Package ‘bigtime’

October 12, 2022

Type Package

Title Sparse Estimation of Large Time Series Models

Version 0.2.1

Maintainer Ines Wilms <i.wilms@maastrichtuniversity.nl>

Depends R (>= 3.5.0), methods

License GPL (>= 2)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Imports Rcpp (>= 1.0.7), stats, utils, grDevices, graphics, corrplot, dplyr, ggplot2, tidyr, magrittr

SystemRequirements C++11

LinkingTo Rcpp, RcppArmadillo, RcppEigen

URL https://github.com/ineswilms/bigtime

NeedsCompilation yes

Author Ines Wilms [cre, aut], David S. Matteson [aut], Jacob Bien [aut], Sumanta Basu [aut], Will Nicholson [aut], Enrico Wegner [aut]

Repository CRAN

Date/Publication 2021-08-09 14:10:02 UTC
The bigtime package provides sparse estimators for three large time series models: Vector AutoRegressive Models, Vector AutoRegressive Models with Exogenous variables, and Vector AutoRegressive Moving Average Models. The univariate cases are also supported.
Details

To use the facilities of this package, start with a T by k time series matrix Y (for the VAR and VARMA), and an exogenous time series matrix X (for the VARX). Run sparseVAR, sparseVARX or sparseVARMA to get the estimated model. The function lagmatrix returns the lag matrix of estimated coefficients of the estimated model. The function directforecast gives h-step ahead forecasts based on the estimated model. The function recursiveforecast can be used to recursively forecast a VAR model. The function is.stable returns whether an estimated VAR model is stable. The function diagnostics_plot returns a plot of the fitted vs. observed values as well as of the residuals. The functions fitted and residuals return the fitted, respectively the residuals of the estimated model. The function simVAR can be used to simulate a VAR model with various sparsity patterns.

Author(s)

Ines Wilms <i.wilms@maastrichtuniversity.nl>, Jacob Bien, David S. Matteson, Sumanta Basu, Will Nicholson, Enrico Wegner

References

Examples

Fit a sparse VAR model
data(var.example)
VARfit <- sparseVAR(Y=scale(Y.var), selection = "cv") # using time series cross-validation
Lhat <- lagmatrix(fit=VARfit) # get estimated lagmatrix
VARforecast <- directforecast(fit=VARfit, h=1) # get one-step ahead forecasts

create_rand_coef_mat

create_rand_coef_mat

Description

Creates a random coefficient matrix

Usage

create_rand_coef_mat(k,
 p,
 max_abs_eigval = 0.8,
 sparsity_pattern = c("none", "lasso", "hvar"),
)
sparsity_options = NULL,
decay = 0.5,
...
)

Arguments

k Number of time series

p Number of lags

max_abs_eigval if < 1, then the VAR will be stable

sparsity_pattern

The sparsity pattern that should be simulated. Options are: "none" for a dense
VAR, "lasso" for a VAR with random zeroes, and "hvar" for an elementwise
hierarchical sparsity pattern

sparsity_options

Named list of additional options for when sparsity pattern is lasso or hvar. For
lasso the option num_zero determines the number of zeros. For hvar, the options
zero_min (zero_max) give the minimum (maximum) of zeroes for each variable
in each equation, and the option zeroes_in_self (boolean) determines if any
of the coefficients of a variable on itself should be zero.

decay How fast should coefficients shrink when the lag increases.
...

Not currently used

Value

Returns a coefficient matrix in companion form of dimension kpxkp.

diagnostics_plot Creates a Diagnostic Plot

description

Creates a Diagnostic Plot

Usage

diagnostics_plot(mod, variable = 1, dates = NULL)

Arguments

mod VAR model estimated using sparseVAR, sparseVARMA, or sparseVARX
variable Variable to show. Either numeric (which column) or character (variable name)
dates Optional Date vector.
Value

Returns a ggplot2 plot

Examples

VAR example
dat <- simVAR(periods=200, k=2, p=5, decay = 0.1, seed = 6150533,
 sparsity_pattern = "hvar")
mod <- sparseVAR(Y=scale(dat$Y), selection = "bic", h = 1)
diagnostics_plot(mod, variable = 1) # Plotting the first variable
Not run:
VARMA example
data(varma.example)
varma <- sparseVARMA(Y=scale(Y.varma), VARMAselection="cv")
diagnostics_plot(varma, variable = 2) # Plotting the second variable

End(Not run)
Not run:
VARX example
data(varx.example)
data(varx.example)
varx <- sparseVARX(Y=scale(Y.varx), X=scale(X.varx), selection="cv")
diagnostics_plot(varx, variable = 1) # Plotting the first variable

