Package ‘bioassays’

October 9, 2020

Type Package
Title Summarising Multi Well Plate Cellular Assay
Version 1.0.1
Description The goal is to help users to analyse data from multi wells with minimum effort. Using these functions several plates can be analyzed automatically.
License GPL-3
Encoding UTF-8
LazyData true
Imports dplyr, ggplot2, stats, magrittr, nplr, reshape2, rlang
RoxygenNote 7.1.1
Depends R (>= 4.00)
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
NeedsCompilation no
Author Anwar Azad Palakkan [aut, cre],
 Jamie Davies [aut]
Maintainer Anwar Azad Palakkan <bioanwar@gmail.com>
Repository CRAN
Date/Publication 2020-10-09 20:10:02 UTC

R topics documented:

bioassays .. 2
data2plateformat .. 3
data_DF1 .. 4
dfssummary .. 4
estimate .. 6
extract_filename .. 7
heatplate ... 8
matrix96 .. 9
bioassays

The bioassays package provides three categories of important functions for extracting, formatting, plotting and analyzing.

Extract functions

The function that help to extract information from file name is

extract_filename

Format functions

The function to format data are

data2plateformat
plate2df
matrix96
plate_metadata

Plot functions

The function to plot is

heatplate

Analysis functions

The function to analyse data are

reduceblank
estimate
dfsummary
pvalue
data2plateformat Renaming column and Row of Multiwell Data to Match Plate Format

Description

Convert the data (example: readings from mutli well plate) to appropriate plate format by renaming column and rownames.

Usage

data2plateformat(data, platetype = 96)

Arguments

data Matrix data to be formatted
platetype Plate from which the data is coming. It can take 6, 12, 24, 96 and 384 values to represent the corresponding multi well plate.

Details

This function will label the columns and rows correctly to match the plate format, and discard the extras. For example, if the 'data' is coming from a '96' well plate ('platetype'), the function will rename rows as A to H and columns as 1 to 12. Extra columns and rows of 'data' is discarded.

Value

A data frame with columns and rows matching (label and numbers) the mutli well plate format.

Author(s)

A.A Palakkan

Examples

```r
## loading data
data(rawdata24, rawdata96, rawdata384)
data2plateformat(rawdata24, platetype = 24)

## eg:2 spectrophotometer reading from 96 well plate
data2plateformat(rawdata96, platetype = 96)

## eg:3 spectrophotometer reading from 384 well plate
data2plateformat(rawdata384, platetype = 384)
```
data_DF1

Data of 96 well plate.

Description

A complete dataset containing both metadata and spectrophotometer reading

Usage

data_DF1

Format

A data frame with 96 rows and 10 variables

- row Row number of multi well well plate.
- col Column number of multi well plate.
- position Well position address of multi well plate.
- value Spectrophotometer reading (OD).
- id Type of sample.'STD' represent standards and 'sample' represent samples.
- type Type of sample.'STD1','STD2','STD3' etc represent different standards.'S1','S2','S3' represent different samples.
- dilution dilution of samples used for the assay.
- concentration Concentration of respective standards.
- compound Compound used for the assay.
- blankminus Blank reduced OD (value - mean(blank))

Source

User generated dataframe of the 96 well plate.

dfssummary

Summarize a Dataframe After Grouping Samples

Description

This function summarize the dataframe (based on a column). It has additional controls to group samples and to omit variables not needed.

Usage

dfssummary(dataframe, y, grp_vector, rm_vector, nickname, rm="FALSE", param)
dfsummary

Arguments
- **dataframe**: data in dataframe format
- **y**: column name whose values has to be summarized (column elements need to be numeric)
- **grp_vector**: a character vector of column names whose order indicate the order of grouping.
- **rm_vector**: a character vector of items that need to be omitted before summarizing.
- **nickname**: label name for the entries in output dataframe.
- **rm**: rm = "FALSE" if outliers not to be removed, rm = "TRUE" If outliers to be removed.
- **param**: a vector of parameters for more stringent outlier removal. param has to be entered in the format c(strict, cutoff, n). For details please refer `rmodd_summary`

Details
This function first remove `rm_vector` elements from the 'dataframe'. Samples are grouped (each level of a `grp_vector` element as separate group) and sorted (based on `grp_vector` elements order). column 'y' is then summarized for each group (please refer `rmodd_summary`: for details.

