Package ‘biomod2’

March 8, 2019

Type Package
Title Ensemble Platform for Species Distribution Modeling
Version 3.3-7.1
Date 2016-03-01
Author Wilfried Thuiller [aut, cre],
 Damien Georges [aut, cre],
 Robin Engler [aut],
 Frank Breiner [aut]
Maintainer Damien Georges <damien.georges2@gmail.com>
Contact Wilfried Thuiller <wilfried.thuiller@ujf-grenoble.fr>, Damien
 Georges <damien.georges2@gmail.com>

BugReports https://r-forge.r-project.org/R/?group_id=302
Description Functions for species distribution modeling, calibration and
 evaluation, ensemble of models.
Depends R (>= 3.2.1), stats, utils, sp, raster, parallel, reshape,
 ggplot2
Imports abind, rasterVis, pROC, nnet, gbm, mda, randomForest, rpart,
 MASS, methods, PresenceAbsence, dismo, earth
Suggests ade4, foreign, Hmisc, mgcv, gam, testthat, ecospat, caret,
 maxent
License GPL-2
RoxygenNote 5.0.1
Repository CRAN
Repository/R-Forge/Project biomod
Repository/R-Forge/Revision 716
Repository/R-Forge/DateTimeStamp 2016-03-01 10:01:06
Date/Publication 2019-03-08 09:25:30 UTC
NeedsCompilation no
R topics documented:

biomod2-package ... 3
BinaryTransformation .. 3
BIOMOD.EnsembleModeling.out-class 5
BIOMOD.EnsembleModeling.out-method 6
BIOMOD.formated.data-class ... 7
BIOMOD.Model.Options-class .. 8
BIOMOD.models.out-class .. 9
BIOMOD.models.out-method ... 10
BIOMOD.project.out-class ... 11
BIOMOD.project.out-method .. 12
BIOMOD.stored.objects-class ... 13
BIOMOD.stored.objects-method 14
biomod2.deprecated.functions 15
biomod2.inner-method .. 16
BIOMOD_ConvertOldRun ... 17
BIOMOD_cv ... 18
BIOMOD_EnsembleForecasting ... 19
BIOMOD_EnsembleModeling .. 20
BIOMOD_FormatingData .. 21
BIOMOD_LoadModels .. 22
BIOMOD_Modeling ... 23
BIOMOD_ModelingOptions ... 24
BIOMOD_presenceonly .. 25
BIOMOD_Projection ... 26
BIOMOD_RangeSize ... 27
BIOMOD_tuning .. 28
calculate.stat .. 29
CustomIndexMaker .. 30
DF_to_ARRAY .. 31
evaluate ... 32
FilteringTransformation ... 33
Find.Optim.Stat .. 34
full_shuffle ... 35
getStatOptimValue .. 36
level.plot ... 37
makeFormula .. 38
models_scores_graph .. 39
multiple.plot .. 40
Print_Default_ModelingOptions 41
ProbDensFunc ... 42
randomise_data ... 43
response.plot .. 44
response.plot2 .. 45
sample.factor.levels ... 46

R topics documented:
Description

biomod2 is the updated object-oriented version of BIOMOD package.

biomod2 offers the possibility to run 10 state-of-the-art modeling techniques to describe and model the relationships between a given species and its environment. It is an attempt to define the ecological niche of a particular species using environmental variables (temperature, precipitation, ...) with the potential use of making, for instance, future projections under climate and land use change scenarios. Although it has been mostly developed for ecologists that aim to predict species distribution, *biomod2* can also be used to model any binomial data (for instance, gene, markers, ecosystem...) in function of any explanatory variables.

Details

```
Package: biomod2
Type: Package
Version: 1.0
Date: 2012-07-01
License: GPL-2
```

Author(s)

Wilfried Thuiller and Damien Georges, with participation of Robin Engler <wilfried.thuiller@ujf-grenoble.fr>

Description

Function that converts an object containing probability values into a binary presence-absence object according to a pre-defined threshold(s).
Usage

BinaryTransformation(data, threshold)

S4 method for signature 'data.frame'
BinaryTransformation(data, threshold)

S4 method for signature 'matrix'
BinaryTransformation(data, threshold)

S4 method for signature 'numeric'
BinaryTransformation(data, threshold)

S4 method for signature 'array'
BinaryTransformation(data, threshold)

S4 method for signature 'RasterLayer'
BinaryTransformation(data, threshold)

S4 method for signature 'RasterStack'
BinaryTransformation(data, threshold)

S4 method for signature 'RasterBrick'
BinaryTransformation(data, threshold)

Arguments

data numeric vector, a matrix, a data.frame, a RasterLayer or a RasterStack containing the data to be converted

threshold numeric value or a vector containing the threshold to be used for converting data.

Details

If data is a vector or a raster object, then the threshold should be a numeric value. If data is matrix, data.frame or rasterStack, then the threshold should have, in theory, as many values as the number of columns or layers to transform. In the particular case that the data to convert is a matrix/data.frame with several columns or a RasterStack with several layers and the threshold is a single numeric value, the same threshold will be applied to all columns (resp. layers).

Value

An object of the same class than data with binary (0 or 1) values, usually presence-absence.

Author(s)

Wilfried Thuiller, Damien Georges
Description

EnsembleModeling objects are created, used and returned by BIOMOD functions. It's contains information relative to an biomod2 ensemble modeling procedure.

- output of: BIOMOD_EnsembleModeling
- input of: BIOMOD_EnsembleForecasting

Slots

- sp.name: "character", species name
- expl.var.names: "character", explanatory variables names
- models.out.obj: "BIOMOD.stored.models.out", object which contains information on individuals models that have been combined
- eval.metric: "character", evaluation metrics choosed for models selection
- eval.metric.quality.threshold: "numeric", thresholds defined for models selection
- em.computed: "character", ensemble models built names
- em.by: "character", way models are combined
- em.models: "ANY", list of built biomod2.ensemble.models objects
- modeling.id: "character", the id of the whole modelling process
- link: "character", the path to corresponding hard drive saved object

Author(s)

Damien Georges

See Also

BIOMOD_Projection, BIOMOD_Modeling, BIOMOD_EnsembleModeling, BIOMOD_EnsembleForecasting

Examples

showClass("BIOMOD.EnsembleModeling.out")
Description

Functions to get attributes of `BIOMOD.EnsembleModeling` outputs

Usage

```r
get_kept_models(obj, ...)
get_needed_models(obj, ...)
```

Arguments

- **obj** : "BIOMOD.EnsembleModeling.out" object
- **...** : extra arguments (see details)

Details

... available values :

- **get_evaluations**
 - as.data.frame:"logical", (FALSE by default) if TRUE, a standardized data.frame will be produced else a list is returned

- **get_kept_models**
 - model"character" or "numeric" referring to model names (get_built_models()) or model id

Value

1. **get_built_models**: a character vector indicating set of ensemble-modeling algorithms ran
2. **get_built_models**: a character vector indicating the names of ensemble models computed
3. **get_evaluations**: an array, a data.frame or a list containing ensemble models evaluation scores
4. **get_kept_models**: an character vector indicating names of selected models for ensemble-models building
5. **get_needed_models**: an character vector indicating names of all needed models required to build all ensemble-models

Note

`get_built_models` & `get_evaluations` are also available for "BIOMOD.EnsembleModeling.out" object.
BIOMOD.formated.data-class

Author(s)
Wilfried Thuiller, Damien Georges

See Also
help

Description
BIOMOD.formated.data objects are created, used and returned by BIOMOD functions. It’s contains the minimal set of data biomod2 needs to work. Input data given to BIOMOD_FormatingData are rearranged to fit with BIOMOD_Modeling input format. All data are stored into matrix (even environmental raster) explaining why some objects appears to be quite heavy.

If you ask for pseudo absences selection in BIOMOD_FormatingData, you will get a BIOMOD.formated.data.PA, else you will get a BIOMOD.formated.data.PA object.

- output of: BIOMOD_FormatingData
- input of: BIOMOD_Modeling

Slots

BIOMOD.formated.data

sp.name: "character", species name
coord: "data.frame", species points XY coordinates
data.species: "numeric", species presences, absences and no information kept points
data.env.var: "data.frame", explanatory variables associated to species points
has.data.eval: "logical", was specific models evaluation dataset given?
eval.coord: "data.frame", species models evaluation points XY coordinates
eval.data.species: "numeric", species presences, absences and no information models evaluation kept points
eval.data.env.var: "data.frame", explanatory variables associated to models evaluation species points

BIOMOD.formated.data

sp.name: "character", species name
coord: "data.frame", species points XY coordinates
data.species: "numeric", species presences, absences and no information kept points
data.env.var: "data.frame", explanatory variables associated to species points
BIOMOD.Model.Options-class

has.data.eval: "logical", was specific models evaluation dataset given?

eval.coord: "data.frame", species models evaluation points XY coordinates

eval.data.species: "numeric", species presences, absences and no information models evaluation kept points

eval.data.env.var: "data.frame", explanatory variables associated to models evaluation species points

PA: "data.frame", each column contains 1 or 0 indicating for each species points if it was select or not in associated PA dataset

Author(s)

Damien Georges

Examples

showClass("BIOMOD.formated.data")

BIOMOD.Model.Options-class

BIOMOD_ModelingOptions() outputs objects class

Description

BIOMOD.Model.Options objects are created, used and returned by BIOMOD functions. These objects will contains for each model support within biomod2, a set of options that users can change. Please refer to BIOMOD_ModelingOptions for further details.

- output of: BIOMOD_ModelingOptions
- input of: BIOMOD_Modeling

Slots

Please refer to BIOMOD_ModelingOptions for each model arguments supported.

GLM: "list", list of GLM supported options

GBM: "list", list of GBM supported options

GAM: "list", list of GAM supported options

CTA: "list", list of CTA supported options

ANN: "list", list of ANN supported options

SRE: "list", list of SRE supported options

FDA: "list", list of FDA supported options

MARS: "list", list of MARS supported options

RF: "list", list of RF supported options

MAXENT.Phillips: "list", list of MAXENT.Phillips supported options

MAXENT.Tsuruoka: "list", list of MAXENT.Tsuruoka supported options
BIOMOD.models.out-class

Author(s)

Damien Georges

See Also

`BIOMOD_ModelingOptions`.

Examples

```r
showClass("BIOMOD.Model.Options")
```

Description

The BIOMOD.models.out objects are created, used and returned by BIOMOD functions.

- output of: `BIOMOD_Modeling`
- input of: `BIOMOD_EnsembleModeling, BIOMOD_Projection`

Slots

BIOMOD.models.out objects

- `modeling.id`: "character", id of modeling procedure
- `sp.name`: "character", species name
- `expl.var.names`: "character", explanatory variables names
- `has.evaluation.data`: "logical", is some data are reserved for evaluating models?
- `models.computed`: "character", names of computed models
- `models.failed`: "character", names of failed models
- `models.evaluation`: "BIOMOD.stored.array", evaluations of each model computed according to selected evaluation methods
- `variables.importances`: "BIOMOD.stored.array", models variable importances
- `models.prediction`: "BIOMOD.stored.array", predictions of each models on their own calibration + validation dataset
- `models.prediction.eval`: "BIOMOD.stored.array", predictions of each models on evaluation dataset (if defined)
- `formatted.input.data`: "BIOMOD.stored.formated.data", input data
- `calib.lines`: "BIOMOD.stored.array", calibrations and evaluation lines selected for each run
- `models.options`: "BIOMOD.stored.models.options", options used to build each model
- `rescal.all.models`: "logical", is all models scaling done?
- `link`: 'character', the path to object hard drive copy
Description

Functions to get attributes of `BIOMOD_Modeling` outputs

Usage

```r
get_predictions(obj, ...)  
get_formal_data(obj, ...)  
get_evaluations(obj, ...)  
get_calib_lines(obj, ...)  
get_variables_importance(obj, ...)  
get_options(obj, ...)  
get_built_models(obj, ...)
```

Arguments

- `obj`: "BIOMOD.models.out" object
- `...`: extra arguments (see details)

Details

...available values:

- `get_evaluations`
 - as.data.frame:"logical". (FALSE by default) if TRUE, a standardized data.frame will be produced else an 4 dimensions array is returned

- `get_calib_lines`

- `get_predictions` (for `BIOMOD_Modeling()` outputs only)
 - as.data.frame:logical(default FALSE). If TRUE, models predictions will be returned as data.frame rather than array
 - evaluation:logical (default FALSE). If TRUE, model prediction over evaluation data will be returned

- `get_formal_data`
subinfo: character. Flag defining a specific information to extract from "BIOMOD.formated.data" object. Supported values are:
- NULL: (default) the whole "BIOMOD.formated.data" object is returned
- 'MinMax': All explanatory variables ranges returned
- 'resp.var': Response variables vector returned
- 'eval.resp.var': Evaluation response variables vector returned
- 'expl.var': Explanatory variables data.frame returned
- 'eval.expl.var': Evaluation explanatory variables data.frame returned
- 'expl.var.names': Explanatory variables names returned

Value

1. **get_predictions**: an array (or a data.frame) containing models predictions over calibrating and testing data (those used for evaluate models)
2. **get_calib_lines**: an array (or a data.frame) having the same dimension than the output of **get_predictions()** of logical values. All lines containing TRUE have been used to calibrate the model
3. **get_evaluations**: an array, a data.frame or a list containing models evaluation scores
4. **get_variables_importance**: an array containing models variables importances
5. **get_options**: a "BIOMOD.Model.Options" reporting options used to build individual models
6. **get_formal_data**: a "BIOMOD.formated.data" object containing data used for models building and evaluation, or a part of this object
7. **get_built_models**: a character vector giving the names of models successfully computed

Author(s)

Wilfried Thuiller, Damien Georges

See Also

help

Description

Functions to free properly a **BIOMOD.Modeling** outputs

Usage

RemoveProperly(obj, obj.name=deparse(substitute(obj)), ...)
Arguments

obj "BIOMOD.models.out" object
obj.name the name of object in current environment, automatically filled
... extra arguments (not implemented yet)

Details

This function will remove all objects created during a biomod2 modeling run. It will free both objects saved in memory and objects saved on hard drive.

Author(s)

Wilfried Thuiller, Damien Georges

See Also

class help

Examples

Not run:

species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv",
 package="biomod2"), row.names = 1)

head(DataSpecies)

the name of studied species
myRespName <- 'VulpesVulpes'

the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])

the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]

Environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExpl1 = stack(system.file("external/bioclimate/current/bio3.grd",
 package="biomod2"),
 system.file("external/bioclimate/current/bio4.grd",
 package="biomod2"),
 system.file("external/bioclimate/current/bio7.grd",
 package="biomod2"),
 system.file("external/bioclimate/current/bio11.grd",
 package="biomod2"),
 system.file("external/bioclimate/current/bio12.grd",
 package="biomod2"))

1. Formatting Data
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
 expl.var = myExpl1,
 ...)
resp.xy = myRespXY,
resp.name = myRespName)

2. Defining Models Options using default options.
myBiomodOption <- BIOMOD_ModelingOptions()

3. Doing Modelisation

myBiomodModelOut <- BIOMOD_Modeling(myBiomodData,
 models = c('SRE'),
 models.options = myBiomodOption,
 NbRunEval=1,
 DataSplit=80,
 Prevalence=0.5,
 VarImport=0,
 models.eval.meth = c('TSS','ROC'),
 do.full.models=FALSE,
 modeling.id="test2")

files have been created on hard drive
list.files(myRespName,all.files=TRUE,recursive=TRUE)

remove properly the modeling objects and all the file saved on hard drive
RemoveProperly(myBiomodModelOut)

check files had been removed
list.files(myRespName,all.files=TRUE,recursive=TRUE)

End(Not run)

Description

BIOMOD.projection.out object is created, used and returned by biomod2 functions. It contains information relative to projections of BIOMOD_Modeling outputs over a defined area. This object may be reused latter by BIOMOD_EnsembleForecasting function.

- output of: BIOMOD_Projection
- input of: BIOMOD_EnsembleForecasting

Slots

proj.names: "character", projection name (name of folder where projections are stored)
sp.name: "character", species name
expl.var.names: "character", explanatory variables names
models.projected: "character", models projected names
scaled.models: "logical", was projected models scaled?
modeling.object: "BIOMOD.stored.data", associated modeling objects (link to)
modeling.object.id: "character",id of associated modeling objects
type: "character", type of projection done (array, data.frame, RasterStack, RasterLayer ...)
proj: "BIOMOD.stored.data", object containing projected values
xy.coord: "matrix", coordinates of projected points

Author(s)
Damien Georges

See Also
BIOMOD_Projection, BIOMOD_Modeling, BIOMOD_EnsembleModeling, BIOMOD_EnsembleForecasting

Examples
showClass("BIOMOD.projection.out")

Description
Functions to get attributs of BIOMOD_Projection outputs

Usage
get_projected_models(obj, ...)
free(obj, ...)

Arguments
obj "BIOMOD.projection.out" object
... extra arguments (see details)
Details

...available values :

- getpredictions
 - as.data.frame:"logical", return projections into a data.frame (TRUE) or an array (FALSE, default)
 - full.name:NULL or "character", full names of models you want to extract projections
 - model:NULL or "character", type name of models you want to extract projections
 - run.eval:NULL or "character", run name of models you want to extract projections
 - data.set:NULL or "character", dataset name of models you want to extract projections

Value

1. get_predictions: an array or a data.frame containing models projections
2. get_projected_models: character containing names of models that have been projected
3. free: remove projection value from R memory and only keep the path to corresponding file on hard drive.

Note

get_predictions is also available for "BIOMOD.projection.out" object.

Author(s)

Wilfried Thuiller, Damien Georges

See Also

help

Description

All BIOMOD.stored.xxx objects are there to make some RAM savings by loading some objects only when they are needed. We just keep a link to the place where those objects are stored when we don’t need them anymore. They are kind of pointers to objects created within biomod2 and having a copy on hard drive. It can be considered just as a code trick.
Slots
Each BIOMOD.stored.xxx objects has 3 slot:

inMemory: "logical", is the object already loaded on RAM?
link: "character", path to the hard drive copy of the object
val: NULL or the object if loaded. The object class is different for each BIOMOD.stored.xxx objects

Author(s)
Damien Georges

Examples

declass("BIOMOD.stored.files")

load_stored_object(obj, ...)

Arguments

obj BIOMOD.stored.objects object
... extra arguments (see details)

Value
returns the value stored within biomod2 storing object.

Author(s)
Damien Georges
biomod2 deprecated functions

Description

Set of functions that will be removed in a while. They have all an updated equivalent.

Usage

getEM_needed_models(obj,...)
getEMalgos(obj,...)
getEBuiltModels(obj,...)
getEMeval(obj,...)
getEMkeptModels(obj,...)
getFormalModel(obj,...)
getModelsBuiltModels(obj,...)
getModelsEvaluations(obj,...)
getModelsInputData(obj,...)
getModelsOptions(obj,...)
getModelsPrediction(obj,...)
getModelsPredictionEval(obj,...)
getModelsVarImport(obj,...)
getProjection(obj,...)
getScalingModel(obj,...)

Arguments

obj specific biomod2 object
... extra arguments

Author(s)

Wilfried Thuiller, Damien Georges

See Also

help
biomod2_model-class biomod2 internal functions

Description

biomod2 internal functions.

Details

All this functions are low level functions. Interested people can go into source code for further details.