End(Not run)
diagnostics_plot.bigtime.VARMA

diagnostics_plot function for VARMA models

Description

Not supposed to be called directly. Rather call diagnostics_plot

Usage

S3 method for class 'bigtime.VARMA'
diagnostics_plot(mod, variable = 1, dates = NULL)

Arguments

- **mod**: VAR model estimated using sparseVARMA
- **variable**: Variable to show. Either numeric (which column) or character (variable name)
- **dates**: Optional Date vector.

diagnostics_plot.bigtime.VARX

diagnostics_plot function for VARX models

Description

Not supposed to be called directly. Rather call diagnostics_plot

Usage

S3 method for class 'bigtime.VARX'
diagnostics_plot(mod, variable = 1, dates = NULL)

Arguments

- **mod**: VARX model estimated using sparseVARX
- **variable**: Variable to show. Either numeric (which column) or character (variable name)
- **dates**: Optional Date vector.
directforecast

Function to obtain h-step ahead direct forecast based on estimated VAR, VARX or VARMA model

Description

Function to obtain h-step ahead direct forecast based on estimated VAR, VARX or VARMA model

Usage

directforecast(fit, h = 1)

Arguments

fit Fitted sparse VAR, VARX or VARMA model.

h Desired forecast horizon. Default is h=1.

Value

Vector of length k containing the h-step ahead forecasts for the k time series.

Examples

data(var.example)
VARfit <- sparseVAR(Y=scale(Y.var), selection = "cv") # sparse VAR
VARforecast <- directforecast(fit=VARfit, h=1)

fitted.bigtime.VAR

Gives the fitted values of a model estimated using sparseVAR

Description

Gives the fitted values of a model estimated using sparseVAR

Usage

S3 method for class 'bigtime.VAR'
fitted(object, ...)

Arguments

object Model estimated using sparseVAR

... Not currently used
fitted.bigtime.VARX

Value

Returns a matrix of fitted values

Examples

dat <- simVAR(periods=200, k=2, p=5, decay = 0.001, seed = 6150533)
mod <- sparseVAR(Y=scale(dat$Y))
f <- fitted(mod)

fitted.bigtime.VARMA

Gives the fitted values of a model estimated using sparseVARMA

Description

Gives the fitted values of a model estimated using sparseVARMA

Usage

S3 method for class 'bigtime.VARMA'
fitted(object, ...)

Arguments

object Model estimated using sparseVARMA
... Not currently used

Value

Returns a matrix of fitted values data(varma.example) varma <- sparseVARMA(Y = scale(Y.varma), VARMAselection="cv") f <- fitted(varma)

fitted.bigtime.VARX

Gives the fitted values of a model estimated using sparseVARX

Description

Gives the fitted values of a model estimated using sparseVARX

Usage

S3 method for class 'bigtime.VARX'
fitted(object, ...)

Arguments

object Model estimated using sparseVARX
... Not currently used

Value

Returns a matrix of fitted values
get_ic_vals

Arguments

- object: Model estimated using `sparseVARX`
- ...: Not currently used

Value

Returns a matrix of fitted values

data(varx.example) varx <- sparseVARX(Y=scale(Y.varx), X=scale(X.varx), selection="cv") fit <- fitted(varx)

Description

The number of non-zero coefficients are taken as the degrees of freedom. Use with care for VARMA.

Usage

get_ic_vals(mod, verbose = TRUE)

Arguments

- mod: Model estimated using `sparseVAR`, `sparseVARX`, or `sparseVARMA`
- verbose: Should information about the optimal selection be printed?

Examples

dat <- simVAR(periods=200, k=2, p=5, decay = 0.01)
mod <- sparseVAR(Y=scale(dat$Y))
ics <- get_ic_vals(mod)

get_ic_vals.bigtime.VAR

Calculates the Information Criteria for a VAR, VARX, VARMA model

Description

The number of non-zero coefficients are taken as the degrees of freedom.

Usage

S3 method for class 'bigtime.VAR'
get_ic_vals(mod, verbose = TRUE)
get_ic_vals.bigtime.VARX

Arguments

- **mod**: Model estimated using `sparseVAR`
- **verbose**: Should information about the optimal selection be printed?

Value

Returns a list containing

- **ics**: Values of the ICs for all lambdas
- **mins**: Which IC lead to the minimum (the row number)
- **selected_lambdas**: Which lambdas were selected

Examples

```r
dat <- simVAR(periods = 200, k=2, p=5, decay = 0.01)
mod <- sparseVAR(Y=scale(dat$Y))
ics <- get_ic_vals(mod)
```

Description

The number of non-zero coefficients in both the Phihat and Bhat matrix are taken as the degrees of freedom.

