Package ‘bistablehistory’

March 22, 2022

Title Cumulative History Analysis for Bistable Perception Time Series

Version 1.1.1

License GPL (>= 3)

URL https://github.com/alexander-pastukhov/bistablehistory/,

https://alexander-pastukhov.github.io/bistablehistory/

BugReports https://github.com/alexander-pastukhov/bistablehistory/issues/

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

VignetteBuilder knitr

Biarch true

Depends R (>= 3.5.0), loo, rlang, rstantools (>= 2.1.1)

Imports methods, Rcpp (>= 0.12.0), RcppParallel (>= 5.0.1), rstan (>= 2.18.1), dplyr, tibble, magrittr, glue, boot, future, purrr, tidyr

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), RcppParallel (>= 5.0.1), rstan (>= 2.18.1), StanHeaders (>= 2.18.0)

SystemRequirements GNU make

Suggests testthat, knitr, rmarkdown, ggplot2

NeedsCompilation yes

1
Author Alexander Pastukhov [aut, cre]
(https://orcid.org/0000-0002-8738-8591)
Maintainer Alexander Pastukhov <pastukhov.alexander@gmail.com>
Repository CRAN
Date/Publication 2022-03-22 13:40:02 UTC

R topics documented:

bistablehistory-package ... 3
bayes_R2 .. 3
br ... 4
br_contrast .. 5
br_singleblock ... 5
br_single_subject ... 6
coeff.cumhist .. 6
compute_history ... 7
cumhist-class .. 9
extract_history .. 9
extract_history_parameter ... 10
extract_replicate_term_to_matrix 11
extract_term_to_matrix ... 11
fast_history_compute ... 12
fit_cumhist .. 13
fixef .. 15
historyef ... 16
history_mixed_state ... 16
history_parameter .. 17
history_tau .. 18
kde ... 19
kde_two_observers .. 19
loo.cumhist .. 20
nc ... 21
predict.cumhist ... 21
predict_history .. 22
predict_samples ... 24
preprocess_data ... 25
print.cumhist ... 26
summary.cumhist ... 27
waic.cumhist .. 28

Index 29
bistablehistory-package

Cumulative History Analysis for Bistable Perception Time Series

Description

References

See Also

vignette("cumulative-history",package = "bistablehistory") vignette("usage-examples",package = "bistablehistory") vignette("writing-stan-code",package = "bistablehistory")

bayes_R2

Computes R-squared using Bayesian R-squared approach.

Description

Usage

S3 method for class 'cumhist'
bayes_R2(object, summary = TRUE, probs = c(0.055, 0.945), ...)

Arguments

object
summary
probs
...
Value

vector of values or a data.frame with summary

Examples

```r
br_fit <- fit_cumhist(br_singleblock, state = "State", duration = "Duration")
bayes_R2(br_fit)
```

`br` Binocular rivalry data

Description

Dataset on binocular rivalry for eight participants.

Usage

`br`

Format

A data frame with 3769 rows and 6 variables:

- **Observer** Participant ID.
- **Display** Display, all rows contain "BR"
- **Block** Run / block index.
- **Time** Time relative to the run onset in seconds
- **State** Factor with levels "Left", "Right" (clear states), and "Mixed".
- **Duration** Duration of a dominance phase in seconds. Note that the duration for the last dominance phase is curtailed and, therefore, set to zero.

Source

doi: 10.1167/11.10.12
Description

Dataset on binocular rivalry with variable but equal contrast for six participants.

Usage

br_contrast

Format

A data frame with 4616 rows and 6 variables:

- **Observer** Participant ID.
- **Block** Run / block index.
- **Contrast** Contrast on scale from 0 to 1.
- **Time** Time relative to the run onset in seconds
- **State** Factor with levels "Left", "Right" (clear states), and "Mixed".
- **Duration** Duration of a dominance phase in seconds. Note that the duration for the last dominance phase is curtailed and, therefore, set to zero.

Description

A single subject / single run dataset for binocular rivalry.

Usage

br_singleblock

Format

A data frame with 76 rows and 6 variables:

- **Observer** Participant ID, all rows contain "ap"
- **Group** Display, all rows contain "BR"
- **Block** Run / block index, all rows contain 1
- **Time** Time relative to the run onset in seconds
- **State** Index of a perceptually dominant state, 1, 2 - clear perceptual state, 3 mixed / transition phase
- **Duration** Duration of a dominance phase in seconds. Note that the duration for the last dominance phase is curtailed and, therefore, set to zero.
Source
doi: 10.1167/11.10.12

br_single_subject Single experimental session for binocular rivalry stimulus

Description
A single subject / multiple runs dataset for binocular rivalry.