Author(s)

Wilfried Thuiller, Damien Georges

See Also

help

biomod2_model-class biomod2 models objects class and functions

Description

This objects represent all biomod2 models as it was a 'classical' R model. It is produce during BIOMOD_Modeling step. It can be printed. predict function is also implemented for this object and supports data.frame and {RasterStack} inputs. You can rise formal models with get_formal_model and the associated scaling GLM (if exists) with get_scaling_model. All this object have also their own predict function.

Slots

model_name: "character", model name
model_class: "character", type of model (e.g. 'GLM', 'RF', 'MAXENT.Phillips', 'EMmean')
model_options: "list", list of options used for model building
model: "ANY", the formal R model (if exists)
scaling_model: "ANY", the associated glm to scale prediction on 0-1 (if exists)
resp_name: "character", response variable name
expl_var_names: "character", explanatory variables names
model_evaluation: "matrix", model evaluation scores (if exist)
model_variables_importance: "matrix", model importance of variables (if exists)
model_output_dir: "character", path to model output directory
BIOMOD_ConvertOldRun

Author(s)
Damien Georges

Examples
```
showClass("ANN_biomod2_model")
```

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>BIOMOD_ConvertOldRun</code></td>
<td>Convert objects and outputs from BIOMOD.xx into biomod2.xx objects and outputs</td>
</tr>
</tbody>
</table>

Description
This function converts workspace, modelling outputs, results and objects created with version xx of BIOMOD into biomod2 objects and re-organized the directories to be used with biomod2.

Usage
```
BIOMOD_ConvertOldRun(savedObj, 
path = NULL)
```

Arguments
- **savedObj**: a BIOMOD.1.xx workspace image. It's a .Rdata file named 'Biomod_run.RData' for plurispecific run or YourSpecies_Name.RData if you have done monospecific modelling.
- **path**: Optional path to your 'savedObj' if you don't have give the full path to the object.

Details
This function is useful to convert former BIOMOD runs into the new biomod2 object structure. This is mostly interesting in the case users want to relaunched some projections or analyses within the biomod2 new structure. Returned 'BIOMOD.models.out' objects can be then used as classic object for making projections for instance (`biomod_projection`). Be aware that because biomod2 has strongly changed between the first and second version, some new additional functions and information could not be used with converted objects (i.e. Calibration Lines access, Maxent run, SRE projections...).

Value
A list of 'BIOMOD.models.out' (one per species modeled) containing information of your old run. Specific directories are also created on your hard drive (see BIOMOD_Modeling).

Author(s)
Damien Georges
Description

This function creates a DataSplitTable which could be used to evaluate models in Biomod with repeated k-fold cross-validation (cv) or stratified cv instead of repeated split sample runs.

Usage

```r
BIOMOD_cv(data, k = 5, repetition = 5, do.full.models = TRUE,
stratified.cv = FALSE, stratify = "both", balance = "pres")
```

Arguments

- `data`: BIOMOD.formated.data object returned by BIOMOD_FormatingData
- `k`: number of bins/partitions for k-fold cv
- `repetition`: number of repetitions of k-fold cv (1 if stratified.cv=TRUE)
- `do.full.models`: if true, models calibrated and evaluated with the whole dataset are done
- `stratified.cv`: logical. run a stratified cv
- `stratify`: stratification method of the cv. Could be "x", "y", "both" (default), "block" or the name of a predictor for environmental stratified cv.
- `balance`: make balanced partitions for "presences" (default) or "absences" (resp. pseudo-absences or background).

Details

Stratified cv could be used to test for model overfitting and for assessing transferability in geographic and environmental space. If balance = "presences" presences are divided (balanced) equally over the particons (e.g. Fig. 1b in Muscarelly et al. 2014). Pseudo-Absences will however be unbalanced over the partitions especially if the presences are clumped on an edge of the study area. If balance = "absences" absences (resp. Pseudo-Absences or background) are divided (balanced) as equally as possible for the partitions (geographical balanced bins given that absences are spread over the study area equally, approach similar to Fig. 1 in Wenger et Olden 2012). Presences will however be unbalanced over the particians. Be careful: If the presences are clumped on an edge of the study area it is possible that all presences are in one bin.
Value

DataSplitTable matrix with k*repetition (+ 1 for Full models if do.full.models = TRUE) columns for BIOMOD_Modeling function. Stratification "x" and "y" was described in Wenger and Olden 2012. While Stratification "y" uses k partitions along the y-gradient, "x" does the same for the x-gradient and "both" combines them. Stratification "block" was described in Muscarella et al. 2014. For bins of equal number are partitioned (bottom-left, bottom-right, top-left and top-right).

Author(s)

Frank Breiner

References

Examples

```
## Not run:
# species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv",
                                        package="biomod2"))

head(DataSpecies)

the name of studied species
myRespName <- 'GuloGulo'

# the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])

# the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]

# Environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExp1 = stack( system.file( "external/bioclim/current/bio3.grd", package="biomod2"),
                system.file("external/bioclim/current/bio4.grd", package="biomod2"),
                system.file("external/bioclim/current/bio7.grd", package="biomod2"),
                system.file("external/bioclim/current/bio11.grd", package="biomod2"),
                system.file("external/bioclim/current/bio12.grd", package="biomod2"))

# 1. Formatting Data
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
   expl.var = myExpl,
   resp.xy = myRespXY,
   resp.name = myRespName)

# 2. Defining Models Options using default options.
myBiomodOption <- BIOMOD_ModelingOptions()

# 3. Creating DataSplitTable
DataSplitTable <- BIOMOD_cv(myBiomodData, k=5, rep=2, do.full.models=F)
DataSplitTable.y <- BIOMOD_cv(myBiomodData,stratified.cv=T, stratify="y", k=2)
colnames(DataSplitTable.y)[1:2] <- c("RUN11","RUN12")
DataSplitTable <- cbind(DataSplitTable,DataSplitTable.y)
head(DataSplitTable)

# 4. Doing Modelisation
myBiomodModelOut <- BIOMOD_Modeling(myBiomodData,
   models = c("RF"),
   models.options = myBiomodOption,
   DataSplitTable = DataSplitTable,
   VarImport=0,
   models.eval.meth = c("ROC"),
   do.full.models=FALSE,
   modeling.id="test")

## get cv evaluations
eval <- get_evaluations(myBiomodModelOut,as.data.frame=T)

eval$strat[grepl("13",eval$Model.name)] <- "Full"
eval$strat[!grepl("11",eval$Model.name)]
   [grepl("12",eval$Model.name)]
   [grepl("13",eval$Model.name)]] <- "Random"
eval$strat[grepl("11",eval$Model.name)[grepl("12",eval$Model.name)]] <- "Strat"
boxplot(eval$Testing.data~ eval$strat, ylab="ROC AUC")

## End(Not run)

BIOMOD_EnsembleForecasting
  Ensemble projections of species over space and time

Description

This function use projections of ‘individual models’ and ensemble models from BIOMOD_EnsembleModeling
to build an ensemble of species’ projections over space and time.
Usage

```
BIOMOD_EnsembleForecasting(EM.output,
 projection.output = NULL,
 new.env = NULL,
 xy.new.env = NULL,
 selected.models = 'all',
 proj.name = NULL,
 binary.meth = NULL,
 filtered.meth = NULL,
 compress = TRUE,
 ...
)
```

Arguments

EM.output a "BIOMOD.EnsembleModeling.out" returned by BIOMOD_EnsembleModeling
projection.output a "BIOMOD.projection.out" returned by BIOMOD_Projection
new.env a RasterStack or a data.frame object containing explanatory data for the studied area. Needed only if projection.output is NULL. Prefer to use "BIOMOD.projection.out" if you have ever done the calculations.
xy.new.env the matching coordinates of new.env if new.env is defined and if it is a data.frame
selected.models if not 'all', a character vector containing a subset of ensemble-models you want make projacion
proj.name the projection name (results will be saved within proj_proj.name directory). Only needed if projection.output is NULL
binary.meth vector specifying the names of evaluation metrics and associated thresholds to transform the probabilities of presence into presence and absence (binary transformation).
filtered.meth vector specifying the names of evaluation metrics and associated thresholds to transform into 0 the probabilities of presence lower than the thresholds.
compress boolean or character, the compression format of objects stored on your hard drive. May be one of ‘TRUE’, ‘FALSE’, ‘xz’ or ‘gzip’ (see save)
...

Details

This function requires to have successfully run biomod2 modeling, ensemble-modeling and projection steps. Ensemble projections will be created in respect to projection.output projections, which are combined following EM.output ensemble-modeling rules.

The ‘total.consensus’ projection is basically the mean of all projections (for having only one output).

...may be:

- on_0_1000:logical, if TRUE (default), 0 - 1 probabilities are converted into a 0 - 1000 integer scale. This implies a lot of memory saving. User that want to comeback on a 0 - 1 scale latter will just have to divide all projections by 1000
Value
Nothing returned but specific ‘projection files’ are saved on the hard drive projection folder. This
files are either an array or a RasterStack depending the original projections data type. Load these
created files to plot and work with them.

Author(s)
Wilfried Thuiller, Damien Georges, Robin Engler

See Also
BIOMOD_EnsembleModeling, BIOMOD_Projection

Examples
# 0. Load data & Selecting Data
# species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv",
    package="biomod2"), row.names = 1)
head(DataSpecies)

# the name of studied species
myRespName <- 'GuloGulo'

# the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])

# the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]

# Environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExpl = stack( system.file("external/bioclim/current/bio3.grd",
    package="biomod2"),
    system.file("external/bioclim/current/bio4.grd",
    package="biomod2"),
    system.file("external/bioclim/current/bio7.grd",
    package="biomod2"),
    system.file("external/bioclim/current/bio11.grd",
    package="biomod2"),
    system.file("external/bioclim/current/bio12.grd",
    package="biomod2"))

# 1. Formatting Data
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
    expl.var = myExpl,
    resp.xy = myRespXY,
    resp.name = myRespName)

# 2. Defining Models Options using default options.
myBiomodOption <- BIOMOD_ModelingOptions()
# 3. Running the models
myBiomodModelOut <- BIOMOD_Modeling(
  myBiomodData,
  models = c('RF'),
  models.options = myBiomodOption,
  NbRunEval=2,
  DataSplit=60,
  Yweights=NULL,
  VarImport=0,
  models.eval.meth = c('TSS'),
  SaveObj = TRUE,
  rescal.all.models = FALSE,
  do.full.models = FALSE)

# 4. Creating the ensemble models
myBiomodem <- BIOMOD_EnsembleModeling(
  modeling.output = myBiomodModelOut,
  chosen.models = grep('_RF', get_built_models(myBiomodModelOut),
value=TRUE),
  em.by = 'algo',
  eval.metric = c('TSS'),
  eval.metric.quality.threshold = c(0.7),
  prob.mean = TRUE,
  prob.cv = FALSE,
  prob.ci = FALSE,
  prob.ci.alpha = 0.05,
  prob.median = FALSE,
  committee.averaging = FALSE,
  prob.mean.weight = FALSE,
  prob.mean.weight.decay = 'proportional' )

# 5. Individual models projections on current environmental conditions
myBiomodProjection <- BIOMOD_Projection(
  modeling.output = myBiomodModelOut,
  new.env = myExpl,
  proj.name = 'current',
  selected.models = grep('_RF', get_built_models(
    myBiomodModelOut), value=TRUE),
  compress = FALSE,
  build.clamping.mask = FALSE)

# 4. Creating the ensemble projections
BIOMOD_EnsembleForecasting( projection.output = myBiomodProjection,
  EM.output = myBiomodem)

---

Create and evaluate an ensemble set of models and predictions
Description

BIOMOD_EnsembleModeling combines models and make ensemble predictions built with BIOMOD_Modeling. The ensemble predictions can also be evaluated against the original data given to BIOMOD_Modeling. Biomod2 proposes a range of options to build ensemble models and predictions and to assess the modeling uncertainty. The created ensemble models can then be used to project distributions over space and time as classical biomod2 models.

Usage

BIOMOD_EnsembleModeling( modeling.output, chosen.models = 'all', em.by = 'PA_dataset+repet', eval.metric = 'all', eval.metric.quality.threshold = NULL, models.eval.meth = c('KAPPA','TSS','ROC'), prob.mean = TRUE, prob.cv = FALSE, prob.ci = FALSE, prob.ci.alpha = 0.05, prob.median = FALSE, committee.averaging = FALSE, prob.mean.weight = FALSE, prob.mean.weight.decay = 'proportional', VarImport = 0)

Arguments

modeling.output a "BIOMOD.models.out" returned by BIOMOD_Modeling

chosen.models a character vector (either 'all' or a sub-selection of model names) that defines the models kept for building the ensemble models (might be useful for removing some non-preferred models)

em.by Character. Flag defining the way the models will be combined to build the ensemble models. Available values are 'PA_dataset+repet' (default), 'PA_dataset+algo', 'PA_dataset', 'algo' and 'all'

eval.metric vector of names of evaluation metric used to build ensemble models. It is involved for formal models exclusion if eval.metric.quality.threshold is defined and/or for building ensemble models that are dependent of formal models evaluation scores (e.g. weighted mean and committee averaging). If 'all', the same evaluation metrics than those of modeling.output will be automatically selected

eval.metric.quality.threshold

If not NULL, the minimum scores below which models will be excluded of the ensemble-models building.

models.eval.meth

the evaluation methods used to evaluate ensemble models (see "BIOMOD_Modeling" models.eval.meth section for more detailed informations)
prob.mean Logical. Estimate the mean probabilities across predictions
prob.cv Logical. Estimate the coefficient of variation across predictions
prob.ci Logical. Estimate the confidence interval around the prob.mean
prob.ci.alpha Numeric. Significance level for estimating the confidence interval. Default = 0.05
prob.median Logical. Estimate the mediane of probabilities
commitee.averaging Logical. Estimate the committee averaging across predictions
prob.mean.weight Logical. Estimate the weighted sum of probabilities
prob.mean.weight.decay Define the relative importance of the weights. A high value will strongly discriminate the 'good' models from the 'bad' ones (see the details section). If the value of this parameter is set to 'proportional' (default), then the attributed weights are proportional to the evaluation scores given by 'weight.method'(eval.metric)
VarImport Number of permutation to estimate variable importance

Details

1. **Models sub-selection** (chosen.models)
   Useful to exclude some models that have been selected in the previous steps (modeling.output). This vector of model names can be access applying get_built_models to your modeling.output data. It makes easier the selection of models. The default value (i.e. 'all') will kept all available models.

2. **Models assembly rules** (em.by)
   Please refer to EnsembleModelingAssembly vignette that is dedicated to this parameter.
5 different ways to combine models can be considered. You can make ensemble models considering :
   - Dataset used for models building (Pseudo Absences dataset and repetitions done): 'PA_dataset+repet'
   - Dataset used and statistical models : 'PA_dataset+algo'
   - Pseudo-absences selection dataset : 'PA_dataset'
   - Statistical models : 'algo'
   - A total consensus model : 'all'

The value chosen for this parameter will control the number of ensemble models built. If no evaluation data was given the at BIOMOD_FormatingData step, some ensemble models evaluation may be a bit unfair because the data that will be used for evaluating ensemble models could differ from those used for evaluate BIOMOD_Modeling models (in particular, some data used for 'basal models' calibration can be re-used for ensemble models evaluation). You have to keep it in mind ! (EnsembleModelingAssembly vignette for extra details)

3. **Evaluation metrics**
   • eval.metric
     The selected metrics here are necessary the ones chosen at the BIOMOD_Modeling step. If you select several, ensembles will be built according to each of them. The chosen metrics will be used at different stages in this function :
(a) to remove ‘bad models’ (having a score lower than eval\_metric\_quality\_threshold (see below))
(b) to make the binary transformation needed for committee averaging computation
(c) to weight the models in the probability weighted mean model
(d) to test (and/or evaluate) your ensemble-models forecasting ability (at this step, each ensemble-model (ensemble will be evaluated according to each evaluation metric)
• eval\_metric\_quality\_threshold
You have to give as many threshold as eval\_metric you have selected. If you have selected several evaluation metrics, take care to ensure that the order of thresholds matches the order of eval\_metric. All models having a score lower than these quality thresholds will not be kept for building ensemble-models.

4. Ensemble-models algorithms
(a) **Mean of probabilities** (prob\_mean)
   This ensemble-model corresponds to the mean probabilities over the selected models.

(b) **Coefficient of variation of Probabilities** (prob\_cv)
   This ensemble-model corresponds to the coefficient of variation (i.e. sd / mean) of the probabilities over the selected models. This model is not scaled. It will be evaluated like all other ensemble-models although this interpretation is obviously different. CV is a measure of uncertainty rather a measure of probability of occurrence. If the CV gets a high evaluation score it means that the uncertainty is high where the species is observed (which might not be a good feature of the models). The lower is the score, the better are the models. CV is a nice complement to the mean probability.

(c) **Confidence interval** (prob\_ci & prob\_ci.alpha) This is the confidence interval around the mean probability (see above). This is also a nice complement to the mean probability. Two ensemble-models will be built if prob\_ci is TRUE:
   • The upper one (there is less than a 100*prob\_ci.alpha/2 % of chance to get probabilities upper than the given ones)
   • The lower one (there is less than a 100*prob\_ci.alpha/2 % of chance to get probabilities lower the than given ones)

These intervals are calculated with the following function:

\[
I_c = [\bar{x} - t_{\alpha \frac{sd}{\sqrt{n}}}; \bar{x} + t_{\alpha \frac{sd}{\sqrt{n}}}]
\]

(d) **Median of probabilities** (prob\_median)
   This ensemble-model corresponds to the median probability over the selected models. The median is less sensitive to outliers than the mean. In practical terms, calculating the median requires more time and memory than the mean (or even weighting mean) as it asks to load all predictions to then extract the median. It may need to be considered in case of large dataset.

(e) **Models committee averaging** (committee.averaging)
   To do this model, the probabilities from the selected models are first transformed into binary data according to the thresholds defined at BIOMOD\_Modeling step (maximizing evaluation metric score over ‘testing dataset’). The committee averaging score is then the average of binary predictions. It is built on the analogy of a simple vote. Each model vote for the species being ether present or absent. For each site, the sum of 1 is then divided by the number of models. The interesting feature of this measure is that it gives
both a prediction and a measure of uncertainty. When the prediction is close to 0 or 1, it means that all models agree to predict 0 and 1 respectively. When the prediction is around 0.5, it means that half the models predict 1 and the other half 0.

(f) **Weighted mean of probabilities** (prob.mean.weight & prob.mean.weight.decay)
This algorithm return the mean weighted (or more precisely this is the weighted sum) by the selected evaluation method scores (better a model is, more importance it has in the ensemble). The scores come from **BIOMOD_Modeling** step.
The prob.mean.weight.decay is the ratio between a weight and the following or prior one. The formula is: \( W = W(-1) \times \text{prob.mean.weight.decay} \). For example, with the value of 1.6 and 4 weights wanted, the relative importance of the weights will be 1
/1.6/2.56(=1.6*1.6)/4.096(=2.56*1.6) from the weakest to the strongest, and gives 0.11/0.17/0.275/0.445 considering that the sum of the weights is equal to one. The lower the prob.mean.weight.decay, the smoother the differences between the weights enhancing a weak discrimination between models.
The value ’proportional’ (default) is also possible for the prob.mean.weight.decay: the weights are awarded for each method proportionally to their evaluation scores. The advantage is that the discrimination is more fair than with the prob.mean.weight.decay. In the latter case, close scores can strongly diverge in the weights they are awarded, when the proportional method will consider them as being fairly similar in prediction quality and award them a similar weight. It is also possible to define a function as prob.mean.weight.decay argument. In this case the given function will be applied to models scores to transforme them into weights that will be used for weighted mean ensemble model building. For instance if you specified \( \text{function}(x)\{x^2\} \) as prob.mean.weight.decay, the squared of evaluation score of each model will be used to weight formal models predictions.

**Value**

A “**BIOMOD_EnsembleModeling.out**”. This object will be later given to **BIOMOD_EnsembleForecasting** if you want to make some projections of this ensemble-models.

You can access to evaluation scores with the get_evaluations function and to the built models names with the get_built_models function (see example).

**Note**

Models are now combined by repetition, other way to combine them (e.g. by Models, all together...) will be available soon

**Author(s)**

Damien Georges & Wilfried Thuiller with participation of Robin Engler

**See Also**

**BIOMOD_Modeling**, **BIOMOD_Projection**, **BIOMOD_EnsembleForecasting**

**Examples**

# species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv", package="biomod2"), row.names = 1)
head(DataSpecies)

# the name of studied species
myRespName <- 'GuloGulo'

# the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])

# the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]

# Environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExpl = stack( system.file("external/bioclim/current/bio3.grd", package="biomod2"),
    system.file("external/bioclim/current/bio4.grd", package="biomod2"),
    system.file("external/bioclim/current/bio7.grd", package="biomod2"),
    system.file("external/bioclim/current/bio11.grd", package="biomod2"),
    system.file("external/bioclim/current/bio12.grd", package="biomod2"))

# 1. Formatting Data
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
    expl.var = myExpl,
    resp.xy = myRespXY,
    resp.name = myRespName)

# 2. Defining Models Options using default options.
myBiomodOption <- BIOMOD_ModelingOptions()

# 3. Doing Modelisation
myBiomodModelOut <- BIOMOD_Modeling( myBiomodData,
    models = c('SRE','CTA','RF'),
    models.options = myBiomodOption,
    NbRunEval=1,
    DataSplit=80,
    Yweights=NULL,
    VarImport=3,
    models.eval.meth = c('TSS'),
    SaveObj = TRUE,
    rescal.all.models = FALSE,
    do.full.models = FALSE)

# 4. Doing Ensemble Modelling
myBiomodEM <- BIOMOD_EnsembleModeling( modeling.output = myBiomodModelOut,
    chosen.models = 'all',
    em.by = 'all',
    chosen.models = 'all',
    em.by = 'all',
eval.metric = c('TSS'),
eval.metric.quality.threshold = c(0.7),
models.eval.meth = c('TSS','ROC'),
prob.mean = TRUE,
prob.cv = FALSE,
prob.ci = FALSE,
prob.ci.alpha = 0.05,
prob.median = FALSE,
committee.averaging = FALSE,
prob.mean.weight = TRUE,
prob.mean.weight.decay = 'proportional')

# print summary
myBiomodEM

# get evaluation scores
get_evaluations(myBiomodEM)

**Description**

This function rearranges the user’s input data to make sure they can be used within biomod2. The function allows to select pseudo-absences or background data in the case that true absences data are not available, or to add pseudo-absence data to an existing set of absence (see details).

**Usage**

BIOMOD_FormatingData(resp.var,
expl.var,
resp.xy = NULL,
resp.name = NULL,
eval.resp.var = NULL,
eval.expl.var = NULL,
eval.resp.xy = NULL,
PA.nb.rep = 0,
PA.nb.absences = 1000,
PA.strategy = 'random',
PA.dist.min = 0,
PA.dist.max = NULL,
PA.sre.quant = 0.025,
PA.table = NULL,
na.rm = TRUE)
Arguments

resp.var: a vector, `SpatialPointsDataFrame` (or `SpatialPoints` if you work with ‘only presences’ data) containing species data (a single species) in binary format (ones for presences, zeros for true absences and NA for indeterminate) that will be used to build the species distribution models.

eval.resp.var: a vector, `SpatialPointsDataFrame` your species data (a single species) in binary format (ones for presences, zeros for true absences and NA for indeterminate) that will be used to evaluate the models with independent data (or past data for instance).

eval.expl.var: a matrix, data.frame, `SpatialPointsDataFrame` or `RasterStack` containing your explanatory variables that will be used to evaluate the models with independent data (or past data for instance).

eval.resp.xy: optional 2 columns matrix containing the X and Y coordinates of resp.var (only consider if resp.var is a vector) that will be used to evaluate the models with independent data (or past data for instance).

PA.nb.rep: number of required Pseudo Absences selection (if needed). 0 by Default.

PA.nb.absences: number of pseudo-absence selected for each repetition (when PA.nb.rep > 0) of the selection (true absences included)

PA.strategy: strategy for selecting the Pseudo Absences (must be ‘random’, ‘sre’, ‘disk’ or ‘user.defined’)

PA.dist.min: minimal distance to presences for ‘disk’ Pseudo Absences selection (in meters if the explanatory is a not projected raster (+proj=longlat) and in map units (typically also meters) when it is projected or when explanatory variables are stored within table)

PA.dist.max: maximal distance to presences for ‘disk’ Pseudo Absences selection (in meters if the explanatory is a not projected raster (+proj=longlat) and in map units (typically also meters) when it is projected or when explanatory variables are stored within table)

PA.sre.quant: quantile used for ‘sre’ Pseudo Absences selection

na.rm: logical, if TRUE, all points having one or several missing value for environmental data will be removed from analysis.
Details

This function homogenises the initial data for making sure the modelling exercise will be completed with all the required data. It supports different kind of inputs.

IMPORTANT: When the explanatory data are given in rasterLayer or rasterStack objects, **biomod2** will extract the variables onto the XY coordinates of the presence (and absence is any) vector. Be sure to give the XY coordinates (`'resp.xy'`) in the same projection system than the raster objects. Same for the evaluation data in the case some sort of independent (or past) data are available (`'eval.resp.xy'`). When the explanatory variables are given in **SpatialPointsDataFrame**, the same requirements are asked than for the raster objects. The XY coordinates must be given to make sure **biomod2** can extract the explanatory variables onto the presence (absence) data. When the explanatory variables are stored in a data.frame, make sure there are in the same order than the response variable. **biomod2** will simply merge the datasets without considering the XY coordinates. When both presence and absence data are available, and there is enough absences: set `sQuotePA.nb.rep` to 0. No pseudo-absence will be extracted.

When no true absences are given or when there are not numerous enough. It’s advise to make several pseudo absences selections. That way the influence of the pseudo-absence selection could then be estimated later on. If the user do not want to run several repetition, make sure to select a relatively high number pseudo-absence. Make sure the number of pseudo-absence data is not higher than the maximum number of potential pseudo-absence (e.g. do not select 10,000 pseudo-absence when the rasterStack or data.frame do not contain more than 2000 pixels or rows).

1. **Response variable encoding**

**BIOMOD_FormatingData** concerns a single species at a time so `resp.var` must be a unidimensional object. Response variable must be a vector or a one column data.frame/matrix/**SpatialPointsDataFrame** (**SpatialPoints** are also allowed if you work with ‘only presences’ data) object. As most of **biomod2** models need Presences AND Absences data, the response variable must contain some absences (if there are not, make sure to select pseudo-absence). In the input `resp.var` argument, the data should be coded in the following way:

- Presences : 1
- True Absences : 0 (if any)
- No Information : NA (if any, might latter be used for pseudo-absence)

If `resp.var` is a non-spatial object (vector, matrix/data.frame) and that some models requiring spatial data are being used (e.g. MAXENT.Phillips) and/or pseudo absences spatially dependent (i.e ’disk’), make sure to give the XY coordinates of the sites/rows (‘resp.xy’).

2. **Explanatory variables encoding**

Explanatory variables must be stored together in a multidimensional object. It may be a matrix, a data.frame, a **SpatialPointsDataFrame** or a rasterStack object. Factorial variables are allowed here even if that can lead to some models omissions.

3. **Evaluation Data**

If you have data enough, we strongly recommand to split your dataset into 2 part: one for training/calibrating and testing the models and another to evaluate it. If you do it, fill the `eval.resp.var`, `eval.expl.var` and optionally the `eval.resp.xy` arguments with this data. The advantage of working with a specific dataset for evaluating your models is that you will be able to evaluate more properly your ‘ensemble modeled’ models. That being said, this
argument is optional and you may prefer only to test (kind of evaluation) your models only with a ‘cross-validation’ procedure (see Models function). The best practice is to use one set of data for training/calibrating, one set of testing and one for evaluating. The calibration and testing of the data can be done automatically in biomod2 in the Models function. The dataset for evaluation must be entered in BIOMOD_FormatingData.

4. **Pseudo Absences selection**

The PA.xxx’s arguments let you parametrise your pseudo absences selection if you want some. It’s an optional step.

Pseudo absences will be selected within the ‘background data’ and might be constrained by a defined ‘strategy’.

(a) background data

‘Background data’ represents data there is no information whether the species of interest occurs or not. It is defined by the ‘No Information’ data of your resp.var if you give some. If not, (i.e Only presences data or all cells with a define presence or absence state) the background will be take into your expl.var object if it’s a RasterStack.

(b) strategy

The strategy allows to constrain the choice of pseudo-absence within the ‘background data’. 3 ways are currently implemented to select the pseudo-absences candidate cells (PA.strategy argument):

- ‘random’: all cell of initial background are Pseudo absences candidates. The choice is made randomly given the number of pseudo-absence to select PA.nb.absences.
- ‘disk’: you may define a minimal (PA.dist.min), respectively a maximal (PA.dist.max) distance to presences points for selecting your pseudo absences candidates. That may be useful if you don’t want to select pseudo-absences too close to your presences (same niche and to avoid pseudo-replication), respectively too far from your presences (localised sampling strategy).
- ‘sre’: Pseudo absences candidates have to be selected in condition that differs from a defined proportion (PA.sre.quant) of presences data. It forces pseudo absences to be selected outside of the broadly defined environmental conditions for the species. It means that a surface range envelop model (sre, similar the BIOCLIM) is first carried out (using the specified quantile) on the species of interest, and then the pseudo-absence data are extracted outside of this envelop. This particular case may lead to over optimistic models evaluations.
- ‘user.defined’: In this case, pseudo absences selection should have been done in a previous step. This pseudo absences have to be reference into a well formated data.frame (e.g. PA.table argument)

**Value**

A ‘data.formated.Biomod.object’ for BIOMOD_Modeling. It is strongly advised to check whether this formatted data corresponds to what was expected. A summary is easily printed by simply tipping the name of the object. A generic plot function is also available to display the different dataset in the geographic space.

**Author(s)**

Wilfried Thuiller, Damien Georges
See Also

BIOMOD_Modeling

Examples

# species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv", package="biomod2"), row.names = 1)
head(DataSpecies)

# the name of studied species
myRespName <- 'GuloGulo'

# the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])

# the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]

# Environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExpl = stack( system.file("external/bioclim/current/bio3.grd", package="biomod2"),
                system.file("external/bioclim/current/bio4.grd", package="biomod2"),
                system.file("external/bioclim/current/bio7.grd", package="biomod2"),
                system.file("external/bioclim/current/bio11.grd", package="biomod2"),
                system.file("external/bioclim/current/bio12.grd", package="biomod2"))

# 1. Formatting Data
myBiomodData <- BIOMOD_FormatingData( resp.var = myResp,
                                      expl.var = myExpl,
                                      resp.xy = myRespXY,
                                      resp.name = myRespName)

myBiomodData
plot(myBiomodData)

Description

This function was implemented to help biomod2 users to load individual models built during the BIOMOD_Modeling step.
Usage