Usage

```r
## S3 method for class 'bigtime.VARX'
get_ic_vals(mod, verbose = TRUE)
```

Arguments

- **mod**: Model estimated using `sparseVAR`
- **verbose**: Should information about the optimal selection be printed?

Value

Returns a list containing

- **ics**: Values of the ICs for all lambdas
- **mins**: Which IC lead to the minimum (the row number)
- **selected_lamPhi**: Which lambda Phi were selected
- **selected_lamB**: Which lambda B were selected
ic_selection

Selects the optimal penalty parameter using information criteria

Usage

ic_selection(mod, ic = c("bic", "aic", "hq"), verbose = FALSE)

Arguments

- `mod`: Model estimated using `sparseVAR`, `sparseVARX`, or `sparseVARMA`
- `ic`: Which information criteria should be used. Must be one of "bic", "aic" or "hq"
- `verbose`: If true, some useful information will be printed during the process

Value

Returns a model that uses the optimal penalty

is.stable

Checks whether a VAR is stable

Description

Using a model estimated by `sparseVAR`, this function checks whether the resulting VAR is stable. This is the case, whenever the maximum absolute eigenvalue of the companion matrix corresponding to the VAR is less than one. This is sometimes also referred to as that the root lies outside the unit circle.

Usage

is.stable(mod, verbose = FALSE)

Arguments

- `mod`: Model estimated using `sparseVAR`. Can only be a model with one coefficient vector. Hence, the model must be estimated using a selection method. See `sparseVAR` for more details.
- `verbose`: If TRUE, then the actual maximum absolute eigenvalue of the companion matrix will be printed to the console. Default is FALSE

Value

Returns TRUE if the VAR is stable and FALSE otherwise
lagmatrix

Description

Creates Lagmatrix of Estimated Coefficients

Usage

```r
lagmatrix(fit, returnplot = F)
```

Arguments

- `fit`: Fitted VAR, VARX or VARMA model.
- `returnplot`: TRUE or FALSE: return plot of lag matrix or not.

Value

A list with estimated lag matrix of the VAR model, or lag matrices of the VARX or VARMA model. The rows contain the responses, the columns contain the predictors.

Examples

```r
data(var.example)
mod <- sparseVAR(Y=scale(Y.var), selection="cv")
Lhat <- lagmatrix(fit=mod)
```

plot.bigtime.recursiveforecast

Plots Recursive Forecasts

Description

Plots the recursive forecast obtained using *recursiveforecast* When forecasts were made for multiple lambdas and `lmbda` is not a single number, then a ribbon will be plotted that reaches from the minimum estimate of all lambdas to the maximum.

Usage

```r
## S3 method for class 'bigtime.recursiveforecast'
plot(x, series = NULL, lmbda = NULL, last_n = floor(nrow(fcst$Y) * 0.1), ...)
```
plot.bigtime.simVAR

Arguments

- **x**
 Recursive Forecast obtained using \texttt{recursiveforecast}

- **series**
 Series name. If original data has no names, then use Y1 for the first series, Y2 for the second, and so on.

- **\lambda**
 Lambdas to be used for plotting. If forecast was done using only one lambda, then this will be ignored.

- **_n**
 Last _n observations of the original data to include in the plot

- **...**
 Not currently used

Details

If \lambda is of length one or forecasts were made using only one lambda, then only a line will be plotted.

Default names for series are Y1, Y2, ... if the original data does not have any column names.

Value

Returns a ggplot

\begin{verbatim}
plot.bigtime.simVAR # Plots a simulated VAR
\end{verbatim}

Description

Plots a simulated VAR

Usage

\begin{verbatim}
S3 method for class 'bigtime.simVAR'
plot(x, ...)
\end{verbatim}

Arguments

- \textbf{x}
 Simulated data of class \texttt{bigtime.simVAR} obtained from the \texttt{simVAR} function

- **...**
 Not currently used

Value

Returns a ggplot2 plot
plot_cv

Plot the Cross Validation Error Curve for a Sparse VAR or VARX

Description

Plot the Cross Validation Error Curve for a Sparse VAR or VARX

Usage

plot_cv(fit, ...)

Arguments

fit Fitted VAR, VARMA or VARX model. returned by sparseVAR, sparseVARMA or sparseVARX.

...

Not currently used

recursiveforecast

Recursively Forecasts a VAR

Description

Recursively forecasts a VAR estimated using sparseVAR. lambda can either be NULL, in which case all lambdas that were used for model estimation are used for forecasting, or a single value, in which case only the model using this lambda will be used for forecasting.

