cubmod$fitted.values)/500

fit cubic spline model with x3v:x4v interaction and x3v as "cub0"
(excludes x3v and x4v main effects)
cubmod <- bigssp(y~x1v+x2v+x3v:x4v,type=list(x1v="cub",x2v="cub",x3v="cub0",x4v="cub"),nknots=50)
crossprod(myfun(x1v,x2v,x3v,x4v) - cubmod$fitted.values)/500

fit model with x3v:x4v interaction treating x3v as parametric effect
(excludes x3v and x4v main effects)
cubmod <- bigssp(y~x1v+x2v+x3v:x4v,type=list(x1v="cub",x2v="cub",x3v="prm",x4v="cub"),nknots=50)
crossprod(myfun(x1v,x2v,x3v,x4v) - cubmod$fitted.values)/500

bigtps

Fits Cubic Thin-Plate Splines

Description

Given a real-valued response vector \(y = \{ y_i \}_{n \times 1} \), a thin-plate spline model has the form

\[
y_i = \eta(x_i) + e_i
\]

where \(y_i \) is the \(i \)-th observation’s response, \(x_i = (x_{i1}, \ldots, x_{id}) \) is the \(i \)-th observation’s nonparametric predictor vector, \(\eta \) is an unknown smooth function relating the response and predictor, and \(e_i \sim N(0, \sigma^2) \) is iid Gaussian error. Function only fits interaction models.
Usage

```r
bigtps(x, y, nknots=NULL, nvec=NULL, rparm=NA, 
alpha=1, lambdas=NULL, se.fit=FALSE, 
rseed=1234, knotcheck=TRUE)
```

Arguments

- **x**: Predictor vector or matrix with three or less columns.
- **y**: Response vector. Must be same length as x has rows.
- **nknots**: Two possible options: (a) scalar giving total number of random knots to sample, or (b) vector indexing which rows of x to use as knots.
- **nvec**: Number of eigenvectors (and eigenvalues) to use in approximation. Must be less than or equal to the number of knots and greater than or equal to `ncol(x)+2`. Default sets `nvec=nknots`. Can also input `0<nvec<1` to retain `nvec` percentage of eigenbasis variation.
- **rparm**: Rounding parameter(s) for x. Use `rparm=NA` to fit unrounded solution. Can provide one (positive) rounding parameter for each column of x.
- **lambdas**: Vector of global smoothing parameters to try. Default estimates smoothing parameter that minimizes GCV score.
- **se.fit**: Logical indicating if the standard errors of fitted values should be estimated.
- **rseed**: Random seed for knot sampling. Input is ignored if `nknots` is an input vector of knot indices. Set `rseed=NULL` to obtain a different knot sample each time, or set `rseed` to any positive integer to use a different seed than the default.
- **knotcheck**: If TRUE, only unique knots are used (for stability).

Details

To estimate η I minimize the penalized least-squares functional

$$
\frac{1}{n} \sum_{i=1}^{n} (y_i - \eta(x_i))^2 + \lambda J(\eta)
$$

where $J(\eta)$ is the thin-plate penalty (see Helwig and Ma) and $\lambda \geq 0$ is a smoothing parameter that controls the trade-off between fitting and smoothing the data. Default use of the function estimates λ by minimizing the GCV score (see `bigspline`).

Using the rounding parameter input `rparm` can greatly speed-up and stabilize the fitting for large samples. When `rparm` is used, the spline is fit to a set of unique data points after rounding; the unique points are determined using the efficient algorithm described in Helwig (2013). Rounding parameter should be on the raw data scale.
Value

- `fitted.values`: Vector of fitted values corresponding to the original data points in `x` (if `rparm` is not `NA`) or the rounded data points in `xunique` (if `rparm` is used).
- `se.fit`: Vector of standard errors of `fitted.values` (if input `se.fit` is `TRUE`).
- `x`: Predictor vector (same as input).
- `y`: Response vector (same as input).
- `xunique`: Unique elements of `x` after rounding (if `rparm` is used).
- `yunique`: Mean of `y` for unique elements of `x` after rounding (if `rparm` is used).
- `funique`: Vector giving frequency of each element of `xunique` (if `rparm` is used).
- `sigma`: Estimated error standard deviation, i.e., \(\hat{\sigma} \).
- `ndf`: Data frame with two elements: `n` is total sample size, and `df` is effective degrees of freedom of fit model (trace of smoothing matrix).
- `info`: Model fit information: vector containing the GCV, multiple R-squared, AIC, and BIC of fit model (assuming Gaussian error).
- `myknots`: Spline knots used for fit.
- `nvec`: Number of eigenvectors used for solution.
- `rparm`: Rounding parameter for `x` (same as input).
- `lambda`: Optimal smoothing parameter.
- `coef`: Spline basis function coefficients.
- `coef.csqrt`: Matrix square-root of covariance matrix of `coef`. Use `tcrossprod(coef.csqrt)` to get covariance matrix of `coef`.

Warnings

Input `nvec` must be greater than `ncol(x)+1`.

When using rounding parameters, output `fitted.values` corresponds to unique rounded predictor scores in output `xunique`. Use `predict.bigtps` function to get fitted values for full `y` vector.

Computational Details

According to thin-plate spline theory, the function \(\eta \) can be approximated as

\[
\eta(x) = \sum_{k=1}^{M} d_k \phi_k(x) + \sum_{h=1}^{q} c_h \xi(x, x_\ast^h)
\]

where the \(\{\phi_k\}_{k=1}^{M} \) are linear functions, \(\xi \) is the thin-plate spline semi-kernel, \(\{x_\ast^h\}_{h=1}^{q} \) are the knots, and the \(c_h \) coefficients are constrained to be orthogonal to the \(\{\phi_k\}_{k=1}^{M} \) functions.

This implies that the penalized least-squares functional can be rewritten as

\[
\|y - Kd - Jc\|^2 + n\lambda e'Qc
\]

where \(K = \{\phi(x_i)\}_{i=1}^{n} \) is the null space basis function matrix, \(J = \{\xi(x_i, x_\ast^h)\}_{i=1}^{n} \) is the contrast space basis function matrix, \(Q = \{\xi(x_\ast^h, x_\ast^g)\}_{h=1}^{q} \) is the penalty matrix, and \(d = (d_0, \ldots, d_M)' \) and \(c = (c_1, \ldots, c_q)' \) are the unknown basis function coefficients, where \(c \) are constrained to be orthogonal to the \(\{\phi_k\}_{k=1}^{M} \) functions.

See Helwig and Ma for specifics about how the constrained estimation is handled.
Note

The spline is estimated using penalized least-squares, which does not require the Gaussian error assumption. However, the spline inference information (e.g., standard errors and fit information) requires the Gaussian error assumption.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

########### EXAMPLE 1 ###########

define relatively smooth function
set.seed(773)
myfun <- function(x){ sin(2*pi*x) }
x <- runif(500)
y <- myfun(x) + rnorm(500)

fit thin-plate spline (default 1 dim: 30 knots)
tpsmod <- bigtps(x,y)

########### EXAMPLE 2 ###########

define more jagged function
set.seed(773)
myfun <- function(x){ 2*x+cos(2*pi*x) }
x <- runif(500)*4
y <- myfun(x) + rnorm(500)

try different numbers of knots
r1mod <- bigtps(x,y,nknots=20,rapparm=0.01)
crossprod(myfun(r1mod$xunique) - r1mod$fitted)/length(r1mod$fitted)
r2mod <- bigtps(x,y,nknots=35,rapparm=0.01)
crossprod(myfun(r2mod$xunique) - r2mod$fitted)/length(r2mod$fitted)
r3mod <- bigtps(x,y,nknots=50,rapparm=0.01)
crossprod(myfun(r3mod$xunique) - r3mod$fitted)/length(r3mod$fitted)
EXAMPLE 3

function with two continuous predictors
set.seed(773)
myfun <- function(x1,v, x2,v){
 sin(2*pi*x1,v) + log(x2,v+1) + cos(pi*(x1,v-x2,v))
}
x <- cbind(runif(500), runif(500))
y <- myfun(x[,1], x[,2]) + rnorm(500)

fit thin-plate spline with 50 knots (default 2 dim: 100 knots)
tpsmod <- bigtps(x,y, nknots=50)
tpsmod
crossprod(myfun(x[,1], x[,2]) - tpsmod$fitted.values)/500

EXAMPLE 4

function with three continuous predictors
set.seed(773)
myfun <- function(x1,v, x2,v, x3,v){
 sin(2*pi*x1,v) + log(x2,v+1) + cos(pi*x3,v)
}
x <- cbind(runif(500), runif(500), runif(500))
y <- myfun(x[,1], x[,2], x[,3]) + rnorm(500)

fit thin-plate spline with 50 knots (default 3 dim: 200 knots)
tpsmod <- bigtps(x,y, nknots=50)
tpsmod
crossprod(myfun(x[,1], x[,2], x[,3]) - tpsmod$fitted.values)/500

Binsamp

Bin-Samples Strategic Knot Indices

Description

Breaks the predictor domain into a user-specified number of disjoint subregions, and randomly samples a user-specified number of observations from each (nonempty) subregion.

Usage

```r
binsamp(x,xrng=NULL, nmbin=11, nsamp=1, alg=c("new","old"))
```

Arguments

- `x` Matrix of predictors $X = \{x_{ij}\}_{n \times p}$ where n is the number of observations, and p is the number of predictors.
Optional matrix of predictor ranges: $\mathbf{R} = \{r_{kj}\}^{2 \times p}$ where $r_{1j} = \min_i x_{ij}$ and $r_{2j} = \max_i x_{ij}$.

Vector $\mathbf{b} = (b_1, \ldots, b_p)'$, where $b_j \geq 1$ is the number of marginal bins to use for the j-th predictor. If $\text{length}(\text{nmbin}) < \text{ncol}(\mathbf{x})$, then nmbin[1] is used for all columns. Default is nmbin=11 marginal bins for each dimension.

Vector $\mathbf{b} = (b_1, \ldots, b_p)'$, where $b_j \geq 1$ is the number of marginal bins to use for the j-th predictor. If $\text{length}(\text{nmbin}) < \text{ncol}(\mathbf{x})$, then nmbin[1] is used for all columns. Default is nmbin=11 marginal bins for each dimension.

Scalar $s \geq 1$ giving the number of observations to sample from each bin. Default is sample nsamp=1 observation from each bin.

Bin-sampling algorithm. New algorithm forms equidistant grid, whereas old algorithm forms approximately equidistant grid. New algorithm is default for versions 1.0-1 and later.

Returns an index vector indicating the rows of \mathbf{x} that were bin-sampled.

If x_{ij} is nominal with g levels, the function requires $b_j = g$ and $x_{ij} \in \{1, \ldots, g\}$ for $i \in \{1, \ldots, n\}$.

