Package ‘bioacoustics’

October 12, 2022

Type Package

Title Analyse Audio Recordings and Automatically Extract Animal Vocalizations

Version 0.2.8

Maintainer Jean Marchal <jean.marchal@wavx.ca>

Description Contains all the necessary tools to process audio recordings of various formats (e.g., WAV, WAC, MP3, ZC), filter noisy files, display audio signals, detect and extract automatically acoustic features for further analysis such as classification.

License GPL-3

Encoding UTF-8

LazyData true

SystemRequirements C++11, fftw3, GNU make

Depends R (>= 3.3.0)

LinkingTo Rcpp

Imports htmltools, graphics, grDevices, methods, moments, Rcpp (>= 0.12.13), stringr, tools, tuneR (>= 1.3.0)

Suggests knitr, markdown, rmarkdown

URL https://github.com/wavx/bioacoustics/

BugReports https://github.com/wavx/bioacoustics/issues/

NeedsCompilation yes

RoxygenNote 7.1.1

VignetteBuilder knitr

Biarch TRUE

Author Jean Marchal [aut, cre], Francois Fabianek [aut], Christopher Scott [aut], Chris Corben [ctb, cph] (Read ZC files, original C code), David Riggs [ctb, cph] (Read GUANO metadata, original R code),
bioacoustics-package

bioacoustics: detect and extract automatically acoustic features in Zero-Crossing files and audio recordings

Description

bioacoustics contains all the necessary functions to read Zero-Crossing files and audio recordings of various formats, filter noisy files, display audio signals, detect and extract automatically acoustic features for further analysis such as species identification based on classification of animal vocalizations.

Details

bioacoustics is subdivided into three main components:

- Read, write and manipulate acoustic recordings.
- Display what’s inside acoustic recordings, whether to plot or just extract metadata.
• Analyse audio recordings in batch in search of specific vocalizations and extract acoustic features.

To learn more about bioacoustics, start with the introduction vignette: ‘vignette("introduction", package = "bioacoustics")’

Author(s)

Maintainer: Jean Marchal <jean.marchal@wavx.ca>
Authors:

• Francois Fabianek <francois.fabianek@wavx.ca>
• Christopher Scott

Other contributors:

• Chris Corben <chris@hoarybat.com> (Read ZC files, original C code) [contributor, copyright holder]
• David Riggs <driggs@myotisoft.com> (Read GUANO metadata, original R code) [contributor, copyright holder]
• Peter Wilson <peter@peterwilson.id.au> (Read ZC files, original R code) [contributor, copyright holder]
• Wildlife Acoustics, inc. (Read WAC files, original C code) [contributor, copyright holder]
• Jordan Biserkov [contributor]
• WavX, inc. [copyright holder]

See Also

Useful links:

• https://github.com/wavx/bioacoustics/
• Report bugs at https://github.com/wavx/bioacoustics/issues/

blob_detection

Blob detection of a region of interest into a spectrographic representation of the recording

Description

This function is a modified version of the Bat classify software developed by Christopher Scott (2014). It combines several algorithms for detection, filtering and audio feature extraction.
Usage

```r
blob_detection(
  wave,
  channel = "left",
  time_exp = 1,
  min_dur = 1.5,
  max_dur = 80,
  min_area = 40,
  min_TBE = 20,
  max_TBE = 1000,
  EDG = 0.9,
  LPF,
  HPF = 16000,
  FFT_size = 256,
  FFT_overlap = 0.875,
  blur = 2,
  bg_substract = 20,
  contrast_boost = 20,
  settings = FALSE,
  acoustic_feat = TRUE,
  metadata = FALSE,
  spectro_dir = NULL,
  time_scale = 0.1,
  ticks = TRUE
)
```