```r
BIOMOD_LoadModels(bm.out, ...)
```

Arguments

- `bm.out` a "BIOMOD.models.out" returned by `BIOMOD_Modeling`
- `...` additional arguments (see details)

Details

This function is particularly useful when you plan to make some response plot analyses. It will induce models, built at `BIOMOD_Modeling` step, loading in your working space.

If you run this function referencing only `bm.out` argument, all models built will be loaded. However, you can make a models subselection using the additional arguments (see below).

Additional arguments (…): All the following arguments are optional.

- `models`: a character vector defining the names of models (e.g c('GLM', 'GAM', 'RF') ) you want to load (models subselection)
- `run.eval`: a character vector defining the names of evaluation run (e.g c('RUN1', 'Full') ) you want to load (repetition subselection)
- `data.set`: a character vector defining the names of data.set (e.g c('PA1', 'PA2') ) you want to load (pseudo absences subselection)
- `path`: the path to file where the species folder is. To be filled if species folder is different from your working directory

Value

A character vector filled with the loaded models names.

Note

SRE models are not supported yet. They will be automatically excluded even if they are selected.

Author(s)

Damien Georges

See Also

`BIOMOD_Modeling`
Examples

# species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv", package="biomod2"), row.names = 1)
head(DataSpecies)

# the name of studied species
myRespName <- 'GuloGulo'

# the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])

# the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]

# Environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExpl = stack( system.file( "external/bioclim/current/bio3.grd", package="biomod2"),
                 system.file( "external/bioclim/current/bio4.grd", package="biomod2"),
                 system.file( "external/bioclim/current/bio7.grd", package="biomod2"),
                 system.file( "external/bioclim/current/bio11.grd", package="biomod2"),
                 system.file( "external/bioclim/current/bio12.grd", package="biomod2"))

# 1. Formatting Data
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
                                      expl.var = myExpl,
                                      resp.xy = myRespXY,
                                      resp.name = myRespName)

# 2. Defining Models Options using default options.
myBiomodOption <- BIOMOD_ModelingOptions()

# 3. Doing Modelisation
myBiomodModelOut <- BIOMOD_Modeling( myBiomodData,
                                      models = c('RF'),
                                      models.options = myBiomodOption,
                                      NbRunEval = 2,
                                      DataSplit = 70,
                                      models.eval.meth = c('TSS'),
                                      SaveObj = TRUE,
                                      do.full.models = FALSE)

# 4. Loading some models built
myLoadedModels <- BIOMOD_LoadModels(myBiomodModelOut, models = 'RF')
Run a range of species distribution models

Description

This function allows to calibrate and evaluate a range of species distribution models techniques run over a given species. Calibrations are made on the whole sample or a random subpart. The predictive power of the different models is estimated using a range of evaluation metrics.

Usage

```r
BIOMOD_modeling(data,
models = c('GLM','GBM','GAM','CTA','ANN',
'SRE','FDA','MARS','RF','MAXENT Phillips',
"MAXENT Tsuruoka"),
models.options = NULL,
NbRunEval=1,
DataSplit=100,
Yweights=NULL,
Prevalence=NULL,
VarImport=0,
models.eval.meth = c('KAPPA','TSS','ROC'),
SaveObj = TRUE,
rescal.all.models = FALSE,
do.full.models = TRUE,
modeling.id = as.character(format(Sys.time(), '%s')),
...)
```

Arguments

data BIOMOD.formated.data object returned by BIOMOD_FormatingData

models vector of models names choosen among 'GLM', 'GBM', 'GAM', 'CTA', 'ANN', 
'SRE', 'FDA', 'MARS', 'RF', 'MAXENT Phillips' and "MAXENT Tsuruoka"

models.options BIOMOD.models.options object returned by BIOMOD_ModelingOptions

NbRunEval Number of Evaluation run

DataSplit % of data used to calibrate the models, the remaining part will be used for testing

Yweights response points weights

Prevalence either NULL (default) or a 0-1 numeric used to build 'weighted response weights'

VarImport Number of permutation to estimate variable importance

models.eval.meth vector of names of evaluation metric among 'KAPPA', 'TSS', 'ROC', 'FAR', 
'SR', 'ACCURACY', 'BIAS', 'POD', 'CSI' and 'ETS'
SaveObj keep all results and outputs on hard drive or not (NOTE: strongly recommended)
rescal.all.models if true, all model prediction will be scaled with a binomial GLM
do.full.models if true, models calibrated and evaluated with the whole dataset are done
modeling.id character, the ID (=name) of modeling procedure. A random number by default.

further arguments:
• DataSplitTable: a matrix, data.frame or a 3D array filled with TRUE/FALSE to specify which part of data must be used for models calibration (TRUE) and for models validation (FALSE). Each column correspond to a 'RUN'. If filled, args NbRunEval, DataSplit and do.full.models will be ignored.

Details

1. data
   If you have decide to add pseudo absences to your original dataset (see BIOMOD_FormatingData), NbPseudoAbsences * NbRunEval + 1 models will be created.

2. models
   The set of models to be calibrated on the data. 10 modeling techniques are currently available:
   • GLM: Generalized Linear Model (glm)
   • GAM: Generalized Additive Model (gam, gam or bam, see BIOMOD_ModelingOptions for details on algorithm)
   • GBM: Generalized Boosting Model or usually called Boosted Regression Trees (gbm)
   • CTA: Classification Tree Analysis (rpart)
   • ANN: Artificial Neural Network (nnet)
   • SRE: Surface Range Envelop or usually called BIOCLIM
   • FDA: Flexible Discriminant Analysis (fda)
   • MARS: Multiple Adaptive Regression Splines (earth)
   • RF: Random Forest (randomForest)
   • MAXENT.Phillips: Maximum Entropy (http://www.cs.princeton.edu/~schapire/maxent/)
   • MAXENT.Tsuruoka: low-memory multinomial logistic regression

3. NbRunEval & DataSplit
   As already explained in the BIOMOD_FormatingData help file, the common trend is to split the original dataset into two subsets, one to calibrate the models, and another one to evaluate them. Here we provide the possibility to repeat this process (calibration and evaluation) N times (NbRunEval times). The proportion of data kept for calibration is determined by the DataSplit argument (100% - DataSplit will be used to evaluate the model). This sort of cross-validation allows to have a quite robust test of the models when independent data are not available. Each technique will also be calibrated on the complete original data. All the models produced by BIOMOD and their related informations are saved on the hard drive.

4. Yweights & Prevalence
   Allows to give more or less weight to some particular observations. If these arguments is kept to NULL (Yweights = NULL, Prevalence = NULL), each observation (presence or absence) has the same weight (independent of the number of presences and absences). If Prevalence = 0.5 absences will be weighted equally to the presences (i.e. the weighted
sum of presence equals the weighted sum of absences). If prevalence is set below or above 0.5 absences or presences are given more weight, respectively. In the particular case that pseudo-absence data have been generated `BIOMOD_formatingData` (PA.nb.rep > 0), weights are by default (`Prevalence = NULL`) calculated such that prevalence is 0.5, meaning that the presences will have the same importance as the absences in the calibration process of the models. Automatically created `yweights` will be composed of integers to prevent different modelling issues. Note that the `Prevalence` argument will always be ignored if `yweights` are defined.

5. **models.eval.meth**

The available evaluations methods are:

- **'ROC'** : Relative Operating Characteristic
- **'KAPPA'** : Cohen’s Kappa (Heidke skill score)
- **'TSS'** : True kill statistic (Hanssen and Kuipers discriminant, Peirce’s skill score)
- **'FAR'** : False alarm ratio
- **'SR'** : Success ratio
- **'ACCURACY'** : Accuracy (fraction correct)
- **'BIAS'** : Bias score (frequency bias)
- **'POD'** : Probability of detection (hit rate)
- **'CSI'** : Critical success index (threat score)
- **'ETS'** : Equitable threat score (Gilbert skill score)

Some of them are scaled to have all an optimum at 1. You can choose one of more (vector) evaluation metric. By Default, only 'KAPPA', 'TSS' and 'ROC' evaluation are done. Please refer to the CAWRC website ([http://www.cawcr.gov.au/projects/verification/#Methods_for_dichotomous_forecasts](http://www.cawcr.gov.au/projects/verification/#Methods_for_dichotomous_forecasts)) to get detailed description of each metric.

6. **SaveObj**

If this argument is set to False, it may prevent the evaluation of the 'ensemble modelled' models in further steps. We strongly recommend to always keep this argument TRUE even it asks for free space onto the hard drive.

7. **rescal.all.models**

This parameter is quite experimental and we advise not to use it. **It should lead to reduction in projection scale amplitude** Some categorical models have to be scaled in every case ('FDA', 'ANN'). But it may be interesting to scale all model computed to ensure that they will produced comparable predictions (0-1000 ladder). That’s particularly useful when you do some ensemble forecasting to remove the scale prediction effect (the more extended projections are, the more they influence ensemble forecasting results).

8. **do.full.models**

Building models with all information available may be useful in some particular cases (i.e. rare species with few presences points). The main drawback of this method is that, if you don’t give separated data for models evaluation, your models will be evaluated with the same data that the ones used for calibration. That will lead to over-optimistic evaluation scores. Be careful with this _Full_ models interpretation.

**Value**

A BIOMOD.models.out object
See "BIOMOD.models.out" for details.

Additional objects are stored out of R in two different directories for memory storage purposes. They are created by the function directly on the root of your working directory set in R ("models" directory). This one contains each calibrated model for each repetition and pseudo-absence run. A hidden folder '.DATA_BIOMOD' contains some files (predictions, original dataset copy, pseudo-absences chosen...) used by other functions like BIOMOD_Projection or BIOMOD_EnsembleModeling.

The models are currently stored as objects to be read exclusively in R. To load them back (the same stands for all objects stored on the hard disk) use the load function (see examples section below).

Author(s)

Wilfried Thuiller, Damien Georges, Robin Engler

See Also

BIOMOD_FormatingData, BIOMOD_ModelingOptions, BIOMOD_Projection

Examples

# species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv", package="biomod2"))
head(DataSpecies)

# the name of studied species
myRespName <- 'GuloGulo'

# the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])

# the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]

# Environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExpl = stack( system.file("external/bioclim/current/bio3.grd", package="biomod2"),
    system.file("external/bioclim/current/bio4.grd", package="biomod2"),
    system.file("external/bioclim/current/bio7.grd", package="biomod2"),
    system.file("external/bioclim/current/bio11.grd", package="biomod2"),
    system.file("external/bioclim/current/bio12.grd", package="biomod2"))

# 1. Formatting Data
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
    expl.var = myExpl,
    resp.xy = myRespXY,
resp.name = myRespName)

# 2. Defining Models Options using default options.
myBiomodOption <- BIOMOD_ModelingOptions()

# 3. Doing Modelisation

myBiomodModelOut <- BIOMOD_Modeling( myBiomodData,
    models = c('SRE','RF'),
    models.options = myBiomodOption,
    NbRunEval=2,
    DataSplit=80,
    VarImport=0,
    models.eval.meth = c('TSS','ROC'),
    do.full.models=FALSE,
    modeling.id="test")

## print a summary of modeling stuff
myBiomodModelOut

---

**BIOMOD_ModelingOptions**

*Configure the modeling options for each selected model*

**Description**

Function to set the different options for each modeling technique.

**Usage**