Value
A dataframe. First columns are named as `grp_vector` elements. Followed by a 'label' column (element is 'nickname').This 'label' column will be useful when analyzing multiple plates. Summary statistics of 'y' appear as columns: N (number of samples/group), Mean (average/group), SD (standard deviation/group) and CV (percentage cv/group)

Author(s)
A.A Palakkan

Examples
```r
## loading data
data(metafile384, rawdata384)
rawdata<-plate2df(data2plateformat(rawdata384,platetype = 384))
data_DF2<- dplyr::inner_join(rawdata,metafile384,by=c("row","col","position"))

## eg:1 summarising the 'value' after grouping samples and omitting blanks.
# grouping order cell, compound, concentration and type.
result2 <- dfsummary(data_DF2,y = "value",
grp_vector = c("cell","compound","concentration","type"),
rm_vector = c("blank1","blank2","blank3","blank4"),
nickname = "384well",
rm = "FALSE",param = c(strict="FALSE",cutoff=40,n=12))
```
estimate

Estimate Samples from Standard Curve

Description

This function will estimate the unknown variable (example: concentration) based on a standard curve.

Usage

```r
estimate (data, colname = "blankminus", fitformula = fiteq, method = "linear/nplr")
```

Arguments

- `data` data in dataframe format
- `colname` column name whose values has to be estimated
- `fitformula` formula used for fitting standard curve
- `method` method = "linear" if standard curve is linear in nature. method = "nplr" if standard curve is nonparametric logistic curve.

Details

For linear standard curve 'fitformula' need to generated using `lm`. For nonparametric logistic curve 'fitformula' need to generated using `nplr`.

Value

A dataframe with estimated values added to right as a new column "estimated".

Author(s)

A.A Palakkan

Examples

```r
## loading data
data(data_DF1)

## Filtering standards
std<- dplyr::filter(data_DF1, data_DF1$id=="STD")
std <- aggregate(std$blankminus ~ std$concentration, FUN = mean )
colnames (std) <-c("con", "OD")

## 3-parametric regression curve fitting
fit1<-nplr::nplr(std$con,std$OD,npars=3,useLog = FALSE)

## Linear regression curve fitting
fit2<- stats::lm(formula = con ~ OD,data = std)
```
Estimating the 'blankminus'

eg:1 Based on nonparametric logistic regression fitting

```r
estimated_nplr <- estimate(data_DF1, colname = "blankminus", fitformula = fit1, method = "nplr")
```

eg:2 Based on linear regression fitting

```r
estimated_lr <- estimate(data_DF1, colname = "blankminus", fitformula = fit2, method = "linear")
```

Description

This function split a string (file name) as per the requirement of the user. It is useful to extract
informations like compound name, plate number etc from the file name.

Usage

```r
extract_filename(filename, split = " ", end = ".csv", remove = " ", sep = "-")
```

Arguments

- **filename**
 - name of the file (string).
- **split**
 - regular expressions at which filename has to be split to create different sections.
- **end**
 - extension (end portion) of filename that need to be removed.
- **remove**
 - section that need to be omitted after splitting the filename.
- **sep**
 - symbol to be added to separate sections (obtained after splitting) before combining (default is ":-").

Value

A character vector. First element is the unsplit 'filename'. Second element is the processed 'filename'.Other elements are different sections after splitting the 'filename'.

Author(s)

A.A Palakkan

Examples

```r
extract_filename("L-HEPG2_P3_72HRS.csv")
extract_filename("L_HEPG2_P3_72HRS.csv", split="_", end=".csv", remove="L", sep="")
```
heatplate

Heatmap of multi well plate

Description

This function generate a heatmap (for numeric vector) or categorical plot (character vector) of multi well plate

Usage

heatplate(datamatrix, name, size = 7.5)

Arguments

datamatrix data in matrix format. An easy way to create this is by calling matrix96
name name to be given for the heatmap
size plot size for each well in the heatmap (default is 7.5)

Details

Heat map can be generated for any multi well plate data in matrix format (datamatrix). The columns and rows of datamatrix should be labelled appropriately using matrix96. A heatplot is generated if datamatrix is numeric, but a categorical plot is generated if datamatrix is a character matrix.