The number of returned knots will depend on the distribution of the covariate scores. The maximum number of possible bin-sampled knots is $s \prod_{j=1}^{p} b_j$, but fewer knots will be returned if one (or more) of the bins is empty (i.e., if there is no data in one or more bins).

Nathaniel E. Helwig <helwig@umn.edu>

create 2-dimensional predictor (both continuous)
set.seed(123)
xmat <- cbind(runif(10^6), runif(10^6))

Default use:
10 marginal bins for each predictor
sample 1 observation from each subregion
xind <- binsamp(xmat)

get the corresponding knots
bknots <- xmat[xind,]

compare to randomly-sampled knots
rknots <- xmat[sample(1:(10^6), 100),]
par(mfrow=c(1,2))
plot(bknots, main="bin-sampled")
plot(rknots, main="randomly sampled")
EXAMPLE 2

```r
# create 2-dimensional predictor (continuous and nominal)
set.seed(123)
xmat <- cbind(runif(10^6), sample(1:3, 10^6, replace=TRUE))

# use 10 marginal bins for x1 and 3 marginal bins for x2
# and sample one observation from each subregion
xind <- binsamp(xmat, nmbin=c(10,3))

# get the corresponding knots
bknots <- xmat[xind,]

# compare to randomly-sampled knots
rknots <- xmat[sample(1:(10^6),30),]
par(mfrow=c(1,2))
plot(bknots, main="bin-sampled")
plot(rknots, main="randomly sampled")
```

EXAMPLE 3

```r
# create 3-dimensional predictor (continuous, continuous, nominal)
set.seed(123)
xmat <- cbind(runif(10^6), runif(10^6), sample(1:2, 10^6, replace=TRUE))

# use 10 marginal bins for x1 and x2, and 2 marginal bins for x3
# and sample one observation from each subregion
xind <- binsamp(xmat, nmbin=c(10,10,2))

# get the corresponding knots
bknots <- xmat[xind,]

# compare to randomly-sampled knots
rknots <- xmat[sample(1:(10^6),200),]
par(mfrow=c(2,2))
plot(bknots[1:100,1:2], main="bin-sampled, x3=1")
plot(bknots[101:200,1:2], main="bin-sampled, x3=2")
plot(rknots[rknots[,3]==1,1:2], main="randomly sampled, x3=1")
plot(rknots[rknots[,3]==2,1:2], main="randomly sampled, x3=2")
```
imagebar

Description

This is a modification to the R function `image` that adds a colorbar to the margin.

Usage

```r
imagebar(x, y, z, xlim=NULL, ylim=NULL, zlim=NULL, 
        zlab=NULL, zcex.axis=NULL, zcex.lab=NULL, 
        zaxis.at=NULL, zaxis.labels=TRUE, 
        col=NULL, ncolor=21, drawbar=TRUE, zline=2, 
        pltimage=c(.2,.8,.2,.8), pltbar=c(.82,.85,.2,.8), ...)
```

Arguments

- `x`, `y` Locations of grid lines at which the values in `z` are measured. These must be finite, non-missing and in (strictly) ascending order.
- `z` A matrix containing the values to be plotted (NAs are allowed).
- `xlim`, `ylim` Ranges for the plotted `x` and `y` values, defaulting to the ranges of `x` and `y`.
- `zlim` The minimum and maximum `z` values for which colors should be plotted, defaulting to the range of the finite values of `z`.
- `zlab` Label for the colorbar.
- `zcex.axis` The magnification to be used for the `z`-axis annotation (colorbar scale).
- `zcex.lab` The magnification to be used for the `z`-axis label (`zlab`).
- `zaxis.at` The points at which tick-marks are to be drawn for the colorbar. Points outside of the range of `zlim` will not be plotted.
- `zaxis.labels` This can either be a logical value specifying whether (numerical) annotations are to be made at the tickmarks, or a character or expression vector of labels to be placed at the tickpoints.
- `col` Color scheme to use. Default is from blueviolet (low) to red (high).
- `ncolor` The number of colors to use in the color scheme.
- `drawbar` Logical indicating if the colorbar should be drawn.
- `zline` Number of lines into the margin at which the axis line will be drawn (see `axis`).
- `pltimage` A vector of the form `c(x1, x2, y1, y2)` giving the coordinates of the image region as fractions of the current figure region (see `par`).
- `pltbar` A vector of the form `c(x1, x2, y1, y2)` giving the coordinates of the colorbar region as fractions of the current figure region (see `par`).
- `...` Additional arguments to be passed to `image` (e.g., `xlab`, `ylab`, `main`, `cex`, `cex.axis`, `cex.lab`, etc.)

Value

Produces an `image` plot with a colorbar.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>
Examples

EXAMPLE 1

```r
myfun <- function(x){
}
x <- expand.grid(seq(-8,8,l=100),seq(-8,8,l=100))
imagebar(seq(-8,8,l=100),seq(-8,8,l=100),matrix(myfun(x),100,100),
  xlab=expression(italic(x[1])),ylab=expression(italic(x[2])),
  zlab=expression(hat(italic(y)))),zlim=c(-0.5,2),zaxis.at=seq(-0.5,2,by=0.5))
```

EXAMPLE 2

```r
myfun <- function(x1v,x2v){
  sin(2*pi*x1v) + 2*sin(sqrt(x2v^2+.1))/sqrt(x2v^2+.1)
}
x <- expand.grid(x1v=seq(0,1,l=100),x2v=seq(-8,8,l=100))
imagebar(seq(0,1,l=100),seq(-8,8,l=100),matrix(myfun(x$x1v,x$x2v),100,100),
  col=c("red","orange","yellow","white"),xlab="x1v",ylab="x2v",
  zlab=expression(hat(italic(y)))),zlim=c(-1.5,3),zaxis.at=seq(-1.5,3,by=0.5))
```

EXAMPLE 3

```r
myfun <- function(x1v,x2v){
  sin(3*pi*x1v) + sin(2*pi*x2v) + 3*cos(pi*(x1v-x2v))
}
x <- expand.grid(x1v=seq(-1,1,l=100),x2v=seq(-1,1,l=100))
imagebar(seq(-1,1,l=100),seq(-1,1,l=100),matrix(myfun(x$x1v,x$x2v),100,100),
  col=c("blue","green","light green","yellow"),xlab="x1v",ylab="x2v",
  zlab=expression(hat(italic(y)))),zlim=c(-5,5),zaxis.at=c(-5,0,5),
  zaxis.labels=c("low","med","high"))
```

Description
This function creates a list containing the necessary information to fit a smoothing spline anova model (see `bigssa`).

Usage
```
makessa(formula,data=NULL,type=NULL,nknots=NULL,yparm=NA,
  lambdas=NULL,skip.iter=TRUE,se.fit=FALSE,rseed=1234,
  gcvopts=NULL,knotcheck=TRUE,gammas=NULL,weights=NULL,
  random=TRUE,remlalg=FS,remltau=0,remltau=0,remltol=1e-4)
```
Arguments

formula: An object of class "formula": a symbolic description of the model to be fitted (see Details and Examples for more information).

data: Optional data frame, list, or environment containing the variables in formula.

type: List of smoothing spline types for predictors in formula (see Details). Options include type="cub" for cubic, type="acub" for another cubic, type="per" for cubic periodic, type="tps" for cubic thin-plate, and type="nom" for nominal.

nknots: Two possible options: (a) scalar giving total number of random knots to sample, or (b) vector indexing which rows of data to use as knots.

rparm: List of rounding parameters for each predictor. See Details.

lambdas: Vector of global smoothing parameters to try. Default uses lambdas=10^-c(9:0)

skip.iter: Logical indicating whether to skip the iterative smoothing parameter update. Using skip.iter=FALSE should provide a more optimal solution, but the fitting time may be substantially longer. See Computational Details.

se.fit: Logical indicating if the standard errors of the fitted values should be estimated.

rseed: Random seed for knot sampling. Input is ignored if nknots is an input vector of knot indices. Set rseed=NULL to obtain a different knot sample each time, or set rseed to any positive integer to use a different seed than the default.

gcvopts: Control parameters for optimization. List with 3 elements: (a) maxit: maximum number of algorithm iterations, (b) gcvtol: convergence tolerance for iterative GCV update, and (c) alpha: tuning parameter for GCV minimization. Default: gcvopts=list(maxit=5,gcvtol=10^-5,alpha=1)

knotcheck: If TRUE, only unique knots are used (for stability).

gammas: List of initial smoothing parameters for each predictor. See Details.

weights: Vector of positive weights for fitting (default is vector of ones).

random: Adds random effects to model (see Random Effects section).

remlalg: REML algorithm for estimating variance components (see Random Effects section). Input is ignored if is.null(random).

remliter: Maximum number of iterations for REML estimation of variance components. Input is ignored if random=NULL.

remltol: Convergence tolerance for REML estimation of variance components. Input is ignored if random=NULL.

remltau: Initial estimate of variance parameters for REML estimation of variance components. Input is ignored if random=NULL.

Details

See bigssa and below example for more details.

