Package ‘bimets’

June 2, 2020

Type Package
Title Time Series and Econometric Modeling
Version 1.5.1
Date 2020-06-01
Maintainer Andrea Luciani <andrea.luciani@bancaditalia.it>
Author Andrea Luciani [aut, cre], Roberto Stok [aut], Bank of Italy [cph]
ByteCompile no
Description Time series analysis, (dis)aggregation and manipulation, e.g. time series extension, merge, projection, lag, lead, delta, moving and cumulative average and product, selection by index, date and year-period, conversion to daily, monthly, quarterly, (semi)annually. Simultaneous equation models definition, estimation, simulation and forecasting with coefficient restrictions, error autocorrelation, exogenization, add-factors, impact and interim multipliers analysis, conditional equation evaluation, endogenous targeting and model renormalization.
Depends R (>= 3.3), xts, zoo
Imports stats
LazyData true
License GPL-3
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2020-06-01 23:50:02 UTC

R topics documented:

bimets-package ... 3
A1D ... 29
ANNUAL .. 31
as.bimets ... 32
bimetsConf .. 34
R topics documented:

bimetsDataset .. 37
CUMPROD .. 37
CUMSUM .. 39
DAILY ... 40
date2yp ... 41
ELIMELS .. 42
ESTIMATE .. 43
frequency .. 58
fromBIMETStoTS .. 59
fromBIMETStoXTS ... 60
fromTStoXTS .. 62
fromXTStoTS .. 64
GETDATE .. 66
GETYEARPERIOD .. 68
idxOver ... 69
INDEXNUM .. 73
INTS ... 75
is.bimets .. 76
LOAD_MODEL ... 79
LOAD_MODEL_DATA .. 87
LOCSD .. 91
MDL ... 92
MONTHLY .. 104
MOVAVG ... 106
MOVTOT ... 107
MULTMATRIX .. 109
NAMELIST ... 115
NOELS ... 117
normalizeYP ... 118
NUMPERIOD .. 119
QUARTERLY .. 120
RENORM ... 121
SEMIANNUAL .. 129
SIMULATE ... 130
summary.BIMETS_MODEL .. 144
TABIT ... 147
TSDELTALOG .. 149
TSDELTALOG ... 151
TSDELTAP ... 152
TSEARIES .. 153
TSEXTEND .. 155
TSINFO ... 157
TSJOIN ... 159
TSLAG ... 160
TSLEAD .. 162
TSLOOK .. 163
TSMERGE ... 164
TSPROJECT .. 166
Description

bimets is a software framework developed by using R language and designed for time series analysis and econometric modeling, which allows creating and manipulating time series, specifying simultaneous equation models of any size by using a kind of high-level description language, and performing model estimation, simulation and forecasting.

In addition, *bimets* computational capabilities provide many tools to pre-process data and post-process results, designed for statisticians and economists. These operations are fully integrated with the R environment.

The package can be installed and loaded in R with the following commands (with > as the R command prompt):

```r
R> install.packages('bimets')
R> library(bimets)
```

TIME SERIES

bimets supports daily, weekly, monthly, quarterly, semiannual and yearly time series. Time series with a frequency of 24 and 36 periods per year are also supported. The time series are created by the `TIMESERIES` function.

Example:

```r
R> # yearly time series
R> myTS=TIMESERIES(1:10,START=as.Date('2000-01-01'),FREQ=1)

R> # monthly time series
R> myTS=TIMESERIES(1:10,START=c(2002,3),FREQ='M')
```

The main *bimets* time series capabilities are:

- **Indexing**
- **Aggregation / Disaggregation**
- **Manipulation**
The **bimets** package extends R indexing capabilities in order to ease time series analysis and manipulation. Users can access and modify time series data:

- **by date**: users can select and modify a single observation by date by using the syntax `ts['Date']`, or multiple observations by using `ts['StartDate/EndDate']`;

- **by year-period**: users can select and modify observations by providing the year and the period requested, i.e. `ts[[Year,Period]]`;

- **by observation index**: users can select and modify observations by simply providing the array of requested indexes, i.e. `ts[indexes]`;

Example:

```R
R> #create a daily time series
R> myTS=TIMESERIES((1:100),START=c(2000,1),FREQ='D')
R> myTS[1:3] #get first three obs.
R> myTS['2000-01-12'] #get Jan 12, 2000 data
R> myTS['2000-02-03/2000-02-14'] #get Feb 3 up to Feb 14
R> myTS[[2000,14]] #get year 2000 period 14
R> myTS['2000-01-15'] = NA #assign to Jan 15, 2000
R> myTS[[2000,42]] = NA #assign to Feb 11, 2000
R> myTS[[2000,100]] = c(-1,-2,-3) #extend time series starting from period 100
```

Time Series Aggregation/Disaggregation

The **bimets** package provides advanced (dis)aggregation capabilities, with several linear interpolation capabilities in disaggregation, and many aggregation functions (e.g. STOCK, SUM, AVE, etc.) while reducing the time series frequency.

Example:

```R
R> #create a monthly time series
R> myMonthlyTS=TIMESERIES((1:100),START=c(2000,1),FREQ='M')
R> #convert to annual time series by using the average as aggregation fun
R> myAnnualTS=ANNUAL(myMonthlyTS,'AVE')
R> #convert to daily by using central interpolation as disaggregation fun
R> myDailyTS=DAILY(myMonthlyTS,'INTERP_CENTER')
```
Time Series Manipulation

The bimets package provides, among others, the following time series manipulation capabilities:

- Time series extension TSEXTEND
- Time series merging TSMERGE
- Time series projection TSPROJECT
- Lag TSLAG
- Lead TSLEAD
- Lag differences: standard, percentage, and logarithmic TSDELTA TSDELTAP TSDELTALOG
- Cumulative product CUMPROD
- Cumulative sum CUMSUM
- Moving average MOVAVG
- Moving sum MOVSUM
- Time series data presentation TABIT

Example:

R> # define two time series
R> myTS1=TIMESERIES(1:100,START=c(2000,1),FREQ='M')
R> myTS2=TIMESERIES(-(1:100),START=c(2005,1),FREQ='M')

R> # extend time series up to Apr 2020 with quadratic formula
R> myExtendedTS=TSEXTEND(myTS1, UPTO = c(2020,4), EXTMODE = 'QUADRATIC')

R> # merge two time series with sum
R> myMergedTS=TSMERGE(myExtendedTS,myTS2,fun = 'SUM')

R> # project time series on arbitrary time range
R> myProjectedTS=TSPROJECT(myMergedTS,TSRANGE = c(2004,2,2006,4))

R> # lag and delta
R> myLagTS=TSLAG(myProjectedTS,2)
R> myDeltaPTS=TSDELTAP(myLagTS,2)

R> # moving average
R> myMovAveTS=MOVAVG(myDeltaPTS,5)

R> # print data
R> TABIT(myMovAveTS, myTS1, TSRANGE=c(2004,8,2004,12))
bimets econometric modeling capabilities comprehend:

- Model Definition Language
- Estimation
- Simulation
- Multipliers Analysis
- Renormalization (Tinbergen Classification)

We will go through each item of the list with a simple Tinbergen-Klein model example.

Model Definition Language

bimets provides a language to unambiguously specify an econometric model. This section describes how to create a model and its general structure. The specification of an econometric model is translated and identified by keyword statements which are grouped in a model file, i.e. a plain text file with a specific syntax. Collectively, these keyword statements constitute the bimets Model Description Language (from now on MDL). The model specifications consist of groups of statements. Each statement begins with a keyword. The keyword classifies the component of the model which is being specified.

Below is an example of Klein’s model, that can either be stored in an R variable of class character or in a plain text file with a MDL compliant syntax.

The content of the `klein1.txt` variable is:

```R
R> klein1.txt="
MODEL
COMMENT> Consumption
BEHAVIORAL> cn
TSRANGE 1921 1 1941 1
EQ> cn = a1 + a2*p + a3*TSLAG(p,1) + a4*(w1+w2)
COEFF> a1 a2 a3 a4
COMMENT> Investment
```

ECONOMETRIC MODELING

DATE, PER, myMovAveTS , myTS1
Aug 2004, 8 , , 56
Sep 2004, 9 , , 57
Oct 2004, 10 , 3.849002 , 58
Nov 2004, 11 , 3.776275 , 59
Dec 2004, 12 , 3.706247 , 60
BEHAVIORAL> i
TSRANGE 1921 1 1941 1
EQ> i = b1 + b2*p + b3*TSLAG(p,1) + b4*TSLAG(k,1)
COEFF> b1 b2 b3 b4

COMMENT> Demand for Labor
BEHAVIORAL> w1
TSRANGE 1921 1 1941 1
EQ> w1 = c1 + c2*(y+t-w2) + c3*TSLAG(y+t-w2,1)+c4*time
COEFF> c1 c2 c3 c4

COMMENT> Gross National Product
IDENTITY> y
EQ> y = cn + i + g - t

COMMENT> Profits
IDENTITY> p
EQ> p = y - (w1+w2)

COMMENT> Capital Stock
IDENTITY> k
EQ> k = TSLAG(k,1) + i

END

Please note that there are circular dependencies between equations of the model, i.e. cn <- w1 <- y <- cn. Circular dependencies imply that the model simulation must be solved with an iterative algorithm.

As shown, the model definition is quite intuitive. The first keyword is MODEL, while at the end of the model definition we can find the END keyword. Available tags in the definition of a generic bimets model are:
- **EQUATION>** or **BEHAVIORAL>** indicate the beginning of a series of keyword statements describing a behavioral equation;
- **IDENTITY>** indicates the beginning of a series of keyword statements describing an identity or technical equation;
- **EQ>** specifies the mathematical expression for a behavioral equation or an identity equation;
- **COEFF>** specifies the coefficient names used in the EQ> keyword statement of a behavioral equation;
- **ERROR>** specifies an autoregressive process of a given order for the regression error;
- **PDL>** defines an Almon polynomial distributed lag;
- **RESTRICT>** is a keyword that can be used to specify linear coefficient restrictions;
- **IF** is used to conditionally evaluate an identity during a simulation, depending on the value of a logical expression. Thus, it is possible to have a model alternating between two or more identity specifications for each simulation period, depending upon results from other equations;

- **COMMENT** can be used to insert comments into a model;

The mathematical expression in the **EQ** and **IF** definitions can include the standard arithmetic operators, parentheses, and the following MDL time series functions:

- **TSLAG(ts,i)**: lag the ts time series by *i*-periods;
- **TSDELTA(ts,i)**: *i*-periods difference of the ts time series;
- **TSDELTAP(ts,i)**: *i*-periods percentage difference of the ts time series;
- **TSDELTALOG(ts,i)**: *i*-periods logarithmic difference of the ts time series;
- **MOVAVG(ts,i)**: *i*-periods moving average of the ts time series;
- **MOVSUM(ts,i)**: *i*-periods moving sum of the ts time series;
- **LOG(ts)**: log of the ts time series;
- **EXP(ts)**: exponential of the ts time series;
- **ABS(ts)**: absolute values of the ts time series;

More details are available in MDL and LOAD_MODEL help pages. LOAD_MODEL() is the **bimets** function that reads an MDL model file and creates an equivalent R data structure.

Back to Klein’s model example, the **bimets LOAD_MODEL** function reads the **klein1.txt** model as previously defined:

```R
R> kleinModel=LOAD_MODEL(modelText = klein1.txt)
Analyzing behaviorals...
Analyzing identities...
Optimizing...
Loaded model "klein1.txt":
   3 behaviorals
   3 identities
   12 coefficients
...LOAD MODEL OK
```

As shown in the output, **bimets** counted 3 behavioral equations, 3 identities and 12 coefficients. Now in the R session there is a variable named **kleinModel** that contains the model structure defined in the **klein1.txt** variable. From now on, the user can ask **bimets** about any details of this model.
For example, to gather information on the "cn" Consumption behavioral equation:

```r
R> kleinModel$behaviorals$cn

$eq
[1] "cn=a1+a2*p+a3*TSLAG(p,1)+a4*(w1+w2)"

$eqCoefficientsNames
[1] "a1" "a2" "a3" "a4"

$eqComponentsNames
[1] "cn" "p" "w1" "w2"

$tsrange
[1] 1921 1 1941 1

$eqRegressorsNames
[1] "1" "p" "TSLAG(p,1)" "(w1+w2)"

$eqSimExp
expression(cn[2,] = cn__ADDFACTOR[2,] + +cn__a1 * 1 + cn__a2 * p[2,] + cn__a3 * (p[1,]) + cn__a4 * (w1[2,] + w2[2,]))

etc...
```

Users can always read (or carefully change) any model parameters. The `LOAD_MODEL` function parses behavioral and identity expressions of the MDL definition, but it also does an important optimization. Properly reordering the model equations is a key preparatory step in the later phase of the simulation, in order to guarantee performance and convergence, if any, with the aim of minimizing the number of feedback endogenous variables.

The `LOAD_MODEL` function builds the incidence matrix of the model, and uses this matrix to calculate the proper evaluation order of the model equations during the simulation.

Back to the Klein’s model example, the incidence matrix and the reordering of the equations are stored in the following variables:

```r
R> kleinModel$incidence_matrix

           cn i w1 y p k
cn 0 0 1 0 1 0
i 0 0 0 0 1 0
w1 0 0 0 1 0 0
y 1 1 0 0 0 0
p 0 0 1 1 0 0
k 0 1 0 0 0 0
R> kleinModel$vpre
```
While simulating the Klein’s model, `bimets` will iterate on the computation of, in order, `w1` -> `p` -> `cn` -> `i` -> `y` (the `vsim` variables), by looking for convergence on `y` (the `vfeed` variable, only one in this example) that is the feedback variable. If the convergence is achieved, it will calculate `k` (the `vpost` variable). The `vpre` array in this example is empty, that is no equation has to be evaluated before the iterative algorithm.

More details on the equations reordering are available in `MDL` and `LOAD_MODEL` help pages.

Once the model has been parsed, users needs to load the data of all the time series involved in the model, by using the `LOAD_MODEL_DATA` function. In the following example, the code defines a list of time series and loads this list into the Klein’s model previously defined:

```r
R> kleinModelData=list(
  cn =TIMESERIES(39.8,41.9,45,49.2,50.6,52.6,55.1,56.2,57.3,57.8,
                  55,50.9,45.6,46.5,48.7,51.3,57.7,58.7,57.5,61.6,65,69.7,
                  START=c(1920,1),FREQ=1),
  g =TIMESERIES(4.6,6.6,6.1,5.7,6.6,6.5,6.6,7.6,7.9,8.1,9.4,10.7,
                  10.2,9.3,10,10.5,10.3,11.3,14.4,15.4,22.3,
                  START=c(1920,1),FREQ=1),
  i =TIMESERIES(2.7,-.2,1.9,5.2,3.5,1.5,6.4,2.3,5.1,1,-3.4,-6.2,
                  -5.1,-3,-1.3,2.1,12,-1.9,1.3,3.3,4.9,
                  START=c(1920,1),FREQ=1),
  k =TIMESERIES(182.8,182.6,184.5,189.7,192.7,197.8,203.4,207.6,
                 210.6,215.7,216.7,213.3,207.1,202,199,197.7,199.8,
                 201.8,199.9,201.2,204.5,209.4,
                 START=c(1920,1),FREQ=1),
  p =TIMESERIES(12.7,12.4,16.9,18.4,19.4,20.1,19.6,19.8,21.1,21.7,
                15.6,11.4,7,11.2,12.3,14,17.6,17.3,15.3,19,21.1,23.5,
                START=c(1920,1),FREQ=1),
  w1 =TIMESERIES(28.8,25.5,29.3,34.1,33.9,35.4,37.4,37.9,39.2,41.3,
                 37.9,34.5,29,28.5,30.6,33.2,36.8,41.8,41.2,41.6,45.53.3,
                 START=c(1920,1),FREQ=1),
  y =TIMESERIES(43.7,40.6,49.1,55.4,56.4,58.7,60.3,61.3,64,67,57.7,
```
50.7, 41.3, 45.3, 48.9, 53.3, 61.8, 65, 61.2, 68.4, 74.1, 85.3,
START=c(1920,1),FREQ=1),
t = TIMESERIES(3.4, 7.7, 3.9, 4.7, 3.8, 5.5, 7.6, 7.4, 6.2, 4.7, 7.7, 7.5, 8.3, 5.4,
6.8, 7.2, 8.3, 6.7, 7.4, 8.9, 9.6, 11.6,
START=c(1920,1),FREQ=1),
time= TIMESERIES(NA, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
START=c(1920,1),FREQ=1),
w2 = TIMESERIES(2.2, 2.7, 2.9, 2.9, 3.1, 3.2, 3.3, 3.6, 3.7, 4.2, 4.8,
5.3, 5.6, 6.1, 7.4, 6.7, 7.7, 7.8, 8.5,
START=c(1920,1),FREQ=1)
}

R> kleinModel=LOAD_MODEL_DATA(kleinModel,kleinModelData)

Since time series and other data (e.g. regressor coefficients, error coefficients, constant adjustments,
targets, instruments, etc...) are stored into the model object, users can define multiple model objects - each with its own arbitrary data - in the same R session. bimets makes it possible to estimate, simulate and compare results from different models with different data sets. Furthermore, users can easily save an estimated or a simulated model as a standard R variable, thus reloading it later, having all available data and time series stored into it, i.e. endogenous and exogenous time series, estimated coefficients, constant adjustments, simulation options, simulated time series, calculated instruments, targets, etc. (see also RENORM and SIMULATE)

An advanced MDL model example follows:

R> # KLEIN MODEL WITH AUTOCORRELATION, RESTRICTIONS,
R> # CONDITIONAL EVALUATIONS AND LHS FUNCTIONS

R> lhsKlein1.txt="
MODEL

COMMENT> Modified Klein Model 1 of the U.S. Economy with PDL,
COMMENT> autocorrelation on errors, restrictions,
COMMENT> conditional evaluations and LHS functions on EQ

COMMENT> Exp Consumption
BEHAVIORAL> cn
TSRANGE 1925 1 1941 1
EQ> EXP(cn) = a1 + a2*p + a3*LAG(p,1) + a4*(w1+w2)
COEFF> a1 a2 a3 a4
ERROR> AUTO(2)

COMMENT> Log Investment
BEHAVIORAL> i
TSRANGE 1925 1 1941 1
EQ> LOG(i) = b1 + b2*p + b3*LAG(p,1) + b4*LAG(k,1)
COEFF> b1 b2 b3 b4
RESTRICT> b2 + b3 = 1

COMMENT> Demand for Labor
BEHAVIORAL> w1
TSRANGE 1925 1 1941 1
EQ> w1 = c1 + c2*(TSDELTA(y)+t-w2) + c3*LAG(TSDELTA(y)+t-w2,1)+c4*time
COEFF> c1 c2 c3 c4
PDL> c3 1 3

COMMENT> Delta Gross National Product
IDENTITY> y
EQ> TSDELTA(y) = EXP(cn) + LOG(i) + g - t

COMMENT> Profits
IDENTITY> p
EQ> p = TSDELTA(y) - (w1+w2)

COMMENT> Capital Stock with switches
IDENTITY> k
EQ> k = LAG(k,1) + LOG(i)
IF> LOG(i) > 0
IDENTITY> k
EQ> k = LAG(k,1)
IF> LOG(i) <= 0

END"

See MDL help page for details.

Estimation

The bimets ESTIMATE function estimates equations that are linear in the coefficients, as specified in the behavioral equations of the model object. Coefficients can be estimated for single equations or blocks of simultaneous equations. The estimation function supports:

- **Ordinary Least Squares**;
- **Instrumental Variables**;
- **Deterministic linear restrictions on the coefficients**;
- **Almon Polynomial Distributed Lags**;
- **Autocorrelation of the errors**;
- **Structural stability analysis (Chow tests)**;

Restrictions procedure derives from the theory of Lagrange Multipliers, while the Cochrane-Orcutt method allows to account for residuals autocorrelation.

The estimation of the previously defined Klein's model is shown in the following example:

R> kleinModel=ESTIMATE(kleinModel)
Users can also estimate a selection of behavioral equations:

\[\text{R> kleinModel=ESTIMATE(kleinModel,eqList=c('cn'))} \]

`.CHECK_MODEL_DATA(): warning, there are undefined values in time series "time".

Estimate the Model klein1.txt:
the number of behavioral equations to be estimated is 1.
The total number of coefficients is 4.

BEHAVIORAL EQUATION: cn
Estimation Technique: OLS

\[cn = 16.2366 \]
\[\text{T-stat. 12.46382 ***} \]
\[+ 0.1929344 p \]
\[\text{T-stat. 2.115273 *} \]
\[+ 0.0898849 \text{TSLAG(p,1)} \]
\[\text{T-stat. 0.9915824} \]
\[+ 0.7962187 (w1+w2) \]
\[\text{T-stat. 19.93342 **} \]

STATs:
R-Squared : 0.9810082
Adjusted R-Squared : 0.9776567
Durbin-Watson Statistic : 1.367474
Sum of squares of residuals : 17.87945
Standard Error of Regression : 1.02554
Log of the Likelihood Function : -28.10857
F-statistic : 292.7076
F-probability : 7.993606e-15
Akaike's IC : 66.21714
Schwarz's IC : 71.43975
Mean of Dependent Variable : 53.99524
Number of Observations : 21
Number of Degrees of Freedom : 17
Current Sample (year-period) : 1921-1 / 1941-1

Signif. codes: *** 0.001 ** 0.01 * 0.05

...ESTIMATE OK
A similar output is shown for each estimated regression. Once the estimation is completed, coefficient values, residuals, statistics, etc. are stored into the model object.

R> #print estimated coefficients
R> kleinModel$behaviorals$cn$coefficients

[,1]
a1 16.2366003
a2 0.1929344
a3 0.0898849
a4 0.7962187

R> #print residuals
R> kleinModel$behaviorals$cn$residuals

Time Series:
Start = 1921
End = 1941
Frequency = 1
[1] -0.323893544 -1.250007790 -1.565741401 -0.493503129 0.007607907
[2] 0.869996295 1.338476868 1.054978943 -0.588557053 0.282311734
[3] -0.229653489 -0.322131892 0.322281007 -0.058010257 -0.034662717
[4] 1.616497310 -0.435973632 0.210054350 0.989201310 0.785077489
[5] -2.173448309

R> #print a selection of estimate statistics
R> kleinModel$behaviorals$cn$statistics$DegreesOfFreedom

[1] 17

R> kleinModel$behaviorals$cn$statistics$StandardErrorRegression

[1] 1.02554

R> kleinModel$behaviorals$cn$statistics$CoeffCovariance

 a1 a2 a3 a4
a1 1.697022714 0.0005013886 -0.0177068887 -0.0329172192
a2 0.0005013886 0.0083192948 -0.0052704304 -0.0013188865
a3 -0.0177068887 -0.0052704304 0.0082170486 -0.0006710788
a4 -0.0329172192 -0.0013188865 -0.0006710788 0.0015955167

R> kleinModel$behaviorals$cn$statistics$AdjustedRSquared

[1] 0.9776567

R> kleinModel$behaviorals$cn$statistics$LogLikelihood

Below is an example of a model estimation that presents coefficient restrictions, PDL, error auto-
correlation and conditional equation evaluations:

R> #define model
R> advancedKlein1.txt=

"MODEL

COMMENT> Modified Klein Model 1 of the U.S. Economy with PDL,
COMMENT> autocorrelation on errors, restrictions and
COMMENT> conditional equation evaluations

COMMENT> Consumption with autocorrelation on errors
BEHAVIORAL> cn
TSRANGE 1925 1 1941 1
EQ> cn = a1 + a2*p + a3*TSLAG(p,1) + a4*(w1+w2)
COEFF> a1 a2 a3 a4
ERROR> AUTO(2)

COMMENT> Investment with restrictions
BEHAVIORAL> i
TSRANGE 1923 1 1941 1
EQ> i = b1 + b2*p + b3*TSLAG(p,1) + b4*TSLAG(k,1)
COEFF> b1 b2 b3 b4
RESTRICT> b2 + b3 = 1

COMMENT> Demand for Labor with PDL
BEHAVIORAL> w1
TSRANGE 1925 1 1941 1
EQ> w1 = c1 + c2*(y+t-w2) + c3*TSLAG(y+t-w2,1) + c4*time
COEFF> c1 c2 c3 c4
PDL> c3 1 2

COMMENT> Gross National Product
IDENTITY> y
EQ> y = cn + i + g - t

COMMENT> Profits
IDENTITY> p
EQ> p = y - (w1+w2)

COMMENT> Capital Stock with IF switches
IDENTITY> k
EQ> k = TSLAG(k,1) + i
IF> i > 0
IDENTITY> k
EQ> k = TSLAG(k,1)
IF> i <= 0

END"
R> #load model and data
R> advancedKleinModel=LOAD_MODEL(modelText=advancedKlein1.txt)

Analyzing behaviorals...
Analyzing identities...
Optimizing...
Loaded model "advancedKlein1.txt":
 3 behaviorals
 3 identities
 12 coefficients
...LOAD MODEL OK

R> advancedKleinModel=LOAD_MODEL_DATA(advancedKleinModel,kleinModelData)

Load model data "kleinModelData" into model "advancedKlein1.txt"...
...LOAD MODEL DATA OK

R> #estimate model
R> advancedKleinModel=ESTIMATE(advancedKleinModel)

.CHECK_MODEL_DATA(): warning, there are undefined values in time series "time".

Estimate the Model advancedKlein1.txt:
The number of behavioral equations to be estimated is 3.
The total number of coefficients is 13.

BEHAVIORAL EQUATION: cn
Estimation Technique: OLS
Autoregression of Order 2 (Cochrane-Orcutt procedure)

Convergence was reached in 9 / 20 iterations.

cn = 19.01352
 T-stat. 12.13083 ***
 + 0.3442816 p
 T-stat. 3.533253 **
 + 0.0344317 TSLAG(p,1)
 T-stat. 0.3937881
 + 0.6993905 (w1+w2)
 T-stat. 14.0808 ***
ERROR: AUTO(2)

AUTOREGRESSIVE PARAMETERS:

<table>
<thead>
<tr>
<th>Rho</th>
<th>Std. Error</th>
<th>T-stat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05743131</td>
<td>0.3324101</td>
<td>0.1727725</td>
</tr>
<tr>
<td>0.007785936</td>
<td>0.2647013</td>
<td>0.02941404</td>
</tr>
</tbody>
</table>

STATs:

- R-Squared : 0.985263
- Adjusted R-Squared : 0.9785644
- Durbin-Watson Statistic : 1.966609
- Sum of squares of residuals : 9.273455
- Standard Error of Regression : 0.9181728
- Log of the Likelihood Function : -18.97047
- F-statistic : 147.0844
- F-probability : 1.090551e-09
- Akaike's IC : 51.94093
- Schwarz's IC : 57.77343
- Mean of Dependent Variable : 55.71765
- Number of Observations : 17
- Number of Degrees of Freedom : 11
- Current Sample (year-period) : 1925-1 / 1941-1

Signif. codes: *** 0.001 ** 0.01 * 0.05

--

BEHAVIORAL EQUATION: i

Estimation Technique: OLS

\[
i = 2.868104 + 0.5787626 p + 0.4212374 \text{TSLAG}(p,1) - 0.0916037 \text{TSLAG}(k,1)
\]

\[
\text{T-stat.} \quad 0.3265098 \quad 4.456542 \quad 3.243579 \quad -2.11748
\]

RESTRICTIONS:

\[b2+b3=1\]
RESTRICTIONS F-TEST:
F-value : 8.194478
F-prob(1,15) : 0.0118602

STATs:
R-Squared : 0.8928283
Adjusted R-Squared : 0.8794319
Durbin-Watson Statistic : 1.173106
Sum of squares of residuals : 26.76483
Standard Error of Regression : 1.293368
Log of the Likelihood Function : -30.215
F-statistic : 66.64659
F-probability : 1.740364e-08
Akaike's IC : 68.43001
Schwarz's IC : 72.20776
Mean of Dependent Variable : 1.310526
Number of Observations : 19
Number of Degrees of Freedom : 16
Current Sample (year-period) : 1923-1 / 1941-1

Signif. codes: *** 0.001 ** 0.01 * 0.05

BEHAVIORAL EQUATION: w1
Estimation Technique: OLS

\[w1 = 1.103637 + 0.4358984 (y + t - w2) + c3 \text{TSLAG}(y + t - w2, 1) + 0.1363549 \text{time} \]

PDL:
c3 1 2

Distributed Lag Coefficient: c3
Structural Stability

One of the main purposes of the econometric modeling is its use for forecast and policy evaluation and, to this end, the stability of a behavioral equation parameters over time should be verified. In order to check for structural stability two different procedures, which can be derived from the so-called Chow-tests, are applied.

Given a sample of observations (i.e. the base `TSRANGE`) and selecting an arbitrary forward extension (i.e. the extended `TSRANGE`) we can perform the same regression by using these two time ranges.

In general a stability analysis is carried on in the following ways:
- comparing the parameter estimates arising from the two regressions: this is known as the covariance analysis;
- checking the accuracy of the forecast for the dependent variable in the extended `TSRANGE`, using the estimates produced in the base `TSRANGE`: this is known as the predictive power test.

The test statistic follows the F distribution and can be performed during the `ESTIMATE()` function execution by using the `CHOWTEST` argument set to `TRUE` (more details in the `ESTIMATE` help page).

Example:
chow test for the consumption equation
base TSRANGE set to 1921/1935
R> kleinModelChow <- ESTIMATE(kleinModel,
 eqList='cn',
 TSRANGE=c(1921,1,1935,1),
 forceTSRANGE=TRUE,
 CHOWTEST=TRUE)

Estimate the Model klein1.txt:
the number of behavioral equations to be estimated is 1.
The total number of coefficients is 4.

BEHAVIORAL EQUATION: cn
Estimation Technique: OLS

cn = 13.1275
 T-stat. 6.5046 ***
 + 0.16698 p
 T-stat. 2.18304
 + 0.0885684 TSLAG(p,1)
 T-stat. 0.975042
 + 0.887964 (w1+w2)
 T-stat. 12.61 ***

STATs:
R-Squared : 0.978728
Adjusted R-Squared : 0.972926
Durbin-Watson Statistic : 1.38
Sum of squares of residuals : 6.9186
Standard Error of Regression : 0.793072
Log of the Likelihood Function : -15.4803
F-statistic : 168.7
F-probability : 1.77673e-09
Akaike's IC : 40.9606
Schwarz's IC : 44.5009
Mean of Dependent Variable : 50.9133
Number of Observations : 15
Number of Degrees of Freedom : 11
Current Sample (year-period) : 1921-1 / 1935-1

Signif. codes: *** 0.001 ** 0.01 * 0.05
STABILITY ANALYSIS:
Behavioral equation: cn

Chow test:
Sample (auto) : 1936-1 / 1941-1
F-value : 4.48873
F-prob(6,17) : 0.668723

Predictive Power:

<table>
<thead>
<tr>
<th>DATE</th>
<th>PER</th>
<th>ACTUAL</th>
<th>PREDICT</th>
<th>ERROR</th>
<th>STDERR</th>
<th>TSTAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1936</td>
<td>1</td>
<td>57.7</td>
<td>56.5544</td>
<td>1.14564</td>
<td>1.01181</td>
<td>1.13227</td>
</tr>
<tr>
<td>1937</td>
<td>1</td>
<td>58.7</td>
<td>59.931</td>
<td>-1.23099</td>
<td>1.0201</td>
<td>-1.20673</td>
</tr>
<tr>
<td>1938</td>
<td>1</td>
<td>57.5</td>
<td>57.9721</td>
<td>-0.472122</td>
<td>0.968638</td>
<td>-0.487409</td>
</tr>
<tr>
<td>1939</td>
<td>1</td>
<td>61.6</td>
<td>61.5207</td>
<td>0.0793139</td>
<td>1.20048</td>
<td>0.0660685</td>
</tr>
<tr>
<td>1940</td>
<td>1</td>
<td>65</td>
<td>65.3957</td>
<td>-0.395718</td>
<td>1.24227</td>
<td>-0.318545</td>
</tr>
<tr>
<td>1941</td>
<td>1</td>
<td>69.7</td>
<td>73.7965</td>
<td>-4.09655</td>
<td>1.6693</td>
<td>-2.45405</td>
</tr>
</tbody>
</table>

...ESTIMATE OK

Simulation

The simulation of an econometric model basically consists in solving the system of the equations describing the model for each time period in the specified time interval. Since the equations may also not be linear in the variables, and since the graph derived from the incidence matrix may be cyclic, the usual methods based on linear algebra are not applicable, and the simulation must be solved by using an iterative algorithm.

bimets simulation capabilities support:

- Static simulations: a static multiple equation simulation, in which the historical values for the lagged endogenous variables are used in the solutions of subsequent periods;

- Dynamic simulations: a dynamic simulation, in which the simulated values for the lagged endogenous variables are used in the solutions of subsequent periods;

- Forecast simulations: similar to dynamic simulation, but during the initialization of the iterative algorithm the starting values of endogenous variables in a period are set equal to the simulated values of the previous period. This allows the simulation of future endogenous observations, i.e. the forecast;
- **Residuals check**: a single period, single equation simulation; simulated time series in output are just the computation of the RHS (right-hand-side) of their equation, by using the historical values of the involved time series and by accounting for error autocorrelation and PDLs, if any;

- **Partial or total exogenization of endogenous variables**: in the provided time interval (i.e. partial exog.) or in the whole simulation time range (i.e. total exog.), the values of the selected endogenous variables can be definitely set to their historical values, by excluding their equations from the iterative algorithm of simulation;

- **Constant adjustment of endogenous variables (add-factors)**: adds another exogenous time series - the "constant adjustment" - in the equation of the selected endogenous variables;

- **Backfill of simulated time series**: specifies the periods of historical data prior to the simulation time interval which are to be included in the simulation results;

More details are available in the **SIMULATE** help page.

Back to Kelin’s model example, let’s forecast the GNP (i.e. the ”y” endogenous variable) up to 1943:

R> #FORECAST GNP in 1942 and 1943

R> #we need to extend exogenous variables in 1942 and 1943
R> kleinModel$modelData=within(kleinModel$modelData,
 {
 w2 = TSEXTEND(w2, UPTO=c(1943,1))
 t = TSEXTEND(t, UPTO=c(1943,1))
 g = TSEXTEND(g, UPTO=c(1943,1))
 time = TSEXTEND(time, UPTO=c(1943,1),
 ,EXTMODE='LINEAR')
 })

R> #simulate model
R> kleinModel=SIMULATE(kleinModel
 ,simType='FORECAST'
 ,TSRANGE=c(1940,1,1943,1)
 ,simConvergence=0.00001
 ,simIterLimit=100
)

Simulation: 100.00
...SIMULATE OK

R> #get forecasted GNP
R> TABIT(kleinModel$simulation$y)

DATE, PER, kleinModel$simulation$y
1940, 1 , 74.57806
1941, 1, 94.01525
1942, 1, 133.9687
1943, 1, 199.9133

In the following figure you will find the historical consumption, the dynamic simulated consumption and the RHS computation of the consumption equation, from 1921 to 1941:

Below is an example of advanced simulation:

R> #STATIC SIMULATION EXAMPLE WITH EXOGENIZATION AND CONSTANT ADJUSTMENTS

R> #define exogenization list
R> # 'cn' exogenized in 1923-1925
R> # 'i' exogenized in the whole TSRANGE
R> exogenizeList=list(
 cn = c(1923,1,1925,1),
 i = TRUE
)

R> #define add-factor list
R> constantAdjList=list(
 cn = TIMESERIES(1,-1,START=c(1923,1),FREQ='A'),
 y = TIMESERIES(0.1,-0.1,-0.5,START=c(1926,1),FREQ='A')
)
The **bimets** `MULTMATRIX` function computes the matrix of both impact and interim multipliers, for a selected set of endogenous variables (i.e. **TARGET**) with respect to a selected set of exogenous variables (i.e. **INSTRUMENT**), by subtracting the results from different simulations in each period of the provided time range (i.e. **TSRANGE**). The simulation algorithms are the same as those used for the **SIMULATE** operation.