Arguments

- **wave**: either a path to a file, or a Wave object.
 Audio files will be automatically decoded internally using the function `read_audio`.
- **channel**: character. Channel to keep for analysis in a stereo recording: 'left' or 'right'. Do not need to be specified for mono recordings, recordings with more than two channels are not yet supported. Default setting is 'left'.
- **time_exp**: integer. Time expansion factor of the recording. Set to 1 for real-time recording or above for time expanded recording. Default setting is 1.
- **min_dur**: numeric. Minimum duration threshold in milliseconds (ms). Extracted audio events shorter than this threshold are ignored. Default setting is 1.5 ms.
- **max_dur**: numeric. Maximum duration threshold in milliseconds (ms). Extracted audio events longer than this threshold are ignored. The default setting is 80 ms.
- **min_area**: integer. Minimum area threshold in number of pixels. Extracted segments with an area shorter than this threshold are discarded. Default setting is 40 pixels.
- **min_TBE**: numeric. Minimum time window between two audio events in milliseconds (ms). If the time interval between two successive audio events is shorter than this window, they are ignored. The default setting is 20 ms.
- **max_TBE**: numeric. Maximum time window between two audio events in milliseconds (ms). If the time interval between two successive audio events is longer than this window, they are ignored. The default setting is 1000 ms.
EDG numeric. Exponential Decay Gain from 0 to 1. Sets the degree of temporal masking at the end of each audio event. This filter avoids extracting noise or echoes at the end of the audio event. The default setting is 0.996.

LPF integer. Low-Pass Filter (Hz). Frequencies above the cutoff are greatly attenuated. Default is set internally at the Nyquist frequency of the recording.

HPF integer. High-Pass Filter (Hz). Frequencies below the cutoff are greatly attenuated. Default setting is 16000 Hz. A default of 1000 Hz is recommended for most bird vocalizations.

FFT_size integer. Size of the Fast Fourrier Transform (FFT) window. Default setting is 256.

FFT_overlap numeric. Percentage of overlap between two FFT windows (from 0 to 1). Default setting is 0.875.

blur integer. Gaussian smoothing function for blurring the spectrogram of the audio event to reduce image noise. Default setting is 2.

bg_substract integer. Foreground extraction with a mean filter applied on the spectrogram of the audio even for image denoising. Default setting is 20.

contrast_boost integer. Edge contrast enhancement filter of the spectrogram of the audio event to improve its apparent sharpness. Default setting is 20.

settings logical. TRUE or FALSE. Save on a list the parameters set with the threshold_detection function. Default setting is FALSE.

acoustic_feat logical. TRUE or FALSE. Extracts the acoustic and signal quality parameters from each audio event in a data frame. The sequences of smoothed amplitude (dB) and frequency (Hz) bins of each audio event, temporal values (in ms) of the beginning and the end of each audio event are also extracted in separate lists. Default setting is TRUE.

metadata logical. TRUE or FALSE. Extracts on a list the metadata embedded with the Wave file GUANO metadata extraction is not -yet- implemented. Default setting is FALSE.

spectro_dir character (path) or NULL. Generate an HTML page with the spectrograms numbered by order of detection in the recording. Spectrograms are generated as individual .PNG files and stored in the 'spectro_dir/spectrograms' subdirectory. The R working directory is used if spectro_dir is NULL. spectro_dir is set to NULL by default.

time_scale numeric. Time resolution of the spectrogram in milliseconds (ms) per pixel (px). Default setting is 0.1 ms for bat echolocation calls. A default of 2 ms/px is recommended for most bird vocalizations.

ticks either logical or numeric. If TRUE tickmarks are drawn on the (frequency) y-axis and their positions are computed automatically. If numeric, sets the lower and upper limits of the tickmarks and their interval (in Hz). Default setting is TRUE.

Examples

data(myotis)
Output <- blob_detection(myotis, time_exp = 10, contrast_boost = 30, bg_substract = 30)
Output$data
fspec

Generate spectrograms

Description

This function returns the spectrographic representation of a time wave in the absolute scale or in decibels (dB) using the Fast Fourier transform (FFT).

Usage

```r
fspec(
  wave,
  channel = "left",
  FFT_size = 256,
  FFT_overlap = 0.875,
  FFT_win = "hann",
  LPF,
  HPF = 0,
  tlim = NULL,
  flim = NULL,
  rotate = FALSE,
  to_dB = TRUE
)
```

Arguments

- **wave**: a `Wave` object.
- **channel**: character. Channel to keep for analysis in a stereo recording: "left" or "right". Default setting is left.
- **FFT_size**: integer. Size of the Fast Fourier Transform (FFT) window. Default setting is 256.
- **FFT_overlap**: numeric. Percentage of overlap between two FFT windows (from 0 to 1). Default setting is 0.875.
- **FFT_win**: character. Specify the type of FFT window: "hann", "blackman4", or "blackman7". Default setting is "hann".
- **LPF**: integer. Low-Pass Filter (Hz). Frequencies above the cutoff are greatly attenuated. Default setting is the Nyquist frequency of the recording.
- **HPF**: integer. High-Pass Filter (Hz). Frequencies below the cutoff are greatly attenuated. Default setting is 0 Hz.
- **tlim**: numeric. Specify the time limits on the X-axis in seconds (s). Default setting is `NULL`, i.e. no time limits.
- **flim**: numeric. Specify the frequency limits on the Y-axis in Hz. Default setting is `NULL`, i.e. frequency limits are equal to `c(0, LPF)`.
- **rotate**: logical. Should the matrix be rotated 90° counter clockwise? Default setting is `FALSE`.
- **to_dB**: logical. Convert magnitude values to decibels (dB)? Default is `TRUE`.
guano_md

Value

A matrix of amplitude or decibel (dB) values in the time / frequency domain.