Value

An object of class "makessa", which can be input to bigssa.
Warning

When inputting a "makessa" class object into bigssa, the formula input to bigssa must be a nested version of the original formula input to makessa. In other words, you cannot add any new effects after a "makessa" object has been created, but you can drop (remove) effects from the model.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

```
# function with two continuous predictors
set.seed(773)
myfun <- function(x1v, x2v){
  sin(2*pi*x1v) + log(x2v+1) + cos(pi*(x1v-x2v))
}
x1v <- runif(500)
x2v <- runif(500)
y <- myfun(x1v, x2v) + rnorm(500)

# fit 2 possible models (create information 2 separate times)
system.time(
  intmod <- bigssa(y~x1v*x2v,type=list(x1v="cub",x2v="cub"),nknots=50)
  addmod <- bigssa(y~x1v+x2v,type=list(x1v="cub",x2v="cub"),nknots=50)
)

# fit 2 possible models (create information 1 time)
system.time(
  makemod <- makessa(y~x1v*x2v,type=list(x1v="cub",x2v="cub"),nknots=50)
  int2mod <- bigssa(y~x1v*x2v,makemod)
  add2mod <- bigssa(y~x1v+x2v,makemod)
)```
makessg

# check difference (no difference)
crossprod( intmod$fitted.values - int2mod$fitted.values )
crossprod( addmod$fitted.values - add2mod$fitted.values )

makessg  

Makes Objects to Fit Generalized Smoothing Spline ANOVA Models

Description

This function creates a list containing the necessary information to fit a generalized smoothing spline anova model (see bigssg).

Usage

makessg(formula, family, data, type=NULL, nknots=NULL, rparm=NA, lambdas=NULL, skip.iter=TRUE, se.lp=FALSE, rseed=1234, gcvopts=NULL, knotcheck=TRUE, gammas=NULL, weights=NULL, gcvtype=c("acv","gacv","gacv.old"))

Arguments

formula  
An object of class "formula": a symbolic description of the model to be fitted (see Details and Examples for more information).

family  
Distribution for response. One of five options: "binomial", "poisson", "Gamma", "inverse.gaussian", or "negbin". See bigssg.

data  
Optional data frame, list, or environment containing the variables in formula.

type  
List of smoothing spline types for predictors in formula (see Details). Options include type="cub" for cubic, type="acub" for another cubic, type="per" for cubic periodic, type="tps" for cubic thin-plate, and type="nom" for nominal.

nknots  
Two possible options: (a) scalar giving total number of random knots to sample, or (b) vector indexing which rows of data to use as knots.

rparm  
List of rounding parameters for each predictor. See Details.

lambdas  
Vector of global smoothing parameters to try. Default uses lambdas=10^-c(9:0)

skip.iter  
Logical indicating whether to skip the iterative smoothing parameter update. Using skip.iter=FALSE should provide a more optimal solution, but the fitting time may be substantially longer. See Computational Details.

se.lp  
Logical indicating if the standard errors of the linear predictors (η) should be estimated.

rseed  
Random seed for knot sampling. Input is ignored if nknots is an input vector of knot indices. Set rseed=NULL to obtain a different knot sample each time, or set rseed to any positive integer to use a different seed than the default.
gcvopts
Control parameters for optimization. List with 6 elements: (i) maxit: maximum number of outer iterations, (ii) gcvtol: convergence tolerance for iterative GACV update, (iii) alpha: tuning parameter for GACV minimization, (iv) inmaxit: maximum number of inner iterations for iteratively reweighted fitting, (v) intol: inner convergence tolerance for iteratively reweighted fitting, and (vi) insub: number of data points to subsample when checking inner convergence.

gcvopts=list(maxit=5,gcvtol=10^-5,alpha=1,inmaxit=100,intol=10^-5,insub=10^4)

knotcheck
If TRUE, only unique knots are used (for stability).

gammas
List of initial smoothing parameters for each predictor. See Details.

weights
Vector of positive weights for fitting (default is vector of ones).

gcvtype
Cross-validation criterion for selecting smoothing parameters (see Details).

Details
See bigssg and below example for more details.

Value
An object of class "makessg", which can be input to bigssg.

Warning
When inputting a "makessg" class object into bigssg, the formula input to bigssg must be a nested version of the original formula input to makessg. In other words, you cannot add any new effects after a "makessg" object has been created, but you can drop (remove) effects from the model.

Author(s)
Nathaniel E. Helwig <helwig@umn.edu>

References

Examples

###### EXAMPLE #######

# function with two continuous predictors
set.seed(1)
makessp

Makes Objects to Fit Smoothing Splines with Parametric Effects

Description

This function creates a list containing the necessary information to fit a smoothing spline with parametric effects (see bigssp).

Usage

makessp(formula, data=NULL, type=NULL, nknots=NULL, rparm=NA, lambdas=NULL, skip.iter=TRUE, se.fit=FALSE, rseed=1234, gcvopts=NULL, knotcheck=TRUE, thetas=NULL, weights=NULL, random=NULL, remla=0.05, remltau=500, remltol=10^-4, remltau=TRUE)

Example:

```r
myfun <- function(x1v, x2v){
 sin(2*pi*x1v) + log(x2v+.1) + cos(pi*(x1v-x2v))
}
ndpts <- 1000
x1v <- runif(ndpts)
x2v <- runif(ndpts)

binomial response (no weights)
set.seed(773)
lp <- myfun(x1v, x2v)
p <- 1/(1+exp(-lp))
y <- rbinom(n=ndpts, size=1, p=p)

fit 2 possible models (create information 2 separate times)

system.time({
 intmod <- bigssg(y~x1v*x2v,family="binomial",type=list(x1v="cub",x2v="cub"),nknots=50)
 addmod <- bigssg(y~x1v+x2v,family="binomial",type=list(x1v="cub",x2v="cub"),nknots=50)
})

fit 2 possible models (create information 1 time)

system.time({
 makemod <- makessg(y~x1v*x2v,family="binomial",type=list(x1v="cub",x2v="cub"),nknots=50)
 int2mod <- bigssg(y~x1v*x2v,data=makemod)
 add2mod <- bigssg(y~x1v+x2v,data=makemod)
})

check difference (no difference)
crossprod(intmod$fitted.values - int2mod$fitted.values)
crossprod(addmod$fitted.values - add2mod$fitted.values)
```
Arguments

**formula**
An object of class "formula": a symbolic description of the model to be fitted (see Details and Examples for more information).

**data**
Optional data frame, list, or environment containing the variables in formula.

**type**
List of smoothing spline types for predictors in formula (see Details). Options include type="cub" for cubic, type="acub" for another cubic, type="per" for cubic periodic, type="tps" for cubic thin-plate, and type="nom" for nominal. Use type="prm" for parametric effect.

**nknots**
Two possible options: (a) scalar giving total number of random knots to sample, or (b) vector indexing which rows of data to use as knots.

**rparm**
List of rounding parameters for each predictor. See Details.

**lambdas**
Vector of global smoothing parameters to try. Default uses lambdas=10^{-9}:10^{0}

**skip.iter**
Logical indicating whether to skip the iterative smoothing parameter update. Using skip.iter=FALSE should provide a more optimal solution, but the fitting time may be substantially longer. See Computational Details.

**se.fit**
Logical indicating if the standard errors of the fitted values should be estimated.

**rseed**
Random seed for knot sampling. Input is ignored if nknots is an input vector of knot indices. Set rseed=NULL to obtain a different knot sample each time, or set rseed to any positive integer to use a different seed than the default.

**gcvopts**
Control parameters for optimization. List with 3 elements: (a) maxit: maximum number of algorithm iterations, (b) gcvtol: convergence tolerance for iterative GCV update, and (c) alpha: tuning parameter for GCV minimization. Default: gcvopts=list(maxit=5,gcvtol=10^{-5},alpha=1)

**knotcheck**
If TRUE, only unique knots are used (for stability).

**thetas**
List of initial smoothing parameters for each predictor subspace. See Details.

**weights**
Vector of positive weights for fitting (default is vector of ones).

**random**
Adds random effects to model (see Random Effects section).

**remlalg**
REML algorithm for estimating variance components (see Random Effects section). Input is ignored if is.null(random).

**remliter**
Maximum number of iterations for REML estimation of variance components. Input is ignored if random=NULL.

**remltol**
Convergence tolerance for REML estimation of variance components. Input is ignored if random=NULL.

**remltau**
Initial estimate of variance parameters for REML estimation of variance components. Input is ignored if random=NULL.

Details

See **bigssp** and below example for more details.

Value

An object of class "makessp", which can be input to **bigssp**.
Warning

When inputting a "makessp" class object into bigssp, the formula input to bigssp must be a nested version of the original formula input to makessp. In other words, you cannot add any new effects after a "makessp" object has been created, but you can drop (remove) effects from the model.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References


Examples

```
function with two continuous predictors
set.seed(773)
myfun <- function(x1v,x2v){
 sin(2*pi*x1v) + log(x2v+.1) + cos(pi*(x1v-x2v))
}
x1v <- runif(500)
x2v <- runif(500)
y <- myfun(x1v,x2v) + rnorm(500)

fit 2 possible models (create information 2 separate times)
system.time({
 intmod <- bigssp(y~x1v*x2v,type=list(x1v="cub",x2v="cub"),nknots=50)
 addmod <- bigssp(y~x1v+x2v,type=list(x1v="cub",x2v="cub"),nknots=50)
})

fit 2 possible models (create information 1 time)
system.time({
 makemod <- makessp(y~x1v*x2v,type=list(x1v="cub",x2v="cub"),nknots=50)
 int2mod <- bigssp(y~x1v*x2v,makemod)
 add2mod <- bigssp(y~x1v+x2v,makemod)
})
```
# check difference (no difference)

## ordspline

### Fits Ordinal Smoothing Spline

#### Description

Given a real-valued response vector \( y = \{y_i\}_{n \times 1} \) and an ordinal predictor vector \( x = \{x_i\}_{n \times 1} \) with \( x_i \in \{1, \ldots, K\} \ \forall i \), an ordinal smoothing spline model has the form

\[
y_i = \eta(x_i) + e_i
\]

where \( y_i \) is the \( i \)-th observation’s response, \( x_i \) is the \( i \)-th observation’s predictor, \( \eta \) is an unknown function relating the response and predictor, and \( e_i \sim N(0, \sigma^2) \) is iid Gaussian error.

#### Usage

\[
\text{ordspline}(x, y, \text{knots}, \text{weights}, \text{lambda}, \text{monotone}=\text{FALSE})
\]

#### Arguments

- **x**
  - Predictor vector.
- **y**
  - Response vector. Must be same length as \( x \).
- **knots**
  - Either a scalar giving the number of equidistant knots to use, or a vector of values to use as the spline knots. If left blank, the number of knots is \( \min(50, \text{nu}) \) where \( \text{nu} = \text{length(}\text{unique}(x)) \).
- **weights**
  - Weights vector (for weighted penalized least squares). Must be same length as \( x \) and contain non-negative values.
- **lambda**
  - Smoothing parameter. If left blank, \( \text{lambda} \) is tuned via Generalized Cross-Validation.
- **monotone**
  - If TRUE, the relationship between \( x \) and \( y \) is constrained to be monotonic increasing.

#### Details

To estimate \( \eta \) I minimize the penalized least-squares functional

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - \eta(x_i))^2 + \lambda \sum_{x=2}^{K} [\eta(x) - \eta(x-1)]^2 dx
\]

where \( \lambda \geq 0 \) is a smoothing parameter that controls the trade-off between fitting and smoothing the data.
Default use of the function estimates $\lambda$ by minimizing the GCV score:

$$\text{GCV}(\lambda) = \frac{n\|I_n - S_\lambda y\|^2}{n - \text{tr}(S_\lambda)^2}$$

where $I_n$ is the identity matrix and $S_\lambda$ is the smoothing matrix.

**Value**

- **fitted.values**  Vector of fitted values.
- **se.fit**  Vector of standard errors of fitted.values.
- **sigma**  Estimated error standard deviation, i.e., $\hat{\sigma}$.
- **lambda**  Chosen smoothing parameter.
- **info**  Model fit information: vector containing the GCV, R-squared, AIC, and BIC of fit model (assuming Gaussian error).
- **coef**  Spline basis function coefficients.
- **coef.csr**  Spline basis function coefficients.
- **n**  Number of data points, i.e., length(x).
- **df**  Effective degrees of freedom (trace of smoothing matrix).
- **xunique**  Unique elements of x.
- **x**  Predictor vector (same as input).
- **y**  Response vector (same as input).
- **residuals**  Residual vector, i.e., $y - \text{fitted.values}$.
- **knots**  Spline knots used for fit.
- **monotone**  Logical (same as input).

**Warnings**

When inputting user-specified knots, all values in knots must match a corresponding value in x.

**Note**

The spline is estimated using penalized least-squares, which does not require the Gaussian error assumption. However, the spline inference information (e.g., standard errors and fit information) requires the Gaussian error assumption.

**Author(s)**

Nathaniel E. Helwig <helwig@umn.edu>
References


Examples