The `MULTMATRIX()` procedure is articulated as follows:

1. simultaneous simulations are done;
2. the first simulation establishes the base line solution (without shocks);
3. the other simulations are done with shocks applied to each of the **INSTRUMENT** one at a time for every period in **TSRANGE**;
4. each simulation follows the defaults described in the **Simulation** section, but has to be **STATIC** for the IMPACT multipliers and **DYNAMIC** for INTERIM multipliers;
5. given the `MM_SHOCK` shock amount as a very small positive number, derivatives are computed by subtracting the base line solution of the **TARGET** from the shocked solution, then dividing by the value of the base line **INSTRUMENT** times the `MM_SHOCK`;

bimets users can also declare an endogenous variable as the **INSTRUMENT** variable. In this case, the constant adjustment related to the provided endogenous variable will be used as the **INSTRUMENT** exogenous variable.

Back to our Klein’s model example, we can calculate impact multipliers of Government non-Wage Spending "g" and Government Wage Bill "w2" with respect of Consumption "cn" and Gross National Product "y" in the year 1941 by using the previously estimated model:

```r
R> kleinModel=SIMULATE(kleinModel
, simType='STATIC'
, TSRANGE=c(1923,1,1941,1)
, simConvergence=0.00001
, simIterLimit=100
, Exogenize=exogenizeList
, ConstantAdjustment=constantAdjList
)

MULTIPLIERS ANALYSIS

The **bimets** `MULTMATRIX` function computes the matrix of both impact and interim multipliers, for a selected set of endogenous variables (i.e. **TARGET**) with respect to a selected set of exogenous variables (i.e. **INSTRUMENT**), by subtracting the results from different simulations in each period of the provided time range (i.e. **TSRANGE**). The simulation algorithms are the same as those used for the **SIMULATE** operation.

The `MULTMATRIX()` procedure is articulated as follows:

1. simultaneous simulations are done;
2. the first simulation establishes the base line solution (without shocks);
3. the other simulations are done with shocks applied to each of the **INSTRUMENT** one at a time for every period in **TSRANGE**;
4. each simulation follows the defaults described in the **Simulation** section, but has to be **STATIC** for the IMPACT multipliers and **DYNAMIC** for INTERIM multipliers;
5. given the `MM_SHOCK` shock amount as a very small positive number, derivatives are computed by subtracting the base line solution of the **TARGET** from the shocked solution, then dividing by the value of the base line **INSTRUMENT** times the `MM_SHOCK`;

**bimets** users can also declare an endogenous variable as the **INSTRUMENT** variable. In this case, the constant adjustment related to the provided endogenous variable will be used as the **INSTRUMENT** exogenous variable.

Back to our Klein’s model example, we can calculate impact multipliers of Government non-Wage Spending "g" and Government Wage Bill "w2" with respect of Consumption "cn" and Gross National Product "y" in the year 1941 by using the previously estimated model:

```r
R> kleinModel=MULTMATRIX(kleinModel,
 TSRANGE=c(1941,1,1941,1),
 INSTRUMENT=c('w2','g'),
```
TARGET=c('cn', 'y')
)
Multiplier Matrix: 100.00
...MULTMATRIX OK

R> kleinModel$MultiplierMatrix

<table>
<thead>
<tr>
<th></th>
<th>cn_1</th>
<th>g_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>w2_1</td>
<td>0.4540346</td>
<td>1.671956</td>
</tr>
<tr>
<td>cn_1</td>
<td>0.2532000</td>
<td>3.653260</td>
</tr>
<tr>
<td>y_1</td>
<td>0.4478202</td>
<td>1.582292</td>
</tr>
</tbody>
</table>

Results show that the impact multiplier of "y" with respect to "g" is +3.65. If we change the Government non-Wage Spending "g" value in 1941 from 22.3 (his historical value) to 23.3 (+1), then the simulated Gross National Product "y" in 1941 changes from 95.2 to 99, thusly roughly confirming the +3.65 impact multiplier. Note that "g" only appears once in the model definition, and only in the "y" equation, with a coefficient of one (Keynes would approve).

An interim-multiplier example follows:

R> #multi-period interim multipliers
R> kleinModel=MULTMATRIX(kleinModel,
                       TSRANGE=c(1940,1,1941,1),
                       INSTRUMENT=c('w2', 'g'),
                       TARGET=c('cn', 'y'))

Multiplier Matrix: 100.00
...MULTMATRIX OK

R> #output multipliers matrix (note the zeros where the period
R> #of the INSTRUMENT is greater than the period of the TARGET)
R> kleinModel$MultiplierMatrix

<table>
<thead>
<tr>
<th></th>
<th>cn_1</th>
<th>g_1</th>
<th>w2_2</th>
<th>g_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>w2_1</td>
<td>0.4478202</td>
<td>1.582292</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>cn_1</td>
<td>0.2433382</td>
<td>3.510971</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>y_1</td>
<td>-0.3911001</td>
<td>1.785042</td>
<td>0.4540346</td>
<td>1.671956</td>
</tr>
<tr>
<td>y_2</td>
<td>-0.6251177</td>
<td>2.843960</td>
<td>0.2532000</td>
<td>3.653260</td>
</tr>
</tbody>
</table>

Renormalization

The renormalization of econometric models consists of solving the model while interchanging the role of one or more endogenous variables with an equal number of exogenous variables.

The bimets RENORM procedure determines the values for the INSTRUMENT exogenous variables which allow the objective TARGET endogenous variables to be achieved, with respect to the constraints given by the model MDL definition.

This is an approach to economic and monetary policy analysis, and is based on two assumptions:
1. there exists a desired level for a set of n endogenous variables of the model defined as TARGET; 
2. there exists a set of n exogenous variables defined as INSTRUMENT;

Given these premises, the renormalization process consists in determining the values of the exogenous variables chosen as INSTRUMENT allowing us to achieve the desired values for the endogenous variables designated as TARGET. In other words the procedure allows users to exchange the role of exogenous and endogenous among a set of variables pairs.

Given a list of exogenous INSTRUMENT variables and a list of TARGET endogenous time series, the iterative procedure can be split into the following steps:

1. Computation of the multipliers matrix MULTMAT of the TARGET endogenous variables with respect to the INSTRUMENT exogenous variables (this is a square matrix by construction);

2. Solution of the linear system (if any):
   \[ V_{exog}(i+1) = V_{exog}(i) + MULTMAT^{-1} \times (V_{endog}(i) - TARGET) \], where \( V_{exog}(i) \) are the exogenous variables in the INSTRUMENT list and \( V_{endog}(i) \) are the endogenous variables that have a related target in the TARGET list, given \( i \) the current iteration;

3. Simulation of the model with the new set of exogenous variables computed in step 2, then a convergence check by comparing the subset of endogenous variables arising from this simulation and the related time series in TARGET list. If the convergence condition is satisfied, or the maximum number of iterations is reached, the algorithm will stop, otherwise it will go back to step 1;

Users can also declare an endogenous variable as an INSTRUMENT variable. In this case, the constant adjustment related to the provided endogenous variable will be used as the instrument exogenous variable. This procedure is particularly suited for the automatic computation of the add-factors needed to fine tune the model into a baseline path and to improve the forecasting accuracy.

If the convergence condition is satisfied, the RENORM procedure will return the requested INSTRUMENT time series allowing to achieve the desired values for endogenous variables designated as TARGET.

Back to our Klein’s model example, we can perform the renormalization of the previously estimated model. First of all, the targets must be defined:

```r
R> #we want an arbitrary value on Consumption of 66 in 1940 and 78 in 1941
R> #we want an arbitrary value on GNP of 77 in 1940 and 98 in 1941

R> kleinTargets = list(
 cn = TIMESERIES(66,78,START=c(1940,1),FREQ=1),
 y = TIMESERIES(77,98,START=c(1940,1),FREQ=1)
)
```

Then, we can perform the model renormalization by using the ”w2” (Wage Bill of the Government Sector) and the ”g” (Government non-Wage Spending) exogenous variables as INSTRUMENT, in the years 1940 and 1941:

```r
R> kleinModel=RENORM(kleinModel)
```
Once RENORM completes, the calculated values of exogenous INSTRUMENT allowing us to achieve the desired endogenous TARGET values are stored into the model:

```r
R> with(kleinModel, TABIT(modelData$w2,

 renorm$INSTRUMENT$w2,

 modelData$g,

 renorm$INSTRUMENT$g,

 TSRANGE=c(1940,1,1941,1)

)

DATE, PER, modelData$w2, renorm$INSTRUMENT$w2, modelData$g, renorm$INSTRUMENT$g
1940, 1 , 8 , 7.413331 , 15.4 , 16.1069
1941, 1 , 8.5 , 9.3436 , 22.3 , 22.65985
```

So, if we want to achieve on "cn" (Consumption) an arbitrary simulated value of 66 in 1940 and 78 in 1941, and if we want to achieve on "y" (GNP) an arbitrary simulated value of 77 in 1940 and 98 in 1941, we need to change exogenous "w2" (Wage Bill of the Government Sector) from 8 to 7.41 in 1940 and from 8.5 to 9.34 in 1941, and we need to change exogenous "g" (Government non-Wage Spending) from 15.4 to 16.1 in 1940 and from 22.3 to 22.66 in 1941.

Let's verify:

```r
R> #create a new model
R> kleinRenorm=kleinModel
R> #get instruments to be used
R> newInstruments=kleinModel$renorm$INSTRUMENT
R> #change exogenous by using new instruments data
R> kleinRenorm$modelData=within(kleinRenorm$modelData,

 {
 w2[[1940,1]]=newInstruments$w2[[1940,1]]
 w2[[1941,1]]=newInstruments$w2[[1941,1]]
 g[[1940,1]]=newInstruments$g[[1940,1]]
 g[[1941,1]]=newInstruments$g[[1941,1]]
 })
R> #users can also replace last two commands with:
R> #kleinRenorm$modelData=kleinRenorm$renorm$modelData
```
R> #simulate the new model
R> kleinRenorm=SIMULATE(kleinRenorm
   ,TSRANGE=c(1940,1,1941,1)
   ,simConvergence=0.00001
   ,simIterLimit=100
)
Simulation: 100.00
...SIMULATE OK

R> #verify targets are achieved
R> with(kleinRenorm$simulation,
   TABIT(cn,y)
)

DATE, PER, cn , y
1940, 1 , 66.01116 , 77.01772
1941, 1 , 78.02538 , 98.04121

**bimets** estimation and simulation results have been compared to the output results of leading commercial econometric software, by using several large and complex models.

The models used in the comparison have more than:

+100 behavioral equations;
+700 technical identities;
+500 coefficients;
+1000 time series of endogenous and exogenous variables;

In these models we can find equations with restricted coefficients, polynomial distributed lags, error autocorrelation and conditional evaluation of technical identities; all models have been simulated in static, dynamic, and forecast mode, with exogenization and constant adjustments of endogenous variables through the use of **bimets** capabilities.

In the +800 endogenous simulated time series over the +20 simulated periods (i.e. more than 16.000 simulated observations), the average percentage difference between **bimets** and leading commercial software results has a magnitude of $10^{-7}$. The difference between results calculated by using different commercial software has the same average magnitude.

**bimets** stands for Bank of Italy Model Easy Time Series; it does not depend on compilers or third-party software so it can be freely downloaded and installed on Linux, MS Windows(R) and Mac OSX(R), without any further requirements.

More details in:
Details

Package: bimets - Time Series And Econometric Modeling In R
Type: Package
License: GPL-3

Disclaimer: The views and opinions expressed in these pages are those of the authors and do not necessarily reflect the official policy or position of the Bank of Italy. Examples of analysis performed within these pages are only examples. They should not be utilized in real-world analytic products as they are based only on very limited and dated open source information. Assumptions made within the analysis are not reflective of the position of the Bank of Italy.

Author(s)
Andrea Luciani <andrea.luciani@bancaditalia.it>
Roberto Stok <roberto.stok@bancaditalia.it>

Description
This function returns the array built with input argument values. Input can be time series, numerical arrays or strings.

Usage
A1D(..., length = NULL, avoidCompliance = FALSE)

Arguments
... Input argument list. This function accepts strings, time series, objects of class numeric or logical. Input time series must satisfy the compliance control check defined in is.bimets
**length**

Length of output array, that must be greater than the sum of each input argument size: if the length of the output array is provided, than the output array will be eventually filled with zeros.

**avoidCompliance**

If TRUE, compliance control check of input time series will be skipped. See `is.bimets`

**Value**

This function returns an array of the same class of the input.

**See Also**

- NOELS
- is.bimets
- BIMETS indexing
- TIMESERIES
- TSDATES
- LOCS
- NAMELIST
- INTS
- TSINFO
- TSLOOK
- TABIT
- ELIMELS
- INDEXNUM

**Examples**

```r
n=10;
create ts
ts1=TSERIES(rnorm(n),START=c(2000,1),FREQ=1)

create A1D() array with scalars, ts, and NA
out_a1d=A1D(length=25, ts1, 1, -8.9, NA)
p=print(out_a1d)

same example no length specified
out_a1d=A1D(ts1, 1, -8.9, NA)
p=print(out_a1d)

strings example
out_a1d=A1D(length=5,'aa','bb','ccc')
p=print(out_a1d)
```
ANNUAL

Annual Time Series (Dis)Aggregation

Description

This function returns an annual aggregated time series, by using as input a semiannual, quarterly, monthly or daily time series.

Usage

ANNUAL(x = NULL, fun = NULL, avoidCompliance = FALSE, ...)

Arguments

x

Input time series, that must satisfy the compliance control check defined in
is.bimets.

fun

STOCK: the output value of a year is equal to the value of the input time series
in the last period of the same year
NSTOCK: the output value of a year is equal to the value of the input time se-
ries in the last non-missing NA period of the same year
SUM: the output value of a year is equal to the sum of all the observations of
the input time series in the same year
NSUM: the output value of a year is equal to the sum of all the non-missing
NA observations of the input time series in the same year
AVE: the output value of a year is equal to the average of all the observations of
the input time series in the same year
NAVE: the output value of a year is equal to the average of all the non-missing
NA observations of the input time series in the same year

avoidCompliance

If TRUE, compliance control check of input time series will be skipped. See
is.bimets

... Backward compatibility.

Value

This function returns an annual BIMETS time series.

See Also

SEMIANNUAL
QUARTERLY
MONTHLY
DAILY
as.bimets

### Examples

```r
#TS DAILY TO ANNUAL
n=366
ts1=TIMESERIES(0:n,START=c(2000,1),FREQ='D')
ts1[10]=NA
TABIT(ANNUAL(ts1,fun='NAVE'))
```

### as.bimets

Convert a Time Series to BIMETS

### Description

This function tries to convert a time series of class `ts()` or `xts()` into a BIMETS time series that satisfy the compliance control check defined in `is.bimets`.

All the information in the input time series will be preserved.

Input time series must be of class `ts()` or `xts()`, and will be converted in the BIMETS class-type specified in the global option `BIMETS_CONF_CCT` (see BIMETS configuration).

If the input time series has a temporal discontinuity (i.e. a missing pair Date-Value in the case of `xts()` time series) then the missing pair Date-Value is inserted in the output time series with a missing value `NA`, or with the value provided in the `FILLVALUE` argument.

If `BIMETS_CONF_CCT='XTS'`, in the case of a monthly time series the `.indexCLASS` is converted to the class `yearmon()`; in the case of a quarterly time series the `.indexCLASS` is converted to `yearqtr()`; in the case of other input frequency the `.indexCLASS` is converted to `Date()`. If `BIMETS_CONF_CCT='XTS'` the dates of all the output observations are set accordingly to the BIMETS global option `BIMETS_CONF_DIP`, i.e. the first or the last dates in the period (see BIMETS configuration).

If the input time series has multiple observations in the same date, e.g. an `xts()` with a two or more observations in the same date, the duplication is removed and the output time series will contain only the later observation (see examples).

If the input time series is multivariate the output time series will contain only the first column of the input matrix of data (where the matrix of data is the matrix built with the aligned input time series as columns).

If the input time series is a daily time series of class `xts()` and the global option `BIMETS_CONF_CCT='TS'` then the 366 period of the output time series in each non-bissextile year will have the value of the 365 period in the same year (duplicated value).

### Usage

```r
as.bimets(x=NULL, FILLVALUE=NA, VERBOSE=FALSE, ...)
```
**as.bimets**  

**Arguments**

- **x**  
  Input time series of class `ts()` or `xts()`.
- **FILLVALUE**  
  Value inserted in the output time series in the case of temporal discontinuity. Defaults to missing NA.
- **VERBOSE**  
  If TRUE, a verbose description of inserted and/or removed observations, if any, will be shown.
- **...**  
  Backward compatibility.

**Value**

This function returns a BIMETS time series (see also BIMETS configuration).

**See Also**

- `is.bimets`
- `TIMESERIES`
- `BIMETS indexing`
- `BIMETS configuration`
- `fromBIMETSstoXTS`
- `fromBIMETSstoTS`

**Examples**

```r
#xts series with dates equal to the first date in the period, #and some missing observations #first...set option and work with xts
setBIMETSconf('BIMETS_CONF_CCT','XTS')
#create xts
xt=xts(1:10,order.by=seq(as.Date('2000-01-01'),len=10,by='year'))
#remove some data
xt=xt[-5]
xt=xt[-3]
#convert to bimets
xtBimets=as.bimets(xt)
#print before and after...
print(xt)
print(xtBimets)

#ts bivariate series into xts
setBIMETSconf('BIMETS_CONF_CCT','XTS')
ts=ts(matrix(c(1,2,3,4,5,6),nrow=3,ncol=2),start=c(2000,1),frequency=1)
print(ts)
xtsBimets=as.bimets(ts)
print(xtsBimets)

#reset defaults
setBIMETSconf('BIMETS_CONF_DIP','LAST')
setBIMETSconf('BIMETS_CONF_CCT','TS')
```
#xts quarterly with irregular dates and missing data
xt=xts(1:10,order.by=seq(as.Date('2000-01-03'),len=10,by='3 months'))
# remove some data
xt=xt[-5]
xt=xt[-3]
# convert
tsBimets=as.bimets(xt)
# print before and after
print(xt)
print(tsBimets)

#xts daily with duplicated observations and missing data
xt=xts(1:11,order.by=c(as.Date('2000-01-01'),
  seq(as.Date('2000-01-01'),
    len=10,by='day')))  
xt=xt[-5]
xt=xt[-3]
# convert
tsBimets=as.bimets(xt)
# print before and after
print(xt)
print(tsBimets)

# verbose and fillvalue
xt=xts(1:11,order.by=c(as.Date('2000-01-01'),
  seq(as.Date('2000-01-01'),
    len=10,by='day')))  
xt=xt[-5]
xt=xt[-3]
as.bimets(xt,FILLVALUE=99.99,VERBOSE=TRUE)

---

### bimetsConf

**BIMETS Global Options Configuration**

**Description**

BIMETS package depends on some options in order to transform and to present time series data. These options can be read or changed by using the functions: setBIMETSconf(opt,value) and getBIMETSconf(opt)

**Usage**

setBIMETSconf(opt=NULL, value=NULL, suppressOutput=FALSE)
getBIMETSconf(opt=NULL)
Arguments

opt

Name of the BIMETS option. Available option names are:

**BIMETS_CONF_DIP**: Date In Period. Users can associate to each observation in a time series the first or the last date in the period, i.e. 1 January or 31 December in the case of an annual time series, 1 January/1 July or 30 June/31 December in the case of a semiannual time series, 1 January/31 January in the case of an monthly time series in January, etc. The assignments by date to time series (e.g. \texttt{ts[’2000-01-01’]=value}) need to be coherent to the value of this global option. Accepted values are:

- **LAST**: (default) each observation has associated the last date of the period, e.g. 31 Mar for a quarterly time series, 31 January for a monthly time series in the first period, etc.
- **FIRST**: each observation has associated the first date of the period, e.g. 1 Jan for a quarterly time series, 1 Feb for a monthly time series in the second period, etc.

**BIMETS_CONF_CCT**: Constructor Class Type. The package supports \texttt{ts()} and \texttt{xts()} time series as input arguments; furthermore the user can select the base class of a BIMETS time series, i.e. the class used when a time series is created with \texttt{TIMESERIES()} or converted to BIMETS with \texttt{as.bimets()}. This is a global option; Users can locally override the selection of the output class by using the \texttt{class=’TS’} or \texttt{class=’XTS’} argument in the \texttt{TIMESERIES()} function. The option \texttt{BIMETS_CONF_CCT} can be assigned to the following values:

- **TS**: (default) the time series constructor \texttt{TIMESERIES()} and the conversion function \texttt{as.bimets()} return an object of class \texttt{ts()}
- **XTS**: the time series constructor \texttt{TIMESERIES()} and the conversion function \texttt{as.bimets()} return an object of class \texttt{xts()}

Please note that BIMETS package performs better with \texttt{BIMETS_CONF_CCT=’TS’}.

**BIMETS_CONF_NOC**: NO Compliance test. If this option is set \texttt{TRUE} then the compliance control check on input time series, i.e. \texttt{is.bimets()}, will be globally disabled. The default is set to \texttt{FALSE}. The compliance check on input time series should generally be active, otherwise a malformed input time series can produce unwanted results in operations.

Value

The value to be assigned to the BIMETS option.

**suppressOutput**

If \texttt{TRUE}, the output messages will be disabled.

See Also

\texttt{TIMESERIES}

\texttt{is.bimets}
Examples

```
#default BIMETS_CONF_DIP is LAST
#create ts
ts1=TSERIES((1:10),START=c(2000,1),FREQ=1)

#transform to xts and print
xt1=fromBIMETStoXTS(ts1)
print(xt1) #...dates as of 31 Dec

#set configuration BIMETS_CONF_DIP to FIRST
setBIMETSconf('BIMETS_CONF_DIP','FIRST')

#create ts
ts1=TSERIES((1:10),START=c(2000,1),FREQ=1)

#transform to xts and print
xt1=fromBIMETStoXTS(ts1)
print(xt1) #...dates as of 1 Jan

#set configuration BIMETS_CONF_DIP to LAST
setBIMETSconf('BIMETS_CONF_DIP','LAST')

#work on XTS
setBIMETSconf('BIMETS_CONF_CCT','XTS')

#check compliance of xt1 and fail...
is.bimets(xt1) #... FALSE

#set configuration BIMETS_CONF_DIP to FIRST
setBIMETSconf('BIMETS_CONF_DIP','FIRST')

#check compliance of xt1 and ok...
is.bimets(xt1) #... TRUE

print(getBIMETSconf('BIMETS_CONF_DIP')) #... returns FIRST
print(getBIMETSconf('BIMETS_CONF_CCT')) #... returns XTS

print(is.xts(TSERIES(1:10,START=c(2000,1),FREQ=1))) #...print TRUE
print(is.ts(TSERIES(1:10,START=c(2000,1),FREQ=1,class='TS'))) #...print TRUE

#NOC
setBIMETSconf('BIMETS_CONF_CCT','XTS')
```
is.bimets(xts()) #FALSE
setBIMETSconf('BIMETS_CONF_NOC',TRUE)
is.bimets(xts()) #TRUE

#...back to default
setBIMETSconf('BIMETS_CONF_DIP','LAST')
setBIMETSconf('BIMETS_CONF_CCT','TS')
setBIMETSconf('BIMETS_CONF_NOC',FALSE)

---

**bimetsDataset**

* BIMETS User and Internal datasets

### Description

BIMETS package contains examples and hidden datasets that provide faster performance in time series analysis.

### See Also

- TIMESERIES
- is.bimets
- as.bimets
- fromBIMETstoXTS
- fromBIMETstoTS
- BIMETS indexing

---

**CUMPROD**

* Cumulative Product

### Description

This function returns the cumulative product of the elements of the input array or time series. The result is an object of the same class of the input, and its elements are the cumulative product of the current and the previous elements of the input.

If the input is a time series, users can provide the argument TSRANGE in order to project the input time series before the cumulative product.

### Usage

CUMPROD(x=NULL, TSRANGE=NULL, avoidCompliance=FALSE, ...)

Arguments

- **x**: Input numerical array or time series that must satisfy the compliance control check defined in `is.bimets`.
- **TSRANGE**: Optional date range of operations that process the input time series. TSRANGE must be specified as an array composed by starting year, starting period, ending year and ending period, i.e. `TSRANGE=c(START_Y, START_P, END_Y, END_P)`. The projection into the time interval specified in TSRANGE takes place before the cumulative product.
- **avoidCompliance**: If TRUE, compliance control check of input time series will be skipped. See `is.bimets`.

Value

This function returns an object of the same class of the input, i.e. an array or a BIMETS time series.

See Also

- `TSPROJECT`
- `MOVAVG`
- `TSDELTA`
- `TSLAG`
- `TSPROJECT`
- `TSEXTEND`
- `TSLEAD`
- `INDEXNUM`

Examples

```r
create ts
ts1=TSERIES(INTS(1,10), START=c(2000,1), FREQ='M')
out_CUMPROD=CUMPROD(ts1)
TABIT(out_CUMPROD)

out_CUMPROD=CUMPROD(ts1, TSRANGE=c(2000,4,2001,1))
TABIT(ts1, out_CUMPROD)

define an array
arr1=c(INTS(1,5), INTS(-1,-5))
out_CUMPROD=CUMPROD(arr1)
print(out_CUMPROD)
```
Description

This function returns the cumulative sum of the elements of the input array or time series. The result is an object of the same class of the input, and its elements are the cumulative sum of the current and the previous elements of the input.

If the input is a time series, users can provide the argument TSRANGE in order to project the input time series before the cumulative sum.

CUMULO is an alias form CUMSUM with the argument MODE='YEARLY'.

Usage

```r
CUMSUM(x=NULL, TSRANGE=NULL, MODE=NULL, avoidCompliance=FALSE,...)
CUMULO(x=NULL, TSRANGE=NULL, avoidCompliance=FALSE,...)
```

Arguments

- `x` Input numerical array or time series that must satisfy the compliance control check defined in `is.bimets`.
- `TSRANGE` Optional date range of operations that process time series. TSRANGE must be specified as an array composed by starting year, starting period, ending year and ending period, i.e. `TSRANGE=c(START_YEAR,START_PERIOD,END_YEAR,END_PERIOD)`. The projection into the time interval specified in TSRANGE takes place before the cumulative sum.
- `MODE` When selecting `MODE='YEARLY'` or `MODE='MONTHLY'` the sum is reset to zero when a new year or a new month starts.
- `avoidCompliance` If TRUE, compliance control check of input time series will be skipped. See `is.bimets`.
- `...` Backward compatibility.

Value

This function returns an object of the same class of the input, i.e. an array or a BIMETS time series.

See Also

- `TSPROJECT`
- `MOVAVG`
- `TSDELTA`
- `TSLAG`
- `TSPROJECT`
- `TSEXTEND`
Examples

```r
create ts
ts1 = TSERIES(INTS(1, 30), START = c(2000, 1), FREQ = "M")
out_CUMSUM = CUMSUM(ts1)
TABIT(out_CUMSUM)

out_CUMSUM = CUMSUM(ts1, TSRANGE = c(2000, 4, 2001, 7))
out_CUMSUM_Y = CUMSUM(ts1, TSRANGE = c(2000, 4, 2001, 7), MODE = 'YEARLY')
TABIT(ts1, out_CUMSUM, out_CUMSUM_Y)

define an array
arr1 = c(INTS(1, 10), INTS(-1, -10))
out_CUMSUM = CUMSUM(arr1)
print(out_CUMSUM)

print...1 3 6 10 15 21 ... 27 19 10 0
```

**DAILY**

_Daily Time Series (Dis)Aggregation_

**Description**

This function returns a daily disaggregated time series, by using as input an annual, semiannual, quarterly or monthly time series.

**Usage**

```r
DAILY(x = NULL, fun = NULL, avoidCompliance = FALSE, ...)
```

**Arguments**

- `x`: Input time series, that must satisfy the compliance control check defined in `is.bimets`.
- `fun`: `NULL`: (default) the output value of each daily observation is set equal to the value of the input observation the date belongs to (i.e. duplicated values over the period)
  - `INTERP_END`: the value of the input time series in a period is copied into the
last day of the output time series that lies in the same period. Other values are calculated by linear interpolation.

**INTERP_CENTER:** the value of the input time series in a period is copied into the median day of the output time series that lies in the same period. Other values are calculated by linear interpolation.

**INTERP_BEGIN:** the value of the input time series in a period is copied into the first day of the output time series that lies in the same period. Other values are calculated by linear interpolation.

**avoidCompliance**

If TRUE, compliance control check of input time series will be skipped. See `is.bimets`

... Backward compatibility.

**Value**

This function returns a daily BIMETS time series.

**See Also**

`ANNUAL`, `SEMIANNUAL`, `QUARTERLY`, `MONTHLY`

**Examples**

```r
#TS quarterly
ts1=TSERIES((1:2),START=c(2000,1),FREQ="Q")
TABIT(DAILY(ts1,fun="INTERP_CENTER"))