```r
BIOMOD_ModelingOptions(
 GLM = NULL,
 GBM = NULL,
 GAM = NULL,
 CTA = NULL,
 ANN = NULL,
 SRE = NULL,
 FDA = NULL,
 MARS = NULL,
 RF = NULL,
 MAXENT.Phillips = NULL,
 MAXENT.Tsuruoka = NULL)
```

**Arguments**

- **GLM** list of GLM options
- **GBM** list of GBM options
BIOMOD_ModelingOptions

GAM list of GAM options
CTA list of CTA options
ANN list of ANN options
SRE list of SRE options
FDA list of FDA options
MARS list of MARS options
RF list of RF options
MAXENT.Phillips list of MAXENT.Phillips options
MAXENT.Tsuruoka list of MAXENT.Tsuruoka options

Details

The aim of this function is to allow advanced user to change some default parameters of BIOMOD inner models. For each modeling technique, options can be set up. Each argument have to be put in a list object.

The best way to use this function is to print defaut models options (Print_Default_ModelingOptions) or create a default 'BIOMOD.model.option object' and print it in your console. Then copy the output, change only the required parameters, and paste it as function arguments. (see example)

Here the detailed list of modifiable parameters. They correspond to the traditional parameters that could be setted out for each modeling technique (e.g. ?GLM)

Value

A "BIOMOD.Model.Options" object given to BIOMOD_Modeling

== GLM == (glm)

  • myFormula : a typical formula object (see example). If not NULL, type and interaction.level args are switched off. You can choose to either:
    - generate automatically the GLM formula by using the type and interaction.level arguments type (default 'quadratic') : formula given to the model ('simple', 'quadratic' or 'polynomial'). interaction.level (default 0) : integer corresponding to the interaction level between variables considered. Consider that interactions quickly enlarge the number of effective variables used into the GLM.
    - or construct specific formula

  • test (default 'AIC') : Information criteria for the stepwise selection procedure: AIC for Akaike Information Criteria, and BIC for Bayesian Information Criteria ('AIC' or 'BIC'). 'none' is also a supported value which implies to concider only the full model (no stepwise selection). This can lead to convergence issu and strange results.

  • family (default binomial(link = 'logit')) : a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See family for details of family functions). BIOMOD only runs on presence-absence data so far, so binomial family by default.
• control: a list of parameters for controlling the fitting process. For glm.fit this is passed to glm.control.

--= GBM -- (default gbm)

Please refer to gbm help file to get the meaning of this options.

• distribution (default 'bernoulli')
• n.trees (default 2500)
• interaction.depth (default 7)
• n.minobsinnode (default 5)
• shrinkage (default 0.001)
• bag.fraction (default 0.5)
• train.fraction (default 1)
• cv.folds (default 3)
• keep.data (default FALSE)
• verbose (default FALSE)
• perf.method (default 'cv')

--= GAM -- (gam or gam)

• algo: either "GAM_gam" (default), "GAM_mgcv" or "BAM_mgcv" defining the chosen GAM function (see gam, gam resp. bam for more details)
• myformula: a typical formula object (see example). If not NULL, type and interaction.level args are switched off. You can choose to either:
  – generate automatically the GAM formula by using the type and interaction.level arguments type: the smoother used to generate the formula. Only "s_smoother" available at time. interaction.level: integer corresponding to the interaction level between variables considered. Consider that interactions quickly enlarge the number of effective variables used into the GAM. Interaction are not considered if you choosed "GAM_gam" algo
  – or construct specific formula
• k (default 1 or 4): a smooth term in a formula argument to gam (see gam s or mgcv s)
• family (default binomial(link = 'logit')): a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See family for details of family functions.) BIOMOD only runs on presence-absence data so far, so binomial family by default.
• control: see gam.control or gam.control
• some extra "GAM_mgcv" specific options (ignored if algo = "GAM_gam")
  – method (default 'GCV.Cp')
  – optimizer (default c('outer','newton'))
  – select (default FALSE)
  – knots (default NULL)
  – paramPen (default NULL)
Please refer to \texttt{rpart} help file to get the meaning of the following options.

\begin{itemize}
\item \texttt{method} (default 'class')
\item \texttt{parms} (default 'default'): if 'default', default \texttt{rpart} parms value are kept
\item \texttt{cost} (default NULL)
\item \texttt{control}: see \texttt{rpart.control}
\end{itemize}

\textbf{NOTE:} for method and parms, you can give a 'real' value as described in the \texttt{rpart} help file or 'default' that implies default \texttt{rpart} values.

Please refer to \texttt{nnet} help file to get the meaning of these options.

\begin{itemize}
\item \texttt{nbCV} (default 5): nb of cross validation to find best size and decay parameters
\item \texttt{size} (default NULL): number of units in the hidden layer. If NULL then size parameter will be optimised by cross validation based on model AUC (\texttt{nbCv} cross validation; tested size will be the following \texttt{c(2,4,6,8)}). You can also specified a vector of size you want to test. The one giving the best model AUC will be then selected.
\item \texttt{decay} (default NULL): parameter for weight decay. If NULL then decay parameter will be optimised by cross validation on model AUC (\texttt{nbCv} cross validation; tested decay will be the following \texttt{c(0.001, 0.01, 0.05, 0.1)}). You can also specified a vector of decay you want to test. The one giving the best model AUC will be then selected.
\item \texttt{rang} (default \texttt{0.1}): Initial random weights on [-rang, rang]
\item \texttt{maxit} (default 200): maximum number of iterations.
\end{itemize}

Please refer to \texttt{sre} help file to get the meaning of this option:

\begin{itemize}
\item \texttt{quant} (default \texttt{0.025}): quantile of 'extreme environmental variable' removed for selection of species envelops
\end{itemize}

Please refer to \texttt{fda} help file to get the meaning of these options.

\begin{itemize}
\item \texttt{method} (default 'mars')
\item \texttt{add_args} (default NULL): additional arguments to \texttt{method} given as a list of parameters (correspond to the \ldots options of \texttt{fda} function)
\end{itemize}

Please refer to \texttt{earth} help file to get the meaning of these options.

\begin{itemize}
\item \texttt{myFormula}: a typical formula object (see example). If not NULL, type and interaction.level args are switched off. You can choose to either:
  \begin{itemize}
  \item generate automatically the GLM formula by using the type and interaction.level arguments type (default 'simple'): formula given to the model ('simple', 'quadratic' or 'polynomial'). interaction.level (default 0): integer corresponding to the interaction level between variables considered. Consider that interactions quickly enlarge the number of effective variables used into the GLM/MARS.
  \end{itemize}
\end{itemize}
– or construct specific formula

- nk (default NULL) : an optional integer specifying the maximum number of model terms. If NULL is given then default mars function value is used (i.e max(21, 2 * nb_expl_var + 1))
- penalty (default 2)
- thresh (default 0.001)
- nprune (default NULL)
- pmeth (default "backward")

--- RF --- (randomForest)

- do.classif (default TRUE): if TRUE classification random.forest computed else regression random.forest will be done
- ntree (default 500)
- mtry (default 'default')
- nodesize (default 5)
- maxnodes (default NULL)

NOTE: for mtry, you can give a 'real' value as described in randomForest help file or 'default' that implies default randomForest values


- path_to_maxent.jar : character, the link to maxent.jar file (the working directory by default)
- memory_allocated : integer (default 512), the amount of memory (in Mo) reserved for java to run MAXENT.Phillips. should be 64, 128, 256, 512, 1024, 2048... or NULL if you want to use default java memory limitation parameter.
- maximumiterations : integer (default 200), maximum iteration done
- visible : logical (default FALSE), make the Maxent user interface visible
- linear : logical (default TRUE), allow linear features to be used
- quadratic : logical (default TRUE), allow quadratic features to be used
- product : logical (default TRUE), allow product features to be used
- threshold : logical (default TRUE), allow threshold features to be used
- hinge : logical (default TRUE), allow hinge features to be used
- lq21qptthreshold : integer (default 80), number of samples at which product and threshold features start being used
- 121qthreshold : integer (default 10), number of samples at which quadratic features start being used
- hingethreshold : integer (default 15), number of samples at which hinge features start being used
- beta_threshold : numeric (default -1.0), regularization parameter to be applied to all threshold features; negative value enables automatic setting
• beta_categorical : numeric (default -1.0), regularization parameter to be applied to all categorical features; negative value enables automatic setting
• beta_lqp : numeric (default -1.0), regularization parameter to be applied to all linear, quadratic and product features; negative value enables automatic setting
• beta_hinge : numeric (default -1.0), regularization parameter to be applied to all hinge features; negative value enables automatic setting
• betamultiplier : numeric (default 1), multiply all automatic regularization parameters by this number. A higher number gives a more spread-out distribution.
• defaultprevalence : numeric (default 0.5), default prevalence of the species: probability of presence at ordinary occurrence points

MAXENT.Tsuruoka ==

• l1_regularizer (default 0.0): An numeric turning on L1 regularization and setting the regularization parameter. A value of 0 will disable L1 regularization
• l2_regularizer (default 0.0): An numeric turning on L2 regularization and setting the regularization parameter. A value of 0 will disable L2 regularization
• use_sgd (default FALSE): A logical indicating that SGD parameter estimation should be used. Defaults to FALSE
• set_heldout (default 0): An integer specifying the number of documents to hold out. Sets a held-out subset of your data to test against and prevent overfitting
• verbose (default FALSE): A logical specifying whether to provide descriptive output about the training process

NOTE: if you use the set_heldout parameter then the data that will be held out will be taken in the calibration data pool. It can be penilizing in case of low number of occurences dataset.

Author(s)
Wilfried Thuiller, Damien Georges

Examples

# default BIOMOD.model.option object
myBiomodOptions <- BIOMOD_ModelingOptions()

# print the object
myBiomodOptions

# you can copy a part of the print, change it and custom your options
# here we want to compute quadratic GLM and select best model with 'BIC' criterium
myBiomodOptions <- BIOMOD_ModelingOptions(
  GLM = list( type = 'quadratic',
             interaction.level = 0,
             myFormula = NULL,
             test = 'BIC',
             family = 'binomial',
             control = glm.control(epsilon = 1e-08,
                                    maxit = 1000),
             ...)
### BIOMOD_presenceonly

**evaluate models with presences only metrics**

**Description**

This function enables to evaluate BIOMOD.models.out and BIOMOD.EnsembleModeling.out object with presence-only evaluation methods (Boyce index and Minimal Predicted Area MPA)

**Usage**

```r
BIOMOD_presenceonly(modeling.output = NULL, EM.output = NULL, save.output = T)
```

**Arguments**

- `modeling.output` 
  "BIOMOD.models.out" object produced by a BIOMOD_Modeling run

- `EM.output` 
  a "BIOMOD.EnsembleModeling.out" returned by BIOMOD_EnsembleModeling

- `save.output` 
  logical. If TRUE (Default) the output is saved to the ".BIOMOD_DATA" folder

**Details**

'`em.by' of 'BIOMOD.EnsembleModeling' must be 'PA_dataset+repet' to have an ensemble for each RUN of the 'NbRunEval' argument (BIOMOD_Modeling function) for evaluation. The Boyce index returns NA values for ‘SRE’ models because it is not possible to be calculated with binary predictions. This is also the reason why there are sometimes NA values for 'GLM' models if they don not converge.

**Value**

data.frame containing evaluation scores for the evaluation metrics used for the BIOMOD_Modeling function and additional Boyce index and MPA
Author(s)
Frank Breiner

References

See Also
ecospat.boyce, ecospat.mpa, BIOMOD_Modeling, BIOMOD_EnsembleModeling

Examples
```r
Not run:
require(PresenceAbsence)

species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv", package="biomod2"), row.names = 1)
head(DataSpecies)

the name of studied species
myRespName <- 'GuloGulo'

the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])

the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]

Environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExpl = stack(system.file("external/bioclim/current/bio3.grd", package="biomod2"),
 system.file("external/bioclim/current/bio4.grd", package="biomod2"),
 system.file("external/bioclim/current/bio7.grd", package="biomod2"),
 system.file("external/bioclim/current/bio11.grd", package="biomod2"),
 system.file("external/bioclim/current/bio12.grd", package="biomod2"))

1. Formatting Data
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
 expl.var = myExpl,
 resp.xy = myRespXY,
 resp.name = myRespName)

2. Defining Models Options using default options.
```
myBiomodOption <- BIOMOD_ModelingOptions()

# 3. Doing Modelisation
myBiomodModelOut <- BIOMOD_Modeling( myBiomodData,
  models = c('SRE','CTA','RF'),
  models.options = myBiomodOption,
  NBRunEval=1,
  DataSplit=80,
  Yweights=NULL,
  VarImport=3,
  models.eval.meth = c('TSS','ROC'),
  SaveObj = TRUE,
  rescal.all.models = FALSE,
  do.full.models = FALSE)

# 4. Doing Ensemble Modelling
myBiomodEM <- BIOMOD_EnsembleModeling( modeling.output = myBiomodModelOut,
  chosen.models = 'all',
  em.by = 'PA_dataset+repet',
  eval.metric = c('TSS'),
  eval.metric.quality.threshold = c(0.7),
  models.eval.meth = c('TSS','ROC'),
  prob.mean = TRUE,
  prob.cv = FALSE,
  prob.ci = FALSE,
  prob.ci.alpha = 0.05,
  prob.median = FALSE,
  committee.averaging = FALSE,
  prob.mean.weight = TRUE,
  prob.mean.weight.decay = 'proportional' )

# evaluate Biomod models with the Boyce index and MPA
pres.only.eval <- BIOMOD_presenceonly(myBiomodModelOut, myBiomodEM)
pres.only.eval$eval

## End(Not run)

---

**BIOMOD_Projection**  
*Project the calibrated models within **biomod2** into new space or time*

**Description**

For all the models currently implemented, **biomod2** is able to project potential distributions of species in other areas, other resolutions or other time scales.

**Usage**

BIOMOD_Projection(modeling.output,  
  new.env,  
  ...)

...
BIOMOD_Projection

proj.name,
xy.new.env = NULL,
selected.models = 'all',
binary.meth = NULL,
filtered.meth = NULL,
compress = TRUE,
build.clamping.mask = TRUE,
...

Arguments

modeling.output
"BIOMOD.models.out" object produced by a BIOMOD_Modeling run
new.env A set of explanatory variables onto which models will be projected. It could be a data.frame, a matrix, or a rasterStack object. Make sure the column names (data.frame or matrix) or layer Names (rasterStack) perfectly match with the names of variables used to build the models in the previous steps.
proj.name a character defining the projection name (a new folder will be created with this name)
xy.new.env optional coordinates of new.env data. Ignored if new.env is a rasterStack
selected.models 'all' when all models have to be used to render projections or a subset vector of modelling.output models computed (accessing with the slot @models.computed of your "BIOMOD.models.out" object)
binary.meth a vector of a subset of models evaluation method computed before (see BIOMOD_Modeling). If NULL then no binary transformation computed, else the given binary techniques will be used to transform the projection into 0/1 data.
filtered.meth a vector of a subset of models evaluation method computed before (see BIOMOD_Modeling). if NULL then no filtering transformation computed, else the given binary techniques will be used to transform the projection by stetting to 0 the probability values below a specific threshold.
compress Boolean or character, the compression format of objects stored on your hard drive. May be one of ‘TRUE’, ‘FALSE’, ‘xz’ or ‘gzip’ (see save)
build.clamping.mask
if TRUE, a clamping mask will be saved on hard drive different (see details)
...
Additional arguments (see details section)

Details

Projections are done for all selected models, that means (by default) for all evaluation run, and pseudo absences selections if applicable. This projections may be used later to compute ensemble forecasting.

If build.clamping.mask is set to TRUE a file (same type than new.env arg) will be saved in your projection folder. This mask will identifies locations where predictions are uncertain because the values of the variables are outside the range used for calibrating the models. The 'build.clamping.mask' values correspond to the number of variables that are out of their calibrating/training range. (see vignette for more details)
...may be:

- `silent`: logical, if TRUE, console outputs are turned off
- `do.stack`: logical, if TRUE, attempt to save all projections in a unique object i.e `RasterStack`. If FALSE or if objects are too heavy to be load all together in memory, projections will be stored into separated files.
- `keep.in.memory`: logical, if FALSE only the link pointing to a hard drive copy of projections are stored in output object. That can be useful to prevent memory issues.
- `output.format`: whether `.RData`, `.grd` or `.img` defining projections saving format (on hard drive). If `new.env` argument is under table format (data.frame or matrix), the only choice you have is `.RData`
- `omit.na`: logical, if TRUE (default), all not fully referenced environmental points will get a NA as prediction. If FALSE, models that can produce predictions with incomplete data will return a prediction value for this points.
- `on_0_1000`: logical, if TRUE (default), 0 - 1 probabilities are converted into a 0 - 1000 integer scale. This implies a lot of memory saving. User that want to comeback on a 0 - 1 scale latter will just have to divide all projections by 1000

**Value**

Returns the projections for all selected model ("BIOMOD.projection.out" object), and stored in the hard drive on the specific directory names by the name of the projection. The data is a 4-dimensions array (see ...) if new.env is a `matrix` or a `data.frame`. It is a `RasterStack` if new.env is a `RasterStack` and or several `RasterLayers` if the `RasterStack` is too large.

A new folder is also created on your hard drive. This folder contains the created projection object (basic one and binary and filtered ones if selected). The object are loaded with the `load` function. The loaded object can be then plotted and analysed.

**Author(s)**

Wilfried Thuiller, Damien Georges

**See Also**

`BIOMOD_Modeling`, `BIOMOD_FormatingData`, `BIOMOD_ModelingOptions`

**Examples**