Examples

data(myotis)
image(fspec(myotis, tlim = c(1, 2), rotate = TRUE))

guano_md

Read GUANO metadata in audio file

Description

Read GUANO metadata in audio file

Usage

guano_md(file)

Arguments

file Path to a wav file

Value

list of named metadata fields

metadata

Extract metadata

Description

Extract metadata

Extract metadata from Zero-Crossing files

Extract metadata from a Wave object
Usage

metadata(x, ...)

S3 method for class 'character'
metadata(x, file_type = c(file_type_guess(x), "wav", "zc"), ...)

S3 method for class 'blob_detection'
metadata(x, ...)

S3 method for class 'threshold_detection'
metadata(x, ...)

S3 method for class 'zc'
metadata(x, ...)

S3 method for class 'Wave'
metadata(x, ...)

Arguments

x an object for which metadata will be extracted
... further arguments passed to or from other methods.
file_type type of file to read metadata from. Wav and Zero-Crossing files are currently supported.

mp3_to_wav

Convert MP3 to WAV

Description

Convert an MP3 file to a Wave file

Usage

mp3_to_wav(file, output_dir = dirname(file), delete = FALSE)

Arguments

file path to a MP3 file.
output_dir where to save the converted Wave file. The Wave file is saved by default to the MP3 file location.
delete delete the original MP3 file?
Description

The myotis dataset is a Wave file of 19.73 seconds, 16 bits, mono, 10x time expanded recording with a sampling rate at 50000 Hz. It contains 20 echolocation calls of several species from the Myotis genus. The recording was made in United-Kingdom with a D500X bat detector from Pettersson Elektronik AB.

The zc dataset is a Zero-Crossing file of 16384 dots containing a sequence of 24 echolocation calls of a hoary bat (Lasiurus cinereus). This ZC recording was made in Gatineau Park, Quebec, eastern Canada, during the summer 2017 with a Walkabout bat detector from Titley Scientific.

Usage

myotis
zc

Format

Wave object
Zero-Crossing object

plot_zc

Generate spectrogram for Zero-Crossing files

Usage

plot_zc(
x,
LPF = 125000,
HPF = 16000,
tlim = c(0, Inf),
flim = c(HPF, LPF),
ybar = TRUE,
ybar.lty = 2,
ybar.col = "gray",
dot.size = 0.3,
dot.col = "red",
...
Arguments

- x: an object of class ‘zc’.
- LPF: numeric. Low-Pass Filter (Hz). Frequencies above the cutoff are greatly attenuated. Default is set to 125000 Hz.
- HPF: numeric. High-Pass Filter (Hz). Frequencies below the cutoff are greatly attenuated. Default setting is 16000 Hz.
- tlim: numeric. Time limits of the plot in seconds (s). Default setting is set to c(0, Inf).
- flim: numeric. Frequency limits of plot in Hz. Default setting is set to c(HPF, LPF)
- ybar: should horizontal scale bars be plotted. Default is TRUE.
- ybar.lty: line type of the horizontal scale bars.
- ybar.col: color of the horizontal scale bars.
- dot.size: dot size.
- dot.col: dot color.
- ...: not currently implemented.

Examples

data(zc)
plot_zc(zc)

Description

Read audio files into a Wave object. WAV, WAC and MP3 files are currently supported.

Usage

read_audio(file, time_exp = 1, from = NULL, to = NULL)

Arguments

- file: a Wave, WAC or MP3 recording containing animal vocalizations.
- time_exp: integer. Time expansion factor of the recording. Set to 1 for real-time recording or above for time expanded recording. Default setting is 1.
- from: optional. Numeric. Where to start reading the recording, in seconds (s).
- to: optional. Numeric. Where to end reading the recording, in seconds (s).

Value

A Wave object.
read_mp3

Examples

filepath <- system.file("extdata", "recording.wav", package = "bioacoustics")
read_audio(filepath)

read_mp3(a MP3 file.