#TS monthly
ts1=TSERIES((1:4),START=c(2000,1),FREQ=12)
TABIT(DAILY(ts1))
```

---

**date2yp**  
*Date to Year-Period Conversion*

**Description**

This function converts an object of class `Date()` to an array `c(YEAR,PERIOD)`, where YEAR and PERIOD are the year-period the input `Date()` belongs to, given an input frequency.

**Usage**

date2yp(x = NULL, f = 1)
Arguments
x  Input of class Date().
f  Positive integer. Valid values are: 1, 2, 3, 4, 12, 24, 36, 53, 366

Value
This function returns a two-dimensional array c(YEAR, PERIOD).

See Also
yq2yp
ym2yp
GETDATE
INTS
TABIT

Examples

print(date2yp(as.Date("2001/06/30"),2)) #2001,1
print(date2yp(as.Date("2002/03/23"),1)) #2002,1
print(date2yp(as.Date("2003/07/01"),366)) #2003,182
print(date2yp(as.Date("2004/09/13"),2)) #2004,2
print(date2yp(as.Date("2004/01/13"),12)) #2004,1
print(date2yp(as.Date("2004/07/24"),4)) #2004,3
print(date2yp(c(as.Date("1900-01-01"), as.Date("1944-12-01"),
as.Date("1964-06-12"), as.Date("1923-03-01"),
as.Date("1943-12-05")),f=366)) #...
idx  Numerical array built with the indexes of selected elements to be removed from
the input. If the input is a time series the index must be provided as a sequence
of numbers IDX=YEAR+PERIOD/FREQ with YEAR and PERIOD the year and the
period to be removed (see example).

avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets

Value
This function returns an array with the kept elements from the input array or the input time series.

See Also
TIMESERIES
is.bimets
BIMETS indexing
GETYEARPERIOD
LOCS
NAMELIST
INTS
TSINFO
TSLOOK
TABIT
NOELS

Examples

print(ELIMELS(INTS(1,10),c(1,4,5)))
# print 2 3 6 7 8 9 10

print(ELIMELS(T SERIES(1:10,START=c(2000,1),FREQ=4),c(2000.25,2000.75)))
# print 2 4 5 6 7 8 9 10
Description

This function estimates equations that are linear in the coefficients, as specified in the behavioral
equations of the input model object. Coefficients can be estimated for single equations or blocks
of simultaneous equations. Coefficients restriction procedure derives from the theory of Lagrange
Multipliers, while the Cochrane-Orcutt method allows to account for residuals autocorrelation.

The estimation function supports:

- Ordinary Least Squares;
- Instrumental Variables;
- Deterministic linear restrictions on the coefficients;
- Almon Polynomial Distributed Lags;
- Autocorrelation of the errors;
- Structural stability analysis (Chow tests);

Further details on estimation calculus can be found in MDL help page; further details on Chow
test can be found below in this section;

Usage

ESTIMATE(model=NULL,
eqList=NULL,
TSRANGE=NULL,
forceTSRANGE=FALSE,
estTech='OLS',
IV=NULL,
quietly=FALSE,
showWarnings=FALSE,
tol=.Machine$double.eps,
digits=getOption('digits'),
centerCOV=TRUE,
CHOWTEST=FALSE,
CHOWPAR=NULL,
avoidCompliance=FALSE,
...)

Arguments

model The BIMETS model object to be estimated (see also LOAD_MODEL).
eqList The character array of behavioral names to be estimated. If it is NULL then all
the behaviors of the model will be estimated.
TSRANGE The time range of the estimation, as a four dimensional numerical array,
i.e. TSRANGE=c(start_year,start_period,end_year,end_period). The TSRANGE
provided in the behavioral MDL definition takes precedence over this function arg-
ument.
forceTSRANGE If TRUE, the TSRANGE defined in the previous argument takes precedence over
the TSRANGE provided in the behavioral MDL definition.
**estTech**	The estimation technique used in the regression. Ordinary Least Squares OLS and Instrumental Variables estimation IV are supported.
**IV**	The character array built with the Instrumental Variable expressions, in the case of Instrumental Variables estimation (see examples).
**quietly**	If TRUE, information messages will be suppressed, e.g. results and regression statistics.
**showWarnings**	If TRUE and if a model time series has a missing value then warning message will be shown.
**tol**	The tolerance for detecting linear dependencies in the columns of a matrix while an inversion is requested. The default is .Machine$double.eps.
**digits**	Controls the number of digits to print when printing coefficients and statistics of the estimation. Valid values are 1 to 22 with a default of 7.
**centerCOV**	If TRUE, the function subtracts the mean from the residuals before calculating the residual covariance matrix.
**CHOWTEST**	If TRUE, the structural stability analysis will be performed.
**CHOWPAR**	Indicates the last year-period where the stability test is performed. If NULL it will be automatically calculated by using all available time series data. It must be provided as an integer array, e.g. c(YEAR,PERIOD).
**avoidCompliance**	If TRUE, compliance control check of model time series will be skipped. See is.bimets...

**Value**

If outputText=TRUE, for each behavioral in the eqList this function will print out:

- the name of the estimated behavioral;
- the estimation technique used;
- the autocorrelation order of the error, if any, and the iterations count required to achieve the convergence;
- the estimated equation with calculated coefficients and regressor expression; for each coefficient the T-statistic and the significance will be printed out;
- the restriction equations imposed on the coefficients, if any;
- the F-test for the restrictions, including the PDL restrictions, if any;
- the final autocorrelation parameters for the error, along with their standard error, the T-statistic and the significance;
- the R-Squared and the Adjusted R-Squared;
- the Durbin-Watson Statistic;
- the Sum of squares of residuals;
- the Standard Error of Regression;
- the Log of the Likelihood Function;
- the F-statistic and the F-probability;
- the AIC and the BIC;
- the Mean of the Dependent Variable;
- the Number of Observations;
- the Number of Degrees of Freedom;
- the Current Sample, i.e. the TSRANGE of estimation;

For each behavioral in the eqList this function will add 4 new named elements into the related behavioral of the output model object:

1) coefficients: a numerical array built with the estimated coefficients;
2) errorCoefficients: a numerical array built with the estimated coefficient for the error autoregression, if the ERROR> structure has been provided in the model MDL definition;
3) residuals: the time series of the regression residuals. If an ERROR> structure has been provided in the behavioral definition, the related residuals will be calculated as described in the Cochrane-Orcutt procedure (see MDL).
3) residuals_no_error_correction: if an ERROR> structure has been provided in the behavioral definition, the residuals calculated by using the original dependant and independent variables are stored into this list element.
4) statistics: a list built with the parameters and the statistics of the estimation, e.g.:
   - TSRANGE: TSRANGE requested in the latest estimation of the behavioral;
   - estimationTechnique: estimation technique requested in the latest estimation of the behavioral;
   - CoeffCovariance: coefficients covariance;
   - StandardErrorRegression and StandardErrorRegressionNotCentered: standard error of the regression (centered and not-centered);
   - CoeffTstatistic: T-statistic of the coefficients;
   - RSquared: R-Squared;
   - AdjustedRSquared: adjusted R-Squared;
   - DegreesOfFreedom: degrees of freedom of the regression;
   - CoeffPvalues: coefficients p-values;
   - LogLikelihood: Log of the Likelihood Function;
   - Fstatistics: F-statistics;
   - RhosTstatistics: rhos T-statistic (if any);
   - FtestRestrValue: F-test value for the restrictions;
   - FtestRestrProbability: F-test probability for the restrictions;
   - AIC: Akaike’s Information Criterion;
   - BIC: Schwarz’s Information Criterion;
   - matrixX: the regressors matrix;
   - vectorY: the dependent variable;
   - matrixX_error_corrected: the regressors matrix arising from the Cochrane-Orcutt procedure;
   - etc.

Structural Stability - Chow test

One of the main purposes of the econometric modeling is its use for forecast and policy evaluation and, to this end, the stability of a behavioral equation parameters over time should be verified. In order to check for structural stability two different procedures, which can be derived from the so called Chow-tests, are applied.

Given a sample of $T_0 = t_k, ..., t_n$ observations (i.e. the base TSRANGE) and selecting an arbitrary forward extension in $T_1 = t_k, ..., t_n, ..., t_m$ observations (i.e. the extended TSRANGE) in the general
case we have the following two regressions:

1) \( Y_0 = \beta_0 \times X_0 + \epsilon_0, \quad \epsilon_0 \sim N(0, \sigma_0^2) \), having time series projected on the base TSRANGE
2) \( Y_1 = \beta_1 \times X_1 + \epsilon_1, \quad \epsilon_1 \sim N(0, \sigma_1^2) \), having time series projected on the extended TSRANGE

In general a stability analysis is carried on in the following ways:
- comparing the parameter estimates arising from the two regressions: this is known as the covariance analysis;
- checking the accuracy of the forecast for the dependent variable in the extended TSRANGE, using the estimates produced in the base TSRANGE: this is known as the predictive power test.

The first Chow test is calculated as:
\[
\tau = \frac{SSR_1 - SSR_0}{SSR_0} \frac{DoF_1}{DoF_1 - DoF_0},
\]
with \( SSR_i \) as the sum of squared residuals and \( DoF_i \) as the number of degrees of freedom in the regression \( i = 0, 1 \).

The test is completed by calculating the following time series on the extended TSRANGE:
- the forecast error;
- the standard error of forecast;
- the t-statistic for the error;

The standard error of the forecast for the \( t_j \) observation in the extended TSRANGE is computed according to:
\[
SE_j = \sigma_0 \sqrt{1 + x_j^\top (X_0^\top X_0)^{-1} x_j}
\]
having \( x_j \) as the independent values (i.e. regressors) on the \( t_j \) observation in the \( T_1 \) extended TSRANGE, with \( n < j \leq m \).

The null hypothesis for \( \tau \) is:
\[
H^*: \beta_1 = \beta_0, \text{ given } \sigma_1^2 = \sigma_0^2
\]

The test statistic \( \tau \) follows the \( F \) distribution with \( (DoF_1 - DoF_0) \) and \( DoF_1 \) degrees of freedom, and can be performed during the \texttt{ESTIMATE()} function execution by using the \texttt{CHOWTEST} argument set to \texttt{TRUE}.

If \texttt{CHOWTEST} is \texttt{TRUE}, for each behavioral in the \texttt{eqList} the output model will have the following named element:
- \texttt{ChowTest}: it contains the statistics and the time series computed during the last structural analysis performed on the related behavioral.

\textbf{See Also}
\begin{itemize}
\item \texttt{MDL}
\item \texttt{LOAD_MODEL}
\end{itemize}
SIMULATE
MULTMATRIX
RENORM
TIMESERIES
BIMETS indexing
BIMETS configuration
summary

Examples

#define model
myModelDefinition=
"MODEL

COMMENT> Modified Klein Model 1 of the U.S. Economy with PDL,
COMMENT> autocorrelation on errors, restrictions and conditional evaluations

COMMENT> Consumption
BEHAVIORAL> cn
TSRANGE 1925 1 1941 1
EQ> cn = a1 + a2*p + a3*TSLAG(p,1) + a4*(w1+w2)
COEFF> a1 a2 a3 a4
ERROR> AUTO(2)

COMMENT> Investment
BEHAVIORAL> i
TSRANGE 1923 1 1941 1
EQ> i = b1 + b2*p + b3*TSLAG(p,1) + b4*TSLAG(k,1)
COEFF> b1 b2 b3 b4
RESTRICT> b2 + b3 = 1

COMMENT> Demand for Labor
BEHAVIORAL> w1
TSRANGE 1925 1 1941 1
EQ> w1 = c1 + c2*(y+t-w2) + c3*TSLAG(y+t-w2,1) + c4*time
COEFF> c1 c2 c3 c4
PDL> c3 1 3

COMMENT> Gross National Product
IDENTITY> y
EQ> y = cn + i + g - t

COMMENT> Profits
IDENTITY> p
EQ> p = y - (w1+w2)

COMMENT> Capital Stock with switches
IDENTITY> k
EQ> k = TSLAG(k,1) + i
IF> i > 0
IDENTITY> k
EQ> k = TSLAG(k,1)
IF> i <= 0
END"

#define model data
myModelData=list(
    cn=TIMESERIES(39.8,41.9,45.2,50.6,52.6,55.1,56.2,57.3,57.8,55.0,45.6,46.5,48.7,51.3,57.7,58.7,57.5,61.6,65.6,69.7,
        START=c(1920,1),FREQ=1),
    g=TIMESERIES(4.6,6.6,6.1,5.7,6.6,6.6,6.6,6.6,7.6,7.9,8.1,9.4,10.7,10.2,9.3,10.5,10.3,11.13,14.4,15.4,22.3,
        START=c(1920,1),FREQ=1),
    i=TIMESERIES(2.7,-.2,1.9,5.2,3.5,1.5,6.4,2.3,5.1,1,-3.4,-6.2,-5.1,-3,-1.3,2.1,2,-1.9,1.3,3.3,4.9,
        START=c(1920,1),FREQ=1),
    k=TIMESERIES(182.8,182.6,184.5,189.7,192.7,197.8,203.4,207.6,210.6,215.7,216.7,213.3,207.1,202,199,197.7,199.8,201.8,199.9,201.2,204.5,209.4,
        START=c(1920,1),FREQ=1),
    p=TIMESERIES(12.7,12.4,16.9,18.4,19.4,20.1,19.6,19.8,21.1,21.7,15.6,11.4,7.11.2,12.3,14,17.6,17.3,15.3,19,21.1,23.5,
        START=c(1920,1),FREQ=1),
    w1=TIMESERIES(28.8,25.5,29.3,34.1,33.9,35.4,37.4,37.9,39.2,41.3,37.9,34.5,29,28.5,30.6,33.2,36.8,41.38.2,41.6,45,53.3,
        START=c(1920,1),FREQ=1),
    y=TIMESERIES(43.7,40.6,49.1,55.4,56.4,58.7,60.3,61.3,64.6,67,57.7,50.7,41.3,45.3,48.9,53.3,61.8,65,61.2,68.4,74.1,85.3,
        START=c(1920,1),FREQ=1),
    t=TIMESERIES(3.4,7.7,3.9,4.7,3.8,5.5,7,6.7,4.2,7.7,7.5,8.3,5.4,6.8,7.2,8.3,6.7,4.8,9.9,6.11.6,
        START=c(1920,1),FREQ=1),
    time=TIMESERIES(NA,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3.4,5,6,7,8,9,10,
        START=c(1920,1),FREQ=1),
    w2=TIMESERIES(2.2,2.7,2.9,2.9,3.1,3.2,3.3,3.6,3.7,4.2,4.8,5.3,5.6,6.1,7.4,6.7,7.7,7.8,8,8.5,
        START=c(1920,1),FREQ=1))

#load model
myModel=LOAD_MODEL(modelText=myModelDefinition)
#load data into the model
myModel=LOAD_MODEL_DATA(myModel,myModelData,showWarnings = TRUE)

#################################################
#OLS case

#estimate the model
myModel=ESTIMATE(myModel)

#HERE BELOW THE OUTPUT OF THE ESTIMATION (COMMENTED OUT):
#.CHECK_MODEL_DATA(): warning, there are undefined values in time series “time”. 
#
#Estimate the Model myModelDefinition:
#the number of behavioral equations to be estimated is 3.
#The total number of coefficients is 14.
#
#BEHAVIORAL EQUATION: cn
#Estimation Technique: OLS
#Autoregression of Order 2 (Cochrane-Orcutt procedure)
#
#Convergence was reached in 9 / 20 iterations.
#
##
##
##cn        = 19.01352
#      T-stat. 12.13083  ***
##
##  +  0.3442816   p
#      T-stat. 3.533253  **
##
##  +  0.03443117  TSLAG(p,1)
#      T-stat. 0.3937881
##
##  +  0.6993905  (w1+w2)
#      T-stat. 14.0808  ***
##
##ERROR: AUTO(2)
#
##AUTOREGRESSIVE PARAMETERS:
##Rho     Std. Error  T-stat.
##0.05743131  0.3324101  0.1727725
## 0.007785936  0.2647013  0.02941404
#
##STATs:
##R-Squared  : 0.985263
##Adjusted R-Squared  : 0.9785644
##Durbin-Watson Statistic  : 1.966609
##Sum of squares of residuals  : 9.273455
##Standard Error of Regression  : 0.9181728
##Log of the Likelihood Function  : -18.97047
##F-statistic  : 147.0844
$F$-probability : $1.090551 \times 10^{-09}$

$\text{Akaike's IC} : 51.94093$

$\text{Schwarz's IC} : 57.77343$

$\text{Mean of Dependent Variable} : 55.71765$

$\text{Number of Observations} : 17$

$\text{Number of Degrees of Freedom} : 11$

$\text{Current Sample (year-period)} : 1925-1 / 1941-1$

$\text{Signif. codes: } *** 0.001 \,** 0.01 \,* 0.05$

$\text{Behavioral Equation: } i$

$\text{Estimation Technique: OLS}$

$\hat{i} = 2.868104$

$T\text{-stat.} = 0.3265098$

$+ 0.5787626 p$

$T\text{-stat.} = 4.456542 \,**$

$+ 0.4212374 \text{TSLAG}(p,1)$

$T\text{-stat.} = 3.243579 \,**$

$- 0.09160307 \text{TSLAG}(k,1)$

$T\text{-stat.} = -2.11748$

$\text{Restrictions: } b_2 + b_3 = 1$

$\text{Restrictions F-Test:}$

$F\text{-value} = 8.194478$

$F\text{-prob}(1,15) = 0.0118602$

$\text{Stats:}$

$R\text{-Squared} = 0.8928283$

$\text{Adjusted R-Squared} = 0.8794319$

$\text{Durbin-Watson Statistic} = 1.173106$

$\text{Sum of squares of residuals} = 26.76483$

$\text{Standard Error of Regression} = 1.293368$

$\text{Log of the Likelihood Function} = -30.215$

$F\text{-statistic} = 66.64659$

$F\text{-probability} = 1.740364 \times 10^{-08}$

$\text{Akaike's IC} = 68.43001$

$\text{Schwarz's IC} = 72.20776$

$\text{Mean of Dependent Variable} = 1.310526$

$\text{Number of Observations} = 19$

$\text{Number of Degrees of Freedom} = 16$

$\text{Current Sample (year-period)} = 1923-1 / 1941-1$
# Signif. codes: *** 0.001 ** 0.01 * 0.05

------------------------------------------------------------------

# BEHAVIORAL EQUATION: w1
# Estimation Technique: OLS
#
# w1 = 1.12869
# T-stat. 0.6479266
#
# + 0.4398767 (y+t-w2)
# T-stat. 12.01268 ***
#
# + c3 TSLAG(y+t-w2,1)
# PDL
#
# + 0.1368206 time
# T-stat. 3.373905 **
#
# PDL:
# c3 1 3
#
# Distributed Lag Coefficient: c3
# Lag Coeff. Std. Error T-stat.
# 0 0.1076812 0.04283967 2.513586 *
# 1 0.05074557 0.01291231 3.930015 **
# 2 -0.00619005 0.03110492 -0.1990055
# SUM 0.1522367 0.03873693
#
# RESTRICTIONS F-TEST:
# F-value : 0.06920179
# F-prob(1,11) : 0.7973647
#
# STATs:
# R-Squared : 0.9890855
# Adjusted R-Squared : 0.9854474
# Durbin-Watson Statistic : 2.174168
# Sum of squares of residuals : 6.392707
# Standard Error of Regression : 0.7298805
# Log of the Likelihood Function : -15.88848
# F-statistic : 271.8645
# F-probability : 1.172284e-11
# Akaike's IC : 43.61697
# Schwarz's IC : 48.61625
# Mean of Dependent Variable : 37.69412
# Number of Observations : 17
# Number of Degrees of Freedom : 12
# Current Sample (year-period) : 1925-1 / 1941-1
#Signif. codes: *** 0.001 ** 0.01 * 0.05
#
#...ESTIMATE OK

# get residuals of 'cn'
myModel$behaviorals$cn$residuals
# Time Series:
# Start = 1925
# End = 1941
# Frequency = 1
# [1] -0.88562504 0.25109884 0.66750111 ...
# [17] -1.41795908

# get residuals of 'i'
myModel$behaviorals$i$residuals
# Time Series:
# Start = 1923
# End = 1941
# Frequency = 1
# [1] 1.464518775 -1.469763968 0.078674017 ...
# [16] -2.425079127 -0.698071507 -1.352967430 -1.724306054

# get estimation coefficients of 'cn' and 'w1'
myModel$behaviorals$cn$coefficients
# [,1]
#a1 19.01352476
#a2 0.34428157
#a3 0.03443117
#a4 0.69939052

myModel$behaviorals$cn$errorCoefficients
# [,1]
#RHO_1 0.057431312
#RHO_2 0.007785936

myModel$behaviorals$w1$coefficients
# [,1]
#c1 1.12869024
#c2 0.43987666
#c3 0.10768118
#c3_PDL_1 0.05074557
#c3_PDL_2 -0.00619005
#c4 0.13682057

# IV case

# estimation of Consumption "cn" with arbitrary IVs
# and error autocorrelation
myModel=ESTIMATE(myModel,
   eqList = 'cn',
   estTech = 'IV',
   IV=c('1',
      'TSLAG(y)',
      'TSLAG(w1)*pi+0.5',
      'exp(w2)'))
#Estimate the Model myModelDefinition:
#the number of behavioral equations to be estimated is 1.
#The total number of coefficients is 4.
#
#_________________________________________
#
#BEHAVIORAL EQUATION: cn
#Estimation Technique: IV
#Autoregression of Order  2 (Cochrane-Orcutt procedure)
#
#Convergence was reached in  7 /  20 iterations.
#
#
#cn   =  18.07073
#      T-stat. 11.72958 ***
#
# +  0.2530483  p
#      T-stat. 1.583881
#
# +  0.08631646  TSLAG(p,1)
#      T-stat. 0.7556204
#
# +  0.7363227  (w1+w2)
#      T-stat. 13.11572 ***
#
#ERROR: AUTO(2)
#
#AUTOREgressive PARAMETERS:
#Rho      Std. Error   T-stat.
#0.01559806  0.343195  0.04544955
#-0.1196327  0.283432 -0.422086
#
#
#STATs:
#R-Squared  :  0.9843186
#Adjusted R-Squared  :  0.9771907
#Durbin-Watson Statistic  :  1.917329
#Sum of squares of residuals  :  9.867739
#Standard Error of Regression  :  0.9471363
#Log of the Likelihood Function  :  -19.49844
#F-statistic  :  138.0938
#F-probability  :  1.532807e-09
#Akaike's IC  :  52.99689
#Schwarz's IC  :  58.82938
#Mean of Dependent Variable  :  55.71765
#Number of Observations  :  17
#Number of Degrees of Freedom : 11
#Current Sample (year-period) : 1925-1 / 1941-1
#
#
#Signif. codes:  *** 0.001  ** 0.01  * 0.05
#
#
#. ...ESTIMATE OK

#estimation of Investment "i" with arbitrary IVs
#and coefficient restrictions
myModel=ESTIMATE(myModel,
eqList = 'i',
estTech = 'IV',
IV=c('1',
    'TSLAG(w2)',
    'TSLAG(wl)*pi+0.5',
    'exp(w2)'))

#.CHECK_MODEL_DATA(): warning, there are undefined values in time series "time".
#
#Estimate the Model myModelDefinition:
#the number of behavioral equations to be estimated is 1.
#The total number of coefficients is 4.
#
#______________________________

#BEHAVIORAL EQUATION: i
#Estimation Technique: IV
#
i = 34.517544
   T-stat. 1.264388
#
#   + 0.3216326  p
#      T-stat. 0.8648297
#
#   + 0.6783672  TSLAG(p,1)
#      T-stat. 1.824043
#
#   - 0.2475568  TSLAG(k,1)
#      T-stat. -1.842520
#
#RESTRICIONS:
#b2+b3=1
#
#RESTRICITIONS F-TEST:
#F-value : 2.465920
#F-prob(1,15) : 0.137190
#
#
#STATs:
#R-Squared : 0.805773
#Adjusted R-Squared : 0.781494
#Durbin-Watson Statistic : 0.940534
#Sum of squares of residuals : 48.50580
#Standard Error of Regression : 1.741152
#Log of the Likelihood Function : -35.86365
#F-statistic : 33.18894
#F-probability : 2.025229e-06
#Akaike's IC : 79.72731
#Schwarz's IC : 83.50506
#Mean of Dependent Variable : 1.310526
#Number of Observations : 19
#Number of Degrees of Freedom : 16
#Current Sample (year-period) : 1923-1 / 1941-1
#
#Signif. codes: *** 0.001 ** 0.01 * 0.05
#
#...ESTIMATE OK

#CHOW TEST on w1
#base TSRANGE set to 1925 / 1935
myModel=ESTIMATE(myModel,
eqList='w1',
TSRANGE=c(1925,1,1935,1),
forceTSRANGE=TRUE,
CHOWTEST=TRUE)

#Estimate the Model myModelDefinition:
#the number of behavioral equations to be estimated is 1.
#The total number of coefficients is 6.
#
#-----------------------------------------------
#
#BEHAVIORAL EQUATION: w1
#Estimation Technique: OLS
#
#     w1 = - 4.48873
#          T-stat. -2.47402  *
#          
#          + 0.545102 (y+t-w2)
#          T-stat. 15.3462  ***
#          
#          + c3 TSLAG(y+t-w2,1)
#          PDL
#          
#          + 0.292018 time
#          T-stat. 5.58588  **
#          

ESTIMATE

#PDL:
#c3 1 3
#
#Distributed Lag Coefficient: c3
#Lag   Coeff.   Std. Error   T-stat.
#0  0.0413985  0.0336676   1.22963
#1  0.0493551  0.0074232  6.64873 ***
#2  0.0573116  0.0265487  2.15873
#SUM 0.148065   0.0222697
#
#RESTRICTIONS F-TEST:
#F-value : 3.35954
#F-prob(1,5) : 0.126295
#
#STATs:
#R-Squared : 0.995931
#Adjusted R-Squared : 0.993219
#Durbin-Watson Statistic : 2.43313
#Sum of squares of residuals : 0.737093
#Standard Error of Regression : 0.350498
#Log of the Likelihood Function : -0.742173
#F-statistic : 367.183
#F-probability : 2.68564e-07
#Akaike 'Var IC : 13.4843
#Schwarz 'Var IC : 15.8717
#Mean of Dependent Variable : 34.9909
#Number of Observations : 11
#Number of Degrees of Freedom : 6
#Current Sample (year-period) : 1925-1 / 1935-1
#
#Signif. codes: *** 0.001 ** 0.01 * 0.05
#
#STABILITY ANALYSIS:
#Behavioral equation: w1
#
#Chow test:
#Sample (auto) : 1936-1 / 1941-1
#F-value : 15.3457
#F-prob(6,12) : 0.00534447
#
#Predictive Power:
#
#DATE, PER, ACTUAL , PREDICT , ERROR , STDERR , TSTAT
#
#1936, 1 , 36.8 , 38.439 , -1.63901 , 0.547471 , -2.99378
#1937, 1 , 41   , 40.824 , 0.176033 , 0.630905 , 0.279017
#1938, 1 , 38.2 , 39.6553 , -1.4553  , 0.672192 , -2.165
#1939, 1 , 41.6 , 45.8547 , -3.45466 , 0.834433 , -4.14012
#1940, 1 , 45   , 49.0118 , -4.01179 , 0.966472 , -4.15096
frequency

Frequency of a Time Series

Description

This function returns the frequency of a time series. In the case of a sparse \texttt{xts()} time series, and in other cases, the R functions \texttt{xts::periodicity()} and \texttt{frequency()} do not return BIMETS compliant values. We suggest to use this function when a BIMETS time series frequency is requested.

Usage

\begin{verbatim}
## S3 method for class 'xts'
frequency(x,...)
\end{verbatim}

Arguments

\begin{itemize}
\item \texttt{x} Input time series.
\item \texttt{...} Backward compatibility.
\end{itemize}

Value

This function returns the integer value stored in the attribute \texttt{.bimetsFreq} of the input time series, if any. Otherwise the frequency will be calculated by using the shortest time difference between two observations, while accounting for daysaving and bissextile years.

See Also

\begin{itemize}
\item \texttt{normalizeYP}
\item \texttt{NUMPERIOD}
\item \texttt{BIMETS indexing}
\end{itemize}

Examples

\begin{verbatim}
#build a sparse xts()
xArr=rnorm(13)
dateArr=seq(as.Date('2000/01/01'),by='6 months',length=10)
dateArr2=seq(as.Date('2010/01/01'),by='3 months',length=3)

dateArr3=c(dateArr,dateArr2)
dataF=data.frame(dateArr3,xArr)
xt=xts(dataF[,2],order.by=dataF[,1])
\end{verbatim}
#get bimets calculated frequency
cat(frequency(xt)) #print 4... without bimets R returns 1

#...legacy periodicity()
periodicity(xt)

---

**fromBIMETStoTS**  
*Convert BIMETS to TS*

**Description**

This function transforms a BIMETS compliant time series (as defined in `is.bimets` into a time series of class `ts()`. The core R function `as.ts()` does not satisfy all the requirements of the compliance control check, so it has been extended. Attributes and description of the input time series will be copied to the output time series (see `TIMESERIES`).

**Usage**

```r
fromBIMETStoTS(x = NULL, ...)
```

**Arguments**

- `x`  
  Input time series that must satisfy the compliance control check defined in `is.bimets`.  
- `...`  
  Backward compatibility.

**Value**

This function returns a time series of class `ts()` that has the same observations of the input BIMETS time series.

**See Also**

- `fromBIMETStoXTS`
- `as.bimets`
- `is.bimets`
- `BIMETS indexing`
- `BIMETS configuration`

**Examples**

```r
#work with XTS
setBIMETScconf('BIMETS_CONF_CCT','XTS')
```
#create yearly time series
xts=TSERIES(1:10,START=c(2000,1),FREQ='A')
print(is.ts(xts))#FALSE
#convert to ts
ts=fromBIMETStoTS(xts)
print(is.ts(ts))#TRUE
print(ts)

#create monthly time series
xts=TSERIES(1:10,START=c(2000,1),FREQ='M')
print(is.ts(xts))#FALSE
#convert to ts
ts=fromBIMETStoTS(xts)
print(is.ts(ts))#TRUE
print(ts)

#create daily time series
xts=TSERIES(1:10,START=c(2000,1),FREQ='D')
print(is.ts(xts))#FALSE
#convert to ts
ts=fromBIMETStoTS(xts)
print(is.ts(ts))#TRUE
print(ts)

#reset default
setBIMETSconf('BIMETS_CONF_CCT','TS')

fromBIMETStoXTS

Convert BIMETS to XTS

Description

This function transforms a BIMETS compliant time series (as defined in \texttt{is.bimets}) into a time series of class \texttt{xts}().
The core XTS function \texttt{as.xts()} does not satisfy all the requirements of the compliance control check, so it has been extended. If the output time series will have an \texttt{.indexClass} of type \texttt{Date()}, i.e. neither monthly nor quarterly, the output dates will be chosen accordingly to the BIMETS option \texttt{BIMETS\_CONF\_DIP}: if this option is set to \texttt{LAST} (default), the output \texttt{xts()} time series will have the date of the period set equal to the last day in the same period, e.g. 31 December for annual time series, 30 June for semiannual, etc.; if the BIMETS option \texttt{BIMETS\_CONF\_DIP} is set to \texttt{FIRST}, the output \texttt{xts()} time series will have the date of the period set equal to the first day in the same period, e.g. 1 January for annual time series, 1 July for semiannual time series on the second period, etc.
In the case of quarterly time series the \texttt{.indexClass=yearqtr}; in the case of monthly time series the \texttt{.indexClass=yearmon}. Attributes and description of the input time series will be copied to the output time series (see \texttt{TIMESERIES})
Usage

fromBIMETStoXTS(x = NULL, ...)

Arguments

x
Input time series that must satisfy the compliance control check defined in is.bimets.

... Backward compatibility.

Value

This function returns a time series of class xts() that has the same observations of the input BIMETS time series.

See Also

fromBIMETStoTS
as.bimets
is.bimets
BIMETS indexing
BIMETS configuration

Examples

# create yearly time series
ts=TSERIES(1:10,START=c(2000,1),FREQ='A')
print(is.xts(ts))#FALSE
# convert to xts
xts=fromBIMETStoXTS(ts)
print(is.xts(xts))#TRUE
print(xts)

# create monthly time series
ts=TSERIES(1:10,START=c(2000,1),FREQ='M')
print(is.xts(ts))#FALSE
# convert to xts
xts=fromBIMETStoXTS(ts)
print(is.xts(xts))#TRUE
print(xts)

# create daily time series
ts=TSERIES(1:10,START=c(2000,1),FREQ='D')
print(is.xts(ts))#FALSE
# convert to xts
xts=fromBIMETStoXTS(ts)
print(is.xts(xts))#TRUE
print(xts)

# create yearly time series with first date on period
setBIMETSconf('BIMETS_CONF_DIP','FIRST')
from TStoXTS

Description

This function transforms a BIMETS compliant ts time series (as defined in is.bimets) into a time series of class xts().

The core XTS function as.xts() does not satisfy all the requirements of the compliance control check, so it has been extended. If the output time series has an .indexClass of type Date(), i.e. neither monthly nor quarterly, the output dates are chosen accordingly to the BIMETS option BIMETS_CONF_DIP: if this option is set to LAST (default), the output xts() time series will have the date of the period set equal to the last day in the same period, e.g. 31 December for annual time series, 30 June for semiannual, etc.; if BIMETS option BIMETS_CONF_DIP is set to FIRST, the output xts() time series will have the date of the period set equal to the first day in the same period, e.g. 1 January for annual time series, 1 July for semiannual time series on the second period, etc.

In the case of quarterly time series the .indexClass=yearqtr;
   in the case of monthly time series the .indexClass=yearmon.

Attributes and description of the input time series will be copied to the output time series (see TIMESERIES).

Usage

fromTStoXTS(x = NULL, avoidCompliance = FALSE, ...)

Arguments

x  
   Input ts time series that must satisfy the compliance control check defined in is.bimets.
avoidCompliance  
   If TRUE, compliance control check of input time series will be skipped. See is.bimets.
...
   Backward compatibility.

Value

This function returns a time series of class xts() that has the same observations of the input ts time series.
See Also

- fromXTStoTS
- as.bimets
- is.bimets
- BIMETS indexing
- BIMETS configuration

Examples

# day and month names can change depending on locale
Sys.setlocale('LC_ALL','C')
Sys.setlocale('LC_TIME','C')

# BIMETS_CONF_DIP default on LAST
print('annual')
t=ts(1:20,start=c(2005,2),frequency=1)
ts=fromTStoXTS(t)
print(t);print(ts) #...dates on 31 Dec

print('semiannual')
t=ts(1:20,start=c(2005,2),frequency=2)
ts=fromTStoXTS(t)
print(t);print(ts) #...dates on 31 Dec/30 Jun

# set configuration BIMETS_CONF_DIP on FIRST
setBIMETSconf('BIMETS_CONF_DIP','FIRST')

print('annual')
t=ts(1:20,start=c(2005,2),frequency=1)
ts=fromTStoXTS(t)
print(t);print(ts) #...dates on 1 Jan

print('semiannual')
t=ts(1:20,start=c(2005,2),frequency=2)
ts=fromTStoXTS(t)
print(t);print(ts) #...dates on 1 Jan/1 Jul

print('quarterly')
t=ts(1:20,start=c(2004,3),frequency=4)
ts=fromTStoXTS(t)
print(t);print(ts)

print('monthly')
t=ts(1:20,start=c(2003,5),frequency=12)
ts=fromTStoXTS(t)
print(t);print(ts)

print('daily')
t=ts(1:20,start=c(2003,125),frequency=366)
fromXTStoTS

Convert XTS to TS

Description

This function transforms a BIMETS compliant \texttt{xts()} time series (as defined in \texttt{is.bimets}) into a time series of class \texttt{ts()}. The core R function \texttt{as.ts()} does not satisfy all the requirements of the compliance control check, so it has been extended. Attributes and description of the input time series will be copied to the output time series (see \texttt{TIMESERIES}).

Usage

\texttt{fromXTStoTS(x = NULL, avoidCompliance = FALSE, ...)}

Arguments

\texttt{x} \hspace{1em} Input \texttt{xts()} time series that must satisfy the compliance control check defined in \texttt{is.bimets}.

\texttt{avoidCompliance} \hspace{1em} If \texttt{TRUE}, compliance control check of input time series will be skipped. See \texttt{is.bimets}.

\texttt{...} \hspace{1em} Backward compatibility.

Value

This function returns a time series of class \texttt{ts()} that has the same observations of the input \texttt{xts()} time series.

See Also

\texttt{fromTStoXTS}
\texttt{as.bimets}
\texttt{is.bimets}
\texttt{TIMESERIES indexing}
\texttt{BIMETS configuration}

Examples

\begin{verbatim}
#day and month names can change depending on locale
Sys.setlocale('LC_ALL','C')
Sys.setlocale('LC_TIME','C')
\end{verbatim}
#set configuration BIMETS_CONF_DIP on FIRST
setBIMETSconf('BIMETS_CONF_DIP','FIRST')

#set configuration BIMETS_CONF_CCT on XTS
setBIMETSconf('BIMETS_CONF_CCT','XTS')

#semiannual with Date()
n=10
xArr=rnorm(n)
dateArr=seq(as.Date('2000/07/01'),by='6 months',length=n)
dataF=data.frame(dateArr,xArr)
xt=xts(dataF[,2],order.by=dataF[,1])
print(fromXTStoTS(xt))

#set configuration BIMETS_CONF_DIP on LAST
setBIMETSconf('BIMETS_CONF_DIP','LAST')

#annual with Date()
n=10
xArr=rnorm(n)
dateArr=seq(as.Date('2000/12/31'),by='year',length=n)
dataF=data.frame(dateArr,xArr)
xt=xts(dataF[,2],order.by=dataF[,1])
print(fromXTStoTS(xt))

#quarterly with yearqtr()
n=10
xArr=rnorm(n+1)
dateArr=as.yearqtr('2000 Q2') + 0:n/4
dataF=data.frame(dateArr,xArr)
xt=xts(dataF[,2],order.by=dataF[,1])
print(fromXTStoTS(xt))

#monthly with yearmon()
n=10
xArr=rnorm(n+1)
dateArr=as.yearmon('Jul 2000') + 0:n/12
dataF=data.frame(dateArr,xArr)
xt=xts(dataF[,2],order.by=dataF[,1])
print(fromXTStoTS(xt))

#daily with Date()
n=10
xArr=rnorm(n)
dateArr=seq(as.Date('2000/07/14'),by='day',length=n)
dataF=data.frame(dateArr,xArr)
xt=xts(dataF[,2],order.by=dataF[,1])
print(fromXTStoTS(xt))

#restore defaults
setBIMETSconf('BIMETS_CONF_DIP','LAST')
setBIMETSconf('BIMETS_CONF_CCT','TS')
Description

This function returns the dates array of selected observations, in the requested print format. Dates will be provided accordingly to the BIMETS configuration option BIMETS_CONF_DIP (see BIMETS configuration).

Usage

GETDATE(x=NULL, index=NULL, format='%Y-%m-%d', avoidCompliance=FALSE, ...)

Arguments

x          Input time series that must satisfy the compliance control check defined in is.bimets.
index      Index of observations to be selected. The output dates will be the dates of the selected observations. If index=NULL this function will retrieve all available dates in the input time series.
format     Output print format, provided as a paste of the following codes:
            %Y: 4 digits year
            %y: 2 digits year
            %j: period in the year for daily time series
            %q: quarter index, available only if also %y or %Y have been requested
            %m: 2 digits month
            %B: full month name
            %d: 2 digits day
            %a: 3 letters weekday
            %A: full weekday name

avoidCompliance
            If TRUE, compliance control check of input time series will be skipped. See is.bimets

Value

This function returns the dates array of selected observations, in the requested print format.
**See Also**

- BIMETS configuration
- BIMETS indexing
- yq2yp
- ym2yp
- date2yp
- LOCS
- NAMELIST
- TSLOOK
- TABIT
- ELIMELS

**Examples**

```r
#day and month names can change depending on locale
Sys.setlocale("LC_ALL","C")
Sys.setlocale("LC_TIME","C")

#work on xts
setBIMETSconf("BIMETS_CONF_CCT","XTS")

#XTS yearly
n=10
xArr=(n:1)
dateArr=seq(as.Date('2000-12-31'),by='year',length=n)
dataF=data.frame(dateArr,xArr)
ts1=xts(dataF[,2],order.by=dataF[,1])
ts1[5]=NA
print(GETDATE(ts1,5)) #...print 2004-12-31
print(GETDATE(ts1,5,"%A %d %b %Y")) #print... Friday 31 Dec 2004
print(GETDATE(ts1)) #print... "2000-12-31" "2001-12-31" ... "2009-12-31"

#XTS quarterly
n=15
xArr=(n:0)
dateArr=as.yearqtr('2000 Q1')+0:n/4
dataF=data.frame(dateArr,xArr)
ts1=xts(dataF[,2],order.by=dataF[,1])
print(GETDATE(ts1,9,"%b %Y")) #print...Mar 2002