Value

A graphical plot.

Author(s)

A.A Palakkan

Examples

```r
## loading data
data(metafile96, rawdata96, rawdata384)
rawdata96 <- data2plateformat(rawdata96, platetype = 96)
rawdata384 <- data2plateformat(rawdata384, platetype = 384)

## eg:1 heat map of rawdata96
data<-matrix96(plate2df(rawdata96),"value")
heatplate(data,"Plate 1", size=5)

## eg:2 heat map of rawdata96 can also be called as
heatplate(as.matrix(rawdata96),"Plate 1", size=5)

## eg:3 heat map of rawdata384
heatplate(as.matrix(rawdata384),"Plate 1", size=2)
```
matrix96

Formatting Long Dataframe in to a Matrix Layout of Multi well Plate

Description

This function formats a long dataframe (with col and row columns) into a multiwell plate matrix layout.

Usage

```r
matrix96(dataframe, column, rm = "FALSE")
```

Arguments

- `dataframe`: dataframe to be formatted
- `column`: name of column (as a string in "") that needs to be converted as a matrix
- `rm`: If rm = "TRUE" then -ve and NA are assigned as 0

Details

The `dataframe` to be formatted should have a 'col' and 'row' columns representing the column and rowname of the corresponding multiwell plate.

Value

A matrix data with row and column names corresponding to multiwell plate

Author(s)

A.A Palakkan

Examples

```r
## loading data
data<rawdata96, metafile96, metafile384)
rawdata<- data2plateformat(rawdata96, platemtype = 96)
rawdata<- plate2df(rawdata)

## eg:1 rawdata to matrix format (column: value)
matrix96(rawdata,"value")

## eg:2 metafile96 to matrix format (column: id)
matrix96(metafile96,"id")
```
eg:3 metafile384 to matrix format (column: cell)
matrix96(metafile384,"cell")

metafile384
Metadata of 384 Well Plate

Description
A dataset containing metadata.

Usage

`metafile384`

Format
A data frame with 384 rows and 8 variables.

- **row** Row number of multi well well plate.
- **col** Column number of multi well plate.
- **position** Well position address of multi well plate.
- **cell** Type of cells used for the assay.
- **compound** Different drugs (drug1,drug2,etc) used for the assay.
- **concentration** 'C1','C2','C3' etc represent different concentration used for the same compound. 'B' represent blank wells
- **type** 'treated' and 'untreated' shows if the wells had received pretreatment (example:inhibitors) or not. 'Blank1','Blank2','Blank3’ etc represent separate blanks for different drugs.
- **dilution** dilution of samples used for the assay.

Source
User generated metadata of the 384 well plate.
metafile96

Metadata of 96 Well Plate.

Description
A dataset containing metadata.

Usage
metafile96

Format
A data frame with 96 rows and 7 variables.
row Row number of multi well well plate.
col Column number of multi well well plate.
position Well position address of multi well well plate.
id Type of sample. 'STD' represent standards, 'sample' represent samples.
type Type of sample. 'STD1','STD2','STD3' etc represent different standards, 'S1','S2','S3' represent different samples.
concentration concentration of different standards (mg/ml).
dilution dilution of samples used for assay.

Source
User generated metadata of 96 well plate.

plate2df
Format Matrix Type 2D Data of Multi well Plate as Dataframe

Description
This function uses column names and row names of 'datamatrix' (2D data of a multi well plate) and generate a dataframe with row, col (column) and position indices. The 'value' column represent corresponding value in the 'datamatrix'.