```
generate some data
n <- 100
nk <- 50
x <- seq(-3,3,length.out=n)
eta <- (sin(2*x/pi) + 0.25*x^3 + 0.05*x^5)/15
set.seed(1)
y <- eta + rnorm(n, sd=0.5)

plot data and true eta
plot(x, y)
lines(x, eta, col="blue", lwd=2)

fit ordinal smoothing spline
ossmod <- ordspline(x, y, knots=nk)
lines(ossmod$x, ossmod$fit, col="red", lwd=2)

fit monotonic smoothing spline
mssmod <- ordspline(x, y, knots=nk, monotone=TRUE)
lines(mssmod$x, mssmod$fit, col="purple", lwd=2)
```

---

**plotbar**  
*Generic X-Y Plotting with Colorbar*

Description

This is a modification to the R function `plot` that adds a colorbar to the margin.

Usage

```
plotbar(x,y,z,xlim=NULL,ylim=NULL,zlim=NULL, zlab=NULL,zcex.axis=NULL,zcex.lab=NULL, zaxis.at = NULL, zaxis.labels = TRUE, col=NULL,ncolor=21,drawbar=TRUE,zline=2, pltimage=c(.2,.8,.2,.8),plotbar=c(.82,.85,.2,.8),...)
```
**Arguments**

- **x**, **y**
  The x and y coordinates of the points to plot.

- **z**
  Numeric vector the same length as x and y containing the values to be plotted in color.

- **xlim**, **ylim**
  Ranges for the plotted x and y values, defaulting to the ranges of x and y.

- **zlim**
  The minimum and maximum z values for which colors should be plotted, defaulting to the range of the finite values of z.

- **zlab**
  Label for the colorbar.

- **zcex.axis**
  The magnification to be used for the z-axis annotation (colorbar scale).

- **zcex.lab**
  The magnification to be used for the z-axis label (zlab).

- **zaxis.at**
  The points at which tick-marks are to be drawn for the colorbar. Points outside of the range of zlim will not be plotted.

- **zaxis.labels**
  This can either be a logical value specifying whether (numerical) annotations are to be made at the tickmarks, or a character or expression vector of labels to be placed at the tickpoints.

- **col**
  Color scheme to use. Default is from blueviolet (low) to red (high).

- **ncolor**
  The number of colors to use in the color scheme.

- **drawbar**
  Logical indicating if the colorbar should be drawn.

- **zline**
  Number of lines into the margin at which the axis line will be drawn (see `axis`).

- **pltimage**
  A vector of the form c(x1, x2, y1, y2) giving the coordinates of the image region as fractions of the current figure region (see `par`).

- **pltbar**
  A vector of the form c(x1, x2, y1, y2) giving the coordinates of the colorbar region as fractions of the current figure region (see `par`).

- **...**
  Additional arguments to be passed to `plot` (e.g., `xlab`, `ylab`, `main`, `cex`, `cex.axis`, `cex.lab`, etc.)

**Value**

- Produces a plot with a colorbar.

**Author(s)**

Nathaniel E. Helwig <helwig@umn.edu>

**Examples**

```
EXAMPLE 1

myfun <- function(x){
}

x <- expand.grid(seq(-8,8,100),seq(-8,8,100))
plotbar(x[,1],x[,2],myfun(x),
 xlab=expression(italic(x)[1]),
 ylab=expression(italic(x)[2]),
```

plotci

### DESCRIPTION

This is a modification to the R function `plot` that adds confidence intervals to the plot.

### USAGE

```r
plotci(x, y, se, level=0.95, cval=NULL, col="blue",
col.ci="cyan", alpha=0.65, add=FALSE,
type="l", link=function(y)(y), axes=TRUE,
bars=FALSE, barlty=1, barlwd=2, bw=0.2, ...)
```

### ARGUMENTS

- **x**, **y**: The x and y coordinates of the points to plot.
- **se**: Numeric vector the same length as x and y containing the standard errors of the y values.
- **level**: Significance level for the confidence interval. Default forms 95% interval.
- **cval**: Critical value for the confidence interval. Default uses `cval=qnorm(1-(1-level)/2)`.
- **col**: Color for plotting the relationship between x and y.
- **col.ci**: Color for plotting the confidence interval.
plotci

alpha Transparency used for plotting confidence polygons. Only used when bars=FALSE.
add Logical indicating whether lines should be added to current plot.
type Type of plot to create (defaults to "l" for lines).
link Link function to apply. See Details.
axes Logical indicating if the axes should be drawn.
bars Logical indicating if confidence bars should be plotted instead of polygons.
barlty, barlwd Line type and width for confidence bars. Only used when bars=TRUE.
bw Positive scalar giving the width of the confidence bars. Only used when bars=TRUE.
... Additional arguments to be passed to plot (e.g., xlab, ylab, main, cex, cex.axis, cex.lab, etc.)

Details

The plotted confidence interval is $c(\text{link}(y-cval*se), \text{link}(y+cval*se))$ where link is the user-specified link function and cval is the user-specified critical value, which defaults to $cval = \text{qnorm}(1-(1-level)/2)$.

Value

Produces a plot with a colorbar.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

Examples

```r
define relatively smooth function
set.seed(773)
myfun <- function(x){ sin(2*pi*x) }
x <- runif(10^4)
y <- myfun(x) + rnorm(10^4)

fit cubic smoothing spline
cubmod <- bigspline(x,y)
newdata <- data.frame(x=seq(0,1,length=20))
ypred <- predict(cubmod, newdata, se.fit=TRUE)

plot predictions with CIs in two ways
plotci(newdata$x, ypred$fit, ypred$se.fit)
plotci(newdata$x, ypred$fit, ypred$se.fit, type="p", bars=TRUE, bw=0.02)
```
predict.bigspline Predicts for "bigspline" Objects

Description
Get fitted values and standard error estimates for cubic smoothing splines.

Usage
```r
S3 method for class 'bigspline'
predict(object, newdata=NULL, se.fit=FALSE,
 effect=c("all","0","lin","non"),
 design=FALSE, smoothMatrix=FALSE, ...)
```

Arguments
- `object`: Object of class "bigspline", which is output from `bigspline`.
- `newdata`: Vector containing new data points for prediction. See Details and Example. Default of newdata=NULL uses original data in object input.
- `se.fit`: Logical indicating whether the standard errors of the fitted values should be estimated. Default is `se.fit=FALSE`.
- `effect`: Which effect to estimate: `effect="all"` gives full \( \hat{y} \), `effect="0"` gives the intercept (constant) portion of \( \hat{y} \), `effect="lin"` gives linear portion of \( \hat{y} \), and `effect="non"` gives nonlinear portion of \( \hat{y} \).
- `design`: Logical indicating whether the design matrix should be returned.
- `smoothMatrix`: Logical indicating whether the smoothing matrix should be returned.
- `...`: Ignored.

Details
Uses the coefficient and smoothing parameter estimates from a fit cubic smoothing spline (estimated by `bigspline`) to predict for new data.

Value
If `se.fit=FALSE`, `design=FALSE`, and `smoothMatrix=FALSE`, returns vector of fitted values. Otherwise returns list with elements:

- `fit`: Vector of fitted values
- `se.fit`: Vector of standard errors of fitted values (if `se.fit=TRUE`)
- `X`: Design matrix used to create fitted values (if `design=TRUE`)
- `ix`: Index vector such that `fit=X%*%object$coef[ix]` (if `design=TRUE`)
- `S`: Smoothing matrix corresponding to fitted values (if `smoothMatrix=TRUE`)
Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References


Examples

###### EXAMPLE 1

```r
define univariate function and data
set.seed(773)
myfun <- function(x) { 2 + x + sin(2*pi*x) }
x <- runif(10^4)
y <- myfun(x) + rnorm(10^4)

fit cubic spline model
cubmod <- bigspline(x, y)
crossprod(predict(cubmod) - myfun(x)) / 10^4

define new data for prediction
newdata <- data.frame(x=seq(0,1,length.out=100))

get fitted values and standard errors for new data
yc <- predict(cubmod, newdata, se.fit=TRUE)

plot results with 95% Bayesian confidence interval
plot(newdatax, ycfit, type="l")
lines(newdatax, ycfit + qnorm(.975)*yc$se.fit, lty=3)
lines(newdatax, ycfit - qnorm(.975)*yc$se.fit, lty=3)

predict constant, linear, and nonlinear effects
yc0 <- predict(cubmod, newdata, se.fit=TRUE, effect="0")
ycl <- predict(cubmod, newdata, se.fit=TRUE, effect="lin")
cy_n <- predict(cubmod, newdata, se.fit=TRUE, effect="non")
crossprod(yc$fit - (yc0$fit + ycl$fit + ycn$fit))

plot results with 95% Bayesian confidence intervals
par(mfrow=c(1,2))
plot(newdatax, yclfit, type="l", main="Linear effect")
```
```r
lines(newdatax, yclfit+qnorm(.975)*ycl$se.fit, lty=3)
lines(newdatax, yclfit-qnorm(.975)*ycl$se.fit, lty=3)
plot(newdatax, ycnfit, type="l", main="Nonlinear effect")
lines(newdatax, ycnfit+qnorm(.975)*ycn$se.fit, lty=3)
lines(newdatax, ycnfit-qnorm(.975)*ycn$se.fit, lty=3)