#XTS monthly
#set configuration BIMETS_CONF_DIP to FIRST
setBIMETSconf("BIMETS_CONF_DIP","FIRST")

n=15
xArr=(n:0)
dateArr=as.yearmon('Jan 2000')+0:n/12
dataF=data.frame(dateArr,xArr)
ts1=xts(dataF[,2],order.by=dataF[,1])
print(GETDATE(ts1,9,"%b %Y")) #print...Sep 2000
```
#set configuration BIMETS_CONF_DIP to LAST
setBIMETSconf('BIMETS_CONF_DIP','LAST')

#2000 is bissextile...
print(GETDATE(ts1,2)) #print... 2000-02-29

#quarter...
print(GETDATE(ts1,5,'%Y Q%q')) #print... 2000 Q2

#restore default
setBIMETSconf('BIMETS_CONF_CCT','TS')

---

GETYEARPERIOD

*Get Time Series Year-Period*

**Description**

This function returns a two-element list (or a two-columns matrix in the case of JOIN=TRUE) built with the the years and the periods of the input time series observations. Users can provide the output list names. TSDATES is an alias for GETYEARPERIOD.

**Usage**

GETYEARPERIOD(x=NULL, YEARS='YEAR', PERIODS='PRD', JOIN=FALSE, avoidCompliance=FALSE, ...)
TSDATES(x=NULL, YEARS='YEAR', PERIODS='PRD', JOIN=FALSE, avoidCompliance=FALSE, ...)

**Arguments**

- **x**
  - Input time series, that must satisfy the compliance control check defined in `is.bimets`
- **YEARS**
  - Argument of type string that will be the output list name for the array of observation years.
- **PERIODS**
  - Argument of type string that will be the output list name for the array of observation periods.
- **JOIN**
  - If TRUE, the output will be a matrix having each row built with the year and the period of the related observation.
- **avoidCompliance**
  - If TRUE, compliance control check of input time series will be skipped. See `is.bimets`
- **...**
  - Backward compatibility.

**Value**

This function returns an object of class `list()`. If JOIN=TRUE, this function returns a matrix.
See Also

NOELS
TSERIES
is.bimets
BIMETS indexing
TSLEAD
TSINFO
TSLOOK
TABIT
ELIMELS

Examples

# create quarterly ts
n=20
ts1=TSERIES((n:1),START=c(2000,1),FREQ=4)
myYP=GETYEARPERIOD(ts1)
print(myYP$YEAR) # print 2000 2000 ...
print(myYP$PRD) # print 1 2 3 4 1 2 ...

# create monthly ts
ts1=TSERIES((n:1),START=c(2000,1),FREQ='M')
myYP=GETYEARPERIOD(ts1)
print(myYP$YEAR) # print 2000 2000 ...
print(myYP$PRD) # print 1 2 3 4 5 6 7 ...

# create yearly ts
ts1=TSERIES((1:n),START=c(2000,1),FREQ=1)
myYP=GETYEARPERIOD(ts1,YEARS='YEARSS', PERIODS='PRDSS')
print(myYP$YEARSS) # print 2000 2001 2002 ...
print(myYP$PRDSS) # print 1 1 1 ....

# JOIN=TRUE
ts1=TSERIES((n:1),START=c(2000,1),FREQ='M')
myYP=GETYEARPERIOD(ts1,JOIN=TRUE)
print(myYP) # print 2000 2000 ...
  # [,1] [,2]
  #[1,] 2000 1
  #[2,] 2000 2
  #[3,] 2000 3
  #...
Description

The package extends the way users can access and modify time series data in order to ease time series analysis and manipulation.

SELECTING BY DATE: users can select a single observation by date by using the syntax ts['Date'] and multiple observations by using ts['StartDate/EndDate'] or ts['StartDate'+(0:n)/f], with f=frequency, n=#observations. Data modification follows the same syntax: ts['Date']=value, ts['Date/Date']=c(value,value,...,value), etc. Users can also provide the string representing only the year of selection, or the year and the month of selection. For quarterly and monthly time series it is possible to select dates by using instances of class yearmon() and yearqtr() (See examples).

SELECTING BY YEAR-PERIOD: Users can select observations by providing the year and the period requested. Selection and modification of data require the double square bracket syntax, e.g. ts[[YEAR,PERIOD]]=value. Users can also assign an array of values to the input time series, starting from the [[YEAR,PERIOD]] provided, i.e. ts[[YEAR,PERIOD]]=c(value1,value2,...,valueN): in this case the input time series will be eventually extended in order to sequentially insert all values of the provided array (See examples).

SELECTING BY INDEXES: (core R) Users can select observations by simply providing the array of requested indexes, e.g. ts[c(idx1,idx2,...,idxN)] while reading and ts[c(idx1,idx2,...,idxN)]=c(value1,value2,...,valueN) while writing time series data.

See Also

GETDATE
BIMETS configuration
date2yp
yq2yp
ym2yp
as.bimets
is.bimets
LOC
NAMELIST
TABIT
ELIMELS

Examples

#day and month names can change depending on locale
Sys.setlocale("LC_ALL","C")
Sys.setlocale("LC_TIME","C")

#monthly
#-------------------------------
print('MONTHLY GET by DATE')

n=25

#create ts
ts1=TIMESERIES((0:n),START=c(2000,1),FREQ=12)

print(ts1['2001-01']) #get Jan 2001
print(ts1[as.yearmon('Jan 2001')]) #get Jan 2001
print(ts1['2000-09/2001-01']) #get data from Sep 2000 to Jan 2001
print(ts1['2000-09/']) #get data from Sep 2000
print(ts1[['/2001-01']]) #get data till Jan 2001
print(ts1['2001']) #get all data in year 2001

#get 3 consecutive months starting from Jan 2001
print(ts1[as.yearmon('Jan 2001')+ 0:2/12])

print(ts1[c(2,4,5)]) #get observation number 2,4 and 5

print('MONTHLY GET by YEAR-PERIOD')

print(ts1[[2000,5]]) #get year 2000 period 5

#get year 2010 period 1 (out of range)
tryCatch({print(ts1[[2010,1]])},error=function(e){cat(e$message)})

print(ts1[[2002,2]]) #get year 2002 period 2

print('MONTHLY SET by DATE')

ts1['2000-08']=9.9 #assign to Aug 2000
ts1[as.yearmon('Feb 2001')]=8.8 #assign to Feb 2001

#assign 8.8 on Feb 2001 and give warning
ts1[as.yearmon('Feb 2001')]=c(8.8,7.7)

#assign same value to all observation in range Sep 2000 - Jan 2001
ts1['2000-09/2001-01']=11.11

#assign repeatedly the two values to each observation starting from Sep 2001
ts1['2001-09/']=c(1.1,2.2)
print(ts1)

print('MONTHLY SET by YEAR-PERIOD')

ts1[[2000,5]]=NA #set year 2000 period 5

#assign an array starting from year 2002 period 2 (extend time series)

TABIT(ts1)
# quarterly
# ----------------------------------
print('QUARTERLY GET by DATE')

# create ts
ts1=TSERIES((0:n),START=c(2000,1),FREQ=4)

print(ts1[as.yearqtr('2001 Q1')]) # get 2001 Q1
print(ts1[2001]) # get all data in year 2001

# get 4 consecutive quarters starting from 2002 Q2
print(ts1[as.yearqtr('2002 Q2')+ 0:3/4])
print(ts1[['2003/']]) # get all data from 2003 Q1
print('QUARTERLY GET by YEAR-PERIOD')
print(ts1[[2002,4]]) # get year 2002 period 4

print('QUARTERLY SET by DATE')

ts1[as.yearqtr('2001 Q1')]=7.7 # assign to 2001 Q1
ts1['2002']=NA # assign to all observations of 2002

# assign to 3 quarters starting from 2003 Q2
ts1[as.yearqtr('2003 Q2')+ 0:2/4]=0

ts1['2004/']=-1 # assign to all observations starting from 2004
TABIT(ts1)
print('QUARTERLY SET by YEAR-PERIOD')

ts1[[2005,4]]=c(1,2,3) # assign array starting from year 2005 period 4
TABIT(ts1)

# annual
# ----------------------------------
print('ANNUAL GET by DATE')

# create ts
ts1=TSERIES((1:n),START=c(2000,1),FREQ=1)

print(ts1['2002-12-31']) # get 2002 data
print(ts1['2002']) # get 2002 data
print(ts1['2000/2004']) # get data from 2000 to 2004
print(ts1['2005/']) # get data starting from 2005

print('ANNUAL GET by YEAR-PERIOD')

print(ts1[[2005,1]]) # get year 2005
# get year 2032 (out of range)
tryCatch({print(ts1[[2032,1]])},error=function(e){cat(e$message)})

print('ANNUAL SET by DATE')

tsl[''2004'']=NA #assign to 2004
tsl[''2007'']=0.0 #assign starting from 2007
TABIT(tsl)

print('ANNUAL SET by YEAR-PERIOD')

tsl[[2005,1]]=NA #assign to 2005
tsl[[2014,1]]=c(-1,-2,-3) #assign array starting from 2014 (extend series)
TABIT(tsl)

#daily
#--------------------------------------
print('DAILY GET by DATE')

create ts
tsl=TSERIES((1:n),START=c(2000,1),FREQ='D')

print(tsl[['2000-01-12']]) #get Jan 12, 2000 data

print('DAILY GET by YEAR-PERIOD')

print(tsl[[2000,14]]) #get year 2000 period 14
#get year 2032 (out of range)
tryCatch({print(tsl[[2032,1]]) },error=function(e){cat(e$message)})

print('DAILY SET by DATE')

tsl[''2000-01-15'']=NA #assign to Jan 15, 2000
TABIT(tsl)

print('DAILY SET by YEAR-PERIOD')

tsl[[2000,3]]=NA #assign to Jan 3, 2000

#assign array starting from 2000 period 35 (extend series)
ts1[[2000,35]]=c(-1,-2,-3)
TABIT(tsl)
Description

This function rebases an input time series to the value of 100 in the year selected by the BASEYEAR argument. If the input time series frequency is greater than one, the initial reference is set to the average value of the input time series observations that lie in the BASEYEAR.

Usage

INDEXNUM(x=NULL, BASEYEAR=NULL, avoidCompliance=FALSE, ...)

Arguments

- **x**: Input time series that must satisfy the compliance control check defined in `is.bimets`.
- **BASEYEAR**: Rebasing year.
- **avoidCompliance**: If TRUE, compliance control check of input time series will be skipped. See `is.bimets`.
- **...**: Backward compatibility.

Value

This function returns a BIMETS time series.

See Also

- `TSJOIN`
- `TSEXTEND`
- `TSMERGE`
- `MOVAVG`
- `GETYEARPERIOD`
- `CUMSUM`

Examples

```r
create yearly ts
n=20
ts1=TSERIES(1:n,START=c(2000,1),FREQ=1)
TABIT(ts1, INDEXNUM(ts1,2005))

quarterly
nts1=TSERIES(1:n,START=c(2000,1),FREQ=4)
ts1[5]=NA
TABIT(ts1, INDEXNUM(ts1,2000))
```
INTS

Create Range of Indexes

Description

A command such as INTS(i, j) returns a one-dimensional array built with the integers \( i, i+1, i+2, \ldots, j \) when \( i, j \) are both scalars, and \( j \) is greater than \( i \). When \( j \) is less than \( i \), the command shown above defines a one-dimensional array built with the integers \( i, i-1, i-2, \ldots, j \).

Users can specify the \( k \) increment with a syntax like \( \text{INTS}(i, j, k) \) which defines a one-dimensional array built with the values \( i, i+k, i+2k, \ldots, i+Nk \).

The value of the last element of the array is the maximum value of \( i+Nk \) that is less than or equal to \( j \), for positive \( k \). For negative \( k \), the value of the last element of the array is the minimum value of \( i+Nk \) that is greater than or equal to \( j \).

The command can be used with one parameter by using a syntax like \( \text{INTS}(i) \) where \( i \) is a positive scalar. The result is a one-dimensional array built with the integers \( 1, 2, 3, \ldots, i \). When \( i \) is less than \( 1 \), the array is built with the integers \( -1, -2, \ldots, -i \).

Usage

\[
\text{INTS(FROM=NULL, TO=NULL, BY=NULL, \ldots)}
\]

Arguments

- \( \text{FROM} \)  The first integer of the sequence. If arguments \( \text{TO} \) and \( \text{BY} \) are \text{NULL} and \( \text{FROM}>0 \) the sequence will start from \( 1 \) and will end in \( \text{FROM} \); If arguments \( \text{TO} \) and \( \text{BY} \) are \text{NULL} and \( \text{FROM}<0 \) the sequence will start from \( -1 \) and will end in \( \text{FROM} \) (see examples).
- \( \text{TO} \)  The last integer of the sequence.
- \( \text{BY} \)  Increment between two elements of the sequence.
- \( \ldots \)  Backward compatibility.

Value

This function returns an object of class \( \text{c()} \).

See Also

- \text{TJOIN}
- \text{TSEXTEND}
- \text{TSMERGE}
- \text{MOVAVG}
- \text{GETYEARPERIOD}
- \text{TSLAG}
Examples

print(INTS(10,1,-2)) #... 10 8 6 4 2

#...Error in INTS(10, 1, -0.5) : INTS(): inputs must be integers.
tryCatch({print(INTS(10,1,-0.5));},error=function(e){cat(e$message)})

print(INTS(10)) #... 1 2 3 4 5 6 7 8 9 10
print(INTS(-10)) # -12 -3 -5 -7 -8 -9 -10

# Error in INTS(0) : INTS(): magnitude must be >=1
tryCatch({print(INTS(0));},error=function(e){cat(e$message)})

print(INTS(-10,-45)) # -10 -11 -12 ... -41 -42 -43 -44 -45

#...Error in seq.default(FROM, TO, BY) : wrong sign in 'by' argument
tryCatch({print(INTS(-10,-45,3));},error=function(e){cat(e$message)})

print(INTS(-10,-45,-3)) # -10 -13 -16 -19 -22 -25 -28 -31 -34 -37 -40 -43

is.bimets

Check the Compliance of a Time Series

Description

This function checks the compliance of the input time series that must verify the following BIMETS requirements:

- the input time series must be of the class defined in BIMETS_CONF_CCT (see BIMETS configuration)

- If BIMETS_CONF_CCT='TS' the input time series must be of class ts, univariate, with at least one observation and with a frequency f=1,2,3,4,12,24,36,53 or 366 per year.

- if BIMETS_CONF_CCT='XTS' the input time series must be of class xts, univariate, with at least one observation and with a frequency f=1,2,3,4,12,24,36,53 or 366 per year; the input time series must also be strictly regular, i.e. without any temporal discontinuity, and must have an .indexClass of type yearmon() for monthly time series, of type yearqtr() for quarterly time series and of type Date() for any other frequency. If configuration option BIMETS_CONF_DIP='LAST', i.e. the default value, the provided observation dates of the input xts() time series must be the last dates in the period, e.g. Dec. 31 for annual time series, Jun. 30 for the first period in a semiannual time series, etc; If configuration option BIMETS_CONF_DIP='FIRST' the provided observation dates of the input xts() time series must be the first dates in the period, e.g. Jan. 1 for an annual time series, Jul.
1 for the second period in a semiannual time series, etc.;

BIMETS package functions return time series that are compliant to the above requirements.

The compliance check can be locally disabled by using the function argument avoidCompliance=TRUE, that is available in almost all package functions. The compliance check of a BIMETS generated time series can be avoided and disabling the control check can speed up the execution time. This is suggested when users concatenate several call to the package functions, e.g. the compliance check of the ts2 time series in the following example can be avoided:

\[
\text{ts2} = \text{TSLAG}(\text{ts1}); \text{ts3} = \text{TSDELTA}(\text{ts2}, \text{avoidCompliance}=\text{TRUE});
\]

Time series must lie in the year range 1800-2199: in this range the conversion between a date and the related year-period (and vice versa) has been hardcoded in order to speedup the execution time.

If the compliance check is disabled, i.e. avoidCompliance=TRUE and the input time series does not verify all the above requirements, the package functions can have an erroneous behavior. Should any doubt arise, we suggest to call the package functions using the default arguments; we also suggest to create time series object by using the command TIMESERIES.

Usage

\[
\text{is.bimets(x = NULL, suppressErrors=TRUE, ...)}
\]

Arguments

- \text{x} Input time series.
- \text{suppressErrors} If suppressErrors=TRUE the function returns a logical value TRUE/FALSE whenever the input time series is BIMETS compliant. If suppressErrors=FALSE the function will throw an error if the input time series is not BIMETS compliant.
- ... Backward compatibility.

Value

This function returns a logical value TRUE/FALSE whenever the input time series is compliant to the above BIMETS requirements. If the test fails and suppressErrors=FALSE this function will throw an error.

See Also

- \text{as.bimets}
- \text{TIMESERIES}
- \text{BIMETS indexing}
- \text{BIMETS configuration}
- \text{fromBIMETStoTS}
- \text{fromBIMETStoXTS}
Examples

# day and month names can change depending on locale
Sys.setlocale('LC_ALL', 'C')
Sys.setlocale('LC_TIME', 'C')

# set day in period to last
setBIMETSconf('BIMETS_CONF_DIP', 'LAST')

# set constructor class type
setBIMETSconf('BIMETS_CONF_CCT', 'XTS')

# create an xts
xt = TIMESERIES(1:10, START = c(2000,1), FREQ = 'A')
print(xt); #... dates are at Dec 31
print(is.bimets(xt)) #... TRUE

# change setting
setBIMETSconf('BIMETS_CONF_DIP', 'FIRST')
print(is.bimets(xt)) #... FALSE

# set constructor class type
setBIMETSconf('BIMETS_CONF_CCT', 'TS')

# bivariate ts
tsBiv = ts(matrix(c(1,2,3,4,5,6), nrow = 3, ncol = 2), start = c(2000,1), frequency = 1)
print(is.bimets(tsBiv)) #... FALSE

#... error
tryCatch({is.bimets(tsBiv, suppressError = FALSE)}, error = function(e){cat(e$message)});
try({is.bimets(tsBiv, suppressError = FALSE)})

# ts year
n = 10
xArr = rnorm(n)
t = ts(data = xArr, start = c(2000,1), frequency = 1)
cat('is compliant?', is.bimets(t), '
')

# ts semestral
n = 10
xArr = rnorm(n)
t = ts(data = xArr, start = c(2000,1), frequency = 2)
cat('is compliant?', is.bimets(t), '
')

# set configuration BIMETS_CONF_DIP on FIRST
setBIMETSconf('BIMETS_CONF_DIP', 'FIRST')

# work with XTS
setBIMETSconf('BIMETS_CONF_CCT','XTS')

#xts annual with dates
n=10
xArr=rnorm(n)
dateArr=seq(as.Date('2000/01/01'),by='year',length=n)
dataF=data.frame(dateArr,xArr)
xt=xts(dataF[,2],order.by=dataF[,1])
cat('is compliant? ',is.bimets(xt),'
')

#xts daily
n=10
xArr=rnorm(n)
dateArr=seq(as.Date('2000/01/01'),by='day',length=n)
dataF=data.frame(dateArr,xArr)
xt=xts(dataF[,2],order.by=dataF[,1])
cat('is compliant? ',is.bimets(xt),'
')

#xts monthly with dates
n=10
xArr=rnorm(n)
dateArr=seq(as.Date('2000/01/01'),by='month',length=n)
dataF=data.frame(dateArr,xArr)
xt=xts(dataF[,2],order.by=dataF[,1])
cat('monthly with dates is compliant? ','is.bimets(xt)','
') #...false

#xts monthly with yearmon
n=10
xArr=rnorm(n+1)
dateArr=as.yearmon('Jan 2001')+0:n/12
dataF=data.frame(dateArr,xArr)
xt=xts(dataF[,2],order.by=dataF[,1])
cat('monthly with yearmon is compliant? ','is.bimets(xt)','
') #...true

#restore defaults
setBIMETSconf('BIMETS_CONF_CCT','TS')
setBIMETSconf('BIMETS_CONF_DIP','LAST')

LOAD_MODEL

Load a BIMETS model description file

Description

This function parses a MDL model definition and creates an equivalent R data structure that can be estimated and simulated. The input model definition can be either an external plain text file or a character variable.
LOAD_MODEL

Usage

LOAD_MODEL( modelFile=NULL,
modelText=NULL,
showWarnings=TRUE,
quietly=FALSE,
oldStyleModel=FALSE,
...)

Arguments

modelFile The path to the text file containing the MDL model definition.
modelText The character variable containing the MDL model definition. modelText takes precedence over modelFile if both are defined.
showWarnings If TRUE a warning message will be shown if the model has a null set of endogenous variables or a null set of exogenous variables.
quietly If TRUE, information messages will be suppressed.
oldStyleModel Backward compatibility.
...

Value

This function returns a BIMETS model object containing all the information gathered from the parsing of the input model definition.

A BIMETS model created with the LOAD_MODEL function can be viewed as a complex R list() containing the following elements (see examples):

- **rawData** and **cleanModel**: string arrays containing the original model definition. cleanModel is a clean version of the model definition, i.e. without comments, blank lines, etc.;

- **behaviorals** and **identities**: sub-lists containing all the information gathered from the behavioral and the identity definitions. This sub lists are described later in this page;

- **vendog** and **vexog**: string array containing the names of the endogenous and exogenous variables of the model; the former is also subsetted into **vendogBehaviorals** and **vendogIdentities**

- **totNumEqs**, **totNumIds** and **eqCoeffNum**: integer variables containing the behaviorals count, the identities count and the coefficients count of the model;

- **incidence_matrix**: the incidence matrix built from the model equations; it is a square matrix in which each row and each column represent an endogenous variable. If the (i,j) element is equal to 1 than in the model definition the current value of the endogenous variable referred by the i-row directly depends on the current value of the endogenous variable referred by the j-column. (see example)

- **vpre**, **vsim**, **vfeed** and **vpost**: the simulation process takes advantage of an appropriate ordering of the equations to increase the performances by iteratively solving only one subset of equations,
while the other equations are solved straightforwardly. (Ref: Don Gallo - Solving large sparse systems of equations in econometric models - Journal of Forecasting 1987 and Numerical methods for simulation and optimal control of large-scale macroeconomic models - Nepomiaatshy, Rachidi, Ravelli - 1980). The optimal reordering of the model equations is achieved by using an iterative algorithm applied to the incidence matrix, that produces 4 ordered arrays of endogenous variables:

1) \texttt{vpre} is the ordered string array containing the names of the endogenous pre-recursive variables that must be computed (by using their EQ> definition) before the simulation iterative algorithm takes place;

2) \texttt{vsim} is the ordered string array containing the names of the endogenous variables that must be sequentially computed during each iteration of the simulation algorithm;

3) \texttt{vfeed} is the ordered string array containing the names of the endogenous feedback variables to be evaluated for convergence during the simulation iterative algorithm;

4) \texttt{vpost} is the ordered string array containing the names of the endogenous post-recursive variables that must be computed after the execution and the convergence of the iterative algorithm in step 3 (more details in \texttt{BIMETS package} and \texttt{SIMULATE} help pages);

- \texttt{max\_lag}: the max lag of the model, i.e. the highest number of periods a time series of the model is lagged by in the \texttt{MDL} definition. It also accounts for PDLs and for the order of the error autocorrelation, if any;

- \texttt{modelName}: the name of the model, copied from the input file name or from the input character variable name containing the model definition;

BEHAVIORALS and IDENTITIES

The elements ‘behaviorals’ and ‘identities’ of the BIMETS model are named lists that contain information on behavioral and identities of the model. In both of this two lists, the name of each element is the name of the behavioral or the identity the data refer to, as specified in the model definition file: e.g. given a BIMETS model named \texttt{myModel}, the information on a behavioral named \texttt{cn} (i.e. there exists a “BEHAVIORAL> cn” in the \texttt{MDL} definition of the model) is stored into \texttt{myModel$behaviorals$cn}.

Behavioral elements have the following components:

- \texttt{eq}: the equation of the behavioral, as a character variable;

- \texttt{eqCoefficientsNames}: the names of the coefficients (the original ones and eventually the ones created by the PDL> expansion);

- \texttt{eqCoefficientsNamesOriginal}: the names of the original coefficients;

- \texttt{eqComponentsNames}: the names of endogenous and exogenous variables that appear in the behavioral equation;

- \texttt{eqComponentsNamesBehaviorals}: the names of behavioral endogenous variables that appear in the behavioral equation;

- \texttt{eqComponentsNamesIdentities}: the names of identity endogenous variables that appear in the
behavioral equation;

- **eqComponentsNamesExogenous**: the names of exogenous variables that appear in the behavioral equation;

- **tsrange**: the estimation time range as a 4 integer array;

- **eqRegressorsNames**: a character array containing the regressor expressions (the original ones and eventually the ones created by the PDL expansion);

- **eqRegressorsNamesOriginal**: a character array containing the expressions of the original regressors;

- **errorRaw**: the original definition of the error autocorrelation, if any (see MDL);

- **errorType**: the type of the error structure;

- **errorDim**: the dimension of the error autocorrelation;

- **eqSimExp**: the R optimized expression of the behavioral equation that is used in the simulation algorithm;

- **matrixR**: the R Lagrange matrix that is used in restriction analysis (see MDL);

- **vectorR**: the r Lagrange vector that is used in restriction analysis (see MDL);

- **restrictRaw**: the original definition of the coefficient restrictions, if any.

- **pdlRaw**: the original definition of the PDL restrictions, if any (see examples and MDL).

- **pdlRestrictionMatrix**: the R Lagrange matrix that is used in PDL restriction analysis (see examples and MDL);

For example, given a BIMETS model named `myModel`, the information on a technical identity named `y` (i.e., there exists an "IDENTITY> y" in the MDL definition of the model) is stored in `myModel$identities$y`.

Identity elements have the following components:

- **eqRaw**: the original equations of the identity (more than one if the identity has multiple equations and has `IF>` conditions), as a character variable (see examples and MDL);

- **ifRaw**: the original `IF>` conditions, if any, of the identity, as a character variable;

- **eqFull**: the full expression of the identity, composed with `IF>` conditions and related equations (see examples), as a character variable;

- **eqComponentsNames**: the names of endogenous and exogenous variables that appear in the
identity equation;

- **eqComponentsNamesBehaviorals**: the names of behavioral endogenous variables that appear in the identity equation;

- **eqComponentsNamesIdentities**: the names of identity endogenous variables that appear in the identity equation;

- **eqSimExp**: the R optimized expression of the identity equation that is used in the simulation algorithm;

- **hasIF**: boolean, TRUE if the identity has an IF> condition;

### See Also

MDL
LOAD_MODEL_DATA
ESTIMATE
SIMULATE
MULTMATRIX
RENorm
TIMESERIES
BIMETS indexing
BIMETS configuration

### Examples

```plaintext
#define model
myModelDefinition=
"MODEL

COMMENT> Modified Klein Model 1 of the U.S. Economy with PDL,
COMMENT> autocorrelation on errors, restrictions and conditional evaluations

COMMENT> Consumption
BEHAVIORAL> cn
TSRANGE 1925 1 1941 1
EQ> cn = a1 + a2*p + a3*TSLAG(p,1) + a4*(w1+w2)
COEFF> a1 a2 a3 a4
ERROR> AUTO(2)

COMMENT> Investment
BEHAVIORAL> i
TSRANGE 1923 1 1941 1
EQ> i = b1 + b2*p + b3*TSLAG(p,1) + b4*TSLAG(k,1)
COEFF> b1 b2 b3 b4
RESTRICT> b2 + b3 = 1
```

LOAD_MODEL

COMMENT> Demand for Labor
BEHAVIORAL> w1
TSRANGE 1925 1 1941 1
EQ> w1 = c1 + c2*(y+t-w2) + c3*TSLAG(y+t-w2,1) + c4*time
COEFF> c1 c2 c3 c4
PDL> c3 1 3

COMMENT> Gross National Product
IDENTITY> y
EQ> y = cn + i + g - t

COMMENT> Profits
IDENTITY> p
EQ> p = y - (w1+w2)

COMMENT> Capital Stock with switches
IDENTITY> k
EQ> k = TSLAG(k,1) + i
IF> i > 0
IDENTITY> k
EQ> k = TSLAG(k,1)
IF> i <= 0
END

#load model
myModel=LOAD_MODEL(modelText=myModelDefinition)

#retrieve model structure...
#get definition
myModel$cleanModel
# [1] "BEHAVIORAL> cn"
# [2] "TSRANGE 1925 1 1941 1"
# [3] "EQ> cn = a1 + a2*p + a3*TSLAG(p,1) + a4*(w1+w2)"
# [4] "COEFF> a1 a2 a3 a4"
# [5] "ERROR> AUTO(2)"
# [6] "BEHAVIORAL> i"
# [7] "TSRANGE 1923 1 1941 1"
# [8] "EQ> i = b1 + b2*p + b3*TSLAG(p,1) + b4*TSLAG(k,1)"
# [9] "COEFF> b1 b2 b3 b4"
#[10] "RESTRICT> b2 + b3 = 1"
#[11] "BEHAVIORAL> w1"
#[12] "TSRANGE 1925 1 1941 1"
#[13] "EQ> w1 = c1 + c2*(y+t-w2) + c3*TSLAG(y+t-w2,1)+c4*time"
#[14] "COEFF> c1 c2 c3 c4"
#[15] "PDL> c3 1 3"
#[16] "IDENTITY> y"
#[17] "EQ> y = cn + i + g - t"
#[18] "IDENTITY> p"
#[19] "EQ> p = y - (w1+w2)"
#[20] "IDENTITY> k"
#[21] "EQ> k = TSLAG(k,1) + i"
#[22] "IF> i > 0"
#[23] "IDENTITY> k"
LOAD_MODEL

# [24] "EQ> k = TSLAG(k,1)"
# [25] "IF> i <= 0"

# get endogenous and exogenous
myModel$vendog
# [1] "cn" "i" "w1" "y" "p" "k"
myModel$vexog
# [1] "w2" "t" "time" "g"

# get behaviorals, identities and coefficients count
myModel$totNumEqs
# [1] 3
myModel$totNumIds
# [1] 3
myModel$eqCoeffNum
# [1] 12

# get the incidence matrix
myModel$incidence_matrix
# cn i w1 y p k
# cn 0 0 1 0 1 0
# i 0 0 0 1 0
# w1 0 0 0 1 0
# y 1 1 0 0 0
# p 0 0 1 1 0
# k 0 1 0 0 0

# get the optimal reordering arrays
myModel$vpre
# NULL
myModel$vsim
# [1] "w1" "p" "cn" "i" "y"
myModel$vfeed
# [1] "y"
myModel$vpost
# [1] "k"

# get the model max lag and the model name
myModel$max_lag
# [1] 3
myModel$modelName
# myModelDefinition

# get infos on behavioral w1
myModel$behaviorals$w1$eq
# [1] "w1=c1+c2*(y+t-w2)+c3*TSLAG(y+t-w2,1)+c4*time"
myModel$behaviorals$w1$eqCoefficientsNames
# [1] "c1" "c2" "c3" "c3_PDL_1" "c3_PDL_2" "c4"
myModel$behaviorals$w1$eqCoefficientsNamesOriginal #[1] "c1" "c2" "c3" "c4"

myModel$behaviorals$w1$eqComponentsNames #[1] "t" "time" "w1" "w2" "y"

myModel$behaviorals$w1$tsrange #[1] 1925 1 1941 1

myModel$behaviorals$w1$eqRegressorsNames #[1] "1" "(y+t-w2)"
# [3] "TSLAG(y+t-w2,1)" "TSLAG(TSLAG(y+t-w2,1),1)" "TSLAG(TSLAG(y+t-w2,1),2)" "time"

myModel$behaviorals$w1$eqRegressorsNamesOriginal #[1] "1" "(y+t-w2)"
# [3] "TSLAG(y+t-w2,1)" "time"

myModel$behaviorals$w1$pdlRaw #[1] "c3 1 3;"

myModel$behaviorals$w1$pdlRestrictionMatrix # 
# [1,] 0 0 1 -2 1 0

# get infos on behavioral cn
myModel$behaviorals$cn$errorRaw #[1] "AUTO(2)"

myModel$behaviorals$cn$errorType #[1] "AUTO"

myModel$behaviorals$cn$errorDim #[1] 2

myModel$behaviorals$cn$eqSimExp
#expression(cn[4,]=cn__ADDFACTOR[4,]+cn__a1+cn__a2*p[4,]+cn__a3*(p[3,])+cn__a4*(w1[4,]+w2[4,])+cn__RHO_1*(cn[3,]+cn__ADDFACTOR[3,]+cn__a1+cn__a2*p[3,]+cn__a3*(p[2,])+cn__a4*(w1[3,]+w2[3,]))+cn__RHO_2*(cn[2,]+cn__ADDFACTOR[2,]+cn__a1+cn__a2*p[2,]+cn__a3*(p[1,])+cn__a4*(w1[2,]+w2[2,])))

# get infos on behavioral i
myModel$behaviorals$i$matrixR # 
# [1,] 0 1 1 0

myModel$behaviorals$i$vectorR
LOAD_MODEL_DATA

Load time series data into a BIMETS model object

Description
This function verifies the input time series list and copies the data into a BIMETS model object. Provided time series must be BIMETS compliant, as defined in is.bimets

Usage
LOAD_MODEL_DATA(model=NULL, modelData=NULL, showWarnings=FALSE, quietly=FALSE, ...)

Arguments

model The BIMETS model object (see LOAD_MODEL).
modelData The input time series list containing endogenous and exogenous data (see example).
showWarnings  If TRUE, a warning message will be shown if any input time series has missing values.
quietly      If TRUE, information messages will be suppressed.
...
Backward compatibility.

Value

This function adds a new named element, i.e. `modelData`, into the output model object.

The new `modelData` element is a named R list that contains all the input time series. Each element name of this list is set equal to the name of the endogenous or exogenous variable the time series data refer to.

See Also

`MDL`  
`LOAD_MODEL`  
`ESTIMATE`  
`SIMULATE`  
`MULTMATRIX`  
`RENorm`  
`TIMESERIES`  
`BIMETS indexing`  
`BIMETS configuration`

Examples

```r
define model data
myModelData=list(
 cn=TIMESERIES(39.8,41.9,45,49.2,50.6,52.6,55.1,56.2,57.3,57.8,55,50.9,
 45.6,46.5,48.7,51.3,57.7,58.7,57.5,61.6,65,69.7,
 START=c(1920,1),FREQ=1),
 g=TIMESERIES(4.6,6.6,6.1,5.7,6.6,6.5,6.6,7.6,7.9,8.1,9.4,10.7,10.2,9.3,10,
 10.5,10.3,11,13,14.4,15.4,22.3,
 START=c(1920,1),FREQ=1),
 i=TIMESERIES(2.7,-2.1,9.5,2.3,5.1,5.6,4.2,3.5.1,1,-3.4,-6.2,-5.1,-3,-1.3,
 2.1,2,-1.9,1.3,3.3,4.9,
 START=c(1920,1),FREQ=1),
 k=TIMESERIES(182.8,182.6,184.5,189.7,192.7,197.8,203.4,207.6,210.6,215.7,
 216.7,213.3,207.1,202,199,197.7,199.8,201.8,199.9,
 201.2,204.5,209.4,
 START=c(1920,1),FREQ=1),
 p

```


```plaintext
LOAD_MODEL_DATA

\[
\text{TIMESERIES}(12.7, 12.4, 16.9, 18.4, 19.4, 20.1, 19.6, 19.8, 21.1, 21.7, 15.6, 11.4,
 7, 11.2, 12.3, 14, 17.6, 17.3, 15.3, 19.21, 1.23.5,
 \text{START}=c(1920,1), \text{FREQ}=1),
\]

\[
\text{w1}
\]

\[
\text{TIMESERIES}(28.8, 25.5, 29.3, 34.1, 33.9, 35.4, 37.4, 37.9, 39.2, 41.3, 37.9, 34.5,
 29, 28.5, 30.6, 33.2, 36.8, 41, 38.2, 41.6, 45, 53.3,
 \text{START}=c(1920,1), \text{FREQ}=1),
\]

\[
y
\]

\[
\text{TIMESERIES}(43.7, 40.6, 49.1, 55.4, 56.4, 58.7, 60.3, 61.3, 64, 67, 57.7, 50.7, 41.3,
 45.3, 48.9, 53.3, 61.8, 65, 61.2, 68.4, 74.1, 85.3,
 \text{START}=c(1920,1), \text{FREQ}=1),
\]

\[
t
\]

\[
\text{TIMESERIES}(3.4, 7.7, 3.9, 4.7, 3.8, 5.5, 7.6, 7.4, 2, 4, 7.7, 7.5, 8.3, 5.4, 6.8, 7.2,
 8.3, 6.7, 7.4, 8.9, 9.6, 11.6,
 \text{START}=c(1920,1), \text{FREQ}=1),
\]

\[
time
\]

\[
\text{TIMESERIES}(NA, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
 \text{START}=c(1920,1), \text{FREQ}=1),
\]

\[
w2
\]

\[
\text{TIMESERIES}(2.2, 2.7, 2.9, 2.9, 3.1, 3.2, 3.3, 3.6, 3.7, 4.2, 4.8, 5.3, 5.6, 6.6, 6.1,
 7.4, 6.7, 7.7, 7.8, 8.8, 5,
 \text{START}=c(1920,1), \text{FREQ}=1)
\]

```

```plaintext
define model
myModelDefinition=
"MODEL
COMMENT> Modified Klein Model 1 of the U.S. Economy with PDL,
COMMENT> autocorrelation on errors, restrictions and conditional evaluations
COMMENT> Consumption
BEHAVIORAL> cn
TSRANGE 1925 1 1941 1
EQ> cn = a1 + a2*p + a3*TSLAG(p,1) + a4*(w1+w2)
COEFF> a1 a2 a3 a4
ERROR> AUTO(2)
COMMENT> Investment
BEHAVIORAL> i
TSRANGE 1923 1 1941 1
EQ> i = b1 + b2*p + b3*TSLAG(p,1) + b4*TSLAG(k,1)
COEFF> b1 b2 b3 b4
RESTRICT> b2 + b3 = 1
COMMENT> Demand for Labor
BEHAVIORAL> w1
TSRANGE 1925 1 1941 1
EQ> w1 = c1 + c2*(y+t-w2) + c3*TSLAG(y+t-w2,1)+c4*time
COEFF> c1 c2 c3 c4
PDL> c3 1 3
COMMENT> Gross National Product
IDENTITY> y
EQ> y = cn + i + g - t
COMMENT> Profits
IDENTITY> p
EQ> p = y - (w1+w2)
"
LOAD_MODEL_DATA

COMMENT> Capital Stock with switches
IDENTITY> k
EQ> k = TSLAG(k,1) + i
IF> i > 0
IDENTITY> k
EQ> k = TSLAG(k,1)
IF> i <= 0
END"

#load model
myModel=LOAD_MODEL(modelText=myModelDefinition)

#load data into the model
myModel=LOAD_MODEL_DATA(model=myModel,myModelData,showWarnings = TRUE)
#Load model data "myModelData" into model "myModelDefinition"
#CHECK_MODEL_DATA(): warning, there are missing values in series "time".
#...LOAD MODEL DATA OK

#retrieve data from model object
myModel$modelData$cn
#Time Series:
#Start = 1920
#End = 1941
#Frequency = 1
[1] 39.8 41.9 45.0 49.2 50.6 52.6 55.1 56.2 57.3
#57.8 55.0 50.9 45.6 46.5 48.7 51.3 57.7 58.7 57.5 61.6
#[21] 65.0 69.7

myModel$modelData$w1
#Time Series:
#Start = 1920
#End = 1941
#Frequency = 1
[1] 28.8 25.5 29.3 34.1 33.9 35.4 37.4 37.9 39.2
#41.3 37.9 34.5 29.0 28.5 30.6 33.2 36.8 41.0 38.2 41.6
#[21] 45.0 53.3

myModel$modelData$i
#Time Series:
#Start = 1920
#End = 1941
#Frequency = 1
[1] 2.7 -0.2 1.9 5.2 3.0 5.1 5.6 4.2 3.0 5.1
#1.0 -3.4 -6.2 -5.1 -3.0 -1.3 2.1 2.0 -1.9 1.3
#[21] 3.3 4.9

myModel$modelData$time
#Time Series:
#Start = 1920
#End = 1941
#Frequency = 1
Description

This function returns the indexes of the input TRUE elements. The input can be either an array or a time series. The result is usually used as a structured index to produce a new array.

