Package ‘binomialRF’

Type Package
Title Binomial Random Forest Feature Selection
Version 0.1.0
URL https://www.biorxiv.org/content/10.1101/681973v1.abstract
Description The ‘binomialRF’ is a new feature selection technique for decision trees that aims at providing an alternative approach to identify significant feature subsets using binomial distributional assumptions (Rachid Zaim, S., et al. (2019)) <doi:10.1101/681973>. Treating each splitting variable selection as a set of exchangeable correlated Bernoulli trials, ‘binomialRF’ then tests whether a feature is selected more often than by random chance.
License GPL-2
Encoding UTF-8
LazyData true
biocViews Software, GenePrediction, StatisticalMethod, DecisionTree, DimensionReduction, ExperimentalDesign
Imports randomForest, data.table, stats, rlist
Suggests foreach, knitr, rmarkdown, correlbinom
RoxygenNote 7.0.2
VignetteBuilder knitr
NeedsCompilation no
Author Samir Rachid Zaim [aut, cre]
Maintainer Samir Rachid Zaim <samirrachidzaim@math.arizona.edu>
Repository CRAN
Date/Publication 2020-03-26 17:00:13 UTC

R topics documented:

.cv_binomialRF ... 2
binomialRF .. 3
calculateBinomialP .. 4
calculateBinomialP_Interaction 5
.cv_binomialRF

Description

cv.binomialRF is the cross-validated form of the binomialRF, where K-fold crossvalidation is conducted to assess the feature’s significance. Using the cvFolds=K parameter, will result in a K-fold cross-validation where the data is ‘chunked’ into K-equally sized groups and then the averaged result is returned.

Usage

.cv_binomialRF(X, y, cvFolds = 5, fdr.threshold = 0.05,
fdr.method = "BY", ntrees = 2000, keep.both = FALSE)

Arguments

X design matrix
y class label
cvFolds how many times should we perform cross-validation
fdr.threshold fdr.threshold for determining which set of features are significant
fdr.method how should we adjust for multiple comparisons (i.e., p.adjust.methods =c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"))
ntrees how many trees should be used to grow the randomForest? (Defaults to 5000)
keep.both should we keep the naive binomialRF as well as the correlated adjustment

Value

a data.frame with 4 columns: Feature Name, cross-validated average for Frequency Selected, CV Median (Probability of Selecting it randomly), CV Median(Adjusted P-value based on fdr.method), and averaged number of times selected as significant.

References

Examples

```r
set.seed(324)

###############################
### Generate simulation data
###############################
X = matrix(rnorm(1000), ncol=10)
trueBeta = c(rep(10,5), rep(0,5))
z = 1 + X %*% trueBeta
pr = 1/(1+exp(-z))
y = as.factor(rbinom(100,1,pr))

###############################
### Run cross-validation
###############################
```

binomialRF

random forest feature selection based on binomial exact test

Description

`binomialRF` is the R implementation of the feature selection algorithm by (Zaim 2019)

Usage

```r
binomialRF(X, y, fdr.thresh = .05, fdr.method = 'BY',
            ntree = 2000, percent.features = .5,
            keep.both=FALSE, user_cbinom_dist=NA,
            sampsize=round(nrow(X)*.63))
```

Arguments

- **X**: design matrix
- **y**: class label
- **fdr.thresh**: fdr.threshold for determining which set of features are significant
- **fdr.method**: how should we adjust for multiple comparisons (i.e., `p.adjust.methods` =c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"))
- **ntrees**: how many trees should be used to grow the randomForest?
- **percent.features**: what percentage of L do we subsample at each tree? Should be a proportion between (0,1)
- **keep.both**: should we keep the naive binomialRF as well as the correlated adjustment
- **user_cbinom_dist**: insert either a pre-specified correlated binomial distribution or calculate one via the R package `correlbinom`
- **sampsize**: how many samples should be included in each tree in the randomForest
calculateBinomialP

calculate the probability, p, to conduct a binomial exact test

description

calculateBinomialP returns a probability of randomly selecting a feature as the root node in a decision tree. This is a generic function that is called internally in binomialRF but that may also be called directly if needed. The arguments ... should be, L= Total number of features in X, and percent_features= what percent of L is subsampled in the randomForest call.
calculateBinomialP_Interaction

Usage

calculateBinomialP(L, percent_features)

Arguments

L the total number of features in X. Should be a positive integer >1
percent_features what percentage of L do we subsample at each tree? Should be a proportion between (0,1)

Value

If L is an integer returns a probability value for selecting predictor Xj randomly

Examples

calculateBinomialP(110, .4)
calculateBinomialP(13200, .5)

calculateBinomialP_Interaction

calculate the probability, p, to conduct a binomial exact test

Description

calculateBinomialP_Interaction returns a probability of randomly selecting a feature as the root node in a decision tree. This is a generic function that is called internally in binomialRF but that may also be called directly if needed. The arguments ... should be, L= Total number of features in X, and percent_features= what percent of L is subsampled in the randomForest call.