Usage

recursiveforecast(mod, h = 1, lambda = NULL)

Arguments

mod VAR model estimated using sparseVAR

h Desired forecast horizon. Default is h=1.

lambda Either NULL in which case a forecast will be made for all lambdas for which the model was estimated, or a single value in which case a forecast will only be made for the model using this lambda. Choice is redundant if the model was estimated using a selection procedure.

Value

Returns an object of S3 class bigtime.recursiveforecast containing

fcst Matrix or 3D array of forecasts

h Selected forecast horizon

lambda List of lambdas for which the forecasts were made

Y Data used for recursive forecasting
Examples

```r
sim_data <- simVAR(periods=200, k=5, p=5, seed = 12345)
summary(sim_data)
mod <- sparseVAR(Y=scale(sim_data$Y), selection = "bic")
is.stable(mod)
fcst_recursive <- recursiveforecast(mod, h = 4)
plot(fcst_recursive, series = "Y1")
fcst_direct <- directforecast(mod)
fcast_direct
fcst_recursive$fcast
```

residuals.bigtime.VAR
Gives the residuals for VAR models estimated using sparseVAR

Description

Gives the residuals for VAR models estimated using **sparseVAR**

Usage

```r
## S3 method for class 'bigtime.VAR'
residuals(object, ...)
```

Arguments

- `object`
 Model estimated using **sparseVAR**

- `...`
 Not currently used

Value

Returns a matrix of residuals.

Examples

```r
data <- simVAR(periods=200, k=2, p=5, decay = 0.001, seed = 6150533)
mod <- sparseVAR(Y=scale(data$Y))
res <- resid(mod)
```
residuals.bigtime.VARX

Gives the residuals for VARX models estimated using sparseVARX

Description

Gives the residuals for VARX models estimated using sparseVARX

Usage

```
## S3 method for class 'bigtime.VARX'
residuals(object, ...)
```

Arguments

- `object`: Model estimated using sparseVARX
- `...`: Not currently used

Value

Returns a matrix of residuals.

Examples

```
## Not run:
data(varma.example)
varma <- sparseVARMA(Y = scale(Y.varma), VARMAselection="cv")
res <- residuals(varma)

## End(Not run)
```

residuals.bigtime.VARMA

Gives the residuals for VARMA models estimated using sparseVARMA

Description

Gives the residuals for VARMA models estimated using sparseVARMA

Usage

```
## S3 method for class 'bigtime.VARMA'
residuals(object, ...)
```

Arguments

- `object`: Model estimated using sparseVARMA
- `...`: Not currently used

Value

Returns a matrix of residuals.

Examples

```
## Not run:
data(varma.example)
varma <- sparseVARMA(Y = scale(Y.varma), VARMAselection="cv")
res <- residuals(varma)

## End(Not run)
```
Arguments

object Model estimated using `sparseVARX`
...

Value

Returns a matrix of residuals.

Examples

```r
## Not run:
data(varx.example)
varx <- sparseVARX(Y=scale(Y.varx), X=scale(X.varx), selection="cv")
res <- residuals(varx)

## End(Not run)
```

simVAR

Simulates a VAR(p) with various sparsity patterns

Description

Simulates a VAR(p) with various sparsity patterns

Usage

```r
simVAR(
  periods,
  k,
  p,
  coef_mat = NULL,
  const = rep(0, k),
  e_dist = rnorm,
  init_y = rep(0, k * p),
  max_abs_eigval = 0.8,
  burnin = periods,
  sparsity_pattern = c("none", "lasso", "L1", "hvar", "HLag"),
  sparsity_options = NULL,
  decay = 1/p,
  seed = NULL,
  ...
)
```
Arguments

periods: Scalar indicating the desired time series length
k: Number of time series
p: Maximum lag number. In case of sparsity_pattern="none" this will be the actual number of lags for all variables
coef_mat: Coefficient matrix in companion form. If not provided, one will be simulated
const: Constant term of VAR. Default is zero. Must be either a scalar, in which case it will be broadcasted to a k-vector, or a k-vector
e_dist: Either a function taking argument n indicating the number of variables in the system, or a matrix of dimensions k x (periods+burnin)init_y: Initial values. Defaults to zero. Expects either a scalar or a vector of length (k*p)
max_abs_eigval: Maximum allowed eigenvalue of companion matrix. Only applicable if coefficient matrix is being simulated
burnin: Number of time points to be used for burnin
sparsity_pattern: The sparsity pattern that should be simulated. Options are: "none" for a dense VAR, "lasso" (or "L1") for a VAR with random zeroes, and "hvar" (or "HLag") for an elementwise hierarchical sparsity pattern
sparsity_options: Named list of additional options for when sparsity pattern is lasso (L1) or hvar (HLag). For lasso (L1) the option num_zero determines the number of zeros. For hvar (HLag), the options zero_min (zero_max) give the minimum (maximum) of zeroes for each variable in each equation, and the option zeroes_in_self (boolean) determines if any of the coefficients of a variable on itself should be zero.
decay: How much smaller should parameters for later lags be. The smaller, the larger will early parameters be w.r.t. later ones.
seed: Seed to be used for the simulation
...
Additional arguments passed to e_dist