Arguments

file
time_exp
default setting is 1.

Value

A Wave object.

Examples

filepath <- system.file("extdata", "recording.mp3", package = "bioacoustics")
read_mp3(filepath)
read_wac

Read WAC files from Wildlife Acoustics recorders

Description

Convert a Wildlife Acoustics’ proprietary compressed WAC file into a Wave object.

Usage

read_wac(file, time_exp = 1, write_wav = NULL, ...)

Arguments

file a WAC file.
time_exp integer. Time expansion factor of the recording. Set to 1 for real-time recording or above for time expanded recording. Default setting is 1.
write_wav optional folder path where WAV files will be written.
... currently not implemented.

Value

A Wave object.

Examples

filepath <- system.file("extdata", "recording_20170716_230503.wac", package = "bioacoustics")
read_wac(filepath)

read_wav

Read WAV files

Description

A thin wrapped around readWave from the package tuneR.

Usage

read_wav(file, time_exp = 1, from = NULL, to = NULL)
Arguments

file

da WAV file.

time_exp

integer. Time expansion factor of the recording. Set to 1 for real-time recording or above for time expanded recording. Default setting is 1.

from

optional. Numeric. Where to start reading the recording, in seconds (s).

to

optional. Numeric. Where to end reading the recording, in seconds (s).

Value

A Wave object.

Examples

```r
filepath <- system.file("extdata", "recording.wav", package = "bioacoustics")
read_wav(filepath)
```

read_zc

Read Zero-Crossing files

Description

Read Zero-Crossing files (.zc, .#) from various bat recorders

Usage

`read_zc(file)`

Arguments

file

a Zero-Crossing file.

Value

an object of class 'zc'.

Examples

```r
## Not run:
zc <- read_zc("file")
```
spectro

Plot a spectrogram

Description

Plot a spectrogram

Usage

```r
spectro(
  wave,
  channel = "left",
  FFT_size = 256,
  FFT_overlap = 0.875,
  FFT_win = "hann",
  LPF,
  HPF = 0,
  tlim = NULL,
  flim = NULL,
  ticks_y = NULL,
  col = gray.colors(25, 1, 0)
)
```

Arguments

- **wave**: a Wave object.
- **channel**: character. Channel to keep for analysis in a stereo recording: "left" or "right". Default setting is left.
- **FFT_size**: integer. Size of the Fast Fourier Transform (FFT) window. Default setting is 256.
- **FFT_overlap**: numeric. Percentage of overlap between two FFT windows (from 0 to 1). Default setting is 0.875.
- **FFT_win**: character. Specify the type of FFT window: "hann", "blackman4", or "blackman7". Default setting is "hann".
- **LPF**: integer. Low-Pass Filter (Hz). Frequencies above the cutoff are greatly attenuated. Default setting is the Nyquist frequency of the recording.
- **HPF**: integer. High-Pass Filter (Hz). Frequencies below the cutoff are greatly attenuated. Default setting is 0 Hz.
- **tlim**: numeric. Specify the time limits on the X-axis in seconds (s). Default setting is NULL, i.e no time limits.
- **flim**: numeric. Specify the frequency limits on the Y-axis in Hz. Default setting is NULL, i.e. frequency limits are equal to c(0, LPF).
- **ticks_y**: numeric. Whether tickmarks should be drawn on the frequency Y-axis or not. The lower and upper bounds of the tickmarks and their intervals (in Hz) has to be specified. Default setting is NULL.
- **col**: set the colors for the amplitude scale (dB) of the spectrogram.
threshold_detection

Examples

```r
data(myotis)
spectro(myotis, tlim = c(1, 2))
```

threshold_detection
Amplitude threshold detector above Signal to Noise Ratio (SNR)

Description

This function is a modified version of the Bat Bioacoustics freeware developed by Christopher Scott (2012). It combines several detection, filtering and audio feature extraction algorithms.