Usage
plate2df(datamatrix)

Arguments
datamatrix datamatrix is the 2D data of a multi well plate. Usually the result of data2plateformat:
Value

A dataframe with 4 columns. Number of rows is equal to the number of wells (plate type of 'datamatrix'). The columns represent:

- **row**: Row number of the entry
- **col**: Column number of the entry
- **position**: Position (Row+column number) of the entry
- **value**: Individual entries in the 'datamatrix'

Author(s)

A.A Palakkan

Examples

```r
## loading data
data(rawdata24, rawdata96, rawdata384)

## eg:1 spectrophotometer reading from 24 well plate in dataframe format
datamatrix<- data2plateformat(rawdata24, platetype = 24)
head(plate2df(datamatrix))

## eg:2 spectrophotometer reading from 96 well plate in dataframe format
datamatrix<- data2plateformat(rawdata96, platetype = 96)
head(plate2df(datamatrix))

## eg:3 spectrophotometer reading from 384 well plate in dataframe format
datamatrix<- data2plateformat(rawdata384, platetype = 384)
head(plate2df(datamatrix))
```

plate_metadata

Combining Plate Specific Information with Metadata

Description

plate_metadata combine the plate specific information (like compounds used, standard concentration, dilution of samples, etc) and metadata, to produce a plate specific metadata.

Usage

```
plate_metadata (plate_details, metadata, mergeby = "type")
```

Arguments

- **plate_details**: plate specific information that need to be added to metadata
- **metadata**: column that is common to both metadata and plate_meta (as a string in ")"
- **mergeby**: column that is common to both metadata and plate_meta (as a string in ")"
Details

plate_details need to be in a list format. Metadata should have a 'row' and 'col' columns representing the row and column names of the corresponding multi well plate.

Value

A dataframe. Each element of 'plate_details' will appear as a new column to the left of 'metadata'

Author(s)

A.A Palakkan

Examples

```r
## loading data
data(metafile96)
plate_details <- list("compound" = "Taxol",
            "concentration" = c(0.00,0.01,0.02,0.05,0.10,1.00,5.00,10.00),
            "type" = c("S1","S2","S3","S4","S5","S6","S7","S8"),
            "dilution" = 1)

## eg:1 filling metadata96 using plate_details
plate_meta<-plate_metadata(plate_details,metafile96,mergeby="type")
head(plate_meta)
```

pvalue

t-Test on Summary Dataframe

Description

This function calculate the significance (t-test) within groups of 'dataframe'

Usage

`pvalue(dataframe, control, sigval)`

Arguments

- `dataframe`: a summary dataframe of `dfsummary` output
- `control`: control group name
- `sigval`: pvalue cutoff for significance

Details

The 'dataframe' should be having similar format of `dfsummary` output. 'control' should be an element from the column just before 'label'. 'N', 'Mean', 'SD' and 'CV' columns in the 'dataframe' are used for calculating p value by t-test (one to one t-test with 'control' in that group). significant if pvalue is < 'sigval'. Different groups in 'dataframe' are evaluated separately (columns before label is used for grouping).
Value

A dataframe. New columns named 'pvalue' (p values of t-test. If the value is less than 0.001, then appear as "< 0.001") and 'significance' (yes if pvalue less than 'sigval') are attached to the left.

Author(s)

A.A Palakkan

Examples

```r
## loading data
data(metafile384, rawdata384)
rawdata<-plate2df(data2plateformat(rawdata384, platetype = 384))
data_DF2<- dplyr::inner_join(rawdata, metafile384, by=c("row","col","position"))
result3 <- dfsummary(data_DF2, y = "value",
grp_vector = c("cell","compound","concentration"),
rm_vector = c("B", "drug2", " huh7"),
nickname = "",
rm = "FALSE", param = c(strict = "FALSE", cutoff = 40, n = 12))

## eg: 1 t-test on result3.
pvalue(result3,"C3", sigval = 0.05)
```

Description

A dataset of spectrophotometer readings (OD).

Usage

rawdata24

Format

A data frame with 4 rows and 7 columns: First column shows 'row name'.

Source

Spectrophotometer output reading (OD) of 24 well plate.
rawdata384

Description
A dataset of spectrophotometer readings (OD).

Usage

rawdata384

Format
A data frame with 16 rows and 25 columns: First column shows 'row name'.

Source
Spectrophotometer output reading (OD) of 384 well plate.

rawdata96

Description
A dataset of spectrophotometer readings (OD).

Usage

rawdata96

Format
A data frame with 8 rows and 13 columns: First column shows 'row name'.

Source
Spectrophotometer output reading (OD) of 96 well plate.
reduceblank

Reduce Blank Values

Description

This function can reduce 'blank' value from readings. Can handle separate blanks for separate groups in the dataframe.