Value

Returns an object of S3 class bigtime.simVAR containing the following

Y: Simulated Data
periods: Time series length
k: Number of endogenous variables
p: Maximum lag length; effective lag length might be shorter due to sparsity patterns
coef_mat: Companion form of the coefficient matrix. Will be of dimensions (kp)x(kp). First k rows correspond to the actual coefficient matrix.
is_coef_mat_simulated: TRUE if the coef_mat was simulated, FALSE if it was user provided
sparseVAR

Description
Sparse Estimation of the Vector AutoRegressive (VAR) Model

Usage

sparseVAR(Y,
 p = NULL,
 VARpen = "HLag",
 VARlseq = NULL,
 VARgran = NULL,
 selection = c("none", "cv", "bic", "aic", "hq"),
 cvcut = 0.9,
 h = 1,
 eps = 0.001,
 check_std = TRUE
)

Examples

periods <- 200 # time series length
k <- 5 # number of variables
p <- 10 # maximum lag
sparsity_pattern <- "HLag" # HLag sparsity structure
sparsity_options <- list(zero_min = 0, # variables can be included with all lags
 zero_max = 10, # but some could also include no lags
 zeroes_in_self = TRUE)
sim <- simVAR(periods=periods, k=k, p=p, sparsity_pattern=sparsity_pattern,
 sparsity_options=sparsity_options, seed = 12345)
summary(sim)
Arguments

Y
A T by k matrix of time series. If k=1, a univariate autoregressive model is estimated.

p
User-specified maximum autoregressive lag order of the VAR. Typical usage is to have the program compute its own maximum lag order based on the time series length.

VARpen
"HLag" (hierarchical sparse penalty) or "L1" (standard lasso penalty) penalization.

VARlseq
User-specified grid of values for regularization parameter corresponding to sparse penalty. Typical usage is to have the program compute its own grid. Supplying a grid of values overrides this. WARNING: use with care.

VARgran
User-specified vector of granularity specifications for the penalty parameter grid: First element specifies how deep the grid should be constructed. Second element specifies how many values the grid should contain.

selection
One of "none" (default), "cv" (Time Series Cross-Validation), "bic", "aic", "hq". Used to select the optimal penalization.

cvcut
Proportion of observations used for model estimation in the time series cross-validation procedure. The remainder is used for forecast evaluation. Redundant if selection is not "cv".

h
Desired forecast horizon in time-series cross-validation procedure.

eps
a small positive numeric value giving the tolerance for convergence in the proximal gradient algorithm.

check_std
Check whether data is standardised. Default is TRUE and is not recommended to be changed

Value

A list with the following components

Y
T by k matrix of time series.

k
Number of time series.

p
Maximum autoregressive lag order of the VAR.

Phihat
Matrix of estimated autoregressive coefficients of the VAR.

phi0hat
vector of VAR intercepts.

series_names
names of time series

lambdas
sparsity parameter grid

MSFEcv
MSFE cross-validation scores for each value of the sparsity parameter in the considered grid

MSFEcv_all
MSFE cross-validation full output

lambda_opt
Optimal value of the sparsity parameter as selected by the time-series cross-validation procedure

lambda_SEopt
Optimal value of the sparsity parameter as selected by the time-series cross-validation procedure and after applying the one-standard-error rule. This is the value used.

h
Forecast horizon h
References

See Also
lagmatrix and directforecast

Examples
```
data(var.example)
VARfit <- sparseVAR(Y = scale(Y.var)) # sparse VAR
ARfit <- sparseVAR(Y=scale(Y.var[,2])) # sparse AR
```

sparseVARMA

Sparse Estimation of the Vector AutoRegressive Moving Average (VARMA) Model

Description
Sparse Estimation of the Vector AutoRegressive Moving Average (VARMA) Model