Usage
br_single_subject

Format
A data frame with 76 rows and 6 variables:

Observer Participant ID, all rows contain "ap"
Display Display, all rows contain "BR"
Block Run / block index
Time Time relative to the run onset in seconds
State Index of a perceptually dominant state, 1, 2 - clear perceptual state, 3 mixed / transition phase
Duration Duration of a dominance phase in seconds. Note that the duration for the last dominance phase is curtailed and, therefore, set to zero.

Source
doi: 10.1167/11.10.12

calc.cumhist Extract Model Coefficients

Description
Extracts models population-level coefficients history-specific terms and fixed-effect terms for every modeled distribution parameter.

Usage
S3 method for class 'cumhist'
coef(object, summary = TRUE, probs = c(0.055, 0.945), ...)
Arguments

- **object**: An object of class `cumhist`
- **summary**: Whether summary statistics should be returned instead of raw sample values. Defaults to TRUE.
- **probs**: The percentiles used to compute summary, defaults to 89% credible interval.
- **...**: Unused.

Value

data.frame with values or summary

Examples

```r
br_fit <- fit_cumhist(br_singleblock, 
                      state = "State", 
                      duration = "Duration", 
                      fixed_effects = "Time")
coef(br_fit)
```

Description

Computes cumulative history for each state in the time-series.

Usage

```r
compute_history( 
    data, 
    state, 
    duration = NULL, 
    onset = NULL, 
    random_effect = NULL, 
    session = NULL, 
    run = NULL, 
    tau = 1, 
    mixed_state = 0.5, 
    history_init = 0 
)
```
Arguments

data A table with time-series.

state String, the name of the column that specifies perceptual state. The column type should be a factor with two or three levels (the third level is assumed to correspond to a transition/mixed phase) or should be convertible to a two level factor (as it would be impossible to infer the identity of transition/ mixed phase).

duration String, name of the column with duration of individual perceptual dominance phases. Optional, you can specify onset instead.

onset String, name of the column with onsets of the perceptual dominance states. Optional, used to compute duration of the dominance phases, if these are not provided explicitly via duration parameter.

random_effect String, name of the column that identifies random effect, e.g. individual participants, stimuli for a single participant, etc. If omitted, no random effect is assumed. If specified and there is more than one level (participant, stimulus, etc.), it is used in a hierarchical model.

session String, name of the column that identifies unique experimental session for which a mean dominance phase duration will be computed (see norm_tau parameter). Code assumes that session IDs are different within a participant but can be the same between them. If omitted, a single mean dominance duration based on the entire time series is used.

run String, name of the column that identifies unique runs/blocks. If omitted, the data is assumed to belong to a single time series. Code assumes that run IDs are different within an experimental session but can be the same between the session. E.g. session A, runs 1, 2, 3.. and session B, runs 1, 2, 3 but not session A, runs 1, 2, 1.

tau Time constant of exponential growth/decay normalized to the mean duration of clear percepts within each session. Can be 1) a single positive number (>0) that is used for all participants and runs, 2) NULL (default) - a single value will be fitted for all participants and runs, 3) "random" - an independent tau is fitted for each random cluster, 4) "1|random" - a tau for a random cluster is sampled from a population distribution, i.e., pooled parameter values via a multilevel model.

mixed_state Specifies an activation level during transition/mixed phases (state #3, see state). Either a single number (range 0..1) that will be used as a fixed level or a vector of two numbers c(mu, kappa) that specifies, correspondingly, mean (range 0..1) and precision (>0) of beta proportion distribution, it should be sampled from. Defaults to a fixed value of 0.5.

history_init Initial value for cumulative history computation. Either a numeric scalar in 0..1 range or a vector of two numbers in 0..1 range. In the latter case, two histories will start at different levels.

Value

A matrix nrow(data) × 2 with computed history values
Examples

```r
df <- compute_history(br_singleblock, state = "State",
                     duration = "Duration", tau = 1,
                     mixed_state = 0.5, history_init = 0)
```

Description

Cumulative history model fitted to time-series data.

Details

See `methods(class = "cumhist")` for an overview of available methods.

Slots

- `family` A string with distribution family.
- `data` A list with preprocessed data.
- `stanfit` a `stanfit` object.

See Also

- `fit_cumhist`

extract_history

Computes history for a fitted model

Description

Computes history for a fitted model, uses only mean values for each history parameter. Uses values for each random cluster, if "random" or "1|random" parametrisation was used.

Usage

```r
extract_history(object)
```

Arguments

- `object` An object of class `cumhist`

Value

A matrix of cumulative history values for each state
Examples

```r
br_fit <- fit_cumhist(br_singleblock, state = "State", duration = "Duration")
extract_history(br_fit)
```

`extract_history_parameter`

Extracts a history parameter as a matrix

Description

Extracts a history parameter as a matrix with `samplesN` rows and `randomN` columns.