Usage

LOCS(x=NULL, options='ALL', ...)

Arguments

x

This function accepts as input a boolean array or a boolean time series, often as the result of a logic comparison between an expression and a numerical array or a numerical time series:

- e.g. LOCS(c(a,b,c,...)>=k);
- LOCS(ts==j);
- LOCS(ts<expr);
- LOCS(is.na(ts)); etc...

options

A selection option can refine the result:

- **ALL**: (default) all the TRUE indices will be returned in the output.
- **UNIQUE**: return the index of the unique TRUE result; if there are multiple TRUE results then an error will be thrown.
- **FIRST**: return the first TRUE result.
- **LAST**: return the last TRUE result.

...

Backward compatibility.

Value

This function returns a numerical array built with the indexes of the values that are TRUE in the input boolean array or in the input boolean time series.

See Also

- NOELS
- is.bimets
- BIMETS indexing
- TSERIES
- GETYEARPERIOD
- NOELS
- NAMELIST
- INTS
Examples

```r
# create ts
n=10
ts1=TSERIES((1:n),START=c(2000,1),FREQ=1)
print(LOCS(ts1>7,options='FIRST')) # print 8

# generate error: print LOCS(): input has more than one TRUE element.
tryCatch({print(LOCS(ts1>=3,options='UNIQUE'));},error=function(e){print(e$message);})

print(LOCS(is.na(c(1,2,NA,4,5,6,7,NA,NA)))) # print c(3,8,9)
```

Description

BIMETS provides a language to unambiguously specify an econometric model. This page describes how to create a model and its general structure. The specification of an econometric model is translated and identified by keyword statements which are grouped in a model file, i.e. a plain text file or a character variable with a specific syntax. Collectively, these keyword statements constitute the BIMETS Model Description Language (from now on MDL). The model specifications consist of groups of statements. Each statement begins with a keyword. The keyword classifies the component of the model which is being specified.

Below is an example of a Klein’s model with a MDL compliant syntax that can either be stored in a character variable or in a plain text file.

The content of the `klein1.txt` variable is:

```r
R> klein1.txt="
MODEL

COMMENT> Consumption
BEHAVIORAL> cn
TSRANGE 1921 1 1941 1
EQ> cn = a1 + a2*p + a3*TSLAG(p,1) + a4*(w1+w2)
COEFF> a1 a2 a3 a4

COMMENT> Investment
BEHAVIORAL> i
TSRANGE 1921 1 1941 1
```

EQ> i = b1 + b2*p + b3*TSLAG(p,1) + b4*TSLAG(k,1)
COEFF> b1 b2 b3 b4

COMMENT> Demand for Labor
BEHAVIORAL> w1
TSRANGE 1921 1 1941 1
EQ> w1 = c1 + c2*(y+t-w2) + c3*TSLAG(y+t-w2,1)+c4*time
COEFF> c1 c2 c3 c4

COMMENT> Gross National Product
IDENTITY> y
EQ> y = cn + i + g - t

COMMENT> Profits
IDENTITY> p
EQ> p = y - (w1+w2)

COMMENT> Capital Stock
IDENTITY> k
EQ> k = TSLAG(k,1) + i

END

Please note that there are circular dependencies between equations of the model, i.e. cn <-w1 <-y <-cn. Circular dependencies imply that the model simulation must be solved with an iterative algorithm.

As shown, the model definition is quite intuitive. The first keyword is MODEL, while at the end of the model definition we can find the END keyword. Available tags in the definition of a generic BIMETS model are:

- **EQUATION>** or **BEHAVIORAL>** indicate the beginning of a series of keyword statements describing a behavioral equation. The behavioral statement general form is:

 BEHAVIORAL> name [TSRANGE startYear,startPeriod,endYear,endPeriod]

 where name is the name of the behavioral equation and the optional TSRANGE specifies that the provided time interval must be used in the coefficients estimation. The optional TSRANGE is defined as a 4-dimensional numerical array built with starting year, starting period, ending year and ending period.

Given \(Y = \beta \ast X + \epsilon \), where \(Y \) are the historical values of the dependent variable and \(X \) are the historical values of the regressors, if the requested estimation method is OLS (Ordinary Least Squares), in the general case (i.e. no restrictions nor error auto-correlation, as described later) the coefficients will be calculated as: \(\beta_{OLS} = (X' \ast X)^{-1} \ast X' \ast Y \).

If the requested estimation method is IV (Instrumental Variables), given \(Z \) the matrix built with instrumental variables as columns \(Z_i \), that should not be correlated to the disturbance terms, i.e. \(E[\epsilon' \ast Z_i] = 0 \), the coefficients will be either calculated as

\[
\beta_{IV} = (Z' \ast X)^{-1} \ast Z' \ast Y,
\]

or more generally as:

\[
\beta_{IV} = (\tilde{X}' \ast \Omega^{-1} \ast \tilde{X})^{-1} \ast \tilde{X}' \ast \Omega^{-1} \ast Y
\]

where
\[\hat{X} = Z \ast (Z' \ast Z)^{-1} \ast Z' \ast X \text{ and } \Omega = \sigma^2 \ast I, \sigma^2 = E[\epsilon' \ast \epsilon] \]

- **IDENTITY**> indicates the beginning of a series of keyword statements describing an identity or technical equation. The identity statement general form is:

```
IDENTITY> name
```

where name is the identity name.

- **EQ**> specifies the mathematical expression for a behavioral or an identity equation.

The equation statement general form for a behavioral equation is:

```
EQ> LHS = coeff1*f1 + coeff2*f2 + coeff3*f3 + ...
```

where LHS is a function of the behavioral variable,

```
coeff1,coeff2,coeff3,...
```

are the coefficient names of the equation and

```
f1,f2,f3,...
```

are functions of variables.

The equation statement general form for an identity equation is:

```
EQ> LHS = f1 + f2 + f3 + ...
```

where LHS is a function of the identity variable and

```
f1,f2,f3,...
```

are functions of variables.

The following **MDL** functions can be used in the LHS left-hand side of the equation, with name as the name of the behavioral or the identity variable:

- name - i.e. the identity function;
- **TSDELTA**_{name,i} - i-periods difference of the name time series;
- **TSDELTAP**_{name,i} - i-periods percentage difference of the name time series;
- **TSDELTALOG**_{name,i} - i-periods logarithmic difference of the name time series;
- **LOG**(name) - log of the name time series;
- **EXP**(name) - exponential of the name time series.

On the other side the mathematical expression available for using in the RHS right-hand side of the **EQ**> equation (i.e. \(f1,f2,f3,... \)) can include the standard arithmetic operators, parentheses and the following **MDL** functions:

- **TSLAG**(ts,i) - lag the ts time series by i-periods;
- **TSDELTA**(ts,i) - i-periods difference of the ts time series;
- **TSDELTAP**(ts,i) - i-periods percentage difference of the ts time series;
- **TSDELTALOG**(ts,i) - i-periods logarithmic difference of the ts time series;
- **MOVAVG**(ts,i) - i-periods moving average of the ts time series;
- MOVSUM(ts,i) - i-periods moving sum of the ts time series;
- LOG(ts) - log of the ts time series;
- EXP(ts) - exponential of the ts time series;
- ABS(ts) - absolute values of the ts time series.

MDL function names are reserved names. They cannot be used as variable or coefficient names. The coefficient names are specified in a subsequent COEFF> keyword statement within a behavioral equation. By definition, identities do not have any coefficient that must be assessed. Any name not specified as a coefficient name or mentioned on the list of the available MDL functions is assumed to be a variable.

- COEFF> specifies the coefficient names used in the EQ> keyword statement of a behavioral equation. The coefficients statement general form is:
 COEFF> coeff0 coeff1 coeff2 ... coeffn.
 The coefficients order in this statement must be the same as it appears in the behavioral equation.

- ERROR> specifies an autoregressive process of a given order for the regression error. The error statement general form is:
 ERROR> AUTO(n)
 where n is the order of the autoregressive process for the error.

During an estimation, users must ensure that the required data is available for the specified error structure: n periods of data prior to the time interval specified by TSRANGE are requested in any time series involved in the regression.

The solution requires an iterative algorithm. Given \(Y_1 = \beta_1 \cdot X_1 + \epsilon_1 \), where \(Y_1 \) are the historical values of the dependent variable and \(X_1 \) are the historical values of the regressors, the iterative algorithm is based on the Cochrane-Orcutt procedure:

1) Make an initial estimation by using the original TSRANGE extended backward n periods (given n as the autocorrelation order).

2) estimate the error autocorrelation coefficients \(\rho_i = \rho_{i,1}, ..., \rho_{i,n} \) with i = 1 by regressing the residuals \(\epsilon_i \) on their lagged values by using the auxiliary model:
 \[\epsilon_i = \rho_{i,1} \cdot TSLAG(\epsilon_{i,1}) + \ldots + \rho_{i,n} \cdot TSLAG(\epsilon_{i,n}) \]

3) transform the data for the dependent and the independent variables by using the estimated \(\rho_i \). The new dependent variable will be: \(Y_{i+1} = P_i \cdot Y_i \), and the new independent variables will be \(X_{i+1} = P_i \cdot X_i \) with the matrix \(P_i \) defined as:

\[
P_i = \begin{pmatrix}
1 & 0 & 0 & 0 & \ldots & 0 & 0 \\
-\rho_{i,1} & 1 & 0 & 0 & \ldots & 0 & 0 \\
-\rho_{i,2} & -\rho_{i,1} & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & -\rho_{i,n} & \ldots & -\rho_{i,1} & 1
\end{pmatrix}
\]
4) run another estimation on the original model $Y_{i+1} = \beta_{i+1} \cdot X_{i+1} + \epsilon_{i+1}$ by using the suitable `TSRANGE` and the transformed data coming out of step 3 and compute the new time series for the residuals.

5) estimate the new autocorrelation coefficients $\rho_{i+1} = \rho_{i+1,1}, \ldots, \rho_{i+1,n}$, by regressing the new residuals arising from step 4 (similar to step 2)

6) carry out the convergence check through a comparison among the previous ρ_i and the new ones arising from steps 5.

If $\text{all}(\text{abs}(\rho_{i+1} - \rho_i) < \delta)$, where ρ_i is the ρ vector at the iteration i and δ is a small convergence factor, then exit otherwise repeat from step 3 with $i <- i+1$.

- `RESTRICT>` is a keyword that can be used to specify linear coefficient restrictions. A deterministic restriction can be applied to any equation coefficient. Any number of `RESTRICT>` keywords is allowed for each behavioral equation.

A deterministic (exact) coefficient restriction sets a linear expression containing one or more coefficients equal to a constant. The restriction only affects the coefficients of the behavioral equation in which it is specified. The restriction statement general form is:

```
RESTRICT> linear_combination_of_coefficients_1 = value_1
... 
linear_combination_of_coefficients_n = value_n
```

where `linear_combination_of_coefficients_i,i=1..n` is a linear combination of the coefficient(s) to be restricted and `value_i` is the in-place scalar value to which the linear combination of the coefficients is set equal. Each linear combination can be set equal to a different value.

MDL example:

```
RESTRICT> coeff1 = 0
coeff2 = 10.5
coeff3-3*coeff4+1.2*coeff5 = 0
```

In many econometric packages, linear restrictions have to be coded by hand in the equations. BIMETS allows the users to write down the restriction in a natural way thus applying a constrained minimization. This procedure, although it leads to approximate numerical estimates, allows an easy implementation.

The theory behind this procedure is that of the Lagrange multipliers. Presented here is an example of its implementation.

Suppose that we have an equation defined as:

```
EQUATION> Y TSRANGE 2010 1 2015 4
EQ> Y = C1*X1 + C2*X2 + C3*X3
COEFF> C1 C2 C3
RESTRICT> 1.1*C1 + 1.3*C3 = 2.1
1.2*C2 = 0.8
```
Coefficients C1, C2, C3 are to be estimated. They are subject to the linear constraints specified by the RESTRICT> keyword statement. In the case of OLS estimation, this is carried out in the following steps:

1) Compute the cross-product matrices $X'X$ and $X'Y$ where X is a matrix with dimension [NOBS x NREG] containing the values of the independent variables (regressors) historical observations (and a vector of ones for the constant term, if any), and where Y is a NOBS elements vector of the dependent variable (regressand) historical observations; NOBS is the number of observations available on the TSRANGE specified in the behavioral equation and NREG is the number of regressors, or coefficients;

2) Build the restriction matrices. In the example:

$$R = \begin{pmatrix} 1 & 1 & 0 & 1.3 \\ 0 & 1.2 & 0 \end{pmatrix}$$

and

$$r = \begin{pmatrix} 2.1 \\ 0.8 \end{pmatrix}$$

R is a matrix of [NRES x NREG] size and r is a vector of [NRES] length, where NRES is the number of restrictions;

3) Compute the scaling factors for the augmentation to be performed in the next step:

$$Rscale[i] = \frac{\text{mean}(X'X)}{\max(\text{abs}(R[i,]))}$$

where $R[i,]$ is the i-th row of the R matrix.

Assuming $\text{mean}(X'X) = 5000$, in the example above we will have:

$Rscale[1] = 5000/1.3$

$Rscale[2] = 5000/1.2$

The augmented matrices will then be defined as:

$$R_{aug} = \begin{pmatrix} 1.1 * Rscale[1] & 0 & 1.3 * Rscale[1] \\ 0 & 1.2 * Rscale[2] & 0 \end{pmatrix}$$

and

$$r_{aug} = \begin{pmatrix} 2.1 * Rscale[1] \\ 0.8 * Rscale[2] \end{pmatrix}$$

4) Compute the so-called "augmented" cross-product matrix $(X'X)_{aug}$ by adding to the cross-product matrix $(X'X)$ a total of NRES rows and NRES columns:

$$(X'X)_{aug} = \begin{pmatrix} X'X & R'_{aug} \\ R_{aug} & 0 \end{pmatrix}$$

5) In a similar way, compute the so-called "augmented" cross-product matrix $(X'Y)_{aug}$ by adding a total of NRES elements to the cross-product matrix $(X'Y)$:
\[(X'Y)_{aug} = \begin{pmatrix} X'Y \\ r_{aug} \end{pmatrix}\]

6) Calculate the \(\hat{\beta}_{aug}\) augmented coefficients by regressing the \((X'Y)_{aug}\) on the \((X'X)_{aug}\).

The first \(N_{REG}\) values of the augmented coefficients \(\hat{\beta}_{aug}\) array are the estimated coefficients with requested restrictions. The last \(N_{RES}\) values are the errors we have on the deterministic restrictions.

In the case of IV estimation the procedure is the same as in the OLS case, but the matrix \(X\) has to be replaced with the matrix \(\hat{X}\), as previously defined in the BEHAVIORAL> keyword.

- PDL> is a keyword that defines an Almon polynomial distributed lag to be used in an estimation. Almon Polynomial distributed lags are specific kind of deterministic restrictions imposed on the coefficients of the distributed lags of a specific regressor. Multiple PDLs on a single behavioral equation can be defined.

The PDL> statement general form is:

\[
PDL> \text{coeffname degree laglength [N] [F]}\]

where \text{coeffname} is the name of a coefficient, degree is an integer scalar specifying the degree of the polynomial, laglength is an integer scalar specifying the length of the polynomial (in number of time periods), the optional N (i.e. "nearest") means that the nearest lagged term of the expansion, i.e., the first term, is restricted to zero, and the optional F (i.e. "farthest") means that the farthest lagged term of the expansion, i.e., the last term, is restricted to zero; the PDL> keyword statement thusly defined applies an Almon polynomial distributed lag to the regressor associated with the \text{coeffname} coefficient, of laglength length and degree degree, by providing the appropriate expansion and the deterministic restrictions for the degree and length specified. These expansions are not explicitly shown to the user, i.e., the original model is not changed.

laglength must be greater than degree (see example below).

A PDL term can be further referenced in a RESTRICT> keyword statement by using the following syntax: LAG(coeffname,pdllag).

Example: RESTRICT> LAG(coeff2,3) = 0 means that, during the estimation, the regressor related to the coefficient coeff2 and lagged by 3 periods in the PDL expansion must have a coefficient equal to zero. This example also implies that a PDL> coeff2 x y with y > 3 has been declared in the same behavioral.

The implementing rules are the following:

1) Read off the laglength of the PDL keyword and expand the column of the regressor related to coeffname in the matrix \(X\) (i.e. the original regressors matrix) with the lagged values of the regressor, from the left to the right, starting form the lag 1 to the lag laglength-1. The matrix \(X\) will now have a \([\text{NOBS} \times (\text{NREG}+\text{laglength}-1)]\) size, with \(\text{NOBS}\) as the number of observations in the specified TSRANGE and \(\text{NREG}\) as the number of regressors, or coefficients.

2) Build the restriction matrix \(R\) with the following \([\text{Nrow} \times \text{Ncol}]\) dimensions:

\[\text{Nrow} = \text{laglength} - (\text{degree} + 1)\]
$\text{Ncol} = \text{NREG} + \text{laglength} - 1$

The elements of this matrix will be zero except for the (laglength)-columns related to the section of the expanded columns in the X matrix. For every row we will have to insert degree+2 numbers different from zero.

The degree+2 numbers are taken from the Tartaglia's-like triangle:

\[
\begin{array}{cccc}
1 & -2 & 1 \\
1 & -3 & 3 & -1 \\
1 & -4 & 6 & -4 & 1 \\
1 & -5 & 10 & -10 & 5 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\end{array}
\]

where in the i-th row we find the numbers for a PDL of degree=i.

The r vector giving the known terms for the restrictions is a vector of $\text{NRES} = \text{laglength} - (\text{degree} + 1)$ elements equal to zero.

An example will clarify:

EQUATION> Y TSRANGE 2010 1 2015 4
EQ> Y = C1*X1 + C2*X2 + C3*X3
COEFF> C1 C2 C3
PDL> C2 2 5

then

\[
R = \begin{pmatrix}
0 & 1 & -3 & 3 & 1 & 0 & 0 \\
0 & 0 & 1 & -3 & 3 & 1 & 0 \\
\end{pmatrix}
\]

and

\[
r = \begin{pmatrix}
0 \\
0 \\
\end{pmatrix}
\]

The expanded regressors are:

$X1, X2, \text{TSLAG}(X2,1), \text{TSLAG}(X2,2), \text{TSLAG}(X2,3), \text{TSLAG}(X2,4), X3.$

The scaling factor is given, as in the standard restriction case, by: $\text{max} (X'X)/\text{max} (\text{abs}(R[i,i]))$

IF> keyword is used to conditionally evaluate an identity during a simulation, depending on the value of a logical expression. Thus, it is possible to have a model alternating between two or more identity specifications for each simulation period, depending upon results from other equations.

The **IF**> statement general form is:

IF> logical_expression
The IF> keyword must be specified within an identity group; this keyword causes the equation specified in the identity group to be evaluated during the current simulation period only when the logical_expression is TRUE.

Only one IF> keyword is allowed in an identity group. Further occurrences produce an error message and processing stops.

The logical_expression can be composed of constants, endogenous variables, exogenous variables, an expression among variables, combinations of the logical operators; mathematical operators and the MDL functions listed in the EQ> section are allowed.

In the following MDL example, the value of the endogenous myIdentity variable is specified with two complementary conditional identities, depending on the TSDELTA() result:

```
IDENTITY> myIdentity
IF> TSDELTA(myEndog*(1-myExog)) > 0
EQ> myIdentity = TSLAG(myIdentity)+1

IDENTITY> myIdentity
IF> TSDELTA(myEndog*(1-myExog)) <= 0
EQ> myIdentity = TSLAG(myIdentity)
```

- COMMENT> can be used to insert comments into a model. The general form of this keyword is:

```
COMMENT> text
```

The text following the COMMENT> keyword is ignored during all processing, and must lie in the same line. A comment cannot be inserted within another keyword statement. A dollar sign in the first position of a line is equivalent to using the COMMENT> keyword, as in this example:

```
$This is a comment
```

No other keywords are currently allowed in the MDL syntax.

See Also

LOAD_MODEL
ESTIMATE
SIMULATE
MULTMATRIX
RENORM
TIMESERIES
BIMETS indexing
BIMETS configuration
summary

Examples
#KLEIN MODEL WITH AUTOCORRELATION, RESTRICTIONS AND
#CONDITIONAL EVALUATIONS

#define model
tmyModel="MODEL

COMMENT> Modified Klein Model 1 of the U.S. Economy with PDL,
COMMENT> autocorrelation on errors, restrictions and conditional evaluations

COMMENT> Consumption with autocorrelation on errors
BEHAVIORAL> cn
TSRANGE 1925 1 1941 1
EQ> cn = a1 + a2*p + a3*TSLAG(p,1) + a4*(w1+w2)
COEFF> a1 a2 a3 a4
ERROR> AUTO(2)

COMMENT> Investment with restrictions
BEHAVIORAL> i
TSRANGE 1923 1 1941 1
EQ> i = b1 + b2*p + b3*TSLAG(p,1) + b4*TSLAG(k,1)
COEFF> b1 b2 b3 b4
RESTRICT> b2 + b3 = 1

COMMENT> Demand for Labor with PDL
BEHAVIORAL> w1
TSRANGE 1925 1 1941 1
EQ> w1 = c1 + c2*(y+t-w2) + c3*TSLAG(y+t-w2,1)+c4*time
COEFF> c1 c2 c3 c4
PDL> c3 1 2

COMMENT> Gross National Product
IDENTITY> y
EQ> y = cn + i + g - t

COMMENT> Profits
IDENTITY> p
EQ> p = y - (w1+w2)

COMMENT> Capital Stock with switches
IDENTITY> k
EQ> k = TSLAG(k,1) + i
IF> i > 0
IDENTITY> k
EQ> k = TSLAG(k,1)
IF> i <= 0

END"

#define model data
tmodelData=list(
cn =TIMESERIES(39.8,41.9,45.2,49.2,50.6,52.6,55.1,56.2,57.3,57.8,55,50.9,
102 MDL

 45.6, 46.5, 48.7, 51.3, 57.7, 58.7, 57.5, 61.6, 65, 69.7,
 START=c(1920,1), FREQ=1),
 g = TIMESERIES(4.6, 6.6, 1.5, 7.6, 6.6, 6.7, 6.7, 7.9, 8.1, 19.4, 10.7, 10.2, 9.3, 10,
 START=c(1920,1), FREQ=1),
 i = TIMESERIES(2.7, -2.1, 9.5, 2.3, 5.1, 1.5, 6.4, 2.3, 5.1, 1, -3.4, -6.2, -5.1, -3, -1.3,
 START=c(1920,1), FREQ=1),
 k = TIMESERIES(182.8, 182.6, 184.5, 189.7, 192.7, 197.8, 203.4, 207.6, 210.6, 215.7,
 216.7, 213.3, 207.1, 202, 199, 197.7, 199.8, 201.8, 199.9,
 START=c(1920,1), FREQ=1),
 p = TIMESERIES(12.7, 12.4, 16.9, 18.4, 19.4, 20.1, 19.6, 19.8, 21.1, 21.7, 15.6, 11.4,
 7, 11.2, 12.3, 14, 17.6, 17.3, 15.3, 19, 21.1, 23.5,
 START=c(1920,1), FREQ=1),
 w1 = TIMESERIES(28.8, 25.5, 29.3, 34.1, 33.9, 35.4, 37.4, 37.9, 39.2, 41.3, 37.9, 34.5,
 29, 28.5, 30.6, 33.2, 36.8, 41.3, 41.6, 45.5, 33.3,
 START=c(1920,1), FREQ=1),
 y = TIMESERIES(43.7, 40.6, 49.1, 55.4, 56.4, 58.7, 60.3, 61.3, 64.6, 67.5, 57.7, 50.7, 41.3,
 45.3, 48.9, 53.3, 61.8, 65, 61.2, 68.4, 74.1, 85.3,
 START=c(1920,1), FREQ=1),
 t = TIMESERIES(3.4, 7.7, 3.9, 4.7, 3.8, 5.5, 7.6, 7.4, 2, 4.2, 4.7, 7.7, 5.8, 3.5, 4.6, 8.7, 2,
 8.3, 6.7, 7.4, 8.9, 9.6, 11.6,
 START=c(1920,1), FREQ=1),
 time = TIMESERIES(NA, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
 START=c(1920,1), FREQ=1),
 w2 = TIMESERIES(2.2, 2.7, 2.9, 2.9, 3.1, 3.2, 3.3, 3.6, 3.7, 4.2, 4.8, 5.3, 5.6, 6.6, 6.1,
 7.4, 6.7, 7.7, 7.8, 8.8, 5,
 START=c(1920,1), FREQ=1)

load model and model data
model=LOAD_MODEL(modelText=myModel)
model=LOAD_MODEL_DATA(model, model1Data)

estimate model
model=ESTIMATE(model)

simulate model
model=SIMULATE(model

###
KLEIN MODEL WITH LHS FUNCTIONS
#
define the model with LHS funs
myModel="MODEL"
COMMENT> Modified Klein Model 1 of the U.S. Economy with PDL,
COMMENT> autocorrelation on errors, restrictions and conditional evaluations
COMMENT> LHS functions on EQ

COMMENT> Exp Consumption
BEHAVIORAL> cn
TSRANGE 1925 1 1941 1
EQ> EXP(cn) = a1 + a2*p + a3*LAG(p,1) + a4*(w1+w2)
COEFF> a1 a2 a3 a4
ERROR> AUTO(2)

COMMENT> Log Investment
BEHAVIORAL> i
TSRANGE 1925 1 1941 1
EQ> LOG(i) = b1 + b2*p + b3*LAG(p,1) + b4*LAG(k,1)
COEFF> b1 b2 b3 b4
RESTRICT> b2 + b3 = 1

COMMENT> Demand for Labor
BEHAVIORAL> w1
TSRANGE 1925 1 1941 1
EQ> w1 = c1 + c2*(TSDELTA(y)+t-w2) + c3*LAG(TSDELTA(y)+t-w2,1)+c4*time
COEFF> c1 c2 c3 c4
PDL> c3 1 3

COMMENT> Delta Gross National Product
IDENTITY> y
EQ> TSDELTA(y) = EXP(cn) + LOG(i) + g - t

COMMENT> Profits
IDENTITY> p
EQ> p = TSDELTA(y) - (w1+w2)

COMMENT> Capital Stock with switches
IDENTITY> k
EQ> k = LAG(k,1) + LOG(i)
IF> LOG(i) > 0
IDENTITY> k
EQ> k = LAG(k,1)
IF> LOG(i) <= 0
END'

#define model data
modelData=list(
cn=TSERIES(39.8,41.9,45,49.2,50.6,52.6,55.1,56.2,57.3,
57.8,55,50.9,45.6,46.5,48.7,51.3,57.7,58.7,57.5,61.6,65,69.7,
START=c(1920,1),FREQ=1)
g=TSERIES(4.6,6.6,6.1,5.7,6.6,5.5,6.6,7,9.4,10.7,10.2,9.3,10,10.5,10.3,11,13,14.4,15.4,22.3,
START=c(1920,1),FREQ=1)
i=TSERIES(2.7,-.2,1.9,5.2,3,5.1,5.6,4.2,3,5.1,1,-3.4,
-0.2,-5.1,-3,-1.3,2.1,2,-1.9,1.3,3,3,4.9,
START=c(1920,1),FREQ=1),
k=TSERIES(182.8,182.6,184.5,189.7,192.7,197.8,203.4,
207.6,210.6,215.7,216.7,213.3,207.1,202,
199,197.7,199.8,201.8,199.9,201.2,204.5,209.4,
START=c(1920,1),FREQ=1),
p=TSERIES(12.7,12.4,16.9,18.4,19.4,20.1,19.6,19.8,21.1,
21.7,15.6,11.4,7,11.2,12.3,14,17.6,17.3,15.3,19,21.1,23.5,
START=c(1920,1),FREQ=1),
w1=TSERIES(28.8,25.5,29.3,34.1,33.9,35.4,37.4,37.9,39.2,
41.3,37.9,34.5,29,28.5,30.6,33.2,36.8,41,38.2,41.6,45,53.3,
START=c(1920,1),FREQ=1),
y=TSERIES(43.7,40.6,49.1,55.4,56.4,58.7,60.3,61.3,64,67,
57.7,50.7,41.3,35.3,38.9,53.3,36.1,85,65,61.2,68.4,74.1,85.3,
START=c(1920,1),FREQ=1),
t=TSERIES(3.4,7.7,3.9,4.7,3.8,5.5,7.6,7.4,2,4,7,7.5,
8.3,5,4.6,8.7,2,8,3,6,7,7,4,8,9,6,11,6,
START=c(1920,1),FREQ=1),
time=TSERIES(NA,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,
3,4,5,6,7,8,9,10,
START=c(1920,1),FREQ=1),
w2=TSERIES(2.2,2.7,2.9,2.9,3.1,3.2,3.3,3.6,3.7,4,4.2,
4.8,5,3,5,6,6,1,7,4,6,7,7,7,8,8,8.5,
START=c(1920,1),FREQ=1)
}

#example data transformation
modelData=within(modelData, {
i=exp(i); # we have LOG(i) in the model MDL definition
cn=log(cn); # we have EXP(cn) in the model MDL definition
y=CUMSUM(y) # we have TSDELTA(y) in the model MDL definition
})

#load model and model data
model=LOAD_MODEL(modelText=myModel)
model=LOAD_MODEL_DATA(model,modelData)

#estimate model
model=ESTIMATE(model)

#simulate model
model=SIMULATE(model,
TSRANGE=c(1925,1,1930,1),
simConvergence=0.00001,
simIterLimit=100
)
Description

This function returns a monthly (dis)aggregated time series, by using as input an annual, semiannual, quarterly or daily time series.

Usage

MONTHLY(x = NULL, fun = NULL, avoidCompliance = FALSE, ...)

Arguments

x
Input time series that must satisfy the compliance control check defined in is.bimets.

fun
Only for daily input time series:

- **STOCK**: the value of the input time series in the last observation of a month is assigned to the same month of the output time series.
- **NSTOCK**: the value of the input time series in the last non-missing observation of a month is assigned to the same month of the output time series.
- **SUM**: the sum of input observations in a month is assigned to the same month of the output time series.
- **NSUM**: the sum of input non-missing observations in a month is assigned to the same month of the output time series.
- **AVE**: the average of input observations in a month is assigned to the same month of the output time series.
- **NAVE**: the average of input non-missing observations in a month is assigned to the same month of the output time series.

Only for quarterly, semiannual or annual input time series:

- **NULL**: (default) the output value of each monthly observation is set equal to the value of the input observation the month belongs to (i.e. duplicated values over the period)
- **INTERP_END**: the value of the input time series in a period is copied into the last month of the output time series that lies in the same period. Other values are calculated by linear interpolation.
- **INTERP_CENTER**: the value of the input time series in a period is copied into the median month of the output time series that lies in the same period. Other values are calculated by linear interpolation.
- **INTERP_BEGIN**: the value of the input time series in a period is copied into the first month of the output time series that lies in the same period. Other values are calculated by linear interpolation.

avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See is.bimets

... Backward compatibility.

Value

This function returns a monthly BIMETS time series.
See Also

ANNUAL
SEMIANNUAL
QUARTERLY
DAILY

Examples

#TS FREQ 2 SEMIANNUAL TO MONTHLY
ts1=TSERIES((1:10),START=c(2000,1),FREQ=2)
TABIT(MONTHLY(ts1,fun='INTERP_CENTER'))

#TS DAILY TO MONTHLY
ts1=TSERIES((1:366),START=c(2000,1),FREQ='D')
TABIT(MONTHLY(ts1,fun='STOCK'))

MOVAVG

Moving Average

Description

This function returns the moving average of the elements of the input array or the input time series. The result is an object of the same class of the input, and its elements are the moving average of length \(L\) of the input values. If the input is a time series, the DIRECTION of the moving average, i.e. backward, forward or centered, can be provided. \texttt{MAVE} is an alias for \texttt{MOVAVG}.

Usage

\texttt{MOVAVG(x = NULL, L = NULL, DIRECTION = NULL, avoidCompliance = FALSE, ...)}

\texttt{MAVE(x = NULL, L = NULL, DIRECTION = NULL, avoidCompliance = FALSE, ...)}

Arguments

\(x\)
Input numerical array or time series that must satisfy the compliance control check defined in \texttt{is.bimets}.

\(L\)
Length of the mean. Must be a positive integer.

\texttt{DIRECTION}\
if \(x\) is a time series, given \(y\) as output and \(x\) as input:

\texttt{AHEAD}: the output observation value in index \(n\) will be \(y[n] = \text{mean}(x[n],x[n+1],...,x[n+L-1])\).

\texttt{CENTER}: the output observation value in index \(n\) will be \(y[n] = \text{mean}(x[n-trunc(L/2)],...,x[n],x[n+1],...,x[n+trunc(L/2)])\).

\texttt{NULL or BACK}: (default) the output observation value in index \(n\) will be
\[y[n] = \text{mean}(x[n+1-L], \ldots, x[n-1], x[n]) \].

`avoidCompliance`

If `TRUE`, compliance control check of input time series will be skipped. See `is.bimets`.

... Backward compatibility.

Value

This function returns an object of the same class of the input, i.e. an array or a BIMETS time series.

See Also

`TSDELTA`, `TSLAG`, `TSPROJECT`, `TSEXTEND`, `TSLEAD`, `CUMSUM`, `INDEXNUM`

Examples

```r
# input data
inputArray = c(1, 2, 3, 4, NA, 1, 2, 3, 4, 5)

# array lag 3
out_movavg = MOVAVG(inputArray, 3)
print(out_movavg)

# ts lag 4 centered with missings
ts1 = TSERIES(inputArray, START = c(2000, 1), FREQ = 'A')
out_movavg = MAVE(ts1, 4, 'CENTER')
TABIT(out_movavg)

# ts daily
 ts1 = TSERIES(inputArray, START = c(2000, 1), FREQ = 'D')
out_movavg = MAVE(ts1, 3)
TABIT(ts1, out_movavg)
```
Description

This function returns the moving sum of the elements of the input array or the input time series. The result is an object of the same class of the input, and its elements are the moving sum of length \(L \) of the input values. If the input is a time series, the DIRECTION of the moving sum, i.e backward, forward or centered, can be provided. MTOT and MSUM are alias for MOVTOT and MOVSUM.

Usage

\[
\text{MOVSUM}(x = \text{NULL}, L = \text{NULL}, \text{DIRECTION} = \text{NULL}, \text{avoidCompliance} = \text{FALSE}, \ldots) \\
\text{MOVTOT}(x = \text{NULL}, L = \text{NULL}, \text{DIRECTION} = \text{NULL}, \text{avoidCompliance} = \text{FALSE}, \ldots)
\]

Arguments

- **x**: Input numerical array or time series that must satisfy the compliance control check defined in is.bimets.
- **L**: Length of the sum. Must be a positive integer.
- **DIRECTION**: if \(x \) is a time series, given \(y \) as output and \(x \) as input:
 - AHEAD: the output observation value in index \(n \) will be \(y[n] = \text{sum}(x[n], x[n+1], \ldots, x[n+L-1]) \).
 - CENTER: the output observation value in index \(n \) will be \(y[n] = \text{sum}(x[n-trunc(L/2)], \ldots, x[n], x[n+1], \ldots, x[n+trunc(L/2)]) \).
 - NULL or BACK: (default) the output observation value in index \(n \) will be \(y[n] = \text{sum}(x[n+1-L], \ldots, x[n-1], x[n]) \).
- **avoidCompliance**: If TRUE, compliance control check of input time series will be skipped. See is.bimets
- **...**: Backward compatibility.