```r
species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv",
package="biomod2"), row.names = 1)
head(DataSpecies)

the name of studied species
myRespName <- 'GuloGulo'

the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])
```
# the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]

# Environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExpl = stack(  
  system.file("external/bioclim/current/bio3.grd",  
    package="biomod2"),  
  system.file("external/bioclim/current/bio4.grd",  
    package="biomod2"),  
  system.file("external/bioclim/current/bio7.grd",  
    package="biomod2"),  
  system.file("external/bioclim/current/bio11.grd",  
    package="biomod2"),  
  system.file("external/bioclim/current/bio12.grd",  
    package="biomod2"))

# 1. Formatting Data
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,  
  expl.var = myExpl,  
  resp.xy = myRespXY,  
  resp.name = myRespName)

# 2. Defining Models Options using default options.
myBiomodOption <- BIOMOD_ModelingOptions()

# 3. Doing Modelisation
myBiomodModelOut <- BIOMOD_Modeling(  
  myBiomodData,  
  models = c('SRE','RF'),  
  models.options = myBiomodOption,  
  NbRunEval=1,  
  DataSplit=70,  
  models.eval.meth = c('TSS'),  
  do.full.models = FALSE)

# 4.1 Projection on current environemental conditions
myBiomodProjection <- BIOMOD_Projection(modeling.output = myBiomodModelOut,  
  new.env = myExpl,  
  proj.name = 'current',  
  selected.models = 'all',  
  binary.meth = 'TSS',  
  compress = FALSE,  
  build.clamping.mask = FALSE)

## Not run:
# 4.2 Projection on future environemental conditions
myExplFuture = stack(  
  system.file("external/bioclim/future/bio3.grd",package="biomod2"),  
  system.file("external/bioclim/future/bio4.grd",package="biomod2"),  
  system.file("external/bioclim/future/bio7.grd",package="biomod2"),  
  system.file("external/bioclim/future/bio11.grd",package="biomod2"),  
  system.file("external/bioclim/future/bio12.grd",package="biomod2"))
BIOMOD_RangeSize

Analysis of the range size changes

Description

This function allows to estimate the proportion and relative number of pixels (or habitat) lost, gained and stable for the time slice considered in species-climate modelling under future scenarios.

Usage

```r
S4 method for signature 'data.frame,data.frame'
BIOMOD_RangeSize(CurrentPred, FutureProj, SpChange.Save=NULL)

S4 method for signature 'array,array'
BIOMOD_RangeSize(CurrentPred, FutureProj, SpChange.Save=NULL)

S4 method for signature 'RasterStack,RasterStack'
BIOMOD_RangeSize(CurrentPred, FutureProj, SpChange.Save=NULL)

S4 method for signature 'RasterStack,RasterStack'
BIOMOD_RangeSize(CurrentPred, FutureProj, SpChange.Save=NULL)

S4 method for signature 'RasterLayer,RasterLayer'
BIOMOD_RangeSize(CurrentPred, FutureProj, SpChange.Save=NULL)
```

Arguments

- `CurrentPred` a data.frame of n (number of models) columns OR an array formatted as an output of `BIOMOD_Projection` function OR a RasterStack (a layer by model) giving the current state of the species in binary

```r
myBiomodProjectionFuture <- BIOMOD_Projection(modeling.output = myBiomodModelOut,
 new.env = myExplFuture,
 proj.name = 'future',
 selected.models = 'all',
 binary.meth = 'TSS',
 compress = FALSE,
 build.clamping.mask = TRUE)

print summary and plot projections
myBiomodProjectionFuture
plot(myBiomodProjectionFuture)

End(Not run)
```
BIOMOD_RangeSize

**FutureProj**

a data.frame of n (number of models) columns OR an array formatted as an output of **BIOMOD_Propjection** function OR a RasterStack (a layer by model) giving the future projections of the species in binary according to a future scenario.

**SpChange.Save**

the name given to the new object storing the results.

**Details**

Note that this function is only relevant if you make projections on the same area with the same resolution and for a different time slice (past or future) than for the current data.

**Value**

A list of two items is created: **Compt.By.Species** and **Diff.By.Pixel**; **Compt.By.Species** is the summary of this function; **Diff.By.Pixel** is in the same form than your input data.

**Compt.by.Species**

stores the summary of range change for each species (sorted by rows). The first four columns are absolute values whereas the next 3 ones are relative values:

- **Disa** represents the number of pixels predicted to be lost by the given species.
- **Stable0** is the number of pixels which are not currently occupied by the given species and not predicted to be.
- **Stable1** represents the number of pixels currently occupied by the given species, and predicted to remain occupied into the future.
- **Gain** represents the number of pixels which are currently not occupied by the given species but predicted to be into the future.
- **PercLoss** corresponds to the percentage of currently occupied sites to be lost (Disa/(Disa+Stable1))
- **PercGain** corresponds to the percentage of new sites considering the species’ current distribution size (Gain/(Disa+Stable1)). For example, if there are 30 sites currently occupied and 15 new sites are projected to be occupied in future, it makes PercGain=+50%.
- **SpeciesRangeChange** it is the overall projection outcome, equal to PercGain-PercLoss. It does not assess for any migration shifts as it strictly compares the range sizes between current and future states.
- **CurrentRangeSize** represents the modelled current range size (number of pixels occupied) of the given species.
- **FutureRangeSize0Disp** represents the future modelled range size assuming no migration of the given species.
- **FutureRangeSize1Disp** represents the future modelled range size assuming migration of the given species (depending on the datasets given in input, if Migration has been used or not).
the summary of range change for each species (sorted by columns and with the pixel in rows). For each species, a pixel could have four different values: -2 if the given pixel is predicted to be lost by the species. -1 if the given pixel is predicted to be stable for the species. 0 is the given pixel was not occupied, and will not be in the future. 1 if the given pixel was not occupied, and is predicted to be into the future. This table could be easily plotted into GIS software in order to represent the pattern of change for the selected species (or even with the level.plot() function).

Author(s)
Wilfried Thuiller, Damien Georges, Bruno Lafourcade

Examples

```r
species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv", package="biomod2"), row.names = 1)
head(DataSpecies)

the name of studied species
myRespName <- 'GuloGulo'

the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])

the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]

Environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExpl = stack(system.file("external/bioclim/current/bio3.grd", package="biomod2"),
 system.file("external/bioclim/current/bio4.grd", package="biomod2"),
 system.file("external/bioclim/current/bio7.grd", package="biomod2"),
 system.file("external/bioclim/current/bio11.grd", package="biomod2"),
 system.file("external/bioclim/current/bio12.grd", package="biomod2"))

1. Formatting Data
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
 expl.var = myExpl,
 resp.xy = myRespXY,
 resp.name = myRespName)

2. Defining Models Options using default options.
myBiomodOption <- BIOMOD_ModelingOptions()
```
# 3. Doing Modelisation

```r
myBiomodModelOut <- BIOMOD_Modeling(
 myBiomodData,
 models = c('CTA','RF'),
 models.options = myBiomodOption,
 models.eval.meth = 'TSS',
 rescal.all.models = FALSE)
```

# 4.1 Projection on current environmental conditions

```r
myBiomodProjection <- BIOMOD_Projection(modeling.output = myBiomodModelOut,
 new.env = myExpl,
 proj.name = 'current',
 selected.models = 'all',
 binary.meth = 'TSS',
 compress = FALSE,
 build.clamping.mask = FALSE)
```

# 4.2 Projection on future environmental conditions

```r
myExplFuture = stack(system.file("external/bioclim/future/bio3.grd",package="biomod2"),
 system.file("external/bioclim/future/bio4.grd",package="biomod2"),
 system.file("external/bioclim/future/bio7.grd",package="biomod2"),
 system.file("external/bioclim/future/bio11.grd",package="biomod2"),
 system.file("external/bioclim/future/bio12.grd",package="biomod2"))
```

```r
myBiomodProjectionFuture <- BIOMOD_Projection(modeling.output = myBiomodModelOut,
 new.env = myExplFuture,
 proj.name = 'future',
 selected.models = 'all',
 binary.meth = 'TSS',
 compress = FALSE,
 build.clamping.mask = TRUE)
```

# 5. Detect where our species occurrences state is forecasted to change

```r
load binary projections
here is rasters objects ('.grd')
currentPred <- stack("GuloGulo/proj_current/proj_current_GuloGulo_TSSbin.grd")
futurePred <- stack("GuloGulo/proj_future/proj_future_GuloGulo_TSSbin.grd")
```

```r
call the Range size function
myBiomodRangeSize <- BIOMOD_RangeSize(
 CurrentPred=currentPred,
 FutureProj=futurePred)
```

```r
see the results
myBiomodRangeSize$Compt.By.Models
plot(myBiomodRangeSize$Diff.By.Pixel)
```
BIOMOD_tuning

Tune models parameters

Description

Function to tune biomod single models parameters

Usage

```
BIOMOD_tuning(data, models = c("GLM", "GBM", "GAM", "CTA", "ANN", "FDA", "MARS", "RF", "MAXENT.Phillips"), models.options = BIOMOD_ModelingOptions(), method.ANN = "avNNet", method.RF = "rf", method.MARS = "earth", method.GAM = "gam", method.GLM = "glmStepAIC", trControl = NULL, metric = "ROC", ctrl.CTA = NULL, ctrl.RF = NULL, ctrl.ANN = NULL, ctrl.MARS = NULL, ctrl.FDA = NULL, ctrl.GAM = NULL, ctrl.GBM = NULL, ctrl.GLM = NULL, tuneLength = 30, decay.tune.ANN = c(0.001, 0.01, 0.05, 0.1), size.tune.ANN = c(2, 4, 6, 8), maxit.ANN = 500, MaxNWts.ANN = 10 * (ncol(data@data.env.var) + 1) + 10 + 1, type.GLM = "simple", cvmethod.ME = "randomKfold", overlap.ME = FALSE, bin.output.ME = TRUE, kfolds.ME = 10, n.bg.ME = 10000, env.ME = NULL, metric.ME = "ROC", clamp.ME = T)
```

Arguments

- **data**: BIOMOD.formated.data object returned by BIOMOD_FormatingData
- **models**: vector of models names choosen among 'GLM', 'GBM', 'GAM', 'CTA', 'ANN', 'FDA', 'MARS', 'RF' and 'MAXENT.Phillips'
- **models.options**: BIOMOD.models.options object returned by BIOMOD_ModelingOptions. Default: BIOMOD_ModelingOptions()
- **method.ANN**: which classification or regression model to use for artificial neural networks (default: "avNNet"). see http://topepo.github.io/caret/Neural_Network.html
- **method.RF**: which classification or regression model to use for randomForest (default: "rf"). see http://topepo.github.io/caret/Random_Forest.html
- **method.MARS**: which classification or regression model to use for mars (default: "earth"). see http://topepo.github.io/caret/Multivariate_Adaptive_Regression_Splines.html
- **method.GAM**: which classification or regression model to use for GAM (default: "gam"). see http://topepo.github.io/caret/Generalized_Additive_Model.html
- **method.GLM**: which classification or regression model to use for GLM: (default: 'glmStepAIC'). see http://topepo.github.io/caret/Generalized_Linear_Model.html
- **trControl**: global control parameters for runing (default trainControl(method="cv",summaryFunction=twoClassSummary,classProbs=T),returnData = FALSE). for details see trainControl
- **metric**: metric to select the optimal model (Default ROC). TSS (maximizing Sensitivity and Specificity) is also possible. see ?train
- **ctrl.CTA**: specify control parameters only for CTA (default trControl)
ctrl.RF specify control parameters only for RF (default trControl)
ctrl.ANN specify control parameters only for ANN (default trControl)
ctrl.MARS specify control parameters only for MARS (default trControl)
ctrl.FDA specify control parameters only for FDA (default trControl)
ctrl.GAM specify control parameters only for GAM (default trControl)
ctrl.GBM specify control parameters only for GBM (default trControl)
ctrl.GLIM specify control parameters only for GLM (default trControl)
tuneLength see ?train (default 30)
decay.tune.ANN weight decay parameters used for tuning for ANN (default: c(0.001, 0.01, 0.05, 0.1)) Will be optimised by method specified in ctrl.ANN (if not available trControl).
size.tune.ANN size parameters (number of units in the hidden layer) for ANN used for tuning (default: c(2,4,6,8)). Will be optimised using the method specified in ctrl.ANN (if not available trControl).
maxit.ANN maximum number of iterations for ANN (default 500)
MaxNWts.ANN The maximum allowable number of weights for ANN (default 10 * (ncol(myBiomodData@data.env.var) + 1) + 10 + 1).
type.GLIM either 'simple', 'quadratic', 'polynomial' or 's_smoother' defining the type of formula you want to build with GLM
cvmethod.ME method used for data partitioning for MAXENT.Phillips (default: 'randomk-fold')
overlap.ME logical; Calculates pairwise metric of niche overlap if TRUE (Default: FALSE). (see ?calc.niche.overlap)
bin.output.ME logical; If TRUE, appends evaluations metrics for each evaluation bin to results table (i.e., in addition to the average values across bins).
kfolds.ME number of bins to use for k-fold cross-validation used for MAXENT.Phillips (Default: 10).
n.bg.ME Number of Background points used to run MAXENT.Phillips (Default: 10000)
env.ME RasterStack of model predictor variables
metric.ME metric to select the optimal model for Maxent (Default: ROC). One out of Mean.AUC (or ROC), delta.AICc, Mean.AUC.DIFF. see ?ENMevaluate
clamp.ME logical; If TRUE (Default) "Features are constrained to remain within the range of values in the training data" (Elith et al. 2011)

Details
Tuning ANN: if no parameters are specified for ANN, they are tuned internally in BIOMOD_Modelling using cross-validation. ANN parameters are therefore tuned in every case either within ecospat.BIOMOD.tunning or BIOMOD_Modelling

Value
BIOMOD.models.options object with optimized parameters
BIOMOD_tuning

Author(s)
Frank Breiner

See Also
BIOMOD_ModelingOptions(), train

Examples

```r
Not run:
species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv", package="biomod2"))
head(DataSpecies)

the name of studied species
myRespName <- 'GuloGulo'

the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])

the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]

Environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExpl = stack(system.file("external/bioclim/current/bio3.grd", package="biomod2"),
 system.file("external/bioclim/current/bio4.grd", package="biomod2"),
 system.file("external/bioclim/current/bio7.grd", package="biomod2"),
 system.file("external/bioclim/current/bio11.grd", package="biomod2"),
 system.file("external/bioclim/current/bio12.grd", package="biomod2"))

1. Formatting Data
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
 expl.var = myExpl,
 resp.xy = myRespXY,
 resp.name = myRespName)

2. Defining Models Options using default options.
Duration for tuning all models sequential with default settings
on 3.4 GHz processor: approx. 45 min tuning all models in parallel
(on 8 cores) using foreach loops runs much faster: approx. 14 min

#library(doParallel);cl<-makeCluster(8);registerDoParalell(cl)

time.seq<-system.time(Biomod.tuning <- BIOMOD_tuning(myBiomodData,
 env.ME = myExpl,
 n.bg.ME = ncell(myExpl)))
```
calculate.stat

Description

calculate.stat is an internal `biomod2` function to get scores, based on a misclassification table, of some referenced evaluation metrics.

Usage

calculate.stat( Misc, 
        stat='TSS')

Arguments

  Misc  a misclassification table

  stat   either 'TSS', 'KAPPA', 'ACCURACY', 'BIAS', 'POD', 'FAR', 'POFD', 'SR', 'CSI', 'ETS', 'HK', 'HSS', 'OR' or 'ORSS'

Details

Please refer to `BIOMOD_Modeling` to get more information about this metrics.

Value

The stat score for the Misc table.
Author(s)
Damien Georges

See Also

Examples
a <- sample(c(0,1),100, replace=TRUE)
b <- sample(c(0,1),100, replace=TRUE)
miscTab_aa <- table(a,a)
miscTab_ab <- table(a,b)

# perfect score
calculate.stat( miscTab_aa, stat='TSS')
# random score
calculate.stat( miscTab_ab, stat='TSS')

CustomIndexMaker

Replace default package Index help file by a custom one.

Description
This function replace default html index file by a custom one if defined

Usage
CustomIndexMaker()

Details
....

Value
A logical specifying if operation succed or not

Author(s)
Wilfried Thuiller, Damien Georges

Examples
## Automatically done at building package state
# CustomIndexMaker()
DF_to_ARRAY

Convert a biomod2 data.frame (or list) into array

Description

DF_to_ARRAY and LIST_to_ARRAY are biomod2 internal functions that can be useful to help users to transform a standard biomod2 data.frame or list output into the standard array one.

Usage

DF_to_ARRAY(df)
LIST_to_ARRAY(ll)

Arguments

df a standard biomod2 data.frame output
ll a standard biomod2 list output (e.g. evaluate function output)

Details

This functions can be useful when you want to re-convert biomod2 data.frame or list (e.g. projections, evaluations) into their initial array format (see BIOMOD_Projection for further details)

Value

A standard biomod2 array output.

Author(s)

Damien Georges

See Also

BIOMOD_Projection

Examples

# species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv", package="biomod2"), row.names = 1)
head(DataSpecies)

# the name of studied species
myRespName <- 'GuloGulo'

# the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])
# the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]

# Environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExpl = stack(
  system.file("external/bioclim/current/bio3.grd", package="biomod2"),
  system.file("external/bioclim/current/bio4.grd", package="biomod2"),
  system.file("external/bioclim/current/bio7.grd", package="biomod2"),
  system.file("external/bioclim/current/bio11.grd", package="biomod2"),
  system.file("external/bioclim/current/bio12.grd", package="biomod2"))

# Keep only points where we have info
myExpl <- extract(myExpl, myRespXY)

# 1. Formatting Data
myBiomodData <- BIOMOD_FormattingData(resp.var = myResp, expl.var = myExpl, resp.xy = myRespXY, resp.name = myRespName)

# 2. Defining Models Options using default options.
myBiomodOption <- BIOMOD_ModelingOptions()

# 3. Doing Modelisation
myBiomodModelOut <- BIOMOD_Modeling(myBiomodData, models = c('SRE','RF'), models.options = myBiomodOption, NbRunEval=1, DataSplit=70, Yweights=NULL, VarImport=0, models.eval.meth = c('ROC'), rescal.all.models = FALSE, do.full.models = FALSE)

# 4 Projection on current environemntal conditions
myBiomodProjection <- BIOMOD_Projection(modeling.output = myBiomodModelOut, new.env = data.frame(myExpl), proj.name = 'current', selected.models = 'all')

# 5. Get projection under data.frame format
myProjDF <- get_predictions(myBiomodProjection, as.data.frame=TRUE)
evaluate

biomod2 modelling outputs evaluation

**Description**

This function will evaluate biomod2 modelling output for given metrics (e.g 'TSS', 'ROC'...) for a given dataset.

**Usage**