Usage
```
sparseVARMA(
  Y,  
  U = NULL,  
  VARp = NULL,  
  VARpen = "HLag",  
  VARlseq = NULL,  
  VARgrand = NULL,  
  VARselection = c("cv", "bic", "aic", "hq"),  
  VARMAP = NULL,  
  VARMAq = NULL,  
  VARMAPen = "HLag",  
  VARMAPhiseq = NULL,  
  VARMAPHigrand = NULL,  
  VARMAlThetaseq = NULL,  
  VARMAThetagrand = NULL,  
  VARMAlpha = 0,  
  VARMAselction = c("none", "cv", "bic", "aic", "hq"),  
  h = 1,  
  cvcut = 0.9,  
  eps = 10^-3,  
  check_std = TRUE
)  
```
Arguments

- **Y**: A T by k matrix of time series. If $k=1$, a univariate autoregressive moving average model is estimated.
- **U**: A T by k matrix of (approximated) error terms. Typical usage is to have the program estimate a high-order VAR model (Phase I) to get approximated error terms U.
- **VARp**: User-specified maximum autoregressive lag order of the PhaseI VAR. Typical usage is to have the program compute its own maximum lag order based on the time series length.
- **VARpen**: "HLag" (hierarchical sparse penalty) or "L1" (standard lasso penalty) penalization in PhaseI VAR.
- **VAR1seq**: User-specified grid of values for regularization parameter in the PhaseI VAR. Typical usage is to have the program compute its own grid. Supplying a grid of values overrides this. WARNING: use with care.
- **VARgran**: User-specified vector of granularity specifications for the penalty parameter grid of the PhaseI VAR: First element specifies how deep the grid should be constructed. Second element specifies how many values the grid should contain.
- **VARselection**: Selection procedure for the first stage. Default is time series Cross-Validation. Alternatives are BIC, AIC, HQ
- **VARMAp**: User-specified maximum autoregressive lag order of the VARMA. Typical usage is to have the program compute its own maximum lag order based on the time series length.
- **VARMAq**: User-specified maximum moving average lag order of the VARMA. Typical usage is to have the program compute its own maximum lag order based on the time series length.
- **VARMApen**: "HLag" (hierarchical sparse penalty) or "L1" (standard lasso penalty) penalization in the VARMA.
- **VARMAlPhiseq**: User-specified grid of values for regularization parameter corresponding to the autoregressive coefficients in the VARMA. Typical usage is to have the program compute its own grid. Supplying a grid of values overrides this. WARNING: use with care.
- **VARMAPhigran**: User-specified vector of granularity specifications for the penalty parameter grid corresponding to the autoregressive coefficients in the VARMA: First element specifies how deep the grid should be constructed. Second element specifies how many values the grid should contain.
- **VARMAThetaseq**: User-specified grid of values for regularization parameter corresponding to the moving average coefficients in the VARMA. Typical usage is to have the program compute its own grid. Supplying a grid of values overrides this. WARNING: use with care.
- **VARMAThetagran**: User-specified vector of granularity specifications for the penalty parameter grid corresponding to the moving average coefficients in the VARMA: First element specifies how deep the grid should be constructed. Second element specifies how many values the grid should contain.
VARMAalpha

A small positive regularization parameter value corresponding to squared Frobenius penalty in VARMA. The default is zero.

VARMAselection

Selection procedure in the second stage. Default is "none"; Alternatives are cv, bic, aic, hq.

h

Desired forecast horizon in time-series cross-validation procedure.

cvcut

Proportion of observations used for model estimation in the time series cross-validation procedure. The remainder is used for forecast evaluation.

eps

A small positive numeric value giving the tolerance for convergence in the proximal gradient algorithms.

check_std

Check whether data is standardised. Default is TRUE and is not recommended to be changed.

Value

A list with the following components:

Y

T by k matrix of time series.

U

Matrix of (approximated) error terms.

k

Number of time series.

VARp

Maximum autoregressive lag order of the Phase I VAR.

VARPhihat

Matrix of estimated autoregressive coefficients of the Phase I VAR.

VARphi0hat

Vector of Phase I VAR intercepts.

VARMAp

Maximum autoregressive lag order of the VARMA.

VARMAq

Maximum moving average lag order of the VARMA.

Thetahat

Matrix of estimated moving average coefficients of the VARMA.

phi0hat

Vector of VARMA intercepts.

series_names

Names of time series.

PhaseI_lambas

Phase I sparsity parameter grid.

PhaseI_MSFEcv

MSFE cross-validation scores for each value of the sparsity parameter in the considered grid.

PhaseI_lambda_opt

Phase I Optimal value of the sparsity parameter as selected by the time-series cross-validation procedure.