Value

This function returns an object of the same class of the input, i.e. an array or a BIMETS time series.

See Also

- TSDELTA
- TSLAG
- TSPROJECT
- TSEXTRACT
- TSLEAD
- CUMSUM
- INDEXNUM

Examples

#input data
inputArray=c(1,2,3,4,NA,1,2,3,4,5)

#array lag 3
out_movtot=MOVSUM(inputArray,3)
print(out_movtot)

#ts lag 4 centered with missings
ts1=TSERIES(inputArray,START=c(2000,1),FREQ='A')
out_movtot=MOVSUM(ts1,4, 'CENTER')
TABIT(out_movtot)

#ts daily
ts1=TSERIES(inputArray,START=c(2000,1),FREQ='D')
out_movtot=MSUM(ts1,3)
TABIT(ts1, out_movtot)

MULTMATRIX

Compute the multiplier matrix of a BIMETS model object

Description

This function computes the matrix of both impact and interim multipliers, for a selected set of endogenous variables (i.e. TARGET) with respect to a selected set of exogenous variables (i.e. INSTRUMENT), by subtracting the results from different simulations in each period of the provided time range (i.e. TSRANGE). The simulation algorithms are the same as those used for the SIMULATE operation.

The MULTMATRIX procedure is articulated as follows:

1- simultaneous simulations are done;

2- the first simulation establishes the base line solution (without shocks);

3- the other simulations are done with shocks applied to each of the INSTRUMENT one at a time for every period in TSRANGE;

4- each simulation follows the defaults described in the SIMULATE help page, but has to be STATIC for the IMPACT multipliers and DYNAMIC for INTERIM multipliers;

5- given the shock amount MM_SHOCK as a very small positive number, derivatives are computed by subtracting the base line solution of the TARGET from the shocked solution, then dividing by the value of the base line INSTRUMENT time the MM_SHOCK.

The IMPACT multipliers measure the effects of impulse exogenous changes on the endogenous
variables in the same time period. They can be defined as partial derivatives of each current endogenous variable with respect to each current exogenous variable, all other exogenous variable being kept constant.

Given $Y(t)$ an endogenous variable at time t and $X(t)$ an exogenous variable at time t the impact multiplier $m(Y, X, t)$ is defined as $m(Y, X, t) = \frac{\partial Y(t)}{\partial X(t)}$ and can be approximated by $m(Y, X, t) \approx \frac{Y_{shocked}(t) - Y(t)}{X_{shocked}(t) - X(t)}$, with $Y_{shocked}(t)$ the values for the simulated endogenous variable Y at time t when $X(t)$ is shocked to $X_{shocked}(t) = X(t)(1 + MM_SHOCK)$

The INTERIM or delay-r multipliers measure the delay-r effects of impulse exogenous changes on the endogenous variables in the same time period. The delay-r multipliers of the endogenous variable Y with respect to the exogenous variable X related to a dynamic simulation from time t to time $t+r$ can be defined as the partial derivative of the current endogenous variable Y at time $t+r$ with respect to the exogenous variable X at time t, all other exogenous variable being kept constant.

Given $Y(t+r)$ an endogenous variable at time $t+r$ and $X(t)$ an exogenous variable at time t the impact interim or delay-r multiplier $m(Y, X, t, r)$ is defined as $m(Y, X, t, r) = \frac{\partial Y(t+r)}{\partial X(t)}$ and can be approximated by $m(Y, X, t, r) \approx \frac{Y_{shocked}(t+r) - Y(t+r)}{X_{shocked}(t) - X(t)}$, with $Y_{shocked}(t+r)$ the values for the simulated endogenous variable Y at time $t+r$ when $X(t)$ is shocked to $X_{shocked}(t) = X(t)(1 + MM_SHOCK)$

Users can also declare an endogenous variable as the INSTRUMENT variable. In this case, the constant adjustment (see SIMULATE) related to the provided endogenous variable will be used as the INSTRUMENT exogenous variable (see example):

Usage

MULTMATRIX(model=NULL, ...

Arguments

model The BIMETS model object for which the multipliers matrix has to be calculated.

The operation requires that all the behaviorals in the model have been previously estimated: all the behavioral coefficients (i.e. the estimation coefficients and the autoregression coefficients for the errors, if any) must be numerically defined in the model object. (see also ESTIMATE)

TSRANGE: the time range of the multiplier analysis, as a four dimensional numerical array,

i.e. TSRANGE=c(start_year,start_period,end_year,end_period).

simType, the simulation type requested:
DYNAMIC: the default, for interim multipliers. Whenever lagged endogenous
variables are needed in the computations, the simulated values of the endoge-
nous variables evaluated in the previous time periods are used;

STATIC: for impact multiplier. Rather than the simulated values, the actual his-
torical values are used whenever lagged endogenous variables are needed in the
computations;

TARGET: a character array built with the names of the endogenous variables
for which the multipliers are requested;

INSTRUMENT: a character array with the names of the exogenous variables
with respect to which the multipliers are computed. Users can also declare an
endogenous variable as the INSTRUMENT variable: in this case the constant ad-
justment (see **SIMULATE**) related to the provided endogenous variable will be
used as the instrument exogenous variable (see example);

MM_SHOCK: the shock value added to variables in the derivative calculation.
The default value is 0.00001 times the value of the exogenous variable (see also
MULTMATRIX);

simConvergence: the percentage convergence value requested for the iterative
process, that stops when the percentage difference of all the feedback variables
between iterations is less than **simConvergence** in absolute value;

simIterLimit: the value representing the maximum number of iterations to be
performed. The iterative procedure will stop when **simIterLimit** is reached or
the feedback variables satisfy the **simConvergence** criterion;

ZeroErrorAC: if **TRUE** it zeroes out all the autoregressive terms, if any, in the
behavioral equations;

Exogenize: a named list that specifies the endogenous variables to be exoge-
nized. During the simulation, in the specified time range the exogenized en-
dogenous variables will be assigned their historical values. The list names are
the names of the endogenous variables to be exogenized; each element of this
list contains the time range of the exogenization for the related endogenous vari-
able, in the form of a 4-dimensional integer array, i.e. start_year, start_period,
end_year, end_period. An element of the list can also be assigned **TRUE**: in this
case the related endogenous variable will be exogenized in the whole simulation
TSRANGE (see **SIMULATE**);

ConstantAdjustment: a named list that specifies the constant adjustments (i.e.
add factors) to be added to the selected equations of the model. Each constant
adjustment can be see as a new exogenous variable added to the equation of
the specified endogenous variable. The list names are the names of the endoge-
nous variables involved; each element of this list contains the time series to be
added to the equation of the related endogenous variable. Each provided time se-
ries must be compliant with the compliance control check defined in **is.bimets**
MULTMATRIX

(see SIMULATE);

verbose: if TRUE some verbose output will be activated. Moreover the values of all endogenous variables will be printed out during each iteration for all time periods in the simulation TSRANGE;

quietly: if TRUE the MULTMATRIX operation will be executed quietly.

Value

This function will add a new element named MultiplierMatrix into the output BIMETS model object.

The new MultiplierMatrix element is a
\((\text{NumPeriods} \times \text{Nendogenous}) \times (\text{NumPeriods} \times \text{Nexogenous})\) matrix,

with\(\text{NumPeriods}\) as the number of periods specified in the TSRANGE, \(\text{Nendogenous}\) the count of the endogenous variables in the TARGET array and \(\text{Nexogenous}\) the count of the exogenous variables in the INSTRUMENT array.

The arguments passed to the function call during the latest MULTMATRIX() run will be inserted into the "__SIM_PARAMETERS__" element of the model simulation list (see SIMULATE); that can be useful in order to replicate the multiplier matrix results.

Row and column names in the output multiplier matrix identify the variables and the periods involved in the derivative solution, with the syntax VARIABLE_PERIOD (see example).

See Also

MDL
LOAD_MODEL
ESTIMATE
SIMULATE
RENMORM
TIMESERIES
BIMETS indexing
BIMETS configuration

Examples

```
#define model
myModelDefinition=
"MODEL
COMMENT> Klein Model 1 of the U.S. Economy

COMMENT> Consumption
BEHAVIORAL> cn
```

TSRANGE 1921 1 1941 1
EQ> cn = a1 + a2*p + a3*TSLAG(p,1) + a4*(w1+w2)
COEFF> a1 a2 a3 a4
COMMENT> Investment
BEHAVIORAL> i
TSRANGE 1921 1 1941 1
EQ> i = b1 + b2*p + b3*TSLAG(p,1) + b4*TSLAG(k,1)
COEFF> b1 b2 b3 b4
COMMENT> Demand for Labor
BEHAVIORAL> w1
TSRANGE 1921 1 1941 1
EQ> w1 = c1 + c2*(y+t-w2) + c3*TSLAG(y+t-w2,1) + c4*time
COEFF> c1 c2 c3 c4
COMMENT> Gross National Product
IDENTITY> y
EQ> y = cn + i + g - t
COMMENT> Profits
IDENTITY> p
EQ> p = y - (w1+w2)
COMMENT> Capital Stock
IDENTITY> k
EQ> k = TSLAG(k,1) + i

END"

#define model data
myModelData=list(
 cn = TIMESERIES(39.8,41.9,45.49,2,50.6,52.6,55.1,56.2,57.3,57.8,55,50.9,
 45.6,46.5,48.7,51.3,57.7,58.7,57.5,61.6,65,69.7,
 START=c(1920,1),FREQ=1),
 g = TIMESERIES(4.6,6.6,6,6,1,5.7,6.6,6.5,6.6,7.6,7.9,8.1,9.4,10.7,10.2,9.3,10,
 10.5,10.3,11,13,14.4,15.4,22.3,
 START=c(1920,1),FREQ=1),
 i = TIMESERIES(2.7,-2,1.9,5.2,3,5.1,5.6,4.2,3,5.1,1,-3.4,-6.2,-5.1,-3,-1.3,
 2.1.2,-1.9,1.3,3,3.4,9,
 START=c(1920,1),FREQ=1),
 k = TIMESERIES(182.8,182.6,184.5,189.7,192.7,197.8,203.4,207.6,210.6,215.7,
 216.7,213.3,207.1,202,199,197.7,199.8,201.8,199.9,
 201.2,204.5,209.5,
 START=c(1920,1),FREQ=1),
 p = TIMESERIES(12.7,12.4,16.9,16.2,19.4,20.1,19.6,19.8,21.1,21.7,15.6,11.4,
 7,11.2,12.3,14,17.6,17.3,15.3,19,21.1,23.5,
 START=c(1920,1),FREQ=1),
\[\begin{align*}
\text{w1} &= \text{TIMESERIES}(28.8, 25.5, 29.3, 34.1, 33.9, 35.4, 37.4, 37.9, 39.2, 41.3, 37.9, 34.5, \\
& \quad 29, 28.5, 30.6, 33.2, 36.8, 41.3, 41.6, 45, 53.3, \\
& \quad \text{START}=c(1920,1), \text{FREQ}=1), \\
\text{y} &= \text{TIMESERIES}(43.7, 40.6, 49.1, 55.4, 56.4, 58.7, 60.3, 61.3, 64, 67, 57.7, 50.7, 41.3, \\
& \quad 45.3, 48.9, 53.3, 61.8, 65, 61.2, 68.4, 74.1, 85.3, \\
& \quad \text{START}=c(1920,1), \text{FREQ}=1), \\
\text{t} &= \text{TIMESERIES}(3.4, 7.7, 3.9, 4.7, 3.8, 5.5, 7, 6, 7, 4.2, 4.7, 7.7, 7.5, 8.3, 5.4, 6.8, 7.2, \\
& \quad 8.3, 6.7, 7.4, 8.9, 9.6, 11.6, \\
& \quad \text{START}=c(1920,1), \text{FREQ}=1), \\
\text{time} &= \text{TIMESERIES}(\text{NA}, -10, -9.8, -7.6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \\
& \quad \text{START}=c(1920,1), \text{FREQ}=1), \\
\text{w2} &= \text{TIMESERIES}(2.2, 2.7, 2.9, 2.9, 3.1, 3.2, 3.3, 3.6, 3.7, 4.4, 2.4, 4.8, 5.3, 5.6, 6.1, \\
& \quad 7.4, 6.7, 7.7, 7.8, 8.5, \\
& \quad \text{START}=c(1920,1), \text{FREQ}=1) \\
\end{align*} \]

#load model and model data
myModel=LOAD_MODEL(modelText=myModelDefinition)
myModel=LOAD_MODEL_DATA(myModel, myModelData)

#estimate model
myModel=ESTIMATE(myModel)

#calculate impact multipliers of Government non-Wage Spending 'g' and
#Government Wage Bill 'w2' with respect of Consumption 'cn' and
#Gross National Product 'y' in the Klein model on the year 1941:
myModel=MULTMATRIX(myModel,
 symType='STATIC',
 TSRANGE=c(1941,1,1941,1),
 INSTRUMENT=c('w2','g'),
 TARGET=c('cn','y'))

#Multiplier Matrix: 100.00%
#...MULTMATRIX OK

print(myModel$MultiplierMatrix)
#
w2_1 g_1 0.45403 1.671956
#cn_1 0.4540346 1.671956
#y_1 0.2532000 3.653260

#Results show that the impact multiplier of "y"
#with respect to "g" is +3.65
#If we change Government non-Wage Spending 'g' value in 1941
#from 22.3 (its historical value) to 23.3 (+1)
#then the simulated Gross National Product "y"
in 1941 changes from 95.2 to 99,
#thusly roughly confirming the +3.65 impact multiplier.
"g" appears only once in the model definition, and only in the "y" equation, with a coefficient of one. (Keynes would approve)

#multi-period interim multipliers
myModel=MULTMATRIX(myModel,
 TSRANGE=c(1940,1,1941,1),
 INSTRUMENT=c('w2','g'),
 TARGET=c('cn','y'))

#output multipliers matrix (note the zeros when the period of the INSTRUMENT is greater than the period of the TARGET)
print(myModel$MultiplierMatrix)
w2_1 g_1 w2_2 g_2
#cn_1 0.4478202 1.582292 0.0000000 0.0000000
#y_1 0.2433382 3.510971 0.0000000 0.0000000
#cn_2 -0.3911001 1.785042 0.4540346 1.671956
#y_2 -0.6251177 2.843960 0.2532000 3.653260

#multiplier matrix with endogenous variable 'w1' as instrument
#note the ADDFACTOR suffix in the column name, referring to the constant adjustment of the endogeneous 'w1'
myModel=MULTMATRIX(myModel,
 TSRANGE=c(1940,1,1941,1),
 INSTRUMENT=c('w2','w1'),
 TARGET=c('cn','y'))

#Multiplier Matrix: 100.00%
#. . .MULTMATRIX OK
myModel$MultiplierMatrix
w2_1 w1_ADDFACTOR_1 w2_2 w1_ADDFACTOR_2
#cn_1 0.4478202 0.7989328 0.0000000 0.0000000
#y_1 0.2433382 0.4341270 0.0000000 0.0000000
#cn_2 -0.3911001 -0.4866248 0.4540346 0.8100196
#y_2 -0.6251177 -0.9975073 0.2532000 0.4517209

NAMELIST

Named List of Time Series

Description

In the case of strings input, this function returns a string array built with the input strings. In the case of time series input, this function returns a list built with the input time series; the output list names will be the variable names passed as arguments.
NAMELIST

Usage

NAMELIST(…)

Arguments

…

List of strings or list of time series. In the case of a list of strings, if an input string is not eligible to be a variable name, e.g. a string composed only with numbers, or with special characters, a warning will be thrown and a message will describe the required change made to the input string in order to make it eligible to be a variable name (see example).

Value

In the case of strings as input, this function returns a string array built with the input strings. In the case of time series as input, this function returns a list built with the input time series; the output list names will be the variable names passed as arguments.

See Also

NOELS
is.bimets
BIMETS indexing
TSERIES
GETYEARPERIOD
LOCS

Examples

#NAMELIST with time series...

ts1=TSERIES(1:10,START=c(2000,1),FREQ=12)
ts2=TSERIES(10:20,START=c(2002,5),FREQ=12)
myNameList=NAMELIST(ts1,ts2)
print(myNameList)

#prints a list with $ts1 and $ts2 elements
#please note that names are 'ts1' and 'ts2'...
#$ts1
Jan Feb Mar Apr May Jun Jul Aug Sep Oct
#2000 1 2 3 4 5 6 7 8 9 10

#$ts2
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
#2002 10 11 12 13 14 15 16 17
#2003 18 19 20

#define strange namelist
#print warnings... ' ' converted in 'X', '9' converted in 'X9'
myNAMELIST=NAMELIST('pp','oo','ii','','9');

print(myNAMELIST)

<table>
<thead>
<tr>
<th>NOELS</th>
<th>Count Elements</th>
</tr>
</thead>
</table>

Description

This function returns a numerical array built with the length of each input argument. Input arguments can be numerical or time series. Input arguments can also be string variables.

Usage

NOELS(...)

Arguments

... List of input arguments. This function accepts input of class numerical, character, or BIMETS time series. character arguments are exclusive: if an argument is of class character, all other arguments must be of class character.

Value

This function returns an array of class c().

See Also

TIMESERIES
is.bimets
BIMETS indexing
TSDATES
LOCS
NAMELIST
INTS
TSINFO
TSLOOK
TABIT

Examples

out_NOELS=NOELS(c(1,2,3,4),c(5,6,7))
print(out_NOELS) #print c(4,3)

out_NOELS=NOELS(TSERIES(c(1,2,3,4),START=c(2000,1),FREQ=1),c(5,6,7))
normalizeYP

Normalize Year-Period Array

Description

This function normalizes a numerical array c(YEAR,PERIOD), given a frequency f and PERIOD>=f.

e.g. normalizeYP(c(2000,15),12) = c(2001,3)

Usage

normalizeYP(x = NULL, f = NULL)

Arguments

- **x**: Input numerical array c(YEAR,PERIOD)
- **f**: Frequency of normalization. Must be a positive integer.

Value

This function returns a numerical array c(YEAR,PERIOD)

See Also

NUMPERIOD
frequency

Examples

#c(2,13) and frequency=4 => c(5,1)
print(normalizeYP(c(2,13),4))
NUMPERIOD

Distance Between Two Year-Periods

Description

This function returns the number of time periods that lie between the provided starting period \(x_1 = c\text{\{YEAR1,PRD1\}}\) and the provided ending period \(x_2 = c\text{\{YEAR2,PRD2\}}\), given a frequency \(f\).

Usage

\[
\text{NUMPERIOD}(x_1, x_2, f = \text{NULL})
\]

Arguments

- \(x_1\) Starting period specified as a numerical array \(c\text{\{YEAR,PRD\}}\)
- \(x_2\) Ending period specified as a numerical array \(c\text{\{YEAR,PRD\}}\)
- \(f\) Frequency over the year. Must be a positive integer.

Value

This function returns an integer of class \text{numeric}.

See Also

- normalizeYP
- frequency
- GETDATE
- LOCS
- NAMELIST

Examples

\[
\text{# f=5, } c\text{\{3,4\}} - c\text{\{2,3\}} = 6 \text{ periods}
\]

\[
\text{print(\text{NUMPERIOD}(c\text{\{2,3\}},c\text{\{3,4\}},5))}
\]
Description

This function returns a quarterly (dis)aggregated time series, using as input an annual, semiannual, monthly or daily time series.

Usage

```r
QUARTERLY(x = NULL, fun = NULL, avoidCompliance = FALSE, ...)
```

Arguments

- **x**: Input time series that must satisfy the compliance control check defined in `is.bimets`.
- **fun**: Only for daily or monthly input time series:
 - `STOCK`: the value of the input time series in the last observation of a quarter is assigned to the same quarter of the output time series.
 - `NSTOCK`: the value of the input time series in the last non-missing observation of a quarter is assigned to the same quarter of the output time series.
 - `SUM`: the sum of input observations in a quarter is assigned to the same quarter of the output time series.
 - `NSUM`: the sum of input non-missing observations in a quarter is assigned to the same quarter of the output time series.
 - `AVE`: the average of input observations in a quarter is assigned to the same quarter of the output time series.
 - `NAVE`: the average of input non-missing observations in a quarter is assigned to the same quarter of the output time series.
- **avoidCompliance**: If TRUE, compliance control check of input time series will be skipped. See `is.bimets` ...
- **...**: Backward compatibility.
Value

This function returns a quarterly BIMETS time series.

See Also

ANNUAL
SEMIANNUAL
MONTHLY
DAILY

Examples

```r
#TS ANNUAL TO QUARTERLY
n=10
ts1=TSERIES(1:n,START=c(2000,1),FREQ=1)
ts1[5]=NA
TABIT(QUARTERLY(ts1,fun='INTERP_CENTER'));
```

```r
#TS DAILY TO QUARTERLY
n=600
ts1=TSERIES(1:n,START=c(2000,1),FREQ='D')
ts1[25]=NA
TABIT(QUARTERLY(ts1,fun='SUM'))
```

Description

The renormalization of econometric models consists of solving the model while interchanging the role of one or more endogenous variables with an equal number of exogenous variables.

This function determines the values for the INSTRUMENT exogenous variables which allow the objective TARGET endogenous variables to be achieved, with respect to the constraints given by the model MDL definition.

This is an approach to economic and monetary policy analysis, and is based on two assumptions:

1. there exists a desired level for a set of n endogenous variables defined as TARGET;
2. there exists a set of n exogenous variables defined as INSTRUMENT;

Given these premises, the renormalization process consists in determining the values of the exogenous variables chosen as INSTRUMENT allowing us to achieve the desired values for the endogenous variables designated as TARGET. In other words the procedure allows users to exchange the role of exogenous and endogenous among a set of time series pairs.
Given a list of exogenous INSTRUMENT variables and a list of TARGET endogenous time series, the iterative procedure can be split into the following steps:

1. Computation of the multipliers matrix MULTMAT of the TARGET endogenous variables with respect to the INSTRUMENT exogenous variables (this is a square matrix by construction);

2. Solution of the linear system:

\[V_{exog}(i + 1) = V_{exog}(i) + MULTMAT^{-1} \cdot (V_{endog}(i) - \text{TARGET}) \], where \(V_{exog}(i) \) are the exogenous variables in the INSTRUMENT list and \(V_{endog}(i) \) are the endogenous variables that have a related target in the TARGET list, given \(i \) the current iteration;

3. Simulation of the model with the new set of exogenous variables computed in step 2, then a convergence check by comparing the subset of endogenous variables arising from this simulation and the related time series in TARGET list. If the convergence condition is satisfied, or the maximum number of iterations is reached, the algorithm will stop, otherwise it will go back to step 1;

Users can also declare an endogenous variable as an INSTRUMENT variable. In this case, the constant adjustment related to the provided endogenous variable will be used as the instrument exogenous variable. This procedure is particularly suited for the automatic computation of the add-factors needed to fine tune the model into a baseline path and to improve the forecasting accuracy.

If the convergence condition is satisfied, the RENORM procedure will return the requested INSTRUMENT time series allowing us to achieve the desired values for the endogenous variables designated as TARGET.

Usage

```r
RENORM(model=NULL,
renormIterLimit=10,
renormConvergence=10E-5,
TSRANGE=NULL,
TARGET=NULL,
INSTRUMENT=NULL,
ConstantAdjustment=NULL,
quietly=FALSE,
showWarnings=FALSE,
tol=.Machine$double.eps,
avoidCompliance=FALSE,
...)
```

Arguments

- **model**: The BIMETS model object to be renormalized. The operation requires that all the behaviorals in the model have been previously estimated: all the behavioral coefficients (i.e. the estimation coefficients and the autoregression coefficients
for the errors, if any) must be numerically defined in the model object. (see also
\textsc{estimate})

\textbf{renormIterLimit}

The value representing the maximum number of iterations to be performed. The
itative renormalization procedure will stop when \textit{renormIterLimit} is reached
or the \textit{TARGET} variables satisfy the \textit{renormConvergence} criterion;

\textbf{renormConvergence}

The convergence value requested for the iterative renormalization process, that
stops when the distance between each \textit{TARGET} time series and the related simu-
lated endogenous variable is less than the \textit{renormConvergence} value;

\textbf{TSRANGE}

The time range of the \textsc{renorm} analysis, as a four dimensional numerical array,
i.e. \textsc{TSRANGE}=$c(\text{start_year, start_period, end_year, end_period})$.

\textbf{TARGET}

A named list that specifies the target endogenous variables. The list names are
the names of the endogenous variables involved in the renormalization; each
element of this list contains the time series of the target endogenous values;
the time series must be compliant with the compliance control check defined in
\textsc{is.bimets} (see examples);

\textbf{INSTRUMENT}

A character array with the names of the exogenous variables involved in the
renormalization. User can also declare an endogenous variable as \textit{INSTRUMENT}
variable: in this case the constant adjustment (see \textsc{simulate}) related to the pro-
vided endogenous variable will be used as the instrument exogenous variable
(see example);

\textbf{ConstantAdjustment}

A named list that specifies the constant adjustments (i.e. add factors) to be added
to the selected equations of the model (see also \textsc{simulate});

\textbf{quietly}

If TRUE, information messages will be suppressed.

\textbf{showWarnings}

If TRUE, a warning message will be shown if any input time series has missing
values.

\textbf{tol}

the tolerance for detecting linear dependencies in the columns of a matrix while
an inversion is requested. The default is \texttt{.Machine$double.eps}.

\textbf{avoidCompliance}

If TRUE, compliance control check of model time series will be skipped. See
\textsc{is.bimets}

\textbf{...}

Other options to be sent to the underlying \textsc{multmatrix} operation, e.g.:

\textbf{simType}, the simulation type requested:

\textsc{DYNAMIC}: the default, for interim multipliers. Whenever lagged endogenous
variables are needed in the computations, the simulated values of the endogenous
variables evaluated in the previous time periods are used;

\textsc{STATIC}: for impact multiplier. Rather than the simulated values, the actual his-
torical values are used whenever lagged endogenous variables are needed in the
computations; see also \textsc{multmatrix};

\textbf{simConvergence}: the percentage convergence value requested for the simula-
tion process (see also \textsc{simulate});
simIterLimit: the value representing the maximum number of iterations to be performed in the simulation process (see also **SIMULATE**);

ZeroErrorAC: if `TRUE` it zeroes out all the autoregressive terms, if any, in the behavioral equations;

Exogenize: a named list that specifies the endogenous variables to be exogenized (see also **SIMULATE**);

MM_SHOCK: the value of the shocks added to variables in the derivative calculation of the multipliers. The default value is `0.00001` times the value of the exogenous variable (see also **MULTMATRIX**);

Value

This function will add a new element named `renorm` into the output BIMETS model object.

The new `renorm` element is a named R list that contains the following elements:

- **INSTRUMENT**: a named R list that contains the time series of the INSTRUMENT exogenous variables which allow the objective TARGET endogenous variables to be achieved. The names of this list are the names of the related exogenous variables. This element is populated only if the convergence is reached. Users can also declare an endogenous variable as INSTRUMENT variable: in this case the constant adjustment (see **SIMULATE**) related to the provided endogenous variable will be used as the instrument exogenous variable. In this case, this INSTRUMENT output list will contains also the time series of the constant adjustment related to the provided endogenous variable (see example)
- **TARGET** a named R list built with the time series of the achieved TARGET endogenous variables. The names of this list are the names of the related endogenous variables the time series belong to;
- **unConvergedTARGET**: the names array of the endogenous TARGET variables that failed the convergence. This element is populated only if the convergence has not been reached;
- **modelData**: the whole model input dataset wherein the INSTRUMENT exogenous variables have been modified accordingly to the `renorm` output time series. This can be useful in order to verify that the model fed with the proper INSTRUMENT exogenous variable produces the desired TARGET endogenous values. This element is populated only if the convergence is reached;
- **ConstantAdjustment**: the constant adjustment input list provided during the function call, if any, wherein the constant adjustment related to a INSTRUMENT endogenous variables have been modified accordingly to the `renorm` output time series. This can be usefull in order to verify that the model fed with the proper INSTRUMENT exogenous variable and with the proper ConstantAdjustment (if any) produces the desired TARGET endogenous values. This element is populated only if the convergence is reached;
- **__RENORM_PARAMETERS__**: a named R list that contains the arguments passed to the function call during the latest `RENORM()` run, e.g. `TSRANGE`, `renormIterLimit`, `INSTRUMENT`, `TARGET`, etc.: that can be usefull in order to replicate the renorm results.

See Also

MDL
Examples

```c
#define model
myModelDefinition = "MODEL
  COMMENT> Klein Model 1 of the U.S. Economy
  
  COMMENT> Consumption
  BEHAVIORAL> cn
  TSRANGE 1921 1 1941 1
  EQ> cn = a1 + a2*p + a3*TSLAG(p,1) + a4*(w1+w2)
  COEFF> a1 a2 a3 a4

  COMMENT> Investment
  BEHAVIORAL> i
  TSRANGE 1921 1 1941 1
  EQ> i = b1 + b2*p + b3*TSLAG(p,1) + b4*TSLAG(k,1)
  COEFF> b1 b2 b3 b4

  COMMENT> Demand for Labor
  BEHAVIORAL> w1
  TSRANGE 1921 1 1941 1
  EQ> w1 = c1 + c2*(y+t-w2) + c3*TSLAG(y+t-w2,1) + c4*time
  COEFF> c1 c2 c3 c4

  COMMENT> Gross National Product
  IDENTITY> y
  EQ> y = cn + i + g - t

  COMMENT> Profits
  IDENTITY> p
  EQ> p = y - (w1+w2)

  COMMENT> Capital Stock
  IDENTITY> k
  EQ> k = TSLAG(k,1) + i

END"

#define model data
myModelData=list(
  cn
```
=TIMESERIES(39.8, 41.9, 45.9, 49.2, 50.6, 52.6, 55.1, 56.2, 57.3, 57.8, 55.9, 45.6, 46.5, 48.7, 51.3, 57.7, 58.7, 57.5, 61.6, 65.69.7, START=c(1920,1),FREQ=1),
g =TIMESERIES(4.6, 6.6, 6.1, 5.7, 6.6, 5.6, 6.7, 7.9, 8.1, 9.4, 10.7, 10.2, 9.3, 10, 10.5, 10.3, 11, 13, 14.4, 15.4, 22.3, START=c(1920,1),FREQ=1),
i =TIMESERIES(2.7, -2.1, 9.5, 2, 3.5, 1, 5.6, 4.2, 3.5, 1, -3.4, -6.2, -5.1, -3, -1.3, 2.1, 2, -1.9, 1.3, 3.3, 4.9, START=c(1920,1),FREQ=1),
k =TIMESERIES(182.8, 182.6, 184.5, 189.7, 192.7, 197.8, 203.4, 207.6, 210.6, 215.7, 216.7, 213.3, 207.1, 202, 199.7, 199.8, 201.8, 199.9, 201.2, 204.5, 209.4, START=c(1920,1),FREQ=1),
p =TIMESERIES(12.7, 12.4, 16.9, 18.4, 19.4, 20.1, 19.6, 19.8, 21.1, 21.7, 15.6, 11.4, 7.11, 2, 12.3, 14, 17.6, 17.3, 15.3, 19, 21.1, 23.5, START=c(1920,1),FREQ=1),
w1 =TIMESERIES(28.8, 25.5, 29.3, 34.1, 33.9, 35.4, 37.4, 37.9, 39.2, 41.3, 37.9, 34.5, 29, 28.5, 30.6, 33.2, 36.8, 41, 38.2, 41.6, 45, 53.3, START=c(1920,1),FREQ=1),
y =TIMESERIES(43.7, 40.6, 49.1, 55.4, 56.4, 58.7, 60.3, 61.3, 64, 67, 57.7, 50.7, 41.3, 45.3, 48.9, 53.3, 61.8, 65, 61.2, 68.4, 74.1, 85.3, START=c(1920,1),FREQ=1),
t =TIMESERIES(3.4, 7.7, 3.9, 4.7, 3.8, 5.5, 7, 6.7, 4.2, 4, 7.7, 7.5, 8.3, 5.4, 6.8, 7.2, 8.3, 6.7, 7.4, 8.9, 9.6, 11.6, START=c(1920,1),FREQ=1),
time =TIMESERIES(NA, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, START=c(1920,1),FREQ=1),
w2 =TIMESERIES(2.2, 2.7, 2.9, 2.9, 3.1, 3.2, 3.3, 3.6, 3.7, 4, 4, 2.4, 8.5, 3.5, 6, 6.1, 7.4, 6.7, 7.7, 7.8, 8.8, 5, START=c(1920,1),FREQ=1)
)

load model and model data
myModel=LOAD_MODEL(modelText=myModelDefinition)
myModel=LOAD_MODEL_DATA(myModel,myModelData)

estimate model
myModel=ESTIMATE(myModel)

we want an arbitrary value of 66 on Consumption 'cn' in 1940 and 78 in 1941
we want an arbitrary value of 77 on GNP 'y' in 1940 and 98 in 1941
kleinTargets = list(cn = TSERIES(66, 78, START=c(1940,1),FREQ=1),
y = TSERIES(77, 98, START=c(1940,1),FREQ=1)
Then, we can perform the model renormalization by using Government Wage Bill 'w2' and Government non-Wage Spending 'g' as INSTRUMENT in the years 1940 and 1941:

```r
myModel = RENORM(myModel,
  , 'w2', 'g' )
```

with(myModel, TABIT(modelData$w2, renorm$INSTRUMENT$w2, modelData$g, renorm$INSTRUMENT$g))

DATE, PER, modelData$w2, renorm$INSTRUMENT$w2, modelData$g, renorm$INSTRUMENT$g
etc.
1938, 1 , 7.7, , 13,
1939, 1 , 7.8, , 14.4,
1940, 1 , 8, 7.41333, 15.4, 16.1069
1941, 1 , 8.5, 9.3436, 22.3, 22.6599

So, if we want to achieve on Consumption 'cn' an arbitrary simulated value of 66
in 1940 and 78 in 1941, and if we want to achieve on GNP 'y' an arbitrary
simulated value of 77 in 1940 and 98 in 1941,
we need to change exogenous 'w2' from 8 to 7.41
in 1940 and from 8.5 to 9.34 in 1941,
and we need to change exogenous 'g'
from 15.4 to 16.1 in 1940 and from 22.3 to 22.66 in 1941

Let's verify:
create a new model
kleinRenorm = myModel

get instruments to be used
newInstruments = myModel$renorm$INSTRUMENT

change exogenous by using new instruments
kleinRenorm$modelData = within(kleinRenorm$modelData, {
 w2[[1940, 1]] = newInstruments$w2[[1940, 1]]
 w2[[1941, 1]] = newInstruments$w2[[1941, 1]]
 g[[1940, 1]] = newInstruments$g[[1940, 1]]
 g[[1941, 1]] = newInstruments$g[[1941, 1]]
})

users can also replace last two commands with:
kleinRenorm$modelData = kleinRenorm$renorm$modelData
#simulate the new model
kleinRenorm=SIMULATE(kleinRenorm
,TSRANGE=c(1940,1,1941,1)
,simConvergence=0.00001
,simIterLimit=100
)
#Simulation: 100.00%
#...SIMULATE OK

#verify targets are achieved
with(kleinRenorm$simulation,
 TABIT(cn,y)
)

#DATE, PER, cn , y
#1940, 1 , 66.01116 , 77.01772
#1941, 1 , 78.02538 , 98.04121

#now use 'i' endogenous variable as an instrument

#first, define the related exogenous constant adjustment
myCA=list(i = myModel$modelData$i*0+0.1)

#run renorm with endogenous 'i' as instrument
myModel=RENORM(myModel
,INSTRUMENT = c('w2','i')
,TARGET = kleinTargets
,TSRANGE = c(1940,1,1941,1)
,simIterLimit = 100
,ConstantAdjustment = myCA
)

#get the values of the constant adjustment for the endogenous 'i'
in 1940-1941 that allow to achieve the target values for 'cn' and 'y'
myModel$renorm$ConstantAdjustment
#$i
#Time Series:
#Start = 1920
#End = 1941
#Frequency = 1
[1] 0.1000000 0.1000000 0.1000000 ...
[20] 0.1000000 0.7069039 0.4388811

#these values are also reported in the INSTRUMENT output list
myModel$renorm$INSTRUMENT$i
#Time Series:
#Start = 1940
#End = 1941
SEMIANNUAL | Semianual (Dis)Aggregation

Description
This function returns a semi-annual (dis)aggregated time series, by using as input an annual, quarterly, monthly or daily time series.