```r
evaluate(model, data, stat, as.array=FALSE)
```

**Arguments**

- `model`: the model you want evaluate (either "BIOMOD.models.out", "BIOMOD.EnsembleModeling.out" or "biomod2_model")
- `data`: the data set on which you want to perform analyses. Must be a dataset with first column containing the observed data for your species. The flowing columns must be the explanatory variables at observed points. Be sure that columns names of your dataset are the name of your species then the names of variables used for building models at previous steps.
- `stat`: vector of statistic metrics names (e.g 'TSS','ROC') you want to perform. (see BIOMOD_Modeling to get the list of all available metrics)
- `as.array`: logical, (FALSE by default) if FALSE a list of evaluation tables is returned (one item by models). If TRUE, the output will be return under 'classical' biomod2 array objects (see BIOMOD_Projection)

**Details**

Given model predictive score is evaluated on the new data set. It is done comparing binary transformed model predictions (on data set) to species occurrences (first column of data arg). A list of available evaluation metrics is given in BIOMOD_Modeling help file. For metrics that compared binary/binary data, a set of threshold will be test to transform continuous model prediction within binary ones. The return scores are the ones obtained for the threshold optimising tested metric (best score).
Value

a list or an array containing for each evaluation metric the score, the threshold considered to transform continuous data into binary ones (for all metrics excepted 'ROC') and associated sensibility and specificity.

Author(s)

Damien Georges

See Also

`biomod_modeling`, `biomod_ensemblemodeling`, `variables_importance`

Examples

```r
species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv", package="biomod2"), row.names = 1)
head(DataSpecies)

the name of studied species
myRespName <- 'GuloGulo'

the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])

the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]

Environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExpl1 = stack(system.file("external/bioclim/current/bio3.grd", package="biomod2"),
 system.file("external/bioclim/current/bio4.grd", package="biomod2"),
 system.file("external/bioclim/current/bio7.grd", package="biomod2"),
 system.file("external/bioclim/current/bio11.grd", package="biomod2"),
 system.file("external/bioclim/current/bio12.grd", package="biomod2"))

1. Formatting Data
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
 expl.var = myExpl1,
 resp.xy = myRespXY,
 resp.name = myRespName)

2. Defining Models Options using default options.
myBiomodOption <- BIOMOD_ModelingOptions()
```
# 3. Doing Modelisation

```r
myBiomodModelOut <- BIOMOD_Modeling(myBiomodData,
 models = c('SRE','CTA','RF'),
 models.options = myBiomodOption,
 NbRunEval=1,
 DataSplit=80,
 Yweights=NULL,
 VarImport=3,
 models.eval.meth = c('TSS'),
 SaveObj = TRUE,
 rescal.all.models = FALSE,
 do.full.models = FALSE,
 modeling.id='test')
```

# 4. Evaluate model over another dataset (here the full one)

```r
creation of suitable dataset
data <- cbind(GuloGulo=get_formal_data(myBiomodModelOut,'resp.var'),
 get_formal_data(myBiomodModelOut,'expl.var'))

evaluation
evaluate(myBiomodModelOut, data=data, stat=c('ROC','TSS'))
```

---

**FilteringTransformation**

*Convert species' probability of occurrence into binary presence-absence data using a predefined threshold*

---

**Description**

Function that converts an object containing probability values into a filtered object according to a pre-defined threshold(s).

**Usage**

```r
S4 method for signature 'numeric'
FilteringTransformation(data, threshold)

S4 method for signature 'matrix'
FilteringTransformation(data, threshold)

S4 method for signature 'data.frame'
FilteringTransformation(data, threshold)

S4 method for signature 'array'
FilteringTransformation(data, threshold)
```
# FilteringTransformation

## S4 method for signature 'RasterLayer'

```r
FilteringTransformation(data, threshold)
```

## S4 method for signature 'RasterStack'

```r
FilteringTransformation(data, threshold)
```

### Arguments

- **data**: a numeric vector, a matrix, a data.frame, a RasterLayer or a RasterStack containing the data to be converted.
- **threshold**: a numeric value or a vector containing the threshold to be used for converting data.

### Details

If data is a vector or a raster object, then the threshold should be a numeric value. If data is matrix, data.frame or RasterStack, then the threshold should have, in theory, as many values as the number of columns or layers to transform. In the particular case that the data to convert is a matrix/data.frame with several columns or a RasterStack with several layers and the threshold is a single numeric value, the same threshold will be applied to all columns (resp. layers).

### Value

An object of the same class than data with the values of data if superior to threshold and 0 if not.

### Methods

- `signature(data = "data.frame")`
- `signature(data = "matrix")`
- `signature(data = "numeric")`
- `signature(data = "RasterBrick")`
- `signature(data = "RasterLayer")`
- `signature(data = "RasterStack")`

### Author(s)

Wilfried Thuiller, Damien Georges

### See Also

help
Find.Optim.Stat

Examples

```r
xx <- rnorm(50,10)
yy <- FilteringTransformation(xx, 10)
cbind(xx, yy)
```

---

Find.Optim.Stat  
*Calculate the best score according to a given evaluation method*

Description

Find.Optim.Stat is an internal `biomod2` function to find the threshold to convert continuous values into binary ones leading to the best score for a given evaluation metric.

Usage

```r
Find.Optim.Stat(Stat='TSS',
 Fit, Obs,
 Nb.thresh.test = 100,
 Fixed.thresh = NULL)
```

Arguments

- **Stat**: either 'ROC', 'TSS', 'KAPPA', 'ACCURACY', 'BIAS', 'POD', 'FAR', 'POFD', 'SR', 'CSI', 'ETS', 'HK', 'HSS', 'OR' or 'ORSS'
- **Fit**: vector of fitted values (continuous)
- **Obs**: vector of observed values (binary)
- **Nb.thresh.test**: integer, the number of thresholds tested over the range of fitted value
- **Fixed.thresh**: integer, if not NULL, the only threshold value tested

Details

Please refer to `BIOMOD_Modeling` to get more information about this metric. If you give a `Fixed.thresh`, no optimisation will be done. Only the score for this threshold will be returned.

Value

A 1 row x 4 column matrix:

- `best.iter`: the best score obtained for chosen statistic
- `cutoff`: the associated cut-off used for transform fitted vector into binary
- `sensibility`: the sensibility with this threshold
- `specificity`: the specificity with this threshold
full_suffling  
data set shuffling tool

Description
This function is developer tool to shuffle elegantly data-set. This function suffle one column of a given data-set

Usage
full_suffling(x,id=NULL)

Arguments
x  a data.frame you want to suffle
id  the columns you want to shuffle
getStatOptimValue

Value

a data.frame with selected columns suffled compared to the original table.

Author(s)

Damien Georges

See Also

variables_importance

Examples

xx <- matrix(rep(1:10,3),10,3)
full_suffling(xx,c(1,2))

getStatOptimValue

get the optimal score of evaluation statistical metrics

Description

getStatOptimValue is an internal biomod2 function to get the best value that some referenced evaluation statistical metrics.

Usage

getStatOptimValue(stat)

Arguments

stat either 'TSS', 'KAPPA', 'ACCURACY', 'BIAS', 'POD', 'FAR', 'POFD', 'SR', 'CSI', 'ETS', 'HK', 'HSS', 'OR' or 'ORSS'

Details

Please refer to BIOMOD_Modeling to get more information about this metrics.

Value

The best value that stat could rise.

Author(s)

Damien Georges

See Also

BIOMOD_Modeling, calculate.stat, Find.Optim.Stat
Examples

getStatOptimValue('TSS')
getStatOptimValue('KAPPA')
getStatOptimValue('POFD')

---

level.plot

Plot 2-dimensional data for visualizing distribution of species or environment

---

Description

Enables to plot data with 2-dimensional geographical coordinates

Usage

level.plot( data.in,
    XY,
    color.gradient = "red",
    cex = 1,
    level.range = c(min(data.in), max(data.in)),
    show.scale = TRUE,
    title = "level plot",
    SRC=FALSE,
    save.file="no",
    ImageSize="small",
    AddPresAbs=NULL,
    PresAbsSymbol=c(cex*0.8,16,4),
    ...
)

Arguments

data.in the data you want to visualize
XY a 2 columns matrix of the same length as data.in giving the coordinates of the data points
color.gradient available : red, grey and blue
cex to change the point size : >1 will increase size, <1 will decrease it
level.range the range of values for which you want the color gradient to be used, uselfull to increase the resolution of the graph especially if you have extreme values (see examples section)
show.scale a feature for just keeping the graph without the scale (if set to False)
title the title wanted for the graph
SRC if TRUE, the function recognizes the values as being 'Species Range Change' (see XXX) values and associates the appropriate colors to them
save.file can be set to "pdf", "jpeg" or "tiff" to save the plot. Pdf options can be changed by setting the default values of pdf.options().
level.plot

ImageSize  The image size for JPEG and TIFF files saved to disk. Available: 'small', 'standard' and 'large'

AddPresAbs  Optional: adds the presences and absences used for calibration to the plot. Data must be entered as a matrix/dataframe with 3 columns (in this order): X-coordinate, Y-coordinate, Presence(1) or Absence(0). X and Y coordinates must be in the same system as the plot.

PresAbsSymbol  Optional: a 3 element vector giving the symbols to be used by the AddPresAbs argument for plotting. The elements of the vector must be in this order: size of presence/absence symbols given as a multiplication factor of the 'cex' value entered in the function (e.g. a value of 0.5 means that the symbols will be drawn at a size = 0.5*cex value entered in the function), symbol (in PCH code) to be used for presences, symbol (in PCH code) to be used for absences. An example of input vector for this parameter is 'c(0.4,16,4)'

extra args

Author(s)
Bruno Lafourcade

See Also
multiple.plot

Examples

```r
Not run:
species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv", package="biomod2"), row.names = 1)

the name of studied species
myRespName <- 'GuloGulo'

the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])

the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]

level.plot(data.in=myResp, XY=myRespXY)

End(Not run)
```
Description

makeFormula is an internal \texttt{biomod2} function that can be useful to help users to build easily some standardized formula used later by statistical models.

Usage

\begin{verbatim}
makeFormula(respName,
explVar,
  type = 'simple',
  interaction.level = 0,
  ...)
\end{verbatim}

Arguments

- \texttt{respName} a character indicating the response variable name
- \texttt{explVar} a matrix or a data.frame, the explanatory variables table that will be considered at modelling step
- \texttt{type} either 'simple', 'quadratic', 'polynomial' or 's_smoother' defining the type of formula you want to build
- \texttt{interaction.level} an integer, the interaction level depth between explanatory variables
- ... some additional arguments (see details)

Details

It’s advise to give only a subset of explVar table to avoid useless memory consuming. If some explanatory variables are factorial ones, you have to give a data.frame for explVar where associated columns are define as factor.

... argument availables values are :

- \texttt{k} the smooting parameter value (used only if type = 's_smoother') corespunding to k parameter of \texttt{mgcv} s or df \texttt{gam} s arguments.

Value

A link[stats]{formula} class object that can be directly given to most of \texttt{R} statistical models.

Author(s)

Damien Georges
models_scores_graph

See Also

BIOMOD_ModelingOptions, link[stats]{formula}

Examples

```r
create simulated data
myResp <- sample(c(0,1),20, replace=TRUE)
myExpl <- matrix(runif(60), ncol=3, dimnames=list(NULL,c('var1','var2','var3')))

create a formula
myFormula <- makeformula(respName = 'myResp',
 explVar = head(myExpl),
 type = 'quadratic',
 interaction.level = 0)

show formula created
myFormula
```

models_scores_graph  Produce models evaluation bi-dimensional graph

Description

This function is a graphic tool to represent evaluation scores of models produced with biomod2 according to 2 different evaluation methods. Models can be grouped in several ways (by algo, by CV run, ...) to highlight potential differences in models quality due to chosen models, cross validation sampling bias,... Each point represents the average evaluation score across each group. Lines represents standard deviation of evaluation scores of the group.

Usage

```r
models_scores_graph(obj,
 metrics = NULL,
 by = 'models',
 plot = TRUE,
 ...)
```

Arguments

- **obj**  
a "BIOMOD.models.out" (returned by BIOMOD_Modeling) or a "BIOMOD.EnsembleModeling.out" (returned by BIOMOD_EnsembleModeling)
- **metrics**  
character vector of 2 chosen metrics (e.g c("ROC", "TSS")); if not filled the two first evaluation methods computed at modeling stage will be selected.
- **by**  
character ('models'), the way evaluation scores are grouped. Should be one of 'models', 'algos', 'CV_run' or 'data_set' (see detail section)
- **plot**  
logical (TRUE), does plot should be produced
- **...**  
additional graphical arguments (see details)
**Details**

by argument description:

by arg refers to the way models scores will be combined to compute mean and sd. It should take the following values:

- **models**: group evaluation scores according to top level models. Top level models should be for instance GLM, GAM, RF, SRE... in "BIOMOD.models.out" input case whereas it should be EMcaByTSS (committee averaging using TSS score), EMwmeanByROC (weighted mean using ROC scores),... or whatever in "BIOMOD.EnsembleModeling.out" input case.
- **algos**: If you work with "BIOMOD.models.out" then algos is equivalent to models. If you work with "BIOMOD.EnsembleModeling.out" then it refer to formal models i.e. GLM, GAM, RF, SRE... (should also be mergedAlgo in this case).
- **cv_run**: the cross validation run e.g. run1, run2,... Should be mergedRun in EnsembleModels input case.
- **data_set**: the data set (resp. pseudo absences data set) used to group scores e.g PA1, PA2,... if pseudo absences sampling have been computed or AllData inf not. Should also be mergedData in EnsembleModels case.

Additional arguments (…):

Additional graphical parameters should be.

- **xlim** the graphical range represent for the first evaluation metric
- **ylim** the graphical range represent for the second evaluation metric
- **main** main plot title

**Value**

A ggplot2 plotting object is return. It means that user should then easily customize this plot (see example)

**Note**


**Author(s)**

Damien Georges

**See Also**

BIOMOD_Modeling, BIOMOD_EnsembleModeling
Examples

```r
this example is based on BIOMOD_Modeling function example
example(BIOMOD_Modeling)

plot evaluation models score graph

by models
gg1 <- models_scores_graph(myBiomodModelOut,
 by = 'models',
 metrics = c('ROC','TSS'))

we see a influence of model selected on models capabilities
e.g. RF are much better than SRE

by cross validation run
gg2 <- models_scores_graph(myBiomodModelOut,
 by = 'cv_run',
 metrics = c('ROC','TSS'))

there is no difference in models quality if we focus on
cross validation sampling

some graphical customisations

ggl_custom <-
 gg1 +
 ggtitle("Diff between RF and SRE evaluation scores") + ## add title
 scale_colour_manual(values=c("green", "blue")) ## change colors
```

Description

This function allows a direct comparison of the predictions across models. The maps produced are the same than with the `level.plot` function

Usage

```r
multiple.plot(Data,
 coor,
 color.gradient='red',
 plots.per.window=9,
 cex=1,
 save.file="no",
 name="multiple plot",
 ImageSize = "small",
 AddPresAbs = NULL,
 PresAbsSymbol = c(cex * 0.8, 16, 4))
```
multiple.plot

Arguments

Data the data to visualise

coor a 2 columns matrix of the same length as data.in giving the coordinates of the
data points

color.gradient available : 'red', 'grey' and 'blue'

plots.per.window the number of plots to visualise per graphic window

cex to change the point size : >1 will increase size, <1 will decrease it

save.file can be set to "pdf", "jpeg" or "tiff" to save the plot. Pdf options can be changed
by setting the default values of pdf.options().

name the name of the file produced if save.file is different to "no" (extensions are
already included)

ImageSize The image size for JPEG and TIFF files saved to disk. Available : 'small',
'standard' and 'large'

AddPresAbs Optional: adds the presences and absences used for calibration to the plot.
Data must be entered as a matrix/dataframe with 3 columns (in this order): X-coordi-
inate, Y-coordinate, Presence(1) or Absence(0). X and Y coordinates must
be in the same system as the plot.

PresAbsSymbol Optional: a 3 element vector giving the symbols to be used by the AddPresAbs
argument for plotting. The elements of the vector must be in this order: size
of presence/absence symbols given as a multiplication factor of the 'cex' value
entered in the function (e.g. a value of 0.5 means that the symbols will be drawn
at a size = 0.5*cex value entered in the function), symbol (in PCH code) to be
used for presences, symbol (in PCH code) to be used for absences. An example
of input vector for this parameter is 'c(0.4,16,4)'

Author(s)

Wilfried Thuiller, Bruno Lafourcade

See Also

level.plot

Examples

## Not run:
#
# species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv",
package="biomod2"), row.names = 1)

# the name of studied species
myRespName <- c("ConnochaetesGnou", "GuloGulo", "PantheraOnca",
"PteropusGiganteus", "TenrecEcaudatus", "VulpesVulpes")

# the presence/absences data for our species
myResp <- DataSpecies[,myRespName]
# the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]

multiple.plot(Data = myResp,
               coor = myRespCoord)

## End(Not run)

---

Print_Default_ModelingOptions

*Get default values of BIOMOD inner models’ options*

---

**Description**

This function print the default parameters used to build each model.

**Usage**

```r
Print_Default_ModelingOptions()
```

**Details**

This function is useful to parameterize the selected models. It gives a formatted list of all parameters the user can modify. You can copy this function output, modify all parameters you want in a text editor and paste the modified string as argument to `(BIOMOD_ModelingOptions)` function.

**Value**

Nothing returned.

**Author(s)**

Wilfried Thuiller, Damien Georges

**Examples**