####### EXAMPLE 2 #######

define (same) univariate function and data
set.seed(773)
myfun <- function(x)
 2 + x + sin(2*pi*x)
x <- runif(10^4)
y <- myfun(x) + rnorm(10^4)

fit a different cubic spline model
cubamod <- bigspline(x,y,type="cub0")
crossprod(predict(cubamod) - myfun(x))/10^4

define (same) new data for prediction
newdata <- data.frame(x=seq(0,1,length.out=100))

get fitted values and standard errors for new data
ya <- predict(cubamod,newdata,se.fit=TRUE)

plot results with 95% Bayesian confidence interval
plot(newdatax, yafit, type="l")
lines(newdatax, yafit+qnorm(.975)*ya$se.fit, lty=3)
lines(newdatax, yafit-qnorm(.975)*ya$se.fit, lty=3)

predict constant, linear, and nonlinear effects
ya0 <- predict(cubamod,newdata,se.fit=TRUE, effect="0")
yal <- predict(cubamod,newdata,se.fit=TRUE, effect="lin")
yan <- predict(cubamod,newdata,se.fit=TRUE, effect="non")
crossprod(ya$fit - (ya0$fit + yal$fit + yan$fit))

plot results with 95% Bayesian confidence intervals
par(mfrow=c(1,2))
plot(newdatax, yalfit, type="l", main="Linear effect")
lines(newdatax, yalfit+qnorm(.975)*yal$se.fit, lty=3)
lines(newdatax, yalfit-qnorm(.975)*yal$se.fit, lty=3)
plot(newdatax, yanfit, type="l", main="Nonlinear effect")
lines(newdatax, yanfit+qnorm(.975)*yan$se.fit, lty=3)
lines(newdatax, yanfit-qnorm(.975)*yan$se.fit, lty=3)
```

`predict.bigssa` Predicts for "bigssa" Objects
**predict.bigssa**

**Description**
Get fitted values and standard error estimates for smoothing spline anova models.

**Usage**
```r
S3 method for class 'bigssa'
predict(object, newdata = NULL, se.fit = FALSE, include = object$tnames,
 effect = c("all", "0", "lin", "non"), includeint = FALSE,
 design = FALSE, smoothMatrix = FALSE, intercept = NULL, ...)
```

**Arguments**
- `object` Object of class "bigssa", which is output from `bigssa`
- `newdata` Data frame or list containing the new data points for prediction. Variable names must match those used in the formula input of `bigssa`. See Details and Example. Default of `newdata` = NULL uses original data in `object` input.
- `se.fit` Logical indicating whether the standard errors of the fitted values should be estimated. Default is `se.fit` = FALSE.
- `include` Which terms to include in the estimate. You can get fitted values for any combination of terms in the `tnames` element of an "bigssa" object.
- `effect` Which effect to estimate: `effect = "all"` gives \( \hat{y} \) for given terms in `include`, `effect = "lin"` gives linear portion of \( \hat{y} \) for given terms in `include`, and `effect = "non"` gives nonlinear portion of \( \hat{y} \) for given terms in `include`. Use `effect = "0"` to return the intercept.
- `includeint` Logical indicating whether the intercept should be included in the prediction. If `include = object$tnames` and `effect = "all"` (default), then this input is ignored and the intercept is automatically included in the prediction.
- `design` Logical indicating whether the design matrix should be returned.
- `smoothMatrix` Logical indicating whether the smoothing matrix should be returned.
- `intercept` Logical indicating whether the intercept should be included in the prediction. When used, this input overrides the `includeint` input.
- `...` Ignored.

**Details**
Uses the coefficient and smoothing parameter estimates from a fit smoothing spline anova (estimated by `bigssa`) to predict for new data.

**Value**
- If `se.fit = FALSE`, `design = FALSE`, and `smoothMatrix = FALSE`, returns vector of fitted values.
- Otherwise returns list with elements:
  - `fit` Vector of fitted values
  - `se.fit` Vector of standard errors of fitted values (if `se.fit = TRUE`)
  - `X` Design matrix used to create fitted values (if `design = TRUE`)

---

**Description**
Get fitted values and standard error estimates for smoothing spline anova models.

**Usage**
```r
S3 method for class 'bigssa'
predict(object, newdata = NULL, se.fit = FALSE, include = object$tnames,
 effect = c("all", "0", "lin", "non"), includeint = FALSE,
 design = FALSE, smoothMatrix = FALSE, intercept = NULL, ...)
```

**Arguments**
- `object` Object of class "bigssa", which is output from `bigssa`
- `newdata` Data frame or list containing the new data points for prediction. Variable names must match those used in the formula input of `bigssa`. See Details and Example. Default of `newdata` = NULL uses original data in `object` input.
- `se.fit` Logical indicating whether the standard errors of the fitted values should be estimated. Default is `se.fit` = FALSE.
- `include` Which terms to include in the estimate. You can get fitted values for any combination of terms in the `tnames` element of an "bigssa" object.
- `effect` Which effect to estimate: `effect = "all"` gives \( \hat{y} \) for given terms in `include`, `effect = "lin"` gives linear portion of \( \hat{y} \) for given terms in `include`, and `effect = "non"` gives nonlinear portion of \( \hat{y} \) for given terms in `include`. Use `effect = "0"` to return the intercept.
- `includeint` Logical indicating whether the intercept should be included in the prediction. If `include = object$tnames` and `effect = "all"` (default), then this input is ignored and the intercept is automatically included in the prediction.
- `design` Logical indicating whether the design matrix should be returned.
- `smoothMatrix` Logical indicating whether the smoothing matrix should be returned.
- `intercept` Logical indicating whether the intercept should be included in the prediction. When used, this input overrides the `includeint` input.
- `...` Ignored.

**Details**
Uses the coefficient and smoothing parameter estimates from a fit smoothing spline anova (estimated by `bigssa`) to predict for new data.

**Value**
- If `se.fit = FALSE`, `design = FALSE`, and `smoothMatrix = FALSE`, returns vector of fitted values.
- Otherwise returns list with elements:
  - `fit` Vector of fitted values
  - `se.fit` Vector of standard errors of fitted values (if `se.fit = TRUE`)
  - `X` Design matrix used to create fitted values (if `design = TRUE`)

---
Index vector such that \( \text{fit} = \text{predict.bigssa}\{\text{object}\}[,\{\text{coef}\}[,ix]] \) (if \text{design} = \text{TRUE})

Smoothing matrix corresponding to fitted values (if \text{smoothMatrix} = \text{TRUE})

Author(s)
Nathaniel E. Helwig <helwig@umn.edu>

References


Examples

```
################################ EXAMPLE 1 ################################

define univariate function and data
set.seed(773)
myfun <- function(x){ 2 + x + sin(2*pi*x) }
x <- runif(500)
y <- myfun(x) + rnorm(500)

fit cubic spline model
cubmod <- bigssa(y~x,type="cub",nknots=30)
crossprod(predict(cubmod) - myfun(x))/500

define new data for prediction
newdata <- data.frame(x=seq(0,1,length.out=100))

get fitted values and standard errors for new data
yc <- predict(cubmod,newdata,se.fit=TRUE)

plot results with 95% Bayesian confidence interval
plot(newdatax,ycfit,type="l")
lines(newdatax,ycfit+qnorm(.975)*yc$se.fit,lty=3)
lines(newdatax,ycfit-qnorm(.975)*yc$se.fit,lty=3)

predict constant, linear, and nonlinear effects
yc0 <- predict(cubmod,newdata,se.fit=TRUE,effect="0")
ycl <- predict(cubmod,newdata,se.fit=TRUE,effect="lin")
```
ycn <- predict(cubmod, newdata, se.fit=TRUE, effect="non")
crossprod(ycn$fit - (yc0$fit + ycl$fit + ycn$fit))

# plot results with 95% Bayesian confidence intervals
par(mfrow=c(1,2))
plot(newdata$x, ycl$fit, type="l", main="Linear effect")
lines(newdata$x, ycl$fit + qnorm(.975) * ycl$se.fit, lty=3)
lines(newdata$x, ycl$fit - qnorm(.975) * ycl$se.fit, lty=3)
plot(newdata$x, ycn$fit, type="l", main="Nonlinear effect")
lines(newdata$x, ycn$fit + qnorm(.975) * ycn$se.fit, lty=3)
lines(newdata$x, ycn$fit - qnorm(.975) * ycn$se.fit, lty=3)

####### EXAMPLE 2 #######

# define bivariate function and data
set.seed(773)
myfun <- function(x){
  2 + x[,1]/10 - x[,2]/5 + 2*sin(sqrt(x[,1]^2+x[,2]^2+1))/sqrt(x[,1]^2+x[,2]^2+1)
}
x1v <- runif(500)*16-8
x2v <- runif(500)*16-8
y <- myfun(cbind(x1v,x2v)) + rnorm(500)

cubmod <- bigssa(y~x1v*x2v, type=list(x1v="cub", x2v="cub"), nknots=50)
crossprod(predict(cubmod) - myfun(cbind(x1v,x2v)) )/500

# define new data for prediction
xnew <- as.matrix(expand.grid(seq(-8,8,1), seq(-8,8,1)))
newdata <- list(x1v=xnew[,1], x2v=xnew[,2])

# get fitted values for new data
yp <- predict(cubmod, newdata)

# plot results
imagebar(seq(-8,8,1), seq(-8,8,1), matrix(yp, 50, 50),
          xlab=expression(italic(x)[1]), ylab=expression(italic(x)[2]),
          zlab=expression(hat(italic(y))))

# predict linear and nonlinear effects for x1v
newdata <- list(x1v=seq(-8,8,length.out=100))
yl <- predict(cubmod, newdata, include="x1v", effect="lin", se.fit=TRUE)
yn <- predict(cubmod, newdata, include="x1v", effect="non", se.fit=TRUE)

# plot results with 95% Bayesian confidence intervals
par(mfrow=c(1,2))
plot(newdata$x1v, yl$fit, type="l", main="Linear effect")
lines(newdata$x1v, yl$fit + qnorm(.975) * yl$se.fit, lty=3)
lines(newdata$x1v, yl$fit - qnorm(.975) * yl$se.fit, lty=3)
plot(newdata$x1v, yn$fit, type="l", main="Nonlinear effect")
lines(newdata$x1v, yn$fit + qnorm(.975) * yn$se.fit, lty=3)
lines(newdata$x1v, yn$fit - qnorm(.975) * yn$se.fit, lty=3)
predict.bigssg  Predicts for "bigssg" Objects

Description

Get fitted values and standard error estimates for generalized smoothing spline anova models.

Usage