Usage

```r
threshold_detection(
  wave,
  threshold = 14,
  channel = "left",
  time_exp = 1,
  min_dur = 1.5,
  max_dur = 80,
  min_TBE = 20,
  max_TBE = 1000,
  EDG = 0.996,
  LPF,
  HPF = 16000,
  FFT_size = 256,
  FFT_overlap = 0.875,
  start_thr = 40,
  end_thr = 20,
  SNR_thr = 10,
  angle_thr = 40,
  duration_thr = 80,
  NWS = 100,
  KPE = 1e-05,
  KME = 1e-05,
  settings = FALSE,
  acoustic_feat = TRUE,
  metadata = FALSE,
  spectro_dir = NULL,
  time_scale = 0.1,
  ticks = TRUE
)
```
threshold_detection

Arguments

- **wave**: either a path to a file, or a Wave object. Audio files will be automatically decoded internally using the function `read_audio`.
- **threshold**: integer. Sensitivity of the audio event detection function (peak-picking algorithm) in dB. A threshold value of 14 dB above SNR is recommended. Higher values increase the risk of leaving audio events undetected (false negative). In a noisy recording (low SNR) this sensitivity threshold may be set at 12 dB, but a value below 10 dB is not recommended. Default setting is 14 dB above SNR.
- **channel**: character. Channel to keep for analysis in a stereo recording: 'left' or 'right'. Do not need to be specified for mono recordings, recordings with more than two channels are not yet supported. Default setting is 'left'.
- **time_exp**: integer. Time expansion factor of the recording. Set to 1 for real-time recording or above for time expanded recording. Default setting is 1.
- **min_dur**: numeric. Minimum duration threshold in milliseconds (ms). Extracted audio events shorter than this threshold are ignored. Default setting is 1.5 ms.
- **max_dur**: numeric. Maximum duration threshold in milliseconds (ms). Extracted audio events longer than this threshold are ignored. The default setting is 80 ms.
- **min_TBE**: numeric. Minimum time window between two audio events in milliseconds (ms). If the time interval between two successive audio events is shorter than this window, they are ignored. The default setting is 20 ms.
- **max_TBE**: numeric. Maximum time window between two audio events in milliseconds (ms). If the time interval between two successive audio events is longer than this window, they are ignored. The default setting is 1000 ms.
- **EDG**: numeric. Exponential Decay Gain from 0 to 1. Sets the degree of temporal masking at the end of each audio event. This filter avoids extracting noise or echoes at the end of the audio event. The default setting is 0.996.
- **LPF**: integer. Low-Pass Filter (Hz). Frequencies above the cutoff are greatly attenuated. Default is set internally at the Nyquist frequency of the recording.
- **HPF**: integer. High-Pass Filter (Hz). Frequencies below the cutoff are greatly attenuated. Default setting is 16000 Hz. A default of 1000 Hz is recommended for most bird vocalizations.
- **FFT_size**: integer. Size of the Fast Fourrier Transform (FFT) window. Default setting is 256.
- **FFT_overlap**: numeric. Percentage of overlap between two FFT windows (from 0 to 1). Default setting is 0.875.
- **start_thr**: integer. Right to left amplitude threshold (dB) for audio event extraction, from the audio event centroid. The last FFT where the amplitude level is equal or above this threshold is considered the start of the audio event. Default setting is 40 dB. 20 dB is recommended for extracting bird vocalizations.
- **end_thr**: integer. Left to right amplitude threshold (dB) for audio event extraction, from the audio event centroid. The last FFT where the amplitude level is equal or above this threshold is considered the end of the audio event. Default setting is 20 dB. 30 dB is recommended for extracting bird vocalizations.
`threshold_detection`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Setting</th>
<th>Recommended Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNR_thr</td>
<td>SNR threshold (dB) at which the extraction of the audio event stops.</td>
<td>10 dB</td>
<td>8 dB for bird vocalizations</td>
</tr>
<tr>
<td>angle_thr</td>
<td>Angle threshold (°) at which the audio event extraction stops.</td>
<td>40°</td>
<td>125° for bird vocalizations</td>
</tr>
<tr>
<td>duration_thr</td>
<td>Maximum duration threshold in milliseconds (ms) after which the monitoring of the background noise is resumed.</td>
<td>80 ms</td>
<td></td>
</tr>
<tr>
<td>NWS</td>
<td>Length of the time window used for background noise estimation in the recording (ms).</td>
<td>100 ms</td>
<td></td>
</tr>
<tr>
<td>KPE</td>
<td>Set the Process Error parameter of the Kalman filter.</td>
<td>1e-05</td>
<td></td>
</tr>
<tr>
<td>KME</td>
<td>Set the Measurement Error parameter of the Kalman filter.</td>
<td>1e-05</td>
<td></td>
</tr>
<tr>
<td>settings</td>
<td>Logical. Save on a list the parameters set with the <code>threshold_detection</code> function.</td>
<td>FALSE</td>
<td></td>
</tr>
<tr>
<td>acoustic_feat</td>
<td>Logical. Extracts the acoustic and signal quality parameters from each audio event in a data frame.</td>
<td>TRUE</td>
<td></td>
</tr>
<tr>
<td>metadata</td>
<td>Logical. Extracts on a list the metadata embedded with the Wave file GUANO metadata extraction.</td>
<td>FALSE</td>
<td></td>
</tr>
<tr>
<td>spectro_dir</td>
<td>Character (path) or NULL. Generate an HTML page with the spectrograms numbered by order of detection in the recording.</td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>time_scale</td>
<td>Time resolution of the spectrogram in milliseconds (ms) per pixel (px).</td>
<td>0.1 ms</td>
<td>2 ms/px for most bird vocalizations</td>
</tr>
<tr>
<td>ticks</td>
<td>Logical or numeric. If TRUE tickmarks are drawn on the (frequency) y-axis and their positions are computed automatically. If numeric, sets the lower and upper limits of the tickmarks and their interval (in Hz).</td>
<td>TRUE</td>
<td></td>
</tr>
</tbody>
</table>