Usage
SEMIANNUAL(x = NULL, fun = NULL, avoidCompliance = FALSE, ...)

Arguments
- **x**: Input time series that must satisfy the compliance control check defined in `is.bimets`.
- **fun**: Only for daily or monthly or quarterly input time series:
 - `STOCK`: the value of the input time series in the last observation of a half-year is assigned to the same half-year of the output time series.
 - `NSTOCK`: the value of the input time series in the last non-missing observation of a half-year is assigned to the same half-year of the output time series.
 - `SUM`: the sum of input observations in a half-year is assigned to the same half-year of the output time series.
 - `NSUM`: the sum of input non-missing observations in a half-year is assigned to the same half-year of the output time series.
 - `AVE`: the average of input observations in a half-year is assigned to the same half-year of the output time series.
 - `NAVE`: the average of input non-missing observations in a half-year is assigned to the same half-year of the output time series.

Only for annual input time series:
- `NULL`: (default) the output value of each half-year observation is set equal to the value of the input observation the half-year belongs to (i.e. duplicated values over the period)
- `INTERP_END`: the value of the input time series in a period is copied into the last half-year of the output time series that lies in the same period. Other values are calculated by linear interpolation.
- `INTERP_CENTER`: the value of the input time series in a period is copied into the median half-year of the output time series that lies in the same period. Other values are calculated by linear interpolation.
- `INTERP_BEGIN`: the value of the input time series in a period is copied into the first half-year of the output time series that lies in the same period. Other values are calculated by linear interpolation.
avoidCompliance
 If TRUE, compliance control check of input time series will be skipped. See is.bimets
...
 Backward compatibility.

Value
 This function returns a semiannual BIMETS time series.

See Also
 ANNUAL
 QUARTERLY
 MONTHLY
 DAILY

Examples

#TS QUARTERLY TO SEMIANNUAL
n=14
xArr=(n:0)
ts1=TSERIES(xArr,START=c(2000,1),FREQ='Q')
print(SEMIANNUAL(ts1,fun='NAVE'))

#TS ANNUAL TO SEMIANNUAL
nt1=TSERIES((1:10),START=c(2000,1),FREQ=1)
print(SEMIANNUAL(ts1,fun='INTERP_END'))

SIMULATE
 Simulate a BIMETS model object

Description
 The simulation of an econometric model basically consists in solving the system of the equations
describing the model for each time period in the specified time interval. Since the equations may
not be linear in the variables, and since the graph derived from the incidence matrix may be cyclic,
the usual methods based on linear algebra are not applicable, and the simulation must be solved by
using an iterative algorithm.

BIMETS simulation capabilities support:

- Static simulations: a static multiple equation simulation, in which the historical values for the
 lagged endogenous variables are used in the solutions of subsequent periods;

- Dynamic simulations: a dynamic simulation, in which the simulated values for the lagged en-
dogenous variables are used in the solutions of subsequent periods;
- **Residuals check**: a single period, single equation simulation; simulated time series in output are just the computation of the RHS (right-hand-side) of their equation, by using the historical values of the involved time series and by accounting for error autocorrelation and PDLs, if any;

- **Forecast simulations**: similar to dynamic simulation, but during the initialization of the iterative algorithm the starting values of endogenous variables in a period are set equal to the simulated values of the previous period. This allows the simulation of future endogenous observations, i.e. the forecast;

- **Partial or total exogenization of endogenous variables**: in the provided time interval (i.e. partial exog.) or in the whole simulation time range (i.e. total exog.), the values of the selected endogenous variables can be definitely set equal to their historical values, by excluding their equations from the iterative algorithm of simulation;

- **Constant adjustment of endogenous variables (add-factors)**: adds another exogenous time series - the "constant adjustment" - in the equation of the selected endogenous variables;

In details, the generic model suitable for simulation in BIMETS can be written as:

\[
\begin{align*}
y_1 &= f_1(\bar{x}, \bar{y}) + z_1 \\
\vdots \\
y_n &= f_n(\bar{x}, \bar{y}) + z_n
\end{align*}
\]

being:

- \(n \) the number of equations in the model;
- \(\bar{y} = [y_1, \ldots, y_n] \) the \(n \)-dimensional vector of the endogenous variables;
- \(\bar{x} = [x_1, \ldots, x_m] \) the \(m \)-dimensional vector of the exogenous variables;
- \(f_i(\ldots), i = 1..n \) any kind of functional expression able to be written by using the MDL syntax;

As described later on, a modified Gauss-Seidel iterative algorithm can solve the system of equations. The convergence properties may vary depending on the model specifications. In some conditions, the algorithm may not converge for a specific model or a specific set of data.

A convergence criterion and a maximum number of iterations to be performed are provided by default. Users can change these criteria by using the `simConvergence` and `simIterLimit` arguments of the `SIMULATE()` function.

The general conceptual scheme of the simulation process (for each time period) is the following:

1. initialize the solution for the current simulation period;
2. iteratively solve the system of equations;
3. save the solution, if any;

Step 2 means that for each iteration you will need to:

2.1 update the values of the current endogenous variables;
2.2 verify that the convergence criterion is satisfied or that the maximum number of allowed iterations has been reached;

The initial solution for the iterative process (step 1) can be given alternatively by:

- the historical value of the endogenous variables for the current simulation period (the default);
- the simulated value of the endogenous variables from the previous simulation period (this alternative is driven by the simType='FORECAST' argument of the SIMULATE() function);

In the "dynamic" simulations (i.e. simulations performed by using either the default simType='DYNAMIC' or the simType='FORECAST'), whenever lagged endogenous variables are needed in the computation, the simulated values of the endogenous variables \bar{y} assessed in the previous time periods are used. In this case, the results of the simulation in a given time period depend on the results of the simulation in the previous time periods. This kind of simulation is defined as "multiple equation, multiple period".

As an alternative, the actual historical values can be used in the "static" simulations (i.e. simulations performed by using simType='STATIC') rather than simulated values whenever lagged endogenous variables are needed in the computations. In this case, the results of the simulation in a given time period does not depend on the results of the simulation in the previous time periods. This kind of simulation is defined as "multiple equation, single period".

The last simulation type available is the residual check (simType='RESCHECK'). With this option a "single equation, single period" simulation is performed. In this case no iteration must be carried out. The endogenous variables are assessed for each single time period through the use of historical values for each variable on the right-hand side of the equation, for both lagged and current periods. This kind of simulation is very helpful for debugging and checking the logical coherence of the equations and the data, and can be used as a simple tool to compute the add-factors.

The debugging of the logical coherence of the model-equation and the data is carried out by means of a procedure called "Residual Check".

It consists in the following steps:

1. add another exogenous variable - the constant adjustment - to every equation of the model, both behavioral and technical identity (i.e. by using the ConstantAdjustment argument of the SIMULATE() function);
2. fill in with the estimated residuals all the constant adjustments for the behavioral equations;
3. fill in with zeroes the constant adjustments for the technical identities;
4. perform a simulation of the model with the simType='RESCHECK' option;
5. compute the difference between the historical and the simulated values for all the endogenous variables;
6. check whether all the differences assessed in step 5 are zero in the whole time range;

If a perfect tracking of the history is obtained then the equations have been written coherently with the data, otherwise a simulated equation not tracking the historical values is an unambiguous symptom of data inconsistent with the model definition.
Aside from the residual check, the add-factors constitute an important tool to significantly improve the accuracy of forecasts made through an econometric model. Considering the following model:

\[y_1 = f_1(\bar{x}, \bar{y}) + z_1 \]
\[... \]
\[y_n = f_n(\bar{x}, \bar{y}) + z_n \]

the add-factors \(z = [z_1, ..., z_n] \) can be interpreted as estimates of the future values of the disturbance terms or, alternatively, as adjustments of the intercepts in each equation. These add-factors round out the forecasts, by summarizing the effects of all the systematic factors not included in the model. One choice for the computation of the add-factors is given by past estimation residuals and past forecast errors or by an average of these errors. This consideration suggests an easy way of computing the add-factors:

1. add the constant adjustments to every equation of the model, both behavioral and technical identity;
2. fill in with zeroes all the constant adjustments;
3. solve the model, with the simType='RESCHECK' option, in a time interval including some periods beyond the estimation sample;
4. compute the difference between the historical and the simulated values for each the endogenous variables;
5. average, or process in a suitable way, the difference arising from point 4 in the time periods beyond the estimation sample to compute the constant value to be used as an add-factor in the following forecasting exercises;

THE OPTIMAL REORDERING

In fact, the simulation process takes advantage of an appropriate ordering of the equations to increase the performances by iteratively solving only one subset of equations, while the others are solved straightforwardly. "...a different ordering of the equations can substantially affect the speed of convergence of the algorithm; indeed some orderings may produce divergence. The less feedback there is, the better the chances for fast convergence..." - Don, Gallo - Solving large sparse systems of equations in econometric models - Journal of Forecasting 1987.

The LOAD_MODEL function builds the incidence matrix of the model, then defines the proper equation reordering. The incidence matrix is built from the equations of the model; it is a square matrix in which each row and each column represents an endogenous variable. If the \((i,j)\) element is equal to 1 then in the model definition the current value of the endogenous variable referred by the \(i\)-row depends directly from the current value of the endogenous variable referred by the \(j\)-column.

In econometric models, the incidence matrix is usually very sparse. Only a few of the total set of endogenous variables are used in each equation. In this situation, ordering the equation in a certain sequence will lead to a sensible reduction of the number of iterations needed to achieve convergence. Reordering the equations is equivalent to rearranging rows and columns of the incidence matrix. In this way the incidence matrix might be made lower triangular for a subset of the equations. For this subset, an endogenous variable determined in a specific equation has no incidence in
any equation above it, although the same variable might have incidence in equations below it. Such a subset of equations is called recursive. Recursive systems are easy to solve. It is only necessary to solve each equation once if this is done in the right order. On the other hand, it is unlikely for the whole model to be recursive. Indeed the incidence graph is often cyclic, as in the Klein’s model that presents the following circular dependencies in the incidence matrix: \(cn \leftarrow w1 \leftarrow y \leftarrow cn \)

For a subset of the equations, some 1’s will occur in the upper triangle of the incidence matrix for all possible orderings. Such subset of equations is called simultaneous. In order to be able to solve the endogenous variables in the simultaneous block of equations, an iterative algorithm has to be used. Nevertheless, the equations in the simultaneous block may be ordered so that the pattern of the 1’s in the upper triangle of the incidence matrix forms a spike. The variables corresponding to the 1’s in the upper triangle are called feedback variables.

A qualitative graphical example of an ordered incidence matrix is given in the following figure. The white areas are all 0’s, the gray areas contains 0’s and 1’s. The 1’s in the light gray areas refer to variables already evaluated in previous blocks, therefore they are known terms within the block. The 1’s in the dark gray areas refer to variables evaluated within the block.

The final pattern of an incidence matrix after the equation reordering generally features three blocks:

1. a recursive block (the pre-recursive block);
2. a simultaneous block;
3. another recursive block (the post-recursive block);

As said, the pre-recursive and the post-recursive blocks are lower triangular. Therefore the corresponding equations are solvable with a cascade substitution with no iteration. Just the simultaneous equations set needs an iterative algorithm to be solved. It is important to say that the convergence criterion may also be applied to these variables only: when the feedback variables converge, the rest of the simultaneous variables also do.

BIMETS builds and analyzes the incidence matrix of the model, and then it orders the equations in
pre-recursive, post-recursive and simultaneous blocks. The simultaneous block is then analyzed in order to find a minimal set of feedback variables. This last problem is known to be NP-complete (Ref: Garey, Johnson - *Computers and Intractability: a Guide to the Theory of NP-completeness* - San Francisco, Freeman 1979).

The optimal reordering of the model equations is programmatically achieved through the use of an iterative algorithm applied to the incidence matrix that can produce 4 ordered lists of endogenous variables:

1. vpre is the ordered list containing the names of the endogenous pre-recursive variables to be sequentially computed (by using their EQ> definition in the MDL) before the simulation iterative algorithm takes place;
2. vsim is the ordered list containing the names of the endogenous variables to be sequentially computed during each iteration of the simulation iterative algorithm;
3. vfeed is the list containing the names of the endogenous feedback variables;
4. vpost is the ordered list containing the names of the endogenous post-recursive variables to be sequentially computed once the simulation iterative algorithm has converged;

If equations are reordered, the previous conceptual scheme is modified as follow:

- initialize the solution for the current simulation period;
- compute the pre-recursive equations (i.e. the equation of the endogenous variables in the vpre ordered list);
- iteratively compute the system of simultaneous equations (i.e. the equation of the endogenous variables in the vsim ordered list); for each iteration update the values of the current endogenous variables and verify that the convergence criterion is satisfied on the feedback variables or that the maximum number of iterations has been reached;
- compute the post-recursive equations (i.e. the equation of the endogenous variables in the vpost ordered list);
- save the solutions;

Given $y_{i,k}$ the value of the i-endogenous variable in the simultaneous block at the iteration k, with i the position of the equation in a reordered model, the modified Gauss-Seidel method simply takes for the approximation of the endogenous variable $y_{i,k}$ the solution of the following:

$$y_{i,k} = f_i(x_1, ..., x_m, y_{1,k}, ..., y_{i-1,k}, y_{i,k-1}, ..., y_{n,k-1})$$

As said, the convergence is then tested at the end of each iteration on the feedback variables.

Newton’s methods on a reordered model require the calculation of the Jacobian matrix on the feedback endogenous variables, i.e. at least $f + 2$ iterations per simulation period, with f as the number of feedback variables. For large models (i.e. more than 30 feedback variables) if the overall required convergence is greater than 10^{-6}% the speedup over the Gauss-Siebel method is small or negative. Moreover the Gauss-Siebel method does not require a matrix inversion, therefore it is more robust against algebraical and numerical issues. For small models both methods are fast on modern computers.

The simulation of a non-trivial model, if computed by using the same data but on different hardware,
software or numerical libraries, produces numerical differences. Therefore a convergence criterion smaller than 10^{-7}% frequently leads to a local solution.

Usage

```r
SIMULATE(model=NULL,
TSRANGE=NULL,
simType='DYNAMIC',
simConvergence=0.01,
simIterLimit=20,
ZeroErrorAC=FALSE,
BackFill=0,
Exogenize=NULL,
ConstantAdjustment=NULL,
verbose=FALSE,
verboseSincePeriod=0,
verboseVars=NULL,
MULTMATRIX=FALSE,
TARGET=NULL,
INSTRUMENT=NULL,
MM_SHOCK=0.00001,
quietly=FALSE,
RESCHECKeqList=NULL,
avoidCompliance=FALSE,
...)
```

Arguments

- **model**: The BIMETS model object to be simulated. The simulation requires that all the behavioral in the model have been previously estimated: all the behavioral coefficients (i.e. the estimation coefficients and the autoregression coefficients for the errors, if any) must be numerically defined in the model object. (see also `ESTIMATE`)
- **TSRANGE**: The time range of the simulation, as a four dimensional numerical array, i.e. `TSRANGE=c(start_year,start_period,end_year,end_period)`.
- **simType**: The simulation type requested:
 - **DYNAMIC**: the default, whenever lagged endogenous variables are needed in the computations, the simulated values of the endogenous variables evaluated in the previous time periods are used;
 - **STATIC**: rather than the simulated values, the actual historical values are used whenever lagged endogenous variables are needed in the computations;
 - **FORECAST**: similar to the 'DYNAMIC' option, but the initial solutions for the iterative process are given by the simulated values of the endogenous variables in the previous period. In this case there is no need for historical values of the
endogenous variables in the whole provided TSRANGE;

RESCHECK: in this case there is no iteration to carry out. The endogenous variables are evaluated for each single time period by using the historical values for all the variables on the right-hand side of the equation, both lagged and current period;

simConvergence The percentage convergence value requested for the iterative process, that stops when the percentage difference of all the feedback variables between iterations is less than `simConvergence` in absolute value;

simIterLimit The value representing the maximum number of iterations to be performed. The iterative procedure will stop when `simIterLimit` is reached or the feedback variables satisfy the `simConvergence` criterion;

ZeroErrorAC If `TRUE` it zeroes out all the autoregressive terms, if any, in the behavioral equations;

BackFill Defined as an integer, it is the length of historical data prior to the simulation TSRANGE to be saved along with the solutions.

Exogenize A named list that specifies the endogenous variables to be exogenized. During the simulation and inside the provided time range, the exogenized endogenous variables will be assigned to their historical values. List names must be the names of the endogenous variables to be exogenized; each element of this list contains the time range of the exogenization for the related endogenous variable, in the form of a 4-dimensional integer array, i.e. `start_year`, `start_period`, `end_year`, `end_period`. A list element can also be assigned `TRUE`: in this case the related endogenous variable will be exogenized in the whole simulation TSRANGE (see examples);

ConstantAdjustment A named list that specifies the constant adjustments (i.e. add factors) to be added to the selected equations of the model. Each constant adjustment can be see as a new exogenous variable added to the equation of the specified endogenous variable. The list names are the names of the involved endogenous variables; each element of this list contains the time series to be added to the equation of the related endogenous variable. Each provided time series must verify the compliance control check defined in `is.bimets` (see examples);

verbose If `TRUE` some verbose output will be activated. Moreover the values of all endogenous variables will be printed out during each iteration and for all time periods inside the simulation TSRANGE;

verboseSincePeriod An integer that activate the verbose output, during the iterative process, only after the provided number of simulation periods;

verboseVars A character array with the names of the endogenous variables for which the verbose output will be activated in the iterative process;

MULTMATRIX It is `TRUE` when the simulation is a vectorial simulation requested by a `MULTMATRIX` operation;

TARGET A character array built with the names of the endogenous variables for which the multipliers are requested (see `MULTMATRIX`);
INSTRUMENT A character array built with the names of the exogenous variables with respect to which the multipliers are evaluated. Users can also declare an endogenous variable as INSTRUMENT variable: in this case the constant adjustment (see `SIMULATE`) related to the provided endogenous variable will be used as the instrument exogenous variable (see `MULTMATRIX`).

MM_SHOCK The value of the shocks added to variables in the derivative calculation of the multipliers. The default value is `0.00001` times the value of the exogenous variable (see `MULTMATRIX`).

quietly If TRUE, information messages will be suppressed.

RESCHECKeqList If simType=RESCHECK, by using this arguments users can select a subset of target endogenous variables: the simulation will be performed only for the selected variables. It must be provided as an array of endogenous names, e.g. `c('endo1','endo2',...)`.

avoidCompliance If TRUE, compliance control check of model time series will be skipped. See `is.bimets`

... Backward compatibility.

Value

This function will add a new element named `simulation` into the output BIMETS model object.

The new `simulation` element is a named R list; the names of the `simulation` list are the names of the endogenous variables of the model; each element of the `simulation` list contains the simulated time series of the related endogenous variable (see examples).

The `simulation` list also contains the `__SIM_PARAMETERS__` element that contains the arguments passed to the function call during the latest `SIMULATE()` run, e.g. `TSRANGE`, `symType`, `simConvergence`, `symIterLimit`, `Exogenize`, etc.: that can be useful in order to replicate the simulation results.

See Also

- `MDL`
- `LOAD_MODEL`
- `ESTIMATE`
- `MULTMATRIX`
- `RENORM`
- `TIMESERIES`
- `BIMETS indexing`
- `BIMETS configuration`

Examples

```r
#define model
myModelDefinition=
```
"MODEL
COMMENT> Klein Model 1 of the U.S. Economy

COMMENT> Consumption
BEHAVIORAL> cn
TS RANGE 1921 1 1941 1
EQ> cn = a1 + a2*p + a3*TSLAG(p,1) + a4*(w1+w2)
COEFF> a1 a2 a3 a4

COMMENT> Investment
BEHAVIORAL> i
TS RANGE 1921 1 1941 1
EQ> i = b1 + b2*p + b3*TSLAG(p,1) + b4*TSLAG(k,1)
COEFF> b1 b2 b3 b4

COMMENT> Demand for Labor
BEHAVIORAL> w1
TS RANGE 1921 1 1941 1
EQ> w1 = c1 + c2*(y+t-w2) + c3*TSLAG(y+t-w2,1) + c4*time
COEFF> c1 c2 c3 c4

COMMENT> Gross National Product
IDENTITY> y
EQ> y = cn + i + g - t

COMMENT> Profits
IDENTITY> p
EQ> p = y - (w1+w2)

COMMENT> Capital Stock
IDENTITY> k
EQ> k = TSLAG(k,1) + i

END"

#define model data
myModelData=list(
 cn = TIMESERIES(39.8,41.9,45,49.2,50.6,52.6,55.1,56.2,57.3,57.8,55,50.9,
 45.6,46.5,48.7,51.3,57.7,58.7,57.5,61.6,65,69.7,
 START=c(1920,1),FREQ=1),
 g = TIMESERIES(4.6,6.6,6.1,5.7,6.6,6.5,6.6,7.6,7.9,8.1,9.4,10.7,10.2,9.3,10,
 10.5,10.3,11,13,14.4,15.4,22.3,
 START=c(1920,1),FREQ=1),
 i = TIMESERIES(2.7,-.2,1.9,5.2,3.5,1.5,6.4,2,3.5,1,1,-3.4,-6.2,-5.1,-3,-1.3,
 2.1,2,-1.9,1.3,3.3,4.9,
 START=c(1920,1),FREQ=1),
 k = TIMESERIES(182.8,182.6,184.5,189.7,192.7,197.8,203.4,207.6,210.6,215.7,
 216.7,213.3,207.1,202,199,197.7,199.8,201.8,199.5,
 201.2,204.5,209.4),
)
```r
START=c(1920,1),FREQ=1),

p = TIMESERIES(12.7,12.4,16.9,18.4,19.4,20.1,19.6,19.8,21.7,15.6,11.4,
7,11.2,12.3,14,17.6,17.3,15.3,19,21.1,23.5,
START=c(1920,1),FREQ=1),

w1 = TIMESERIES(28.8,25.5,29.3,34.1,33.9,35.4,37.4,37.9,39.2,41.3,37.9,34.5,
29,28.5,30.6,33.2,36.8,41,38.2,41.6,45,53.3,
START=c(1920,1),FREQ=1),

y = TIMESERIES(43.7,40.6,49.1,55.4,56.4,58.7,60.3,61.3,64,67,57.7,50.7,41.3,
45.3,48.9,53.3,61.8,65,61.2,68.4,74.1,85.3,
START=c(1920,1),FREQ=1),

t = TIMESERIES(3.4,7.7,3.9,4.7,3.8,5.5,7.6,7.4,2,4,7.7,7.5,8.3,5.4,6.8,8.2,
8.3,8.7,7.4,8.9,9.6,11.6,
START=c(1920,1),FREQ=1),
time = TIMESERIES(NA,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,
START=c(1920,1),FREQ=1),
w2 = TIMESERIES(2.2,2.7,2.9,2.9,3.1,3.2,3.3,3.6,3.7,4,2,4,8,5.3,5.6,6.6,6.1,
7.4,6.7,7.7,8,8.8,8.5,
START=c(1920,1),FREQ=1)
)

# load model and model data
myModel=LOAD_MODEL(modelText=myModelDefinition)
myModel=LOAD_MODEL_DATA(myModel,myModelData)

# estimate model
myModel=ESTIMATE(myModel)

# DYNAMIC SIMULATION

# simulate model
myModel=SIMULATE(myModel
  ,TSRANGE=c(1923,1,1941,1)
  ,simConvergence=0.00001
  ,simIterLimit=100
)

# Simulation: 100.00%
#...SIMULATE OK

# get simulated time series "cn" and "y"
TABIT(myModel$simulation$cn)

#
#   DATE, PER, myModel$simulation$cn
#
# 1923, 1 ,  50.338
# 1924, 1 ,  55.6994
# 1925, 1 ,  56.7111
```
... # 1940, 1 , 66.7799 # 1941, 1 , 75.451

TABIT(myModel$simulation$y) # # DATE, PER, myModel$simulation$y # # 1923, 1 , 56.0305 # 1924, 1 , 65.8526 # 1925, 1 , 64.265 # # 1940, 1 , 76.8049 # 1941, 1 , 93.4459 #

#get latest simulation parameters
print(myModel$simulation$'__SIM_PARAMETERS__') #$TSRANGE
[1] 1923 1 1941 1
#$simType
[1] "DYNAMIC"
#$simConvergence
[1] 1e-05
#$simIterLimit
[1] 100
#$ZeroErrorAC
[1] FALSE
...

#RESCHECK SIMULATION

#simulate model
myModel=SIMULATE(myModel
 ,simType='RESCHECK'
 ,TSRANGE=c(1923,1,1941,1)
 ,simConvergence=0.00001
 ,simIterLimit=100
)

#Simulation: 100.00%
#.SIMULATE OK

#get consumption simulated vs historical differences
TABIT(myModel$simulation$cn-myModel$modelData$cn) # # DATE, PER, myModel$simulation$cn - myModel$modelData$cn
FORECAST GNP in 1942 and 1943

we need to extend exogenous variables in 1942 and 1943
myModel$modelData$w2 = TSEXTEND(myModel$modelData$w2, UPTO=c(1943,1))
myModel$modelData$t = TSEXTEND(myModel$modelData$t, UPTO=c(1943,1))
myModel$modelData$g = TSEXTEND(myModel$modelData$g, UPTO=c(1943,1))
myModel$modelData$time = TSEXTEND(myModel$modelData$time, UPTO=c(1943,1),
 ,EXTMODE='LINEAR')

simulate model
myModel=SIMULATE(myModel
, simType='FORECAST'
 ,TSRANGE=c(1940,1,1943,1)
 ,simConvergence=0.00001
 ,simIterLimit=100
)

Simulation: 100.00%
...SIMULATE OK

get forecasted GNP
TABIT(myModel$simulation$y)
#
DATE, PER, myModel$simulation$y
#
1940, 1 , 74.5781
1941, 1 , 94.0153
1942, 1 , 133.969
1943, 1 , 199.913
#

STATIC SIMULATION WITH EXOGENIZATION AND CONSTANT ADJUSTMENTS

define exogenization list
#'cn' exogenized in 1923-1925
#'i' exogenized in the whole TSRANGE
exogenizeList=list(
 cn = c(1923,1,1925,1),
 i = TRUE
)

define add factor list
constantAdjList=list(

\texttt{cn = TIMESERIES(1,-1,START=c(1923,1),FREQ='A'),}
\texttt{y = TIMESERIES(0.1,-0.1,-0.5,START=c(1926,1),FREQ='A'))}

\texttt{#simulate model}
\texttt{myModel=SIMULATE(myModel}
\texttt{ ,simType='STATIC'
 ,TSRANGE=c(1923,1,1941,1)
 ,simConvergence=0.00001
 ,simIterLimit=100
 ,Exogenize=exogenizeList
 ,ConstantAdjustment=constantAdjList}
\texttt{)}

\texttt{#Endogenous variable cn has been exogenized from year-period 1923-1 to 1925-1}
\texttt{#Endogenous variable i has been exogenized from year-period 1923-1 to 1941-1}
\texttt{#Endogenous variable i has a constant adjustment from year-period 1923-1 to 1924-1}
\texttt{#Endogenous variable i has a constant adjustment from year-period 1926-1 to 1928-1}

\texttt{#Simulation: 100.00%}
\texttt{#...SIMULATE OK}

\texttt{#VERBOSE SIMULATION}
\texttt{myModel=SIMULATE(myModel}
\texttt{ ,TSRANGE=c(1923,1,1941,1)
 ,simConvergence=0.00001
 ,simIterLimit=100
 ,verbose=TRUE
 ,verboseSincePeriod=19
 ,verboseVars=c('cn')}
\texttt{)}

\texttt{#CHECK_MODEL_DATA(): warning, there are missing values in series "time".}

\texttt{#Simulation: 5.26%}
\texttt{#Prd 1 convergence reached in iter 34}
\texttt{#Simulation: 10.53%}
\texttt{#Prd 2 convergence reached in iter 42}
\texttt{#Simulation: 15.79%}
\texttt{#Prd 3 convergence reached in iter 40}
\texttt{#Simulation: 21.05%}

\texttt{#...}

\texttt{#Prd 17 convergence reached in iter 40}
\texttt{#Simulation: 94.74%}
\texttt{#Prd 18 convergence reached in iter 37}
\texttt{#Simulation: 100.00%}

\texttt{#VPRE eval}
\texttt{#Prd 19 Iter 0 cn 69.7}
\texttt{#VSM eval}
\texttt{#Prd 19 Iter 1 cn 71.7197097805143}
\texttt{#VSM eval}
\texttt{#Prd 19 Iter 2 cn 72.7386970702054}
Description

This function prints basic information about a BIMETS model, e.g. behaviorals and identities count, coefficients count, the presence of estimated coefficients or simulated time series.

Usage

```r
## S3 method for class 'BIMETS_MODEL'
summary(object, ...)

## S3 method for class 'BIMETS_MODEL'
print(x, ...)
```

Arguments

- `object` A BIMET model.
- `x` A BIMET model.
- `...` Arguments list for the generic method.

Value

This function prints basic information about a BIMETS model, i.e.:

- the name of the model;
- the behaviorals count;
- the identities count;
- the coefficients count;
- the check for the compliance of the model data;
- the check for the coefficients definition in all the behaviorals;
- the check for the definition of a simulated time series for each related endogenous variable of the model;
See Also

MDL
LOAD_MODEL
SIMULATE
MULTMATRIX
RENUM
TIMESERIES
BIMETS indexing
BIMETS configuration

Examples

#define model
myModelDefinition="MODEL
COMMENT> Modified Klein Model 1 of the U.S. Economy with PDL,
COMMENT> autocorrelation on errors, restrictions and conditional evaluations
COMMENT> Consumption
BEHAVIORAL> cn
TSRANGE 1925 1 1941 1
EQ> cn = a1 + a2*p + a3*TSLAG(p,1) + a4*(w1+w2)
COEFF> a1 a2 a3 a4
ERROR> AUTO(2)
COMMENT> Investment
BEHAVIORAL> i
TSRANGE 1923 1 1941 1
EQ> i = b1 + b2*p + b3*TSLAG(p,1) + b4*TSLAG(k,1)
COEFF> b1 b2 b3 b4
RESTRICT> b2 + b3 = 1
COMMENT> Demand for Labor
BEHAVIORAL> w1
TSRANGE 1925 1 1941 1
EQ> w1 = c1 + c2*(y+t-w2) + c3*TSLAG(y+t-w2,1) + c4*time
COEFF> c1 c2 c3 c4
PDL> c3 1 3
COMMENT> Gross National Product
IDENTITY> y
EQ> y = cn + i + g - t
COMMENT> Profits
IDENTITY> p
EQ> p = y - (w1+w2)
COMMENT> Capital Stock with switches
IDENTITY> k
EQ> k = TSLAG(k,1) + i
IF> i > 0
IDENTITY> k
EQ> k = TSLAG(k,1)
IF> i <= 0
define model data
myModelData=list(
 c = TIMESERIES(39.8, 41.9, 45, 49.2, 50.6, 52.6, 55.1, 56.2, 57.3, 57.8, 55, 50.9,
 45.6, 46.5, 48.7, 51.3, 57.7, 58.7, 57.5, 61.6, 65, 69.7,
 START=c(1920,1), FREQ=1),
 g = TIMESERIES(4.6, 6.6, 6.1, 5.7, 6.6, 6.5, 6.6, 7.6, 7.9, 8.1, 9.4, 10.7, 10.2, 9.3, 10,
 10.5, 10.3, 11, 13, 14.4, 15.4, 22.3,
 START=c(1920,1), FREQ=1),
 i = TIMESERIES(2.7, -2, 1.9, 5.2, 3.5, 1.5, 6.4, 2.3, 5.1, 1, -3.4, -6.2, -5.1, -3, -1.3,
 2.1, 2, -1.9, 1.3, 3.3, 4.9,
 START=c(1920,1), FREQ=1),
 k = TIMESERIES(182.8, 182.6, 184.5, 189.7, 192.7, 197.8, 203.4, 207.6, 210.6, 215.7,
 216.7, 213.3, 207.1, 202, 199, 197.7, 199.8, 201.8, 199.9,
 201.2, 204.5, 209.4,
 START=c(1920,1), FREQ=1),
 p = TIMESERIES(12.7, 12.4, 16.9, 18.4, 19.4, 20.1, 19.6, 19.8, 21.1, 21.7, 15.6, 11.4,
 7.1, 11.2, 12.3, 14, 17.6, 17.3, 15.3, 19, 21.1, 23.5,
 START=c(1920,1), FREQ=1),
 w1 = TIMESERIES(28.8, 25.5, 29.3, 34.1, 33.9, 35.4, 37.4, 37.9, 39.2, 41.3, 37.9, 34.5,
 29, 28.5, 30.6, 33.2, 36.8, 41, 38.2, 41.6, 45, 53.3,
 START=c(1920,1), FREQ=1),
 y = TIMESERIES(43.7, 40.6, 49.1, 55.4, 56.4, 58.7, 60.3, 61.3, 64, 67, 57.7, 50.7, 41.3,
 45.3, 48.9, 53.3, 61.8, 65, 61.2, 68.4, 74.1, 85.3,
 START=c(1920,1), FREQ=1),
 t = TIMESERIES(3.4, 7.7, 3.9, 4.7, 3.8, 5.5, 7.6, 7.4, 7.7, 7.5, 8.3, 5.4, 6.8, 7.2,
 8.3, 6.7, 7.4, 8.9, 9, 6.6, 11.6,
 START=c(1920,1), FREQ=1),
 time = TIMESERIES(NA, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
 START=c(1920,1), FREQ=1),
 w2 = TIMESERIES(2.2, 2.7, 2.9, 2.9, 3.1, 3.2, 3.3, 3.6, 3.7, 4, 4.2, 4.8, 5, 5.3, 5.6, 6.1,
 7.4, 6.7, 7.7, 7.8, 8.5,
 START=c(1920,1), FREQ=1)
)

load model
myModel=LOAD_MODEL(modelText=myModelDefinition)

model summary
summary(myModel)
#BIMETS MODEL
#-----------------------------------
#name: myModelDefinition
#behaviorals: 3
#identities: 3
#coefficients: 12
#model data: not OK
#.CHECK_MODEL_DATA(): model has no data. Please use LOAD_MODEL_DATA().
#fully estimated: FALSE
#simulated: FALSE

#load data into the model
myModel=LOAD_MODEL_DATA(myModel,myModelData,showWarnings = TRUE)

#estimate the model
myModel=ESTIMATE(myModel)

#model summary
print(myModel)

#BIMETS MODEL
#-----------------------------------
#name: myModelDefinition
#behaviorals: 3
#identities: 3
#coefficients: 12
#model data: OK
#fully estimated: TRUE
#simulated: FALSE

TABIT

Print Time Series Data

Description

This function prints, in an human-readable format, the content of a list of time series. Time series can be subsetted with the projection argument **TSRANGE**.

Usage

```
TABIT(...,
    TSRANGE=NULL,
    digits=getOption('digits'),
    avoidCompliance=FALSE)
```

Arguments

- ... Input list of time series that must satisfy the compliance control check defined in **is.bimets**.
TSRANGE Optional date range of data presentation. TSRANGE must be specified as a numerical array composed by starting year, staring period, ending year and ending period of projection, i.e. TSRANGE=c(START_YEAR,START.PERIOD,END_YEAR,END.PERIOD).

digits Controls the number of digits to print out. Valid values are 1 to 22 with a default of 7.

avoidCompliance If TRUE, compliance control check of input time series will be skipped. See is.bimets

Value This function prints out time series data and returns a NULL value.

See Also
TSPROJECT
MOVAVG
TSDELTA
TSLAG
TSPROJECT
TSEXEND
TSLEAD

Examples

create monthly series
ts1=TSERIES(INTS(1,15),START=c(2000,1),FREQ=12)
ts2=TSERIES(INTS(1,15),START=c(2001,1),FREQ=12)
ts3=TSERIES(rnorm(15),START=c(2002,1),FREQ=12)
ts4=TSERIES(rep(NA,15),START=c(2001,4),FREQ=12)

TABIT(ts1,ts2,ts3,ts4)

print...