PhaseI_lambda_SEopt

Phase I Optimal value of the sparsity parameter as selected by the time-series cross-validation procedure and after applying the one-standard-error rule.

PhaseII_lambdaPhi

Phase II sparsity parameter grid corresponding to Phi parameters.

PhaseII_lambdaTheta

Phase II sparsity parameter grid corresponding to Theta parameters.
PhaseII_lambdaPhi_opt
Phase II Optimal value of the sparsity parameter (corresponding to Phi parameters) as selected by the time-series cross-validation procedure

PhaseII_lambdaPhi_SEopt
Phase II Optimal value of the sparsity parameter (corresponding to Phi parameters) as selected by the time-series cross-validation procedure and after applying the one-standard-error rule

PhaseII_lambdaTheta_opt
Phase II Optimal value of the sparsity parameter (corresponding to Phi parameters) as selected by the time-series cross-validation procedure

PhaseII_lambdaTheta_SEopt
Phase II Optimal value of the sparsity parameter (corresponding to Theta parameters) as selected by the time-series cross-validation procedure and after applying the one-standard-error rule

PhaseII_MSFEcv
Phase II MSFE cross-validation scores for each value in the two-dimensional sparsity grid

h
Forecast horizon h

References

See Also
lagmatrix and directforecast

Examples

data(varma.example)
VARMAfit <- sparseVARMA(Y = scale(Y.varma)) # sparse VARMA
y <- matrix(Y.varma[,1], ncol=1)
ARMAfit <- sparseVARMA(Y=scale(y)) # sparse ARMA

sparseVARX

Sparse Estimation of the Vector AutoRegressive with Exogenous Variables X (VARX) Model

Description
Sparse Estimation of the Vector AutoRegressive with Exogenous Variables X (VARX) Model
Usage

sparseVARX(
 Y,
 X,
 p = NULL,
 s = NULL,
 VARXpen = "HLag",
 VARX1Phiseq = NULL,
 VARXPhigran = NULL,
 VARX1Bseq = NULL,
 VARXBgran = NULL,
 VARXalpha = 0,
 h = 1,
 cvcut = 0.9,
 eps = 10^-3,
 selection = c("none", "cv", "bic", "aic", "hq"),
 check_std = TRUE
)

Arguments

Y
A T by k matrix of time series. If k=1, a univariate autoregressive model is
estimated.

X
A T by m matrix of time series.

p
User-specified maximum endogenous autoregressive lag order. Typical usage
is to have the program compute its own maximum lag order based on the time
series length.

s
User-specified maximum exogenous autoregressive lag order. Typical usage is
to have the program compute its own maximum lag order based on the time
series length.

VARXpen
"HLag" (hierarchical sparse penalty) or "L1" (standard lasso penalty) penaliza-
tion in VARX.

VARX1Phiseq
User-specified grid of values for regularization parameter corresponding to the
endogenous autoregressive coefficients in the VARX. Typical usage is to have
the program compute its own grid. Supplying a grid of values overrides this.
WARNING: use with care.

VARXPhigran
User-specified vector of granularity specifications for the penalty parameter grid
corresponding to the endogenous autoregressive coefficients in the VARX: First
element specifies how deep the grid should be constructed. Second element
specifies how many values the grid should contain.

VARX1Bseq
User-specified grid of values for regularization parameter corresponding to the
exogenous autoregressive coefficients in the VARX. Typical usage is to have
the program compute its own grid. Supplying a grid of values overrides this.
WARNING: use with care.

VARXBgran
User-specified vector of granularity specifications for the penalty parameter grid
corresponding to the exogenous autoregressive coefficients in the VARX: First
element specifies how deep the grid should be constructed. Second element specifies how many values the grid should contain.

VARXalpha a small positive regularization parameter value corresponding to squared Frobenius penalty. The default is zero.

h Desired forecast horizon in time-series cross-validation procedure.

cvcut Proportion of observations used for model estimation in the time series cross-validation procedure. The remainder is used for forecast evaluation.

eps a small positive numeric value giving the tolerance for convergence in the proximal gradient algorithm.

selection Model selection method to be used. Default is none, which will return all values for all penalisations.

check_std Check whether data is standardised. Default is TRUE and is not recommended to be changed

Value

A list with the following components

Y T by k matrix of endogenous time series.

X T by m matrix of exogenous time series.

k Number of endogenous time series.

m Number of exogenous time series.

p Maximum endogenous autoregressive lag order of the VARX.

s Maximum exogenous autoregressive lag order of the VARX.

Phi hat Matrix of estimated endogenous autoregressive coefficients.