Usage

```
reduceblank(dataframe, x_vector, blank_vector, y)
```

Arguments

- `dataframe` Data in the form of dataframe
- `x_vector` A character vector of groups/entries for which the blank has to be reduced.
- `blank_vector` A character vector of blank names whose value has to be reduced.
- `y` Name of the column (column should be numeric in nature) whose values has be reduced.

Details

This function will reduce the first blank vector element from first x_vector element and so on.

Value

A dataframe with a new column 'blankminus' (result of the blankminus function) added to the right.

Author(s)

A.A Palakkan

Examples

```r
## loading data
data(metafile384, rawdata384)
rawdata<-plate2df(data2plateformat(rawdata384, platetype = 384))
data_DF2<- dplyr::inner_join(rawdata, metafile384, by=c("row","col","position"))

## eg:reduce blanks of data_DF2.
# reduce separate blanks (mean of blank wells) for drug1, drug2, drug3 and drug4.
#blanks are blank1, blank2, blank3 and blank4 respectively for different drug.
data_blk<-reduceblank(data_DF2,
x_vector=c("drug1","drug2","drug3","drug4"),
blank_vector = c("blank1","blank2","blank3","blank4"),
"value")
```
rmodd_summary

Summarise a Numerical Vector with Control on Outlier Removal

Description
Summarise a numerical vector with control on how the outliers has to be treated.

Usage
rmodd_summary(x, rm = "FALSE", strict = "FALSE", cutoff = 80, n = 3)

Arguments
- **x**: numerical vector
- **rm**: if rm = "TRUE" outliers are omitted. If rm = "FALSE" all elements in the vector are considered for summarising
- **strict**: if strict = "FALSE" outliers are omitted based on IQR rule. If strict = "TRUE" more aggressive outlier omitting method is used to bring CV below a cutoff value
- **cutoff**: cv cutoff value for the aggressive outlier removal
- **n**: minimum number of samples needed

Details
In IQR rule (ie when strict = "FALSE") those values above ’Q3 + 1.5 IQR’ and those below ’Q1 - 1.5 IQR’ is considered as outlier. For the aggressive outlier removal (ie when strict = "TRUE") those values above 90th percentile and below 10th percentile are removed consecutively till the cv fall below the ’cutoff’ or only the minimum number of samples is leftover (whichever happens first halt the loop).

Value
A numeric vector of length 5 with the elements representing
- **mean**: the average of samples
- **median**: the median of samples
- **n**: number of samples
- **sd**: standard deviation of samples
- **cv**: percentage cv of samples

Author(s)
A.A Palakkan
Examples

```r
## data set x
x <- c(1.01, 0.98, 0.6, 0.54, 0.6, 0.6, 0.4, 3)

## summarising without removing outliers
rmodd_summary(x, rm = "FALSE", strict = "FALSE", cutoff = 80, n = 3)

## summarising after removing outliers (IQR method)
rmodd_summary(x, rm = "TRUE", strict = "FALSE", cutoff = 20, n = 5)

## summarising after removing outliers (Stringent to reduce cv)
rmodd_summary(x, rm = "TRUE", strict = "TRUE", cutoff = 20, n = 5)
```
Index

* arith
 dfsummary, 4
 rmodd_summary, 17

* character
 extract_filename, 7

* datasets
 data_DF1, 4
 metafile384, 10
 metafile96, 11
 rawdata24, 14
 rawdata384, 15
 rawdata96, 15

* hplot
 heatplate, 8

* htest
 pvalue, 13

* manip
 data2plateformat, 3
 matrix96, 9
 plate2df, 11
 plate_metadata, 12
 reduceblank, 16

* math
 estimate, 6

bioassays, 2

data2plateformat, 2, 3, 11
data_DF1, 4
dfsummary, 2, 4, 13

estimate, 2, 6
extract_filename, 2, 7

heatplate, 2, 8

lm, 6

matrix96, 2, 8, 9
metafile384, 10
metafile96, 11

nplr, 6
plate2df, 2, 11
plate_metadata, 2, 12
pvalue, 2, 13

rawdata24, 14
rawdata384, 15
rawdata96, 15
reduceblank, 2, 16
rmodd_summary, 5, 17