```r
S3 method for class 'bigssg'
predict(object, newdata=NULL, se.lp=FALSE, include=object$tnames,
 effect=c("all","0","lin","non"), includeint=FALSE,
 design=FALSE, smoothMatrix=FALSE, intercept=NULL,...)
```

Arguments

- `object`: Object of class "bigssg", which is output from `bigssg`.
- `newdata`: Data frame or list containing the new data points for prediction. Variable names must match those used in the formula input of `bigssg`. See Details and Example. Default of `newdata=NULL` uses original data in `object` input.
- `se.lp`: Logical indicating if the standard errors of the linear predictors ($\eta$) should be estimated. Default is `se.lp=FALSE`.
- `include`: Which terms to include in the estimate. You can get fitted values for any combination of terms in the `tnames` element of an "bigssg" object.
- `effect`: Which effect to estimate: `effect="all"` gives $\hat{y}$ for given terms in `include`, `effect="lin"` gives linear portion of $\hat{y}$ for given terms in `include`, and `effect="non"` gives nonlinear portion of $\hat{y}$ for given terms in `include`. Use `effect="0"` to return the intercept.
- `includeint`: Logical indicating whether the intercept should be included in the prediction. If `include=object$tnames` and `effect="all"` (default), then this input is ignored and the intercept is automatically included in the prediction.
- `design`: Logical indicating whether the design matrix should be returned.
- `smoothMatrix`: Logical indicating whether the smoothing matrix should be returned.
- `intercept`: Logical indicating whether the intercept should be included in the prediction. When used, this input overrides the `includeint` input.
- `...`: Ignored.

Details

Uses the coefficient and smoothing parameter estimates from a fit generalized smoothing spline anova (estimated by `bigssg`) to predict for new data.
**Value**

Returns list with elements:

- `fitted.values`: Vector of fitted values (on data scale)
- `linear.predictors`: Vector of fitted values (on link scale)
- `se.lp`: Vector of standard errors of linear predictors (if `se.lp` is `TRUE`)
- `x`: Design matrix used to create linear predictors (if `design` is `TRUE`)
- `ix`: Index vector such that `linear.predictors = X %*% object$modelspec$coef[ix]` (if `design` is `TRUE`)
- `S`: Smoothing matrix corresponding to fitted values (if `smoothMatrix` is `TRUE`)

**Author(s)**

Nathaniel E. Helwig <helwig@umn.edu>

**References**


**Examples**

```
define univariate function and data
set.seed(1)
myfun <- function(x) { sin(2*pi*x) }
ndpts <- 1000
x <- runif(ndpts)

negative binomial response (unknown dispersion)
set.seed(773)
lp <- myfun(x)
mu <- exp(lp)
y <- rnbinom(n=ndpts, size=2, mu=mu)

fit cubic spline model
cubmod <- bigssg(y~x, family="negbin", type="cub", nknots=20)
1/cubmod$dispersion ## dispersion = 1/size
crossprod(lp - cubmod$linear.predictor)/length(lp)
```
# define new data for prediction
newdata <- data.frame(x = seq(0, 1, length.out = 100))

# get fitted values and standard errors for new data
yc <- predict(cubmod, newdata, se.lp = TRUE)

# plot results with 95% Bayesian confidence interval (link scale)
plot(newdata$x, yc$linear.predictor, type = "l")
lines(newdata$x, yc$linear.predictor + qnorm(.975) * yc$se.lp, lty = 3)
lines(newdata$x, yc$linear.predictor - qnorm(.975) * yc$se.lp, lty = 3)

# plot results with 95% Bayesian confidence interval (data scale)
plot(newdata$x, exp(yc$linear.predictor + qnorm(.975) * yc$se.lp), lty = 3)
lines(newdata$x, exp(yc$linear.predictor - qnorm(.975) * yc$se.lp), lty = 3)

# predict constant, linear, and nonlinear effects
yc0 <- predict(cubmod, newdata, se.lp = TRUE, effect = "0")
yc1 <- predict(cubmod, newdata, se.lp = TRUE, effect = "lin")
ycn <- predict(cubmod, newdata, se.lp = TRUE, effect = "non")
crossprod(yc$linear - (yc0$linear + yc1$linear + ycn$linear))

# plot results with 95% Bayesian confidence intervals (link scale)
par(mfrow = c(1, 2))
plot(newdata$x, yc$linear, type = "l", main = "Linear effect")
lines(newdata$x, yc$linear + qnorm(.975) * yc$se.lp, lty = 3)
lines(newdata$x, yc$linear - qnorm(.975) * yc$se.lp, lty = 3)
plot(newdata$x, ycn$linear, type = "l", main = "Nonlinear effect")
lines(newdata$x, ycn$linear + qnorm(.975) * ycn$se.lp, lty = 3)
lines(newdata$x, ycn$linear - qnorm(.975) * ycn$se.lp, lty = 3)

# plot results with 95% Bayesian confidence intervals (data scale)
par(mfrow = c(1, 2))
plot(newdata$x, exp(yc$linear), type = "l", main = "Linear effect")
lines(newdata$x, exp(yc$linear + qnorm(.975) * yc$se.lp), lty = 3)
lines(newdata$x, exp(yc$linear - qnorm(.975) * yc$se.lp), lty = 3)
plot(newdata$x, exp(ycn$linear), type = "l", main = "Nonlinear effect")
lines(newdata$x, exp(ycn$linear + qnorm(.975) * ycn$se.lp), lty = 3)
lines(newdata$x, exp(ycn$linear - qnorm(.975) * ycn$se.lp), lty = 3)

########### EXAMPLE 2 ###########

# define bivariate function and data
set.seed(1)
myfun <- function(x1v, x2v){
  sin(2*pi*x1v) + log(x2v + .1) + cos(pi*(x1v - x2v))
}
ndpts <- 1000
x1v <- runif(ndpts)
x2v <- runif(ndpts)
# binomial response (with weights)
set.seed(773)
lp <- myfun(x1v, x2v)
p <- 1/(1+exp(-lp))
w <- sample(c(10, 20, 30, 40, 50), length(p), replace=TRUE)
y <- rbinom(n=nbdpts, size=w, p=p)/w  ## y is proportion correct
cubmod <- bigssg(y~x1v*x2v, family="binomial", type=list(x1v="cub", x2v="cub"), nknots=100, weights=w)
crossprod(lp - cubmod$linear.predictor )/length(lp)

# define new data for prediction
xnew <- as.matrix(expand.grid(seq(0,1,length=50), seq(0,1,length=50)))
newdata <- list(x1v=xnew[,1], x2v=xnew[,2])

# get fitted values for new data
 yp <- predict(cubmod, newdata)

# plot linear predictor and fitted values
par(mfrow=c(2,2))
imagebar(seq(0,1, l=50), seq(0,1, l=50), matrix(yp$linear.predictor, 50, 50),
  xlab=expression(italic(x)[1]), ylab=expression(italic(x)[2]),
  zlab=expression(hat(italic(y))), zlim=c(-4.5, 1.5), main="Estimated Linear Predictor")
imagebar(seq(0,1, l=50), seq(0,1, l=50), matrix(newprob, 50, 50),
  xlab=expression(italic(x)[1]), ylab=expression(italic(x)[2]),
  zlab=expression(hat(italic(y))), zlim=c(0, 0.8), main="Estimated Probabilities")

# predict linear and nonlinear effects for x1v (link scale)
newdata <- list(x1v=seq(0,1, length.out=100))
yl <- predict(cubmod, newdata, include="x1v", effect="lin", se.lp=TRUE)
yn <- predict(cubmod, newdata, include="x1v", effect="non", se.lp=TRUE)

# plot results with 95% Bayesian confidence intervals (link scale)
par(mfrow=c(1,2))
plot(newdata$x1v, yl$linear, type="l", main="Linear effect")
lines(newdata$x1v, yl$linear+qnorm(.975)*yl$se.lp, lty=3)
lines(newdata$x1v, yl$linear-qnorm(.975)*yl$se.lp, lty=3)
plot(newdata$x1v, yn$linear, type="l", main="Nonlinear effect")
lines(newdata$x1v, yn$linear+qnorm(.975)*yn$se.lp, lty=3)
lines(newdata$x1v, yn$linear-qnorm(.975)*yn$se.lp, lty=3)
Description

Get fitted values and standard error estimates for smoothing splines with parametric effects.

Usage

```r
S3 method for class 'bigssp'
predict(object, newdata=NULL, se.fit=FALSE, include=object$tnames,
 effect=c("all","0","lin","non"), includeint=FALSE,
 design=FALSE, smoothMatrix=FALSE, intercept=NULL,...)
```

Arguments

- `object` Object of class "bigssp", which is output from `bigssp`.
- `newdata` Data frame or list containing the new data points for prediction. Variable names must match those used in the formula input of `bigssp`. See Details and Example. Default of `newdata=NULL` uses original data in `object` input.
- `se.fit` Logical indicating whether the standard errors of the fitted values should be estimated. Default is `se.fit=FALSE`.
- `include` Which terms to include in the estimate. You can get fitted values for any combination of terms in the `tnames` element of an "bigssp" object.
- `effect` Which effect to estimate: `effect="all"` gives \( \hat{y} \) for given terms in `include`, `effect="lin"` gives linear portion of \( \hat{y} \) for given terms in `include`, and `effect="non"` gives nonlinear portion of \( \hat{y} \) for given terms in `include`. Use `effect="0"` to return the intercept.
- `includeint` Logical indicating whether the intercept should be included in the prediction. If `include=object$tnames` and `effect="all"` (default), then this input is ignored and the intercept is automatically included in the prediction.
- `design` Logical indicating whether the design matrix should be returned.
- `smoothMatrix` Logical indicating whether the smoothing matrix should be returned.
- `intercept` Logical indicating whether the intercept should be included in the prediction. When used, this input overrides the `includeint` input.
- `...` Ignored.

Details

Uses the coefficient and smoothing parameter estimates from a fit smoothing spline with parametric effects (estimated by `bigssp`) to predict for new data.

Value

If `se.fit=FALSE`, `design=FALSE`, and `smoothMatrix=FALSE`, returns vector of fitted values.

Otherwise returns list with elements:

- `fit` Vector of fitted values
- `se.fit` Vector of standard errors of fitted values (if `se.fit=TRUE`)
- `X` Design matrix used to create fitted values (if `design=TRUE`)
predict.bigssp

ix  Index vector such that fit=X%*%object$modelspec$coef[ix] (if design=TRUE)
S  Smoothing matrix corresponding to fitted values (if smoothMatrix=TRUE)

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References


Examples

# define univariate function and data
set.seed(773)
myfun <- function(x) { 2 + x + sin(2*pi*x) }
x <- runif(500)
y <- myfun(x) + rnorm(500)

# fit cubic spline model
cubmod <- bigssp(y~x,type="cub",nknots=30)
crossprod( predict(cubmod) - myfun(x) )/500

# define new data for prediction
newdata <- data.frame(x=seq(0,1,length.out=100))

# get fitted values and standard errors for new data
yc <- predict(cubmod,newdata,se.fit=TRUE)

# plot results with 95% Bayesian confidence interval
plot(newdata$x,yc$fit,type="l")
lines(newdata$x,yc$fit+qnorm(.975)*yc$se.fit,lty=3)
lines(newdata$x,yc$fit-qnorm(.975)*yc$se.fit,lty=3)
# predict constant, linear, and nonlinear effects
yc0 <- predict(cubmod, newdata, se.fit=TRUE, effect="0")
yc1 <- predict(cubmod, newdata, se.fit=TRUE, effect="lin")
ycn <- predict(cubmod, newdata, se.fit=TRUE, effect="non")
sum(yc$fit - (yc0$fit + yc1$fit + yc$se$fit))

# plot results with 95% Bayesian confidence intervals
par(mfrow=c(1,2))
plot(newdata$x, yc1$fit, type="l", main="Linear effect")
lines(newdata$x, yc1$fit+qnorm(.975)*yc1$se$fit, lty=3)
lines(newdata$x, yc1$fit-qnorm(.975)*yc1$se$fit, lty=3)
plot(newdata$x, ycn$fit, type="l", main="Nonlinear effect")
lines(newdata$x, ycn$fit+qnorm(.975)*ycn$se$fit, lty=3)
lines(newdata$x, ycn$fit-qnorm(.975)*ycn$se$fit, lty=3)

########### EXAMPLE 2 ###########

# define bivariate function and data
set.seed(773)
myfun <- function(x){
  2 + x[,1]/10 - x[,2]/5 + 2*sin(sqrt(x[,1]^2+x[,2]^2+1))/sqrt(x[,1]^2+x[,2]^2+1)
}
x <- cbind(runif(500), runif(500))*16 - 8
y <- myfun(x)+rnorm(500)

# bidimensional thin-plate spline with 50 knots
tpsmod <- bigssp(y~x, type="tps", nknots=50)
crossprod( predict(tpsmod) - myfun(x) )/500

# define new data for prediction
xnew <- as.matrix(expand.grid(seq(-8,8,length=50), seq(-8,8,length=50)))
newdata <- list(x=xnew)

# get fitted values for new data
yp <- predict(tpsmod, newdata)

# plot results
imagebar(seq(-8,8,1=50), seq(-8,8,1=50), matrix(yp, 50, 50),
  xlab=expression(italic(x)[1]), ylab=expression(italic(x)[2]),
  zlab=expression(hat(italic(y))))

# predict linear and nonlinear effects
yl <- predict(tpsmod, newdata, effect="lin")
yn <- predict(tpsmod, newdata, effect="non")

# plot results
par(mfrow=c(1,2))
imagebar(seq(-8,8,1=50), seq(-8,8,1=50), matrix(yl, 50, 50),
  main="Linear effect", xlab=expression(italic(x)[1]),
  ylab=expression(italic(x)[2]), zlab=expression(hat(italic(y))))
imagebar(seq(-8,8,1=50), seq(-8,8,1=50), matrix(yn, 50, 50),
  main="Nonlinear effect", xlab=expression(italic(x)[1]),
  ylab=expression(italic(x)[2]), zlab=expression(hat(italic(y))))
predict.bigtps

Predicts for "bigtps" Objects

Description

Get fitted values and standard error estimates for thin-plate splines.

Usage