B hat Matrix of estimated exogenous autoregressive coefficients.

phi0 hat vector of VARX intercepts.

exogenous_series_names names of the exogenous time series

endogenous_series_names names of the endogenous time series

lambdaPhi sparsity parameter grid corresponding to endogenous autoregressive parameters

lambdaB sparsity parameter grid corresponding to exogenous autoregressive parameters

lambdaPhi_opt Optimal value of the sparsity parameter (corresponding to the endogenous autoregressive parameters) as selected by the time-series cross-validation procedure

lambdaPhi_SEopt Optimal value of the sparsity parameter (corresponding to the endogenous autoregressive parameters) as selected by the time-series cross-validation procedure and after applying the one-standard-error rule

lambdaB_opt Optimal value of the sparsity parameter (corresponding to the exogenous autoregressive parameters) as selected by the time-series cross-validation procedure
lambdaB_SEopt: Optimal value of the sparsity parameter (corresponding to the exogenous autoregressive parameters) as selected by the time-series cross-validation procedure and after applying the one-standard-error rule.

MSFEcv: MSFE cross-validation scores for each value in the two-dimensional sparsity grid.

h: Forecast horizon h.

References

See Also
lagmatrix and directforecast

Examples

data(varx.example)
VARXfit <- sparseVARX(Y=scale(Y.varx), X=scale(X.varx)) # sparse VARX
y <- matrix(Y.varx[,1], ncol=1)
ARXfit <- sparseVARX(Y=y, X=X.varx) # sparse ARX

summary.bigtime.simVAR

Gives a small summary of a VAR simulation

Description
Gives a small summary of a VAR simulation

Usage

S3 method for class 'bigtime.simVAR'
summary(object, plot = TRUE, ...)

Arguments

object: Simulated data of class bigtime.simVAR obtained from the simVAR function
plot: Should the VAR be plotted. Default is TRUE
...: Not currently used

Value
If ‘plot=TRUE’, then a ggplot2 plot will be returned.
X.varx

VARX Time Series Example (varx.example)

Description
The data consists of a 200x3 matrix of endogenous variables, Y.varx, and a 200x3 matrix of exogenous variables, X.varx.

Usage
X.varx

Format
Two matrices, X.varx and Y.varx, both of dimension 200x3

Y.var

VAR Time Series Example (var.example)

Description
The data consists of a 200x5 data matrix, Y.var, and was simulated from a sparse VAR model with HLag sparsity pattern.

Usage
Y.var

Format
A matrix of dimension 200x5

Y.varma

VARMA Time Series Example (varma.example)

Description
The data consists of a 200x3 data matrix, Y.varma, and was simulated from a sparse VARMA model.

Usage
Y.varma

Format
A matrix of dimension 200x3
Y.varx

Y.varx
VARX Time Series Example (varx.example)

Description

The data consists of a 200x3 matrix of endogenous variables, Y.varx, and a 200x3 matrix of exogenous variables, X.varx.

Usage

Y.varx

Format

Two matrices, X.varx and Y.varx, both of dimension 200x3
Index

* datasets
 X.varx, 28
 Y.var, 28
 Y.varma, 28
 Y.varx, 29

bigtime, 2

create_rand_coef_mat, 3

diagnostics_plot, 3, 4, 5, 6
 diagnostics_plot.bigtime.VAR, 5
 diagnostics_plot.bigtime.VARMA, 6
 diagnostics_plot.bigtime.VARX, 6

directforecast, 3, 7, 21, 24, 27

fitted, 3
 fitted.bigtime.VAR, 7
 fitted.bigtime.VARMA, 8
 fitted.bigtime.VARX, 8

get_ic_vals, 9
 get_ic_vals.bigtime.VAR, 9
 get_ic_vals.bigtime.VARX, 10

ic_selection, 11

is.stable, 3, 11

lagmatrix, 3, 12, 21, 24, 27

plot.bigtime.recursiveforecast, 12
 plot.bigtime.simVAR, 13

plot_cv, 14

recursiveforecast, 3, 12, 13, 14

residuals, 3
 residuals.bigtime.VAR, 15
 residuals.bigtime.VARMA, 16
 residuals.bigtime.VARX, 16

simVAR, 3, 13, 17, 27

sparseVAR, 3–5, 7, 9–11, 14, 15, 19
 sparseVARMA, 3, 4, 6, 8, 9, 11, 14, 16, 21
 sparseVARX, 3, 4, 6, 8–11, 14, 16, 17, 24
 summary.bigtime.simVAR, 27

X.varx, 28
 Y.var, 28
 Y.varma, 28
 Y.varx, 29