```r
print default models options
Print_Default_ModelingOptions()
```
**Description**

Using a variety of parameters in modelling will inevitably bring variability in predictions, especially when it comes to making future predictions. This function enables an overall viewing of the future predictions range per species and gives the likelihood of range shift estimations. It will calculate the optimal way for condensing a defined proportion (50, 75, 90 and 95% per default) of the data.

**Usage**

\[
\text{ProbDensFunc}(\text{initial}, \text{projections}, \text{groups = NULL, plothist = TRUE, cvsn = TRUE, resolution = 5, filename = NULL, ...})
\]

**Arguments**

- **initial**: a vector (resp. a SpatialPointsDataFrame) in a binary format (ones and zeros) representing the current distribution of a species which will be used as a reference for the range change calculations.
- **projections**: a matrix (resp. a rasterStack) grouping all the predictions where each column is a single prediction. Make sure you keep projections in the same order as the initial vector (line1=site1, line2=site2, etc.).
- **plothist**: set to TRUE to plot the range change histogram.
- **cvsn**: stands for "current vs new". If true, the range change calculations will be of two types: the percentage of cells currently occupied by the species to be lost, and the relative percentage of cells currently unoccupied but projected to be, namely 'new' cells, compared to current surface range.
- **groups**: an option for ungrouping the projections enabling a separated visualisation of the prediction range per given group. A matrix is expected where each column is a single prediction and each line is giving details of one parameter (See the examples section).
- **resolution**: the step used for classes of prediction in graphics. The default value is 5.
- **filename**: the name of file (with extension) where plots will be stored. If not NULL, no plotting windows will be open.
- **...**: further arguments:
  - `lim`: ordered numeric vector indicating the proportion of data to consider for histogramme representation (by default: c(0.5, 0.75, 0.9, 0.95))
  - `nb.points.max`: the maximum number of points to sample, 25000 by default (useful for huge raster* objects)
Details

The future range changes are calculated as a percentage of the species' present state. For example, if a species currently occupies 100 cells and is estimated by a model to cover 120 cells in the future, the range change will be +20%.

Resolution: Note that modifying the resolution will directly influence the probability scale. Bigger classes will cumulate a greater number of predictions and therefore represent a greater fraction of the total predictions. The probability is in fact that of the class and not of isolated events.

Value

This is a plotting function, no objects are returned or created.

Author(s)

Wilfried Thuiller, Bruno Lafourcade, Damien Georges

See Also

BIOMOD_Projection, BIOMOD_EnsembleForecasting

Examples

## Not run:
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv", package="biomod2"), row.names = 1)
head(DataSpecies)

# the name of studied species
myRespName <- 'GuloGulo'

# the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])

# remove all 0 from response vector to work with
# presence only data (Pseudo Absences selections)
rm_id <- which(myResp==0)
myResp <- myResp[-rm_id]

# the XY coordinates of species data
myRespXY <- DataSpecies[-rm_id,c("X_WGS84","Y_WGS84")]

# Environmental variables extracted from BIOCLIM
myExpl = stack( system.file("external/bioclim/current/bio3.grd", package="biomod2"),
system.file("external/bioclim/current/bio4.grd", package="biomod2"),
system.file("external/bioclim/current/bio7.grd", package="biomod2"),...
# 1. Formatting Data
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
  expl.var = myExpl,
  resp.xy = myRespXY,
  resp.name = myRespName,
  PA.nb.rep=3)

# 2. Defining Models Options using default options.
myBiomodOption <- BIOMOD_ModelingOptions()

# 3. Doing Modelisation
myBiomodModelOut <- BIOMOD_Modeling(myBiomodData,
  models = c('CTA','RF','GLM','GAM','ANN','MARS'),
  models.options = myBiomodOption,
  NbRunEval=5,
  DataSplit=70,
  Prevalence=0.5,
  models.eval.meth = c('TSS'),
  do.full.models = FALSE,
  rescal.all.models=T,
  modeling.id='test')

# 4. Build ensemble-models that will be taken as reference
myBiomodEM <- BIOMOD_EnsembleModeling(modeling.output = myBiomodModelOut,
  chosen.models = 'all',
  em.by = 'all',
  eval.metric = c('TSS'),
  eval.metric.quality.threshold = c(0.7),
  prob.mean = TRUE,
  prob.median = TRUE)

# 5. Projection on future environmental conditions
myExpl_fut <- stack( system.file("external/bioclim/future/bio3.grd",
  package="biomod2"),
  system.file("external/bioclim/future/bio4.grd",
  package="biomod2"),
  system.file("external/bioclim/future/bio7.grd",
  package="biomod2"),
  system.file("external/bioclim/future/bio11.grd",
  package="biomod2"),
  system.file("external/bioclim/future/bio12.grd",
  package="biomod2"))

myBiomodProjection <- BIOMOD_Projection(modeling.output = myBiomodModelOut,
  new.env = myExpl_fut,
  proj.name = 'future')
randomise_data

data set shuffling tool

Description

This function is wrapper to shuffle elegantly data-set. This function shuffle selected columns of a given data-set according to a defined shuffling algorithm.
Usage
randomise_data(data, variable, method)

Arguments
data a data.frame you want to shuffle
variable the variables names or columns id you want to shuffle
method the randomisation method (only 'full_rand' available yet)

Value
a data.frame with selected columns shuffled compared to the original table.

Author(s)
Damien Georges

See Also
variables_importance, full_suffling

Examples
xx <- data.frame(a=1:10, b=11:20, c=21:30)
randomise_data(data=xx, variable='b', method='full_rand')

response.plot Analysis of the response curves of a model within Biomod

Description
Depreciated function, please use response.plot2 instead

Usage
response.plot(model,
    Data,
    show.variables=seq(1:ncol(Data)),
    save.file="no",
    name="response_curve",
    ImageSize=480,
    plot=TRUE)
response.plot2

Arguments

model the model for which you want the response curves to be plotted. Compatible with GAM, GBM, GLM, ANN, CTA, RF, FDA and MARS.

Data the variables for which you want the response curves to be plotted. A data frame is wanted with one column per variable. They have to have the same names as the ones used to calibrate the model.

show.variables give in the column numbers of 'Data' for selecting the variables that are wanted for plotting

save.file can be set to "pdf", "jpeg" or "tiff" to save the plot. Pdf options can be changed by setting the default values of pdf.options().

name the name of the file produced if save.file is different to "no" (extensions are already included)

ImageSize the size of the image in pixels if save.file is different to "no". Affects "jpeg" and "tiff" outputs only. Default if 480 pixels which is the R default.

plot if TRUE (the default) then a plot is produced. If not, an array containing predictions is returned (see details)

Details

Depreciated function, please use response.plot2 instead.

Author(s)

Wilfried Thuiller

References


Description

Adaptation of the Evaluation Strip method proposed by Elith et al.(2005). This function enables to plot the response curves of a model independently of the algorithm used for building the model. It therefore permits a direct comparison of predicted responses from the different statistical approaches on the same data.
Usage

response.plot2( models, Data, show.variables=seq(1:ncol(Data)), do.bivariate = FALSE, fixed.var.metric = 'mean', save.file="no", name="response_curve", ImageSize=480, plot=TRUE, ...)

Arguments

models a character vector specifying the models for which the response curves have to be plotted. Compatible with GAM, GBM, GLM, ANN, CTA, RF, FDA, MARS and MAXENT.

Data a dataframe containing the variables for which the response curves have to be plotted. They must have the same names as the ones used to calibrate the model. RasterStack are also supported.

show.variables the names or the column numbers of 'Data' for selecting the variables to be plotted. By default all columns are taken

do.bivariate 'logical', if FALSE (default), the predicted response curves are plotted for every single variable independently (2-D dimension). If TRUE, the predicted response curves are represented in 3-D for all pairs of variables

fixed.var.metric either 'mean' (default), 'median', 'min' or 'max' specifying the statistic used to fix as constant the remaining variables when the predicted response is estimated for one of the variables

save.file can be set to "pdf", "jpeg" or "tiff" to save the plot. Pdf options can be changed by setting the default values of pdf.options().

name the name of the file produced if save.file is different to "no" (extensions are already included)

ImageSize the size of the image in pixels if save.file is different to "no". Affects "jpeg" and "tiff" outputs only. Default if 480 pixels which is the R default.

plot if TRUE (the default) then a plot is produced

... further arguments:

• data_species : vector containing data species occurrences. Have to match with Data. If given, the statistic used to fix variables value will be calculated only over presences points. (Considered only if Data is under table format)

• col : vector of colors to be used (only for univariate case)

• lty : vector of lines types to be used

• main : character, the title of the graph (default one based on first model class is automatically produced if not refered)
• display_title: logical, display or not graph title
• legend: logical, add legend to plot (only for univariate case)

Details

For building the predicted response curves, n-1 variables are set constant to a fixed value (mean, me-
dian, min or max i.e fixed.var.metric arg) and only the remaining one (resp. 2 for 3D response
plot) is varying across its whole range (given by Data). n the case of categorical variable, the most
represented class is taken. The variations observed and the curve thus obtained shows the sensibil-
ity of the model to that specific variable. This method does not account for interactions between
variables. In the evaluation strip initially proposed by Elith et al. 2005 the remaining variables are
set to the mean.

Value

a 4D array is returned. It contains the necessary outputs to produce the plots. This is useful to make
your own custom response plot graphics.

Array returned structure:

• First dimension: the dimension of the predictions
• Second dimension: 2 or 3 columns: The first one (resp. the first two) is (are) the explanatory
variable(s) to plot, the last one, the probability of occurrence
• Third dimension: The set of environmental variables for which the response.plot was asked to
run.
• Fourth dimension: the selected models

Author(s)

Wilfried Thuiller, Damien Georgs

References

and robust method for plotting predicted responses from species distribution models. Ecological
Modelling 186, 280-289.

See Also

BIOMOD_Modeling

Examples

## Not run:
# species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv",
package="biomod2"), row.names = 1)

head(DataSpecies)

# the name of studied species
myRespName <- 'VulpesVulpes'

# the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])

# the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]

# Environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExpl = stack( system.file("external/bioclim/current/bio3.grd", package="biomod2"),
    system.file("external/bioclim/current/bio4.grd", package="biomod2"),
    system.file("external/bioclim/current/bio7.grd", package="biomod2"),
    system.file("external/bioclim/current/bio11.grd", package="biomod2"),
    system.file("external/bioclim/current/bio12.grd", package="biomod2"))

# 1. Formatting Data
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp, expl.var = myExpl, resp.xy = myRespXY, resp.name = myRespName)

# 2. Defining Models Options using default options.
myBiomodOption <- BIOMOD_ModelingOptions()

# 3. Doing Modelisation
myBiomodModelOut <- BIOMOD_Modeling( myBiomodData, models = c('RF','GLM'), models.options = myBiomodOption, NbRunEval=2, DataSplit=80, Prevalence=0.5, VarImport=0, models.eval.meth = c('TSS'), SaveObj = TRUE, do.full.models=FALSE)

# 4. Plot response curves
# 4.1 Load the models for which we want to extract the predicted response curves
myGLMs <- BIOMOD_LoadModels(myBiomodModelOut, models='GLM')

# 4.2 plot 2D response plots
myRespPlot2D <- response.plot2(models = myGLMs, Data = get_formal_data(myBiomodModelOut,'expl.var'), show.variables= get_formal_data(myBiomodModelOut,'expl.var.names'),
sample.factor.levels

Tool to ensure the sampling of all levels of a factorial variable

Description

This function will sample randomly an element of each level of all the factorial variables contains in a Raster* object or a data.frame

Usage

sample.factor.levels(x, mask.out = NULL, mask.in = NULL)

Arguments

x a Raster* object or a data.frame

mask.out a Raster/data.frame mask containing area that have already been sampled. The factor levels within this mask will not be sampled.

mask.in a Raster/list of Raster/data.frame mask (potentially a stack of masks) indicating areas were we want to sample our factor level in priority. Note that if after having explore this masks some levels of the considered factorial variable remains unsampled, this levels will be sampled in the reference input object (here 'x')
Details

In case any factorial variable is found in the input object then NULL is returned.

Value

a numeric vector the number (cell number for Raster* objects or row number for data.frame) where each will refer to a single level of a single factorial variable.

Note

- The x/mask.out/mask.in should be coherent in term of dimension (same number of rows for data.frame and same number of rows, column, identical resolution and projection coordinates system for Raster* objects) - If mask.in contains several masks (RasterStack or multi-column data.frame) then the order of the mask matter. The mask will be considered successively. The first will be use prioritarily to sample our variable factor levels and so on. - Raster* masks will be understood as: - NA: out of mask - not NA: in mask - data.frame masks will be understood as: - FALSE: out of mask - TRUE: in mask

Author(s)

damien g.

Examples

```r
example with raster* object --------
create a factorial raster
r1 <- raster()
one level
r1[] <- 1; r1[1] <- 2; r1[2:3] <- 3
r1 <- as.factor(r1)
create a continuous raster
r2 <- raster()
r2[] <- rnorm(ncell(r2))
pull the raster into a RasterStack
stk <- stack(r1, r2)
is.factor(stk)

define a mask for already sampled points
mask.out <- r1
mask.out[] <- NA; mask.out[2:3] <- 1

define a list of mask where we want to sample in priority
mask.in.1 <- mask.in.2 <- r1
mask.in.1[1:10] <- NA ## only level 1 should be sampled in this mask
mask.in.2[1] <- NA ## only levels 1 and 3 should be sampled in this mask
mask.in <- list(mask.in.1 = mask.in.1, mask.in.2 = mask.in.2)

test different version of the function
sample.factor.levels(stk, mask.out = mask.out)
sample.factor.levels(stk, mask.in = mask.in)
sample.factor.levels(stk, mask.out = mask.out, mask.in = mask.in)
```
SampleMat2

Sample binary vector

Description

SampleMat2 is an internal biomod2 function that can help user to sample a binary vector keeping the same proportion of 0s and 1s than in the initial vector.

Usage

SampleMat2(ref, ratio, as.logi=FALSE)

Arguments

ref a binary vector
ratio the proportion of ref to sample
as.logi logical, if FALSE (default) id of cell will be return; if TRUE, logical vector of same length than ref will be return

Details

This function can be useful to help users to select a part of initial dataset that will be only kept for all validation procedures.

Value

A list of 2 elements is returned :

- calibration Ids of cells selected for calibration (1st sample)
- evaluation Ids of cells selected for evaluation (1st sample complementary)

Author(s)

Damien Georges

See Also

BIOMOD_FormatingData

Examples

a <- sample(c(0,1),100, replace=TRUE)
SampleMat2(ref=a, ratio=0.7)
**Surface Range Envelope**

**Description**

Run a rectilinear surface range envelop (equivalent to BIOCLIM) using the extreme percentiles as recommended by Nix or Busby. The SRE performs a simple analysis of within which range of each variable the data is recorded and renders predictions.

**Usage**

```r
sre(Response = NULL,
 Explanatory = NULL,
 NewData = NULL,
 Quant=0.025,
 return_extremcond = FALSE)
```

**Arguments**

- **Response**
  - a vector (resp. a matrix/data.frame, a SpatialPointsDataFrame or a RasterLayer) giving your species’ presences and absences data

- **Explanatory**
  - a matrix (resp. a data.frame, a SpatialPointsDataFrame or a RasterStack) containing the environmental variables for the sites given in Response. It must have as many rows as there are elements in Response.

- **NewData**
  - The data for which you want to render predictions with the sre. It must be a matrix (resp. a data.frame, a SpatialPointsDataFrame or a RasterStack) of the same type as the one given in Explanatory and with precisely the same variable names.

- **Quant**
  - the value defines the most extreme values for each variable not to be taken into account for determining the tolerance boundaries for the considered species.

- **return_extremcond**
  - boolean, if TRUE a matrix containing extrem conditions supported is returned

**Details**

The more variables you put in, the more restrictive your model will be (if non-colinear variables).

This method is very much influenced by the data input, and more specifically by the extremes. Where a linear model can discriminate the extreme values from the main tendency, the SRE considers it equal as any other data point which leads to notable changes in predictions. Note that, as a consequence of its functioning, the predictions are directly given in binary, a site being either potentially suitable for all the variables, either out of bounds for at least one variable and therefore considered unsuitable.

The quants argument determines the threshold at which the data will be taken into account for calibration: the default of 0.05 induces that the 5% most extreme values will be avoided for each variable on each side of its distribution along the gradient. So it in fact takes 5% away at each end of the variables distribution, giving a total of 10% of data not considered.
sre

Value
A vector (resp. a RasterLayer) of the same length as there are rows in NewData giving the prediction in binary (1=presence, 0=absence)

Author(s)
Wilfried Thuiller, Bruno Lafourcade, Damien Georges

See Also
BIOMOD_Modeling, BIOMOD_ModelingOptions, BIOMOD_Projection

Examples

```r
species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv", package="biomod2"), row.names = 1)
head(DataSpecies)

the name of studied species
myRespName <- 'GuloGulo' '#PteropusGiganteus'

the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])

the XY coordinates of species data
myRespXY <- DataSpecies[which(myResp==1),c("X_WGS84","Y_WGS84")]

Environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExpl = stack(system.file("external/bioclim/current/bio3.grd", package="biomod2"),
 system.file("external/bioclim/current/bio4.grd", package="biomod2"),
 system.file("external/bioclim/current/bio7.grd", package="biomod2"),
 system.file("external/bioclim/current/bio11.grd", package="biomod2"),
 system.file("external/bioclim/current/bio12.grd", package="biomod2"))

we build a raster layer based on environmental rasters for our response variable
myResp <- reclassify(subset(myExpl,1,drop=TRUE), c(-Inf,Inf,0))
myResp[cellFromXY(myResp,myRespXY)] <- 1

Compute some SRE for several quantile values
g <- sre(Response = myResp, Explanatory = myExpl, NewData=myExpl, Quant=0)
gg <- sre(Response = myResp, Explanatory = myExpl, NewData=myExpl, Quant=0.025)
ggg <- sre(Response = myResp, Explanatory = myExpl, NewData=myExpl, Quant=0.05)

visualise results
```

update_objects

update biomod2 objects

Description

This function is wrapper to update objects construct with a old version of biomod2 to a current one

Usage

update_objects(obj, recursive=TRUE)

Arguments

obj a biomod2 object you want to update (e.g. 'BIOMOD.formated.data', 'biomod2_model' object)
recursive logical, if TRUE all objects on which updated object is based will be also updated

Details

This function will add/change/delete all object slots that have evolved between 2 versions of the package. If necessary, objects stored on hard drive will also be updated.

Value

the updated version of the biomod2 object is return

Author(s)

Damien Georges

See Also

variables_importance, full_suffling

Examples

## not done yet ##

par(mfrow=c(2,2), mar=c(6, 5, 5, 3))
plot(myResp, main=paste(myRespName,"original distrib."))
plot(g, main="full data calibration")
plot(gg, main="Perc025")
plot(ggg, main="Perc05")
variables_importance

Variables importance calculation

Description
This function will return a variable importance value for each variable involved within your model.

Usage
variables_importance(model, data, method="full_rand", nb_rand=1, ...)

Arguments

  model       the model you want to study variables importance (one of the models supported within biomod2, ensemble models are also supported)
  data        the data set on which you want to perform analyses
  method      the randomisation method (only 'full_rand' available yet)
  nb_rand     the number of permutation done for each variable
  ...         additional args (not implemented yet)

Details
It's more or less base on the same principle than randomforest variables importance algorithm. The principle is to shuffle a single variable of the given data. Make model prediction with this 'shuffled' data set. Then we compute a simple correlation (Pearson's by default) between references predictions and the 'shuffled' one. The return score is 1-corr(pred_ref,pred_shuffled). The highest the value, the more influence the variable has on the model. A value of this 0 assumes no influence of that variable on the model. Note that this technique does not account for interactions between the variables.

Value

  a list of class "BIOMOD_variables_importances" which contains:

  • mata data.frame containing variables importance scores for each permutation run.

Author(s)

  Damien Georges

See Also

  randomise_data, full_suffling
Examples