Value

an object of class `bioacoustics_output`.

Examples

```r
data(myotis)
Output <- threshold_detection(myotis, time_exp = 10, HPF = 16000, LPF = 200000)
Output$data```

---

**Explanation**

- **threshold_detection** is a function that allows for the detection of audio events based on specific threshold settings.
- **SNR_thr** (SNR threshold): Determines at which SNR (Signal-to-Noise Ratio) threshold an audio event is considered detected. The default is 10 dB, but 8 dB is recommended for bird vocalizations.
- **angle_thr** (angle threshold): Specifies the angle at which the extraction of the audio event stops. The default is 40°, but 125° is recommended for bird vocalizations.
- **duration_thr** (duration threshold): Specifies the maximum duration of an audio event after which monitoring of the background noise is resumed. The default is 80 ms for bat echolocation calls. A higher threshold value is recommended for bird vocalizations.
- **NWS** (noise window size): Determines the length of the time window used for background noise estimation. The default is 100 ms.
- **KPE** (process error): Sets the Process Error parameter of the Kalman filter. The default is 1e-05.
- **KME** (measurement error): Sets the Measurement Error parameter of the Kalman filter. The default is 1e-05.
- **settings** (logical): Determines if the parameters set with `threshold_detection` are saved on a list. The default is FALSE.
- **acoustic_feat** (logical): Determines if the acoustic and signal quality parameters from each audio event are extracted. The default is TRUE.
- **metadata** (logical): Determines if the metadata embedded with the Wave file GUANO metadata extraction is included. The default is FALSE.
- **spectro_dir** (character or NULL): Generates an HTML page with spectrograms numbered by order of detection in the recording. The R working directory is used if `spectro_dir` is NULL. The default is NULL.
- **time_scale** (numeric): Specifies the time resolution of the spectrogram. The default is 0.1 ms for bat echolocation calls. A default of 2 ms/px is recommended for most bird vocalizations.
- **ticks** (logical or numeric): Determines if tickmarks are drawn on the spectrogram y-axis and their positions are computed automatically. If numeric, sets the lower and upper limits of the tickmarks and their interval (in Hz). The default is TRUE.

### Examples

```r
Load example data
data(myotis)

Perform threshold detection
Output <- threshold_detection(myotis, time_exp = 10, HPF = 16000, LPF = 200000)

Access the data frame containing detected audio events
Output$data
```
write_zc

Write Zero-Crossing files

Description
Write Zero-Crossing files (.zc, #)

Usage
write_zc(zc, filename)

Arguments
zc an object of class 'zc'.
filename path or connection to write.

Examples
data(zc)
filename <- tempfile()
write_zc(zc, filename = filename)
Index

* bat
  myotis, 9
* datasets
  myotis, 9
* echolocation calls
  myotis, 9
* hoary bat
  myotis, 9
* myotis
  myotis, 9
* zero-crossing
  myotis, 9

bioacoustics (bioacoustics-package), 2
bioacoustics-package, 2
blob_detection, 3

fspec, 6

guano_md, 7

metadata, 7
mp3_to_wav, 8
myotis, 9

plot_zc, 9

read_audio, 4, 10, 16
read_mp3, 11
read_wac, 12
read_wav, 12
read_zc, 13
readMP3, 11
readWave, 12

spectro, 14

threshold_detection, 15

Wave, 4, 6, 9–14, 16
write_zc, 18

zc (myotis), 9