DATE, PER, ts1 , ts2 , ts3 , ts4

Jan 2000, 1 , 1 , , ,
Feb 2000, 2 , 2 , , ,
Mar 2000, 3 , 3 , , ,
...
Dec 2000, 12 , 12 , , ,
Jan 2001, 1 , 13 , 1 , ,
Feb 2001, 2 , 14 , 2 , ,
...
Dec 2001, 12 , , 12 , , NA
Jan 2002, 1 , , 13 , -1.419782 , NA
Feb 2002, 2 , , 14 , -1.070188 , NA
Mar 2002, 3 , , 15 , 0.889571 , NA
Apr 2002, 4 , , , 0.9583392 , NA
...
Feb 2003, 2 , , , -0.3444237 ,
Mar 2003, 3 , , , -0.3073225 ,

#create quarterly series, set TSRANGE then print with 3 digits

```r
ts1=TSERIES(INTS(1,15),START=c(2000,1),FREQ=4)
ts2=TSERIES(INTS(1,15),START=c(2001,1),FREQ=4)
ts3=TSERIES(rnorm(15),START=c(2002,1),FREQ=4)
ts4=TSERIES(rep(NA,15),START=c(2001,4),FREQ=4)

```

#print...

```
# DATE, PER, ts1 , ts2 , ts3 , ts4
#
# 2000 Q1, 1 , 1 , , ,
# 2000 Q2, 2 , 2 , , ,
# 2000 Q3, 3 , 3 , , ,
# 2000 Q4, 4 , 4 , , ,
# 2001 Q1, 1 , 5 , 1 , ,
# 2001 Q2, 2 , 6 , 2 , ,
# 2001 Q3, 3 , 7 , 3 , ,
# 2001 Q4, 4 , 8 , 4 , , NA
# 2002 Q1, 1 , 9 , 5 , 0.729 , NA
# 2002 Q2, 2 , 10 , 6 , 0.923 , NA
# 2002 Q3, 3 , 11 , 7 , -0.81 , NA
# 2002 Q4, 4 , 12 , 8 , -0.0748 , NA
# 2003 Q1, 1 , 13 , 9 , 0.248 , NA
# 2003 Q2, 2 , 14 , 10 , -0.347 , NA
```

#create daily series and set TSRANGE

```r
ts1=TSERIES(INTS(1,25),START=c(2000,1),FREQ=366)
ts2=TSERIES(INTS(1,25),START=c(2000,10),FREQ=366)
ts3=TSERIES(rnorm(25),START=c(2000,20),FREQ=366)
ts4=TSERIES(rep(NA,25),START=c(2000,30),FREQ=366)

TABIT(ts1,ts2,ts3,ts4,TSRANGE=c(2000,5,2000,35))
```

#...print data
Description

This function returns the O-order, L-lag differences of the input time series.

Usage

TSDELTA(x = NULL, L = 1, O = 1, avoidCompliance = FALSE, ...)

Arguments

 x Input time series that must satisfy the compliance control check defined in is.bimets.
 L Lag.
 O Order of the difference.
avoidCompliance
 If TRUE, compliance control check of input time series will be skipped. See is.bimets
... Backward compatibility.

Value

This function returns a BIMETS time series.

See Also

TSDELTAP
TSDELTALOG
TSLAG
MOVAVG
INTS
CUMSUM

Examples

#random TS
n=10
xArr=rnorm(n)
ts1=TSERIES(xArr,START=c(2000,1),FREQ='A')
TABIT(ts1,TSDELTA(ts1,1,1),TSDELTA(ts1,1,2),TSDELTA(ts1,1,3))
Description

This function returns the L-lag logarithmic differences of the input time series.

Usage

```
TSDELTALOG(x = NULL, L = 1, avoidCompliance = FALSE, ...)
```

Arguments

- **x**: Input time series that must satisfy the compliance control check defined in `is.bimets`.
- **L**: Lag.
- **avoidCompliance**: If TRUE, compliance control check of input time series will be skipped. See `is.bimets`
- **...**: Backward compatibility.

Value

This function returns a BIMETS time series.

See Also

- `TSDELTAP`
- `TSLAG`
- `MOVAVG`
- `INTS`
- `CUMSUM`

Examples

```r
#random TS
n=10
ts1=TSERIES(1:n,START=c(2000,1),FREQ='A')
TABIT(ts1,TSDELTALOG(ts1,1))
```
TSDELTAP

Time Series Percentage Lag Differences (Delta Percentage)

Description

This function returns the O-order, L-lag percentage differences of the input time series. If the input time series frequency is a multiple of the L lag argument, then it is possible to set the argument ANNUALIZE=TRUE in order to have the percent changes returned at annual rates, i.e. raised to power of frequency/L.

Usage

TSDELTAP(x = NULL, L = 1, ANNUALIZE = FALSE, avoidCompliance = FALSE, ...)

Arguments

x Input time series that must satisfy the compliance control check defined in is.bimets.
L Lag.
ANNUALIZE If TRUE the percent changes are returned as annual rates, i.e. raised to the power of frequency/L.
avoidCompliance If TRUE, compliance control check of input time series will be skipped. See is.bimets
...

Backward compatibility.

Value

This function returns a BIMETS time series.

See Also

TSDELTA
TSLAG
MOAVG
INDEXNUM

Examples

#TS Q
n=10;
tsl1=TSERIES(n:0,START=c(2000,1),FREQ='Q')
TABIT(tsl1,TSDELTAP(tsl1,1))

#TS 366
tsl1=TSERIES(seq(1,length=10,by=-0.001),START=c(2000,1),FREQ=366)
TSERIES

Create a Time Series

Description

This function returns a time series that is compliant with BIMETS compliance control defined in is.bimets. Users can provide observation values, frequency and the starting period. Moreover users can provide metadata information that will be stored into the time series object as attributes.

TIMESERIES is an alias for TSERIES.

Usage

TIMESERIES(..., START = c(2000,1), FREQ = 1,
SOURCE = NULL, TITLE = NULL, UNITS = NULL, SCALEFAC = 0,
class=NULL, avoidCompliance = FALSE)

TSERIES(..., START = c(2000,1), FREQ = 1,
SOURCE = NULL, TITLE = NULL, UNITS = NULL, SCALEFAC = 0,
class=NULL, avoidCompliance = FALSE)

Arguments

... List of values to be inserted into the output time series. This function accepts arguments of class ts() and xts(), that must be BIMETS compliant as defined in is.bimets, and also accepts numerical arrays. Please note that for daily and weekly time series, as in the default R time series class ts(), this function will insert provided values always filling up to the 366th period in the daily case and up to the 53rd period in the weekly case. (see examples)

START This argument defines the start of the time series. Starting period can be specified as c(YEAR, PERIOD), or as Date(), or as yearmon() if the frequency FREQ=12, or as yearqtr() if the frequency FREQ=4. Please note that the time series must lie in the years range 1800-2199.

FREQ The frequency of the time series. Frequency can be FREQ=1,2,3,4,12,24,36,53, or 366. Frequency can also be defined by using the char 'A' for annual, 'S' for semiannual, 'Q' for quarterly, 'M' for monthly, 'W' for weekly, and 'D' for daily time series.

SOURCE Set the metadata string that represents the source of the data. Metadata will be lost if the time series is transformed by any function that changes its values.

TITLE Set the metadata string that represents the description of the data. Metadata will be lost if the time series is transformed by any function that changes its values.
UNITS Set the metadata string that represents the unit of measure of the data. Metadata will be lost if the time series is transformed by any function that changes its values.

SCALEFAC Set the metadata numerical value that represents the scale factor of the data. Users may eventually use this value in calculation. Metadata will be lost if the time series is transformed by any function that changes its values.

class If class='XTS' this function will return a time series based on the xts() class. If class='TS' this function will return a time series based on the ts() class. If class=NULL (default) the output base class will be the one defined in the global BIMETS option 'BIMETS_CONF_CCT' (see BIMETS configuration). Please note that package functions only accept time series of the same class as the one defined in the global option 'BIMETS_CONF_CCT'. Users can change any global option directly in the code. Please note that BIMETS package performs better with class='TS' or more generally with BIMETS_CONF_CCT='TS'

avoidCompliance If TRUE, compliance control check of input time series will be skipped. See is.bimets

Value
This function returns a BIMETS time series that is compliant with the BIMETS compliance control defined in is.bimets.

See Also
is.bimets
as.bimets
BIMETS indexing
BIMETS configuration
fromBIMETStoTS
fromBIMETStoXTS
NOELS
TSDATES
INTS
TABIT

Examples

#day and month names can change depending on locale
Sys.setlocale('LC_ALL','C')
Sys.setlocale('LC_TIME','C')

#create ts
n=10
ts1=ts((1:n),start=c(2000,1),frequency=1)
create ts annual with metadata
out_tseries=TIMESERIES(5,ts1,NA,8,START=c(2020,1),FREQ=1,
SOURCE='mySource',TITLE='myTitle',UNITS='myUnits',SCALEFAC=2)

print out
TABIT(out_tseries)

use Date() as start date
TABIT(TIMESERIES(1:10,START=as.Date('2000-01-01'),FREQ='A'))
TABIT(TIMESERIES(1:10,START=as.Date('2000-07-08'),FREQ='D'))
TABIT(TIMESERIES(1:10,START=as.Date('2018-01-01'),FREQ='W'))

use yearmon()/yearqtr() as start date
TABIT(TIMESERIES(1:10,START=as.yearmon('Mar 2001'),FREQ='M'))
TABIT(TIMESERIES(1:10,START=as.yearqtr('2000 Q3'),FREQ='Q'))

create ts monthly with metadata
out_tseries=TIMESERIES(5,ts1,NA,8,START=c(2020,1),FREQ='M',
SOURCE='mySource',TITLE='myTitle',UNITS='myUnits',SCALEFAC=2)

print out
TABIT(out_tseries)

create daily
out_tseries=TSERIES(5,ts1,NA,8,START=c(2000,1),FREQ=366,
SOURCE='mySource',TITLE='myTitle',UNITS='myUnits',SCALEFAC=2)

print out
TABIT(out_tseries)

insert values skipping 366 in non-bissextile
myLength=400
myValues=1:myLength
myDates=as.Date('2001-01-01')+0:(myLength-1)
ts=as.bimets(xts(myValues,order.by = myDates))
TABIT(ts) #366 observation will be a duplicated of 365, see as.bimets() help

TSEXTEND

Extend Time Series

Description

This function extends the time series definition range by using a specified criteria. Values of time series extension are calculated by using the directives specified in the arguments `EXTMODE` and `FACTOR`.

Usage

```r
TSEXTEND(x = NULL, BACKTO = NULL, UPTO = NULL, EXTMODE = "GROWTH",
FACTOR = NA, avoidCompliance = FALSE, ...)
```
Arguments

x
Input time series that must satisfy the compliance control check defined in `is.bimets`.

BACKTO
Define the new start of the time series, that must be provided as `c(YEAR,PERIOD)`. It is possible to convert a `Date()`, or a `yearmon()`, or a `yearqtr()` to the related `c(YEAR,PERIOD)` by using the functions `date2yp`, `ym2yp`, and `yq2yp`.

UPTO
Define the new end of the time series, that must be provided as `c(YEAR,PERIOD)`. It is possible to convert a `Date()`, or a `yearmon()`, or a `yearqtr()` to the related `c(YEAR,PERIOD)` by using the functions `date2yp`, `ym2yp`, and `yq2yp`.

EXTMODE
It must be one of the following:

- **MISSING**: extend the time series using missings values `NA`.
- **ZERO**: extend the time series by using 0 (zero) values.
- **CONSTANT**: extend the time series by using the closest non-missing observation.
- **MEAN4**: extend the time series by using the mean of the closest four non-missing observations.
- **LINEAR**: extend the time series by using the same increment of the closest couple of observations.
- **QUADRATIC**: extend the time series by using the same quadratic increment of the closest eight observations.
- **GROWTH**: extends the time series by using the closest growth rate.
- **GROWTH4**: extend the time series by using the factor
 \[r = (\text{mean}(x[-1:-4]) / \text{mean}(x[-5:-8]))^{(1/4)} \]
- **MYCONST**: extend the time series by using the value defined in `FACTOR`.
- **MYRATE**: extend the time series by using the increment defined in `FACTOR`.

FACTOR
User-defined value used by some options of the EXTMODE argument.

avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See `is.bimets`.

Value

This function returns a BIMETS time series built by extending the input time series.

See Also

- `TSLAG`
- `TSJOIN`
- `TSMERGE`
- `TSPROJECT`
- `CUMSUM`
- `INDEXNUM`
- `TSTRIM`
Examples

```r
n=10;
ts1=TIMESERIES(1:n,START=c(2000,1),FREQ='A')
ts2=TSEXTEND(ts1,BACKTO=c(1990,1),UPTO=c(2020,1),EXTMODE='GROWTH4')
TABIT(ts1,ts2)
```

```r
xArr=c(0.5,5.6,4.8,3.8,7.3,9.9,7.8,3.7,8.2,10)
ts1=TIMESERIES(xArr,START=c(2000,1),FREQ='A')
ts2=TSEXTEND(ts1,BACKTO=c(1990,1),UPTO=c(2020,1),EXTMODE='QUADRATIC')
TABIT(ts1,ts2)
```

```r
xArr=(1:n)
dateArr=seq(as.Date('2000/12/31'),by='year',length=n)
dataF=data.frame(dateArr,xArr)
ts1=TIMESERIES(xArr,START=c(2000,1),FREQ='A')
ts2=TSEXTEND(ts1,BACKTO=c(1990,1),UPTO=c(2020,1),EXTMODE='MYRATE',FACTOR=2.5)
TABIT(ts1,ts2)
```

TSINFO

Get Time Series Info

Description

This function returns detailed information about the input time series list. Requested information is defined in the argument `MODE`.

Usage

```r
TSINFO(..., MODE = NULL, avoidCompliance=FALSE)
```

Arguments

- `...` Input time series list. Each time series must satisfy the compliance control check defined in `is.bimets`.
- `MODE` Select the information to be retrieved from the list of time series. `MODE` can be set to:
 - **STARTY**: the output will be a numerical array built with the starting year of each time series in the input list.
 - **ENDY**: the output will be a numerical array built with the ending year of each time series in the input list.
 - **STARTP**: the output will be a numerical array built with the starting period of each time series in the input list.
 - **ENDP**: the output will be a numerical array built with the ending period of each time series in the input list.
 - **START**: the output will be a numerical array built with the value `x=START_YEAR+START_PERIOD/FREQ` calculated on each time series in the input list.
list, where FREQ is the time series frequency.

END: the output will be a numerical array built with the value
x=END_YEAR+END_PERIOD/FREQ calculated on each time series in the input list.

START2: the output will be a numerical matrix. For each time series in the input list the matrix will have a row=c(START_YEAR,START_PERIOD) with related values.

END2: the output will be a numerical matrix. For each time series in the input list the matrix will have a row=c(END_YEAR,END_PERIOD) with related values.

FREQ: the output will be a numerical array built with the frequency of each time series in the input list.

FACTOR: the output will be a numerical array built with the SCALEFAC metadata value of each time series in the input list.

UNITS: the output will be a string array built with the UNITS metadata string of each time series in the input list.

TITLE: the output will be a string array built with the TITLE metadata string of each time series in the input list.

SOURCE: the output will be a string array built with the SOURCE metadata string of each time series in the input list.

avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See is.bimets

Value
This function returns an array built with requested information about the input time series list. In the case of MODE=START2 or MODE=END2 the output will be of class matrix().

See Also
NOELS
is.bimets
BIMETS indexing
fromBIMETStoTS
fromBIMETStoXTS
GETYEARPERIOD
INTS
TSLOOK
TABIT

Examples

create ts
ts1=TIMESERIES(INTS(1,10),START=c(2004,2),FREQ=2,
UNITS="Var myUnits",TITLE="Var myTitle",SOURCE="Var mySource")
ts2=TIMESERIES(INTS(1,20),START=c(2006,3),FREQ=4,SCALEFAC=1)
ts3=TIMESERIES(INTS(1,30),START=c(2008,7),FREQ=12)
print(TSINFO(ts1,ts2,ts3,MODE='STARTY')) #print ... c(2004,2006,2008)
print(TSINFO(ts1,ts2,ts3,MODE='ENDP')) #print ... c(1,2,12)
print(TSINFO(ts1,ts2,ts3,MODE='FREQ')) #print ... c(2,4,12)

print(TSINFO(ts1,ts2,ts3,MODE='START2'))
#print ...
#[,1] [,2]
#[1,] 2004 2
#[2,] 2006 3
#[3,] 2008 7

print(TSINFO(ts1,ts2,ts3,MODE='END')) #print ... c(2009.5, 2011.5, 2011.0)
print(TSINFO(ts1,ts2,ts3,MODE='FACTOR')) #print ... c(0,1,0)
print(TSINFO(ts1,ts2,ts3,MODE='UNITS')) #print ... c('myUnits',' ',' ')

TSJOIN

Join Time Series

Description

This function returns the join of the two input time series. If the first time series overlaps the second time series, output data is taken from the first time series up to the starting date of the second time series, the remainder of the data being taken from the second time series. A different joining period can be specified by using the JPRD argument. The two time series must have the same frequency.

Usage

```r
TSJOIN(x = NULL, y = NULL, JPRD = NULL, ALLOWGAP = FALSE, WARN = FALSE, avoidCompliance = FALSE, ...)
```

Arguments

- **x**
 First input time series that must satisfy the compliance control check defined in `is.bimets`.

- **y**
 Second input time series that must satisfy the compliance control check defined in `is.bimets`.

- **JPRD**
 This arguments is for defining a joining period other than the starting period of the second time series, that is the default joining period. It must be defined as `JPRD=c(YEAR,PERIOD)` and must lie in the time range of the second time series. Users can convert a `Date()`, or a `yearmon()` or a `yearqtr()` to a `c(YEAR,PERIOD)` by using `date2yp`, `ym2yp`, `yq2yp`.

- **ALLOWGAP**
 if TRUE, the possible gap between the two time series is filled with missing values NA, otherwise if the two time ranges do not overlap an error will be thrown.

- **WARN**
 Print a warning message if the two time series do not overlap or if the first time series starts after the JPRD. The warning is shown only if ALLOWGAP=TRUE.
avoidCompliance

If TRUE, compliance control check of input time series will be skipped. See is.bimets

... Backward compatibility.

Value

This function returns a BIMETS time series that is built by joining the two input time series.

See Also

TSLAG
TSEXTEND
TSMERGE
TSPROJECT

Examples

#day and month names can change depending on locale
Sys.setlocale('LC_ALL','C')
Sys.setlocale('LC_TIME','C')

#TS
ts1=TSERIES((1:10),START=c(1985,1),FREQ=1)
ts2=TSERIES((1:10),START=c(2000,1),FREQ=1)
TABIT(ts1,ts2,TSJOIN(ts1,ts2,ALLOWGAP=TRUE))

#XTS
setBIMETSconf('BIMETS_CONF_CCT','XTS')
n=10
xArr=(0:n)
dateArr=as.yearqtr('1997 Q1')+ 0:n/4
dataF=data.frame(dateArr,xArr)
ts1=xts(dataF[,2],order.by=dataF[,1])
dateArr=as.yearqtr('2000 Q1')+ 0:n/4
dataF=data.frame(dateArr,xArr)
ts2=xts(dataF[,2],order.by=dataF[,1])
TABIT(ts1,ts2,TSJOIN(ts1,ts2,ALLOWGAP=TRUE,JPRD=yq2yp(as.yearqtr("2001 Q3"))))

#restore default
setBIMETSconf('BIMETS_CONF_CCT','TS')
Description

This function lags the input time series by the specified number of time periods.

Usage

TSLAG(x = NULL, L = 1, avoidCompliance = FALSE, ...)

Arguments

x
Input time series that must satisfy the compliance control check defined in is.bimets.

L
Lag. Must be an integer, positive or negative.

avoidCompliance

If TRUE, compliance control check of input time series will be skipped. See is.bimets

...
Backward compatibility.

Value

This function returns a BIMETS time series built by lagging the input time series.

See Also

TSJOIN
TSEXTEND
TSMERGE
MOVAVG
GETYEARPERIOD
TSLEAD

Examples

#DEFINE TS
n=10
ts1=TSERIES(n:1,START=c(2000,1),FREQ=1)
ts1[5]=NA

print TSLAG
TABIT(ts1,TSLAG(ts1,5))

n=10
ts1=TSERIES(n:1,START=c(2000,1),FREQ='D')
ts1[5]=NA

print TSLAG
TABIT(ts1,TSLAG(ts1,5))
TSLEAD

Lead Time Series

Description
This function leads the input time series by the specified number of time periods.

Usage

TSLEAD(x = NULL, L = 1, avoidCompliance = FALSE, ...)

Arguments

x
Input time series that must satisfy the compliance control check defined in \textit{is.bimets}.

L
Lead. Must be an integer, positive or negative.

avoidCompliance

If TRUE, compliance control check of input time series will be skipped. See \textit{is.bimets}

...
Backward compatibility.

Value
This function returns a BIMETS time series built by leading the input time series.

See Also

TSJOIN
TSEXTEND
TSMERGE
MOVAVG
GETYEARPERIOD
TSLAG

Examples

#DEFINE TS
n=10

tsl1=TSERIES(n:1,START=c(2000,1),FREQ=1)
tsl1[5]=NA

#print TSLEAD
TABIT(tsl1,TSLEAD(tsl1,5))
TSLOOK

Lookup a Time Series

Description
This function returns the time range and the frequency of an input time series.

Usage
TSLOOK(x=NULL, avoidCompliance=FALSE, ...)

Arguments
x Input time series that must satisfy the compliance control check defined in is.bimets.
avoidCompliance If TRUE, compliance control check of input time series will be skipped. See is.bimets.
... Backward compatibility.

Value
This function returns a list of numeric arrays built with the following elements:
STARTY will contain the value of the starting year
STARTP will contain the value of the starting period
ENDY will contain the value of the ending year
ENDP will contain the value of the ending period
FREQ will contain the value of the time series frequency

See Also
NOELS
is.bimets
BIMETS indexing
fromBIMETstoXTS
fromBIMETstoTS
GETYEARPERIOD
INTS
TSINFO

Examples

create series
tsl1=TSERIES(INTS(1,10),START=c(2000,1),FREQ=12)
TSMERGE

 Merge Time Series

Description

This function merges and concatenates two or more time series of the same frequency. The output time series will be defined over the union of dates for which the input time series are defined, from the earliest starting date to the latest ending date.

For each period the output value will be set equal to the first non-missing value found in the list of the input time series, by using the order of the arguments. If all the input time series are missing at a period, then the output time series will be set to the missing value NA in the same period. Note that if the date spans of the input time series do not intersect, TSMERGE(X1, X2, ..., XN) returns a simple concatenation of X1, X2, ..., XN.

By defining the argument fun, the value of the output time series in a period can also be computed as a function of the values of the input time series in the same period.

Usage

TSMERGE(..., fun = NULL, MV = FALSE, avoidCompliance = FALSE)

Arguments

... Input list of time series that must satisfy the compliance control check defined in is.bimets.

fun By defining the argument fun, the value of the output time series in a period can also be computed as a function of the values of the input time series in the same period.

fun can assume the following string values:

AVE: the value of the output time series in a period will be set equal to the average of all input time series values in the same period.

SUM: the value of the output time series in a period will be set equal to the sum of all input time series values in the same period.

MAX: the value of the output time series in a period will be set equal to the maximum of all input time series values in the same period.

MIN: the value of the output time series in a period will be set equal to the minimum of all input time series values in the same period.
TSMERGE

MV
If FALSE, the function defined in the argument `fun` will skip any missing values found in the input time series.

avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See `is.bimets`

Value
This function returns a BIMETS time series built by merging two or more input time series.

See Also
- `TSJOIN`
- `TSEXTEND`
- `TSLAG`
- `TSPROJECT`
- `TSLEAD`
- `TSTRIM`

Examples

```R
#DEFINE TS
n=10
ts1=TSERIES(n:1,START=c(1995,1),FREQ=1)
ts2=TSERIES(n:1,START=c(2000,1),FREQ=1)
ts2[5]=NA
ts1[10]=NA

# print TSMERGE
TABIT(ts1,ts2,TSMERGE(ts1,ts2,fun='SUM',MV=TRUE))

#TS D
n=20
ts1=TSERIES(n:1,START=c(1999,360),FREQ='D')
ts2=TSERIES(n:1,START=c(2000,1),FREQ='D')
ts2[5]=NA
ts1[10]=NA

# print TSMERGE
TABIT(ts1,ts2,TSMERGE(ts1,ts2,fun='SUM',MV=TRUE))
```


TSPROJECT

Project a Time series

Description

This function projects the input time series into a time interval. The output class can be either a time series (default) or a one-dimensional array if the argument ARRAY=TRUE.

Usage

TSPROJECT(x=NULL, TSRANGE=NULL, ARRAY=FALSE, EXTEND=FALSE, avoidCompliance=FALSE,...)

Arguments

x Input time series that must satisfy the compliance control check defined in is.bimets.
TSRANGE Date range of data projection. TSRANGE must be specified as a numerical array composed by starting year, starting period, ending year and ending period of projection, i.e. TSRANGE=c(START_YEAR,START_PERIOD,END_YEAR,END_PERIOD).
ARRAY If TRUE this function will return a numerical array built with observation values that lie in the specified time range. If FALSE (default) the output will be a time series.
EXTEND If TRUE and in the case that the input time series does not overlap with the provided TSRANGE, the output time series will be extended over the TSRANGE by inserting missing values NA into the new observations.
avoidCompliance If TRUE, compliance control check of input time series will be skipped. See is.bimets

Value

This function returns a BIMETS time series, or a numerical array if the argument ARRAY=TRUE, built by projecting the input time series into the provided TSRANGE.

See Also

TSJOIN
TSEXTEND
TSMERGE
MOVAVG
GETYEARPERIOD
CUMSUM
TSTRIM
Examples

```r
# create yearly ts
ts1 = TSERIES((1:10), START = c(2000,1), FREQ = 1)

print(TSPROJECT(ts1, TSRANGE = c(2002,1,2005,1)))  # print projected ts from 2002 to 2005
print(TSPROJECT(ts1, TSRANGE = c(2001,1,2004,1), ARRAY = TRUE))  # print c(2,3,4,5)
print(TSPROJECT(ts1, TSRANGE = c(1998,1,2002,1), EXTEND = TRUE, ARRAY = TRUE))  # print c(NA,NA,1,2,3)
```

TSTRIM

Trim a Time Series

Description

This function removes trailing or leading missing values `NA` from the input array or the input time series. Users can provide the value to be removed other than `NA` missing value by using the argument `VALUE`.

Usage

```r
TSTRIM(x = NULL, VALUE = NA, TRAIL = TRUE, LEAD = TRUE, avoidCompliance = FALSE, ...)
```

Arguments

- **x**: Input numerical array or time series that must satisfy the compliance control check defined in `is.bimets`.
- **VALUE**: Target value to be removed. Default to missing value `NA`.
- **TRAIL**: If `TRUE` this function will remove trailing target values from the input time series.
- **LEAD**: If `TRUE` this function will remove leading target values from the input time series.
- **avoidCompliance**: If `TRUE`, compliance control check of input time series will be skipped. See `is.bimets`
- **...**: Backward compatibility.

Value

This function returns an object of the same class of the input, i.e. an array or a BIMETS time series, built by removing leading and trailing user-defined values.
ym2yp

yearmon to Year-Period Conversion

Description

This function transforms an input variable of class yearmon() into an equivalent two-dimensional numerical array of type c(YEAR, PERIOD).

Usage

ym2yp(x = NULL)

Arguments

x Input of class yearmon()

Value

This function returns a two-dimensional numerical array of type c(YEAR, PERIOD).
yq2yp

See Also

- `date2yp`
- `yq2yp`
- `ym2yp`
- `GETDATE`

Examples

```r
#day and month names can change depending on locale
Sys.setlocale('LC_ALL','C')
Sys.setlocale('LC_TIME','C')

print(yq2yp(as.yearmon("Dec 2013"))); #print c(2013,12)
print(yq2yp(c(as.yearmon('Jan 2000'),as.yearmon('Dec 1987'),
       as.yearmon('Jan 2003'),as.yearmon('Mar 2012'))))
```

yq2yp
yearqtr to Year-Period Conversion

Description

This function transforms an input variable of class `yearqtr()` into an equivalent two-dimensional numerical array of type `c(YEAR,PERIOD)`.

Usage

```r
yq2yp(x = NULL)
```

Arguments

- `x`
 Input of class `yearmon()`

Value

This function returns a two-dimensional numerical array of type `c(YEAR,PERIOD)`.

See Also

- `date2yp`
- `ym2yp`
- `GETDATE`
Examples

day and month names can change depending on locale
Sys.setlocale('LC_ALL','C')
Sys.setlocale('LC_TIME','C')

print(yq2yp(as.yearqtr('2001 Q3'))); # print c(2001,3)
print(yq2yp(c(as.yearqtr('2000 Q2'),as.yearqtr('1987 Q4'),as.yearqtr('2003 Q1'))))
Index

AID, 29
ANNUAL, 31, 41, 106, 121, 130
as.bimets, 32, 36, 37, 39, 61, 63, 64, 70, 77, 154
bimets (bimets-package), 3
BIMETS configuration, 32, 33, 48, 59, 61, 63, 64, 66, 67, 70, 76, 77, 83, 88, 100, 112, 125, 138, 145, 154
BIMETS configuration (bimetsConf), 34
BIMETS Datasets (bimetsDataset), 37
BIMETS indexing, 30, 33, 36, 37, 43, 48, 58, 59, 61, 63, 64, 67, 69, 77, 83, 88, 91, 100, 112, 116, 117, 125, 138, 145, 154, 158, 163
BIMETS indexing (idxOver), 69
BIMETS package, 81
bimets-package, 3
bimets_12D2YP__ (bimetsDataset), 37
bimets_12F_YP2D__ (bimetsDataset), 37
bimets_12L_YP2D__ (bimetsDataset), 37
bimets_1D2YP__ (bimetsDataset), 37
bimets_1F_YP2D__ (bimetsDataset), 37
bimets_1L_YP2D__ (bimetsDataset), 37
bimets_24D2YP__ (bimetsDataset), 37
bimets_24F_YP2D__ (bimetsDataset), 37
bimets_24L_YP2D__ (bimetsDataset), 37
bimets_2D2YP__ (bimetsDataset), 37
bimets_2F_YP2D__ (bimetsDataset), 37
bimets_2L_YP2D__ (bimetsDataset), 37
bimets_366_D2YP__ (bimetsDataset), 37
bimets_366_YP2D__ (bimetsDataset), 37
bimets_36D2YP__ (bimetsDataset), 37
bimets_36F_YP2D__ (bimetsDataset), 37
bimets_36L_YP2D__ (bimetsDataset), 37
bimets_3_D2YP__ (bimetsDataset), 37
bimets_3F_YP2D__ (bimetsDataset), 37
bimets_3L_YP2D__ (bimetsDataset), 37
bimets_4_D2YP__ (bimetsDataset), 37
bimets_4L_YP2D__ (bimetsDataset), 37
bimets_53_D2YP__ (bimetsDataset), 37
bimets_53F_YP2D__ (bimetsDataset), 37
bimets_53L_YP2D__ (bimetsDataset), 37
bimets_static_G90_1__ (bimetsDataset), 37
bimets_static_G90_2__ (bimetsDataset), 37
bimets_static_G90_3__ (bimetsDataset), 37
bimets_static_G90_4__ (bimetsDataset), 37
bimets_static_G90_5__ (bimetsDataset), 37
bimets_static_G90_6__ (bimetsDataset), 37
bimets_static_G90__ (bimetsDataset), 37
bimets_static_startYear___ (bimetsDataset), 37
bimets_static_TD90_1__ (bimetsDataset), 37
bimets_static_TD90_2__ (bimetsDataset), 37
bimets_static_TD90_3__ (bimetsDataset), 37
bimets_static_TD90_4__ (bimetsDataset), 37
bimets_static_TD90_5__ (bimetsDataset), 37
bimets_static_TD90__ (bimetsDataset), 37
bimets_static_totalLength___ (bimetsDataset), 37
bimetsConf, 34
bimetsDataset, 37
CUMPROD, 5, 37, 40
CUMSUM, 5, 39, 74, 107, 108, 150, 151, 156, 166, 168
CUMULO (CUMSUM), 39
DAILY, 31, 40, 106, 121, 130
date2yp, 41, 67, 70, 156, 159, 169
DELTA (TSDELTA), 149
DELTAP (TSDELTAP), 152
ELIMELS, 30, 42, 67, 69, 70, 76, 92
ESTIMATE, 12, 19, 29, 43, 83, 88, 100, 110, 112, 123, 125, 136, 138
EXTEND (TSEXEND), 155
frequency, 58, 118, 119
fromBIMETstoTS, 33, 36, 37, 59, 61, 77, 154, 158, 163
fromBIMETstoXTS, 33, 36, 37, 59, 60, 77, 154, 158, 163
fromTStoXTS, 62, 64
fromXTstoTS, 63, 64
getBIMETScnf (bimetsConf), 34
GETDATE, 42, 66, 70, 119, 169
GETYEARPERIOD, 43, 68, 74, 75, 91, 116, 158, 161–163, 166

idxOver, 69
INDEXNUM, 30, 38, 40, 73, 107, 108, 152, 156, 168
INTS, 30, 42, 43, 75, 91, 117, 150, 151, 154, 158, 163
is.bimets(), 35
LOAD_MODEL, 8–10, 29, 44, 47, 79, 87, 88, 100, 112, 125, 133, 138, 145
LOAD_MODEL_DATA, 10, 83, 87
LOCS, 30, 43, 67, 70, 91, 116, 117, 119

MAVE (MOVAVG), 106
MDL, 6, 8–10, 12, 29, 44, 46, 79, 80, 82, 83, 88, 92, 112, 124, 138, 145
MONTHLY, 31, 41, 104, 121, 130
MOVAVG, 5, 38, 39, 74, 75, 106, 148, 150–152, 161, 162, 166
MOVSUM, 5
MOVSUM (MOVTOT), 107
MOVTOT, 107

MSUM (MOVTOT), 107
MTOT (MOVTOT), 107
MULTIMATRIX, 24, 29, 48, 83, 88, 100, 109, 111, 112, 123–125, 137, 138, 145

NAMELIST, 30, 43, 67, 70, 91, 115, 117, 119
NOELS, 30, 43, 69, 91, 116, 117, 154, 158, 163
normalizeYp, 58, 118, 119
NUMPERIOD, 58, 118, 119

print (summary.BIMETS_MODEL), 144

QUARTERLY, 31, 41, 106, 120, 130

SEMIANNUAL, 31, 41, 106, 121, 129
setBIMETScnf (bimetsConf), 34
SIMULATE, 11, 22, 24, 29, 48, 81, 83, 88, 100, 109–112, 123–125, 130, 138, 145

summary, 48, 100
summary (summary.BIMETS_MODEL), 144
summary.BIMETS_MODEL, 144

TABIT, 5, 30, 42, 43, 67, 69, 70, 76, 92, 117, 147, 154, 158

TIMESERIES, 3, 30, 33, 35, 37, 43, 45, 59, 60, 62, 64, 77, 83, 88, 100, 112, 117, 125, 138, 145
TIMESERIES (TSERIES), 153
TSDATES, 30, 117, 154
TSDATES (GETYEARPERIOD), 68
TSDELTA, 5, 38, 39, 107, 108, 148, 149, 152

TSDELLOG, 5, 150, 151
TSDELTAP, 5, 150, 151, 152

TSERIES, 69, 91, 116, 153

TSINFO, 30, 43, 69, 76, 92, 117, 157, 163
TSJOIN, 74, 75, 156, 159, 161, 162, 165, 166, 168

TSLAG, 5, 38, 40, 69, 107, 108, 148, 161, 162, 165

TSLOOK, 30, 43, 67, 69, 117, 158, 163

TSMERGE, 5, 74, 75, 156, 160–162, 164, 166, 168
INDEX

TSTRIM, 156, 165, 166, 167

ym2yp, 42, 67, 70, 156, 159, 168, 169
yq2yp, 42, 67, 70, 156, 159, 169, 169