```r
xx <- data.frame(a=sample(c(0,1),100,replace=TRUE),
 b=rnorm(100),
 c=1:100)

mod <- glm(a~b+c, data=xx)

variables_importance(model=mod, data=xx[,c('b','c')], method="full_rand", nb_rand=3)
```
Index

*Topic **IO**
  BIOMOD.RangSize, 54

*Topic **datasets**
  BIOMOD.ConvertOldRun, 19
  BIOMOD.FormatingData, 31
  BIOMOD.LoadModels, 35
  CustomIndexMaker, 62

*Topic **distribution**
  ProbDensFunc, 80

*Topic **dplot**
  response.plot, 84
  response.plot2, 85

*Topic **ensemble**
  BIOMOD.EnsembleModeling.out-method, 6
  BIOMOD.stored.objects-class, 15

*Topic **evaluate**
  Find.Optim.Stat, 69

*Topic **evaluation**
  evaluate, 65
  Find.Optim.Stat, 69
  models.scores_graph, 75

*Topic **getteurs**
  biomod2.deprecated.functions, 17

*Topic **get**
  BIOMOD.EnsembleModeling.out-method, 6

*Topic **graph**
  models.scores_graph, 75

*Topic **importance**
  full_suffling, 70
  randomise_data, 83
  variables_importance, 95

*Topic **models, data, formatting**
  BIOMOD.formated.data-class, 7

*Topic **models, ensemble**
  BIOMOD.EnsembleModeling.out-class, 5

*Topic **models, formula, options**
  calculate.stat, 61
  DF_to.ARRAY, 63
  getStatOptimValue, 71
  makeFormula, 74
  SampleMat2, 91

*Topic **models, options**
  BIOMOD.Model.Options-class, 8

*Topic **models, projection, ensemble, forecast**
  BIOMOD.projection.out-class, 13

*Topic **models, projection, project, forecast**
  BIOMOD.projection.out-method, 14

*Topic **models**
  Find.Optim.Stat, 69

*Topic **models**
  BinaryTransformation, 3
  BIOMOD.EnsembleModeling.out-method, 6
  BIOMOD.models.out-class, 9
  BIOMOD.models.out-methods, 10
  BIOMOD.models.out-RemoveProperly, 11
  BIOMOD.stored.objects-class, 15
  biomod2_model-class, 18
  BIOMOD_ConvertOldRun, 19
  BIOMOD_EnsembleForecasting, 22
  BIOMOD_EnsembleModeling, 25
  BIOMOD_FormatingData, 31
  BIOMOD_LoadModels, 35
  BIOMOD_Modeling, 38
  BIOMOD_ModelingOptions, 42
  BIOMOD_Projection, 50
  CustomIndexMaker, 62
  evaluate, 65
  FilteringTransformation, 67
  Print_Default_ModelingOptions, 79
  response.plot, 84
  response.plot2, 85
sre, 92
*Topic **multivariate**
  BIOMOD_Modeling, 38
  BIOMOD_Projection, 50
  response.plot, 84
  response.plot2, 85
  sre, 92
*Topic **nonlinear**
  BIOMOD_Modeling, 38
  BIOMOD_Projection, 50
  response.plot, 84
  response.plot2, 85
*Topic **nonparametric**
  BIOMOD_Modeling, 38
  BIOMOD_Projection, 50
  response.plot, 84
  response.plot2, 85
*Topic **object**
  BIOMOD.stored.objects-class, 15
*Topic **optimize**
  ProbDensFunc, 80
*Topic **options,**
  Find.Optim.Stat, 69
*Topic **options,**
  BIOMOD_ModelingOptions, 42
  Print_Default_ModelingOptions, 79
*Topic **option**
  BIOMOD.models.out-class, 9
*Topic **package**
  biomod2-package, 3
*Topic **plot**
  level.plot, 72
  multiple.plot, 77
*Topic **predict**
  biomod2_model-class, 18
*Topic **random**
  full_shuffling, 70
  randomise_data, 83
  variables_importance, 95
*Topic **regression**
  BIOMOD_Modeling, 38
  BIOMOD_Projection, 50
  response.plot, 84
  response.plot2, 85
*Topic **scores**
  models_scores_graph, 75
*Topic **score**
  evaluate, 65

*Topic **storing**
  BIOMOD.stored.objects-class, 15
*Topic **suffle**
  full_shuffling, 70
  randomise_data, 83
  variables_importance, 95
*Topic **tree**
  BIOMOD_Modeling, 38
  BIOMOD_Projection, 50
  response.plot, 84
  response.plot2, 85
  Models.prepare.data
    (biomod2.inner-method), 18
  Models.prepare.data, BIOMOD.formated.data-method
    (biomod2.inner-method), 18
  Models.prepare.data, BIOMOD.formated.data.PA-method
    (biomod2.inner-method), 18
  Projection.do.proj
    (biomod2.inner-method), 18
  Projection.do.proj, ANY,RasterStack-method
    (biomod2.inner-method), 18
  Projection.do.proj, ANY,data.frame-method
    (biomod2.inner-method), 18
  transform.outputs
    (biomod2.inner-method), 18
  transform.outputs, array-method
    (biomod2.inner-method), 18
  transform.outputs, list-method
    (biomod2.inner-method), 18

ANN_biomod2_model
  (biomod2_model-class), 18
ANN_biomod2_model-class
  (biomod2_model-class), 18
array-method (BinaryTransformation), 3

bam, 39, 44
BinaryTransformation, 3
BinaryTransformation, (BinaryTransformation), 3
BinaryTransformation, array-method
  (BinaryTransformation), 3
BinaryTransformation, data.frame-method
  (BinaryTransformation), 3
BinaryTransformation, matrix-method
  (BinaryTransformation), 3
BinaryTransformation, numeric-method
  (BinaryTransformation), 3
biomod2_ensemble_model
  (biomod2_model-class), 18
biomod2_ensemble_model-class
  (biomod2_model-class), 18
biomod2_model (biomod2_model-class), 18
BIOMOD_ConvertOldRun, 19
BIOMOD_cv, 20
BIOMOD_EnsembleForecasting, 5, 13, 14, 22, 29, 81
BIOMOD_EnsembleModeling, 5, 6, 9, 14, 22–24, 25, 41, 66, 75, 76
BIOMOD_FormattingData, 7, 27, 31, 38, 39, 41, 52, 91
BIOMOD_LoadModels, 35
BIOMOD_ModelingOptions, 8, 9, 38, 39, 41, 42, 52, 75, 79, 93
BIOMOD_presenceonly, 48
BIOMOD_Projection, 5, 9, 13, 14, 19, 23, 24, 29, 41, 50, 54, 55, 63, 65, 81, 93
BIOMOD_RangeSize, 54
BIOMOD_RangeSize, array, array-method
  (BIOMOD_RangeSize), 54
BIOMOD_RangeSize, data.frame, data.frame-method
  (BIOMOD_RangeSize), 54
BIOMOD_RangeSize, RasterLayer, RasterLayer-method
  (BIOMOD_RangeSize), 54
BIOMOD_RangeSize, RasterLayer, RasterStack-method
  (BIOMOD_RangeSize), 54
BIOMOD_RangeSize, RasterStack, RasterStack-method
  (BIOMOD_RangeSize), 54
BIOMOD_RangeSize-methods
  (BIOMOD_RangeSize), 54
BIOMOD_tuning, 58

calculate.stat, 61, 70, 71
check_data_range (biomod2_model-class), 18
CTA_biomod2_model
  (biomod2_model-class), 18
CTA_biomod2_model-class
  (biomod2_model-class), 18
CustomIndexMaker, 62

data.frame, 18

data.frame-method
  (BinaryTransformation), 3
DF_to_ARRAY, 63
disk.pseudo.abs.selection
  (biomod2.inner-method), 18
disk.pseudo.abs.selection, ANY, RasterStack-method
  (biomod2.inner-method), 18
disk.pseudo.abs.selection, ANY, SpatialPointsDataFrame-method
  (biomod2.inner-method), 18

earth, 39, 45
EMca_biomod2_model
  (biomod2_model-class), 18
EMca_biomod2_model-class
  (biomod2_model-class), 18
EMci_biomod2_model
  (biomod2_model-class), 18
EMci_biomod2_model-class
  (biomod2_model-class), 18
EMcv_biomod2_model
  (biomod2_model-class), 18
EMcv_biomod2_model-class
  (biomod2_model-class), 18
EMmean_biomod2_model
  (biomod2_model-class), 18
EMmean_biomod2_model-class
  (biomod2_model-class), 18
EMmedian_biomod2_model
  (biomod2_model-class), 18
EMmedian_biomod2_model-class
  (biomod2_model-class), 18
EMwmean_biomod2_model
  (biomod2_model-class), 18
EMwmean_biomod2_model-class
  (biomod2_model-class), 18
evaluate, 65

family, 43, 44
fda, 39, 45
FDA_biomod2_model
  (biomod2_model-class), 18
FDA_biomod2_model-class
  (biomod2_model-class), 18
FilteringTransformation, 67
FilteringTransformation, array-method
  (FilteringTransformation), 67
FilteringTransformation, data.frame-method
  (FilteringTransformation), 67
FilteringTransformation, matrix-method
(FilteringTransformation), 67
FilteringTransformation, numeric-method
(FilteringTransformation), 67
FilteringTransformation, RasterBrick-method
(FilteringTransformation), 67
FilteringTransformation, RasterLayer-method
(FilteringTransformation), 67
FilteringTransformation, RasterStack-method
(FilteringTransformation), 67
FilteringTransformation-methods
(FilteringTransformation), 67
findNoptimNstat, 62, 69, 71
free (BIOMOD.projection.out-method), 14
free, BIOMOD.projection.out-method
(BIOMOD.projection.out-method), 14
full_suffling, 70, 84, 94, 95
gam, 39, 44
gam.control, 44
GAM_biomod2_model
(biomod2_model-class), 18
GAM_biomod2_model-class
(biomod2_model-class), 18
gbm, 39, 44
GBM_biomod2_model
(biomod2_model-class), 18
GBM_biomod2_model-class
(biomod2_model-class), 18
get_built_models, 6
get_built_models
(BIOMOD.models.out-methods), 10
get_built_models, BIOMOD.EnsembleModeling.out-method
(BIOMOD.models.out-methods), 10
get_built_models, BIOMOD.models.out-method
(BIOMOD.models.out-methods), 10
get_formal_data
(BIOMOD.models.out-methods), 10
get_formal_data, BIOMOD.models.out-method
(BIOMOD.models.out-methods), 10
get_formal_model (biomod2_model-class), 18
get_formal_model, biomod2_model-method
(biomod2_model-class), 18
get_kept_models
(BIOMOD.EnsembleModeling.out-method), 6
get_kept_models, BIOMOD.EnsembleModeling.out-method
(BIOMOD.EnsembleModeling.out-method), 6
get_needed_models
(BIOMOD.EnsembleModeling.out-method), 6
get_needed_models, BIOMOD.EnsembleModeling.out-method
(BIOMOD.EnsembleModeling.out-method), 6
get_options
(BIOMOD.models.out-methods), 10
get_options, BIOMOD.models.out-method
(BIOMOD.models.out-methods), 10
get_predictions, 15
get_predictions
(BIOMOD.models.out-methods), 10
get_predictions, BIOMOD.EnsembleModeling.out-method
(BIOMOD.models.out-methods), 10
get_predictions, BIOMOD.models.out-method
(BIOMOD.models.out-methods), 10
get_predictions, BIOMOD.projection.out-method
(BIOMOD.models.out-methods), 10
get_projectedModels, 14
get_projectedModels, BIOMOD.projection.out-method
(BIOMOD.projection.out-method), 14
get_scaling_model
(biomod2_model-class), 18
get_scaling_model, biomod2_model-method
(biomod2_model-class), 18
get_var_range (biomod2_model-class), 18
get_variables_importance
(BIOMOD.models.out-methods), 10
get_variables_importance, BIOMOD.EnsembleModeling.out-method
(BIOMOD.models.out-methods), 10
INDEX

(BIOMOD.models.out-methods), 10 getModelsEvaluations, BIOMOD.models.out-method
get_variables_importance, BIOMOD.models.out-method (biomod2.deprecated.functions), 17
(BIOMOD.models.out-methods), 10 getModelsInputData (biomod2.deprecated.functions), 17
getEM_needed_models (biomod2.deprecated.functions), 17
(biomod2.deprecated.functions), 17
getEM_needed_models.BIOMOD.EnsembleModeling.out-method getModelsOptions, BIOMOD.models.out-method
(biomod2.deprecated.functions), 17
(biomod2.deprecated.functions), 17
getEMalgos (biomod2.deprecated.functions), 17
(biomod2.deprecated.functions), 17
getEMalgos.BIOMOD.EnsembleModeling.out-method getModelsOptions, BIOMOD.models.out-method
(biomod2.deprecated.functions), 17
(biomod2.deprecated.functions), 17
getEMbuiltModels (biomod2.deprecated.functions), 17
(biomod2.deprecated.functions), 17
(biomod2.deprecated.functions), 17
(biomod2.deprecated.functions), 17
getEMeval (biomod2.deprecated.functions), 17
getModelsPredictionEval, BIOMOD.models.out-method
(biomod2.deprecated.functions), 17
getEMeval.BIOMOD.EnsembleModeling.out-method getModelsPredictionEval, BIOMOD.models.out-method
(biomod2.deprecated.functions), 17
(biomod2.deprecated.functions), 17
getEMkeptModels (biomod2.deprecated.functions), 17
getModelsVarImport, BIOMOD.models.out-method
(biomod2.deprecated.functions), 17
getEMkeptModels.BIOMOD.EnsembleModeling.out-method getModelsVarImport, BIOMOD.models.out-method
(biomod2.deprecated.functions), 17
(biomod2.deprecated.functions), 17
getFormalModel (biomod2.deprecated.functions), 17
getProjection (biomod2.deprecated.functions), 17
getFormalModel, biomod2_model-method getProjection, BIOMOD.projection.out-method
(biomod2.deprecated.functions), 17
(biomod2.deprecated.functions), 17
getModelsBuiltModels (biomod2.deprecated.functions), 17
getScalingModel (biomod2.deprecated.functions), 17
getModelsBuiltModels, BIOMOD.models.out-method getScalingModel, biomod2_model-method
(biomod2.deprecated.functions), 17
(biomod2.deprecated.functions), 17
getModelsEvaluations (biomod2.deprecated.functions), 17
getStatOptimValue, 62, 70, 71
(glm, 39, 43
(glm.control, 44
GLM_biomod2_model
  (biomod2_model-class), 18
GLM_biomod2_model-class
  (biomod2_model-class), 18
help, 7, 11, 12, 15, 17, 18, 68
level.plot, 72, 77, 78
LIST_to_ARRAY (DF_to_ARRAY), 63
load, 41, 52
load_stored_object
  (BIOMOD.stored.objects-methods), 16
load_stored_object, BIOMOD.stored.data-method
  (BIOMOD.stored.objects-methods), 16
makeFormula, 74
MARS_biomod2_model
  (biomod2_model-class), 18
MARS_biomod2_model-class
  (biomod2_model-class), 18
matrix-method (BinaryTransformation), 3
MAXENT.Phillips_biomod2_model
  (biomod2_model-class), 18
MAXENT.Phillips_biomod2_model-class
  (biomod2_model-class), 18
MAXENT.Tsuruoka_biomod2_model
  (biomod2_model-class), 18
MAXENT.Tsuruoka_biomod2_model-class
  (biomod2_model-class), 18
models_scores_graph, 75
multiple.plot, 73, 77
nnet, 39, 45
numeric-method (BinaryTransformation), 3
plot, BIOMOD.formated.data, missing-method
  (BIOMOD.formated.data-class), 7
plot, BIOMOD.formated.data.PA, missing-method
  (BIOMOD.formated.data-class), 7
plot, BIOMOD.projection.out, missing-method
  (BIOMOD.projection.out-class), 13
predict, 18
predict, ANN_biomod2_model-method
  (biomod2_model-class), 18
predict, CTA_biomod2_model-method
  (biomod2_model-class), 18
predict, EMca_biomod2_model-method
  (biomod2_model-class), 18
predict, EMci_biomod2_model-method
  (biomod2_model-class), 18
predict, EMcv_biomod2_model-method
  (biomod2_model-class), 18
predict, EMmean_biomod2_model-method
  (biomod2_model-class), 18
predict, EMmedian_biomod2_model-method
  (biomod2_model-class), 18
predict, EMwmean_biomod2_model-method
  (biomod2_model-class), 18
predict, FDA_biomod2_model-method
  (biomod2_model-class), 18
predict, GAM_biomod2_model-method
  (biomod2_model-class), 18
predict, GBM_biomod2_model-method
  (biomod2_model-class), 18
predict, GLM_biomod2_model-method
  (biomod2_model-class), 18
predict, MARS_biomod2_model-method
  (biomod2_model-class), 18
predict, MAXENT.Phillips_biomod2_model-method
  (biomod2_model-class), 18
predict, MAXENT.Tsuruoka_biomod2_model-method
  (biomod2_model-class), 18
predict, RF_biomod2_model-method
  (biomod2_model-class), 18
predict, SRE_biomod2_model-method
  (biomod2_model-class), 18
Print_Default_ModelingOptions, 43, 79
ProbDensFunc, 80
Projection (biomod2.inner-method), 18
Projection, ANY, ANY, data.frame-method
  (biomod2.inner-method), 18
Projection, ANY, ANY, RasterStack-method
  (biomod2.inner-method), 18
random.pseudo.abs.selection
  (biomod2.inner-method), 18
random.pseudo.abs.selection, ANY, RasterStack-method
  (biomod2.inner-method), 18
random.pseudo.abs.selection, ANY, SpatialPointsDataFrame-method
  (biomod2.inner-method), 18
randomForest, 39, 46, 95
randomise_data, 83, 95
RasterBrick-method
  (BinaryTransformation), 3
RasterLayer-method
   (BinaryTransformation), 3
RasterStack, 32
RasterStack-method
   (BinaryTransformation), 3
RemoveProperly
   (BIOMOD.models.out-RemoveProperly), 11
RemoveProperly, BIOMOD.models.out-method
   (BIOMOD.models.out-RemoveProperly), 11
response.plot, 84
response.plot2, 84, 85, 85
RF_biomod2_model (biomod2_model-class), 18
RF_biomod2_model-class
   (biomod2_model-class), 18
rpart, 39, 45
rpart.control, 45
s, 44, 74
sample.factor.levels, 89
SampleMat2, 91
save, 23, 51
show, BIOMOD.EnsembleModeling.out-method
   (BIOMOD.EnsembleModeling.out-class), 5
show, BIOMOD.formated.data-method
   (BIOMOD.formated.data-class), 7
show, BIOMOD.formated.data.PA-method
   (BIOMOD.formated.data-class), 7
show, BIOMOD.Model.Options-method
   (BIOMOD.Model.Options-class), 8
show, BIOMOD.models.out-method
   (BIOMOD.models.out-class), 9
show, BIOMOD.projection.out-method
   (BIOMOD.projection.out-class), 13
show, biomod2_model-method
   (biomod2_model-class), 18
SpatialPoints, 32, 33
SpatialPointsDataFrame, 32, 33
sre, 45, 92
sre.pseudo.abs.selection
   (biomod2.inner-method), 18
sre.pseudo.abs.selection, ANY, RasterStack-method
   (biomod2.inner-method), 18
sre.pseudo.abs.selection, ANY, SpatialPointsDataFrame-method
   (biomod2.inner-method), 18
SRE_biomod2_model
   (biomod2_model-class), 18
SRE_biomod2_model-class
   (biomod2_model-class), 18
update_objects, 94
user_defined.pseudo.abs.selection
   (biomod2.inner-method), 18
user_defined.pseudo.abs.selection, ANY, RasterStack-method
   (biomod2.inner-method), 18
user_defined.pseudo.abs.selection, ANY, SpatialPointsDataFrame-method
   (biomod2.inner-method), 18
variables_importance, 66, 71, 84, 94, 95