```r
S3 method for class 'bigtps'
predict(object, newdata=NULL, se.fit=FALSE,
 effect=c("all", "0", "lin", "non"),
 design=FALSE, smoothMatrix=FALSE,...)
```

Arguments

- `object`: Object of class "bigtps", which is output from `bigtps`.
- `newdata`: Vector or matrix containing new data points for prediction. See Details and Example. Default of `newdata=NULL` uses original data in object input.
- `se.fit`: Logical indicating whether the standard errors of the fitted values should be estimated. Default is `se.fit=FALSE`.
- `effect`: Which effect to estimate: `effect="all"` gives full \( \hat{y} \), `effect="0"` gives the intercept (constant) portion of \( \hat{y} \), `effect="lin"` gives linear portion of \( \hat{y} \), and `effect="non"` gives nonlinear portion of \( \hat{y} \).
- `design`: Logical indicating whether the design matrix should be returned.
- `smoothMatrix`: Logical indicating whether the smoothing matrix should be returned.
- `...`: Ignored.

Details

Uses the coefficient and smoothing parameter estimates from a fit thin-plate spline (estimated by `bigtps`) to predict for new data.

Value

If `se.fit=FALSE`, `design=FALSE`, and `smoothMatrix=FALSE`, returns vector of fitted values. Otherwise returns list with elements:

- `fit`: Vector of fitted values
- `se.fit`: Vector of standard errors of fitted values (if `se.fit=TRUE`)
- `X`: Design matrix used to create fitted values (if `design=TRUE`)
- `ix`: Index vector such that `fit=X%*%object$coeff[ix]` (if `design=TRUE`)
- `S`: Smoothing matrix corresponding to fitted values (if `smoothMatrix=TRUE`)
Author(s)
Nathaniel E. Helwig <helwig@umn.edu>

References


Examples

########### EXAMPLE 1 ###########

# define univariate function and data
set.seed(773)
myfun <- function(x) { 2 + x + sin(2*pi*x) }
x <- runif(10^4)
y <- myfun(x) + rnorm(10^4)

# fit thin-plate spline (default 1 dim: 30 knots)
tpsmod <- bigtps(x, y)
crossprod( predict(tpsmod) - myfun(x) )/10^4

# define new data for prediction
newdata <- data.frame(x=seq(0,1,length.out=100))

# get fitted values and standard errors for new data
yc <- predict(tpsmod,newdata,se.fit=TRUE)

# plot results with 95% Bayesian confidence interval
plot(newdata$x, yc$fit,type="l")
lines(newdata$x, yc$fit+qnorm(.975)*yc$se.fit,lty=3)
lines(newdata$x, yc$fit-qnorm(.975)*yc$se.fit,lty=3)

# predict constant, linear, and nonlinear effects
yc0 <- predict(tpsmod,newdata,se.fit=TRUE, effect="0")
ycl <- predict(tpsmod,newdata,se.fit=TRUE, effect="lin")
ycn <- predict(tpsmod,newdata,se.fit=TRUE, effect="non")
crossprod( yc$fit - (yc0$fit + ycl$fit + ycn$fit) )

# plot results with 95% Bayesian confidence intervals
par(mfrow=c(1,2))
plot(newdata$x, ycl$fit,type="l",main="Linear effect")
lines(newdata$x, ycl$fit+qnorm(.975)*ycl$se.fit,lty=3)
lines(newdata$x, ycl$fit-qnorm(.975)*ycl$se.fit,lty=3)
plot(newdata$x, ycn$fit,type="l",main="Nonlinear effect")
lines(newdata$x, ycn$fit+qnorm(.975)*ycn$se.fit,lty=3)
predict.ordspline

Predicts for "ordspline" Objects

Description

Get fitted values and standard error estimates for ordinal smoothing splines.
Usage

```r
S3 method for class 'ordspline'
predict(object, newdata=NULL, se.fit=FALSE, ...)
```

Arguments

- `object`: Object of class "ordspline", which is output from `ordspline`.
- `newdata`: Vector containing new data points for prediction. See Details and Example. Default of `newdata=NULL` uses original data in `object` input.
- `se.fit`: Logical indicating whether the standard errors of the fitted values should be estimated. Default is `se.fit=FALSE`.
- `...`: Ignored.

Details

Uses the coefficient and smoothing parameter estimates from a fit ordinal smoothing spline (estimated by `ordspline`) to predict for new data.

Value

If `se.fit=FALSE`, returns vector of fitted values.

Otherwise returns list with elements:

- `fit`: Vector of fitted values
- `se.fit`: Vector of standard errors of fitted values

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References


Examples