Usage

calculateBinomialP_Interaction(L, percent_features, K = 2)

Arguments

L the total number of features in X. Should be a positive integer >1
percent_features what percentage of L do we subsample at each tree? Should be a proportion between (0,1)
K interaction level

Value

If L is an integer returns a probability value for selecting predictor Xj randomly

Examples

calculateBinomialP_Interaction(110, .4, 2)
Description

binomialRF is the R implementation of the feature selection algorithm by (Zaim 2019).

Usage

```
gegeneset_binomialRF(binomialRF_object, gene_ontology, cutoff = 0.2)
```

Arguments

- `binomialRF_object` the binomialRF object output
- `gene_ontology` a two- or three-column representation of a gene ontology with gene and geneset names
- `cutoff` a real-valued number between 0 and 1, used as a p-value threshold

Value

a data.frame with 4 columns: Geneset Name, P-value, Adjusted P-value based on fdr.method

References

Description

k_binomialRF is the R implementation of the interaction feature selection algorithm by (Zaim 2019). *k_binomialRF* extends the binomialRF algorithm by searching for k-way interactions.

Usage

```
k_binomialRF(X, y, fdr.threshold = 0.05, fdr.method = "BY",
            ntrees = 2000, percent_features = 0.3, K = 2, cbinom_dist = NULL,
            sampsize = nrow(X) * 0.4)
```
Arguments

- **X**
 design matrix
- **y**
 class label
- **fdr.threshold**
 fdr.threshold for determining which set of features are significant
- **fdr.method**
 how should we adjust for multiple comparisons (i.e., `p.adjust.methods = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"))
- **ntrees**
 how many trees should be used to grow the `randomForest`? (Defaults to 5000)
- **percent_features**
 what percentage of L do we subsample at each tree? Should be a proportion between (0,1)
- **K**
 for multi-way interactions, how deep should the interactions be?
- **cbinom_dist**
 user-supplied correlated binomial distribution
- **sampsize**
 user-supplied sample size for random forest

Value

a data.frame with 4 columns: Feature Name, Frequency Selected, Probability of Selecting it randomly, Adjusted P-value based on `fdr.method`

References

Examples

```r
set.seed(324)

# Generate simulation data
X = matrix(rnorm(1000), ncol=10)
trueBeta= c(rep(10,5), rep(0,5))
z = 1 + X %*% trueBeta
pr = 1/(1+exp(-z))
y = rbinom(100,1,pr)

# Run interaction model
require(correlbinom)
rho = 0.33
ntrees = 250
cbinom = correlbinom(rho, successprob = calculateBinomialP_Interaction(10, .5,2), trials = ntrees, precision = 1024, model = 'kuk')
```

k_binomialRF

Arguments

- **X**
 design matrix
- **y**
 class label
- **fdr.threshold**
 fdr.threshold for determining which set of features are significant
- **fdr.method**
 how should we adjust for multiple comparisons (i.e., `p.adjust.methods = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"))
- **ntrees**
 how many trees should be used to grow the `randomForest`? (Defaults to 5000)
- **percent_features**
 what percentage of L do we subsample at each tree? Should be a proportion between (0,1)
- **K**
 for multi-way interactions, how deep should the interactions be?
- **cbinom_dist**
 user-supplied correlated binomial distribution
- **sampsize**
 user-supplied sample size for random forest

Value

a data.frame with 4 columns: Feature Name, Frequency Selected, Probability of Selecting it randomly, Adjusted P-value based on `fdr.method`

References

Examples

```r
set.seed(324)

# Generate simulation data
X = matrix(rnorm(1000), ncol=10)
trueBeta= c(rep(10,5), rep(0,5))
z = 1 + X %*% trueBeta
pr = 1/(1+exp(-z))
y = rbinom(100,1,pr)

# Run interaction model
require(correlbinom)
rho = 0.33
ntrees = 250
cbinom = correlbinom(rho, successprob = calculateBinomialP_Interaction(10, .5,2), trials = ntrees, precision = 1024, model = 'kuk')
```
k.binom.rf <- k_binomialRF(X, y, fdr.threshold = .05, fdr.method = 'BY',
 ntree = ntree, percent_features = .5,
 cbinom_dist = cbinom,
 sampsize = round(nrow(X) * rho))

pmf_list

A prebuilt distribution for correlated binary data

Description
This data contains probability mass functions (pmf’s) for correlated binary data for various parameters. The sum of correlated exchangeable binary data is a generalization of the binomial distribution that deals with correlated trials. The correlation in decision trees occurs as the subsampling and bootstrapping step in random forests touch the same data, creating a co-dependency. This data contains some pre-calculated distributions for random forests with 500, 1000, and 2000 trees with 10, 100, and 1000 features. For more distributions, they can be calculated via the correlbinom R package.

Usage
pmf_list

Format
A list of lists

References
Index

* datasets
 pmf_list, 8
 .cv_binomialRF, 2

binomialRF, 3

calculateBinomialP, 4
calculateBinomialP_Interaction, 5

geneset_binomialRF, 6

k_binomialRF, 6

pmf_list, 8