```r
define univariate function and data
set.seed(773)
myfun <- function(x){ 2 + x/2 + sin(x) }
```
x <- sample(1:20, size=500, replace=TRUE)
y <- myfun(x) + rnorm(500)

# fit ordinal spline model
ordmod <- ordspline(x, y)
monmod <- ordspline(x, y, monotone=TRUE)
crossprod( predict(ordmod) - myfun(x) ) / 500
crossprod( predict(monmod) - myfun(x) ) / 500

# plot truth and predictions
ordfit <- predict(ordmod, 1:20, se.fit=TRUE)
monfit <- predict(monmod, 1:20, se.fit=TRUE)
plotci(1:20, ordfit$fit, ordfit$se.fit, ylab="f(x)")
plotci(1:20, monfit$fit, monfit$se.fit, col="red", col.ci="pink", add=TRUE)
points(1:20, myfun(1:20))

print

Prints Fit Information for bigsplines Model

Description

This function prints basic model fit information for a fit bigsplines model.

Usage

## S3 method for class 'bigspline'
print(x,...)

## S3 method for class 'bigssa'
print(x,...)

## S3 method for class 'bigssg'
print(x,...)

## S3 method for class 'bigssp'
print(x,...)

## S3 method for class 'bigtps'
print(x,...)

## S3 method for class 'ordspline'
print(x,...)

## S3 method for class 'summary.bigspline'
print(x,digits=4,...)

## S3 method for class 'summary.bigssa'
print(x,digits=4,...)

## S3 method for class 'summary.bigssg'
print(x,digits=4,...)

## S3 method for class 'summary.bigssp'
print(x,digits=4,...)

## S3 method for class 'summary.bigtps'
print(x,digits=4,...)
Arguments

x  Object of class "bigspline" (output from \texttt{bigspline}), class "summary.bigspline" (output from \texttt{summary.bigspline}), class "bigssa" (output from \texttt{bigssa}), class "summary.bigssa" (output from \texttt{summary.bigssa}), class "bigssg" (output from \texttt{bigssg}), class "summary.bigssg" (output from \texttt{summary.bigssg}), class "bigssp" (output from \texttt{bigssp}), class "summary.bigssp" (output from \texttt{summary.bigssp}), class "bigtps" (output from \texttt{bigtps}), class "summary.bigtps" (output from \texttt{summary.bigtps}), or class "ordspline" (output from \texttt{ordspline}).

digits  Number of decimal places to print.

...  Ignored.

Details

See \texttt{bigspline}, \texttt{bigssa}, \texttt{bigssg}, \texttt{bigssp}, \texttt{bigtps}, and \texttt{ordspline} for more details.

Value

"bigspline" objects: prints Spline Type, Fit Statistic information, and Smoothing Parameter.
"summary.bigspline" objects: prints Spline Type, five number summary of Residuals, Error Standard Deviation Estimate, Fit Statistics, and Smoothing Parameter.
"bigssa" objects: prints Spline Types, Fit Statistic information, and Algorithm Convergence status.
"summary.bigssa" objects: prints the formula Call, five number summary of Residuals, Error Standard Deviation Estimate, Fit Statistics, and Smoothing Parameters.
"bigssg" objects: prints Family, Spline Types, Fit Statistic information, and Algorithm Convergence status.
"summary.bigssg" objects: prints the Family, formula Call, five number summary of Residuals, Dispersion Estimate, Fit Statistics, and Smoothing Parameters (with selection criterion).
"bigssp" objects: prints Predictor Types, Fit Statistic information, and Algorithm Convergence status.
"summary.bigssp" objects: prints formula Call, five number summary of Residuals, Error Standard Deviation Estimate, Fit Statistics, and Smoothing Parameters.
"bigtps" objects: prints Spline Type, Fit Statistic information, and Smoothing Parameter.
"summary.bigtps" objects: prints Spline Type, five number summary of Residuals, Error Standard Deviation Estimate, Fit Statistics, and Smoothing Parameter.
"ordspline" objects: prints Monotonic, Fit Statistic information, and Smoothing Parameter.

Author(s)

Nathaniel E. Helwig \texttt{<helwig@umn.edu>}

Examples

### see examples for \texttt{bigspline}, \texttt{bigssa}, \texttt{bigssg}, \texttt{bigssp}, \texttt{bigtps}, and \texttt{ordspline}
ssBasis

Smoothing Spline Basis for Polynomial Splines

Description

Generate the smoothing spline basis matrix for a polynomial spline.

Usage

ssBasis(x, knots, m=2, d=0, xmin=min(x), xmax=max(x), periodic=FALSE, intercept=FALSE)

Arguments

- x: Predictor variable.
- knots: Spline knots.
- m: Penalty order. 'm=1' for linear smoothing spline, 'm=2' for cubic, and 'm=3' for quintic.
- d: Derivative order. 'd=0' for smoothing spline basis, 'd=1' for 1st derivative of basis, and 'd=2' for 2nd derivative of basis.
- xmin: Minimum value of 'x'.
- xmax: Maximum value of 'x'.
- periodic: If TRUE, the smoothing spline basis is periodic w.r.t. the interval [xmin, xmax].
- intercept: If TRUE, the first column of the basis will be a column of ones.

Value

- x: Spline Basis.
- knots: Spline knots.
- m: Penalty order.
- d: Derivative order.
- xlim: Inputs xmin and xmax.
- periodic: Same as input.
- intercept: Same as input.

Note

Inputs x and knots should be within the interval [xmin, xmax].

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>
Examples

# define function and its derivatives
n <- 500
x <- seq(0, 1, length.out=n)
knots <- seq(0, 1, length=20)
y <- sin(4 * pi * x)
d1y <- 4 * pi * cos(4 * pi * x)
d2y <- -(4 * pi)^2 * sin(4 * pi * x)

# linear smoothing spline
linmat0 <- ssBasis(x, knots, m=1)
lincoef <- pinvs(s(crossprod(linmat0%*%x), y))
linyhat <- linmat0%*%x %*% lincoef
linmat1 <- ssBasis(x, knots, m=1, d=1)
linyd1 <- linmat1%*%x %*% lincoef

# plot linear smoothing spline results
par(mfrow=c(1,2))
plot(x, y, type="l", main="Function")
lines(x, linyhat, lty=2, col="red")
plot(x, d1y, type="l", main="First Derivative")
lines(x, linyd1, lty=2, col="red")

# cubic smoothing spline
cubmat0 <- ssBasis(x, knots)
cubcoef <- pinvs(s(crossprod(cubmat0%$X), y))
cubyhat <- cubmat0%$X %*% cubcoef
cubmat1 <- ssBasis(x, knots, d=1)
cubyd1 <- cubmat1%$X %*% cubcoef
cubmat2 <- ssBasis(x, knots, d=2)
cubyd2 <- cubmat2%$X %*% cubcoef

# plot cubic smoothing spline results
par(mfrow=c(1,3))
plot(x, y, type="l", main="Function")
lines(x, cubyhat, lty=2, col="red")
plot(x, d1y, type="l", main="First Derivative")
lines(x, cubyd1, lty=2, col="red")
plot(x, d2y, type="l", main="Second Derivative")
lines(x, cubyd2, lty=2, col="red")

# quintic smoothing spline
quimat0 <- ssBasis(x, knots, m=3)
quicoef <- pinvs(s(crossprod(quimat0%$X), y))
quiyhat <- quimat0%$X %*% quicoef
quimat1 <- ssBasis(x, knots, m=3, d=1)
quiyd1 <- quimat1%$X %*% quicoef
quimat2 <- ssBasis(x, knots, m=3, d=2)
quiyd2 <- quimat2%$X %*% quicoef
# plot quintic smoothing spline results
par(mfrow=c(1,3))
plot(x, y, type="l", main="Function")
lines(x, quiyhat, lty=2, col="red")
plot(x, d1y, type="l", main="First Derivative")
lines(x, quiyd1, lty=2, col="red")
plot(x, d2y, type="l", main="Second Derivative")
lines(x, quiyd2, lty=2, col="red")

summary

## S3 method for class 'bigspline'
summary(object, fitresid=TRUE, chunksize=10000,...)

## S3 method for class 'bigssa'
summary(object, fitresid=TRUE, chunksize=10000,...)

## S3 method for class 'bigssg'
summary(object, fitresid=TRUE, chunksize=10000,...)

## S3 method for class 'bigssp'
summary(object, fitresid=TRUE, chunksize=10000,...)

## S3 method for class 'bigtps'
summary(object, fitresid=TRUE, chunksize=10000,...)

Arguments

- **object**: Object of class "bigspline" (output from `bigspline`), class "bigssa" (output from `bigssa`), class "bigssg" (output from `bigssg`), class "bigssp" (output from `bigssp`), or class "bigtps" (output from `bigtps`).
- **fitresid**: Logical indicating whether the fitted values and residuals should be calculated for all data points in input object.
- **chunksize**: If fitresid=TRUE, fitted values are calculated in chunks of size chunksize.
- **...**: Ignored.

Details

See `bigspline`, `bigssa`, `bigssg`, `bigssp`, and `bigtps` for more details.
The `summary` function provides a detailed summary of the output from various model fitting functions in the `bigspline` package. This summary includes key components such as:

- **Value**
  - `call`: Called model in input formula.
  - `type`: Type of smoothing spline that was used for each predictor.
  - `fitted.values`: Vector of fitted values (if `fitresid=TRUE`).
  - `linear.predictors`: Vector of linear predictors (only for class "bigssg" with `fitresid=TRUE`).
  - `residuals`: Vector of residuals (if `fitresid=TRUE`). For class "bigssg" these are deviance residuals.
  - `sigma`: Estimated error standard deviation.
  - `deviance`: Model deviance (only for class "bigssg").
  - `dispersion`: Estimated dispersion parameter (only for class "bigssg").
  - `n`: Total sample size.
  - `df`: Effective degrees of freedom of the model.
  - `info`: Model fit information: vector containing the GCV, multiple R-squared, AIC, and BIC of fit model.
  - `converged`: Convergence status: converged=TRUE if the iterative theta update converged, converged=FALSE if the iterative theta update failed to converge, and converged=NA if option `skip.iter=TRUE` was used.
  - `iter`: Number of iterative updates (iter=NA if option `skip.iter=TRUE` was used).
  - `rparm`: Rounding parameters used for model fitting.
  - `lambda`: Global smoothing parameter used for model fitting.
  - `gammas`: Vector of additional smoothing parameters (only for class "bigssa").
  - `thetas`: Vector of additional smoothing parameters (only for class "bigssp").
  - `family`: Distribution family (only for class "bigssg").
  - `gcvtype`: Smoothing parameter selection criterion (only for class "bigssg").

- **Note**
  For "bigspline" and "bigtps" objects, the outputs `call`, `converged`, and `iter` are NA.

- **Author(s)**
  Nathaniel E. Helwig <helwig@umn.edu>

- **Examples**

  ####### EXAMPLE 1 #######

  ```r
 # define relatively smooth function
 set.seed(773)
 myfun <- function(x){ sin(2*pi*x) }
 x <- runif(10^4)
 y <- myfun(x) + rnorm(10^4)
  ```
# cubic spline
cubmod <- bigspline(x,y)
summary(cubmod)

########## EXAMPLE 2 ##########

# function with two continuous predictors
set.seed(773)
myfun <- function(x1v,x2v){
  sin(2*pi*x1v) + log(x2v+.1) + cos(pi*(x1v-x2v))
}
x1v <- runif(10^4)
x2v <- runif(10^4)
y <- myfun(x1v,x2v) + rnorm(10^4)

# cubic splines with 100 randomly selected knots (efficient parameterization)
cubmod <- bigssa(y~x1v*x2v,type=list(x1v="cub",x2v="cub"),nknots=100)
summary(cubmod)

########## EXAMPLE 3 ##########

# function with two continuous predictors
set.seed(1)
myfun <- function(x1v,x2v){
  sin(2*pi*x1v) + log(x2v+.1) + cos(pi*(x1v-x2v))
}
ndpts <- 1000
x1v <- runif(ndpts)
x2v <- runif(ndpts)

# poisson response
set.seed(773)
lp <- myfun(x1v,x2v)
mu <- exp(lp)
y <- rpois(n=ndpts,lambda=mu)

# generalized smoothing spline anova
genmod <- bigssg(y~x1v*x2v,family="poisson",type=list(x1v="cub",x2v="cub"),nknots=50)
summary(genmod)

########## EXAMPLE 4 ##########

# function with two continuous predictors
set.seed(773)
myfun <- function(x1v,x2v){
  sin(2*pi*x1v) + log(x2v+.1) + cos(pi*(x1v-x2v))
}
x1v <- runif(10^4)
x2v <- runif(10^4)
y <- myfun(x1v,x2v) + rnorm(10^4)

# cubic splines with 100 randomly selected knots (classic parameterization)
cubmod <- bigssp(y~x1v*x2v,type=list(x1v="cub",x2v="cub"),nknots=100)
summary(cubmod)

# define relatively smooth function
set.seed(777)
myfun <- function(x){ sin(2*pi*x) }
x <- runif(10^4)
y <- myfun(x) + rnorm(10^4)

# thin-plate with default (30 knots)
tpsmod <- bigtps(x,y)
summary(tpsmod)
Index

*Topic package
  - `bigsplines-package`, 2

axis, 33, 45

bigspline, 2, 3, 9, 10, 15, 23, 24, 27, 48, 66, 69
bigsplines (bigsplines-package), 2
bigsplines-package, 2
bigssa, 2, 8, 34–36, 51, 66, 69
bigssg, 2, 14, 37, 38, 54, 66, 69
bigssp, 2, 21, 39–41, 58, 66, 69
bigtps, 2, 26, 61, 66, 69
binsamp, 30

image, 33
imagebar, 32

lm, 9, 15, 22

makessa, 8, 34
makessg, 14, 37
makessp, 22, 39

nlm, 11, 18, 24

ordspline, 42, 64, 66

par, 33, 45
plot, 44, 46
plotbar, 44
plotci, 46
predict.bigspline, 5, 6, 48
predict.bigssa, 10, 50
predict.bigssg, 16, 54
predict.bigssp, 23, 57
predict.bigtps, 28, 61
predict.ordspline, 63
print, 65

set.seed, 4

ssBasis, 67
summary, 69
summary.bigspline, 66
summary.bigssa, 66
summary.bigssg, 66
summary.bigssp, 66
summary.bigtps, 66

73