Usage

```r
extract_history_parameter(
  object,  # A cumhist object
  param_name,  # String, a name of the parameter
  samplesN = NULL,  # Number of samples, if NULL is computed from rstan (but it is cheaper to do this once).
  link_function = NULL  # A link function to use (exp or inv.logit) or NULL for identity.
)
```

Arguments

- **object**: A `cumhist` object
- **param_name**: String, a name of the parameter
- **samplesN**: Number of samples, if NULL is computed from rstan (but it is cheaper to do this once).
- **link_function**: A link function to use (exp or inv.logit) or NULL for identity.

Value

Matrix with `samplesN` rows and `randomN` (found in `object$data$randomN`) columns

Examples

```r
br_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration")
extract_history_parameter(br_fit, "tau", link_function = exp)
```
extract_replicate_term_to_matrix

Extract a term and replicates it randomN times for each linear model

Description

Extract a term and replicates it randomN times for each linear model. Used for population mean or variance terms.

Usage

```r
evaluate_replicate_term_to_matrix(object, term)
```

Arguments

- `object`: An object of class `cumhist`
- `term`: String, term name

Value

Matrix

Examples

```r
br_fit <- fit_cumhist(br_singleblock, state = "State", duration = "Duration")
bH_mu <- evaluate_replicate_term_to_matrix(br_fit, "bH_mu")
```

extract_term_to_matrix

Extracts a term with one column per fixed or random-level into a matrix

Description

Extracts a 3D array for a term with sample, linear-model, random/fixed-effect order and returns a matrix with samples as rows and columns in order 1) all random/fixed effects for lm1, 2) all random/fixed effects for lm2, etc.

Usage

```r
evaluate_term_to_matrix(object, term)
```

Arguments

- `object`: An object of class `cumhist`
- `term`: String, term name

Value

Matrix

Examples

```r
br_fit <- fit_cumhist(br_singleblock, state = "State", duration = "Duration")
bH_mu <- evaluate_term_to_matrix(br_fit, "bH_mu")
```
fast_history_compute

Arguments

- object: An object of class `cumhist`
- term: String, term name

Value

Matrix

Examples

```r
br_fit <- fit_cumhist(br_singleblock, state = "State", duration = "Duration")
a <- extract_term_to_matrix(br_fit, "a")
```

fast_history_compute Computes cumulative history

Description

Computes cumulative history based on common history values and normalized_tau and mixed_state that are defined for each random cluster / individual.

Usage

```r
fast_history_compute(df, normalized_tau, mixed_state, history_init)
```

Arguments

- df: DataFrame with "state" (integer, 1 and 2 clear state, 3 - mixed state), "duration" (double), "irandom" (integer, 1-based index of a random cluster), "run_start" (integer, 1 for the first entry of the run, 0 otherwise), "session_tmean" (double)
- normalized_tau: DoubleVector A normalized tau value for each random cluster / individual. Thus, its length must be equal to the number of unique indexes in df["irandom"].
- mixed_state: DoubleVector A values used for the mixed state for each random cluster / individual. Thus, its length must be equal to the number of unique indexes in df["irandom"].
- history_init: DoubleVector, size 2. Initial values of history for a run.

Value

NumericMatrix, size `df.nrows()` × 2. Computed history values for each state.

Examples

```r
df <- preprocess_data(br_singleblock, state="State", duration="Duration")
fast_history_compute(df, 1, 0.5, c(0, 0))
```
fit_cumhist

Fits cumulative history for bistable perceptual rivalry displays.

Description

Fits a generalized linear model using cumulative history and specified fixed effects.

Usage

```r
fit_cumhist(
  data,
  state,
  duration = NULL,
  onset = NULL,
  random_effect = NULL,
  session = NULL,
  run = NULL,
  fixed_effects = NULL,
  tau = NULL,
  mixed_state = 0.5,
  history_init = 0,
  family = "gamma",
  history_priors = NULL,
  intercept_priors = NULL,
  history_effect_prior = NULL,
  fixed_effects_priors = NULL,
  chains = 1,
  cores = NULL,
  ...
)
```

Arguments

data A table with time-series.

state String, the name of the column that specifies perceptual state. The column type should be a factor with two or three levels (the third level is assumed to correspond to a transition/mixed phase) or should be convertible to a two level factor (as it would be impossible to infer the identity of transition/ mixed phase).

duration String, name of the column with duration of individual perceptual dominance phases. Optional, you can specify onset instead.

onset String, name of the column with onsets of the perceptual dominance states. Optional, used to compute duration of the dominance phases, if these are not provided explicitly via duration parameter.

random_effect String, name of the column that identifies random effect, e.g. individual participants, stimuli for a single participant, etc. If omitted, no random effect is assumed. If specified and there is more than one level (participant, stimulus, etc.), it is used in a hierarchical model.
fit_cumhist

session
String, name of the column that identifies unique experimental session for which a mean dominance phase duration will be computed (see `norm_tau` parameter). Code assumes that session IDs are different within a participant but can be the same between them. If omitted, a single mean dominance duration based on the entire time series is used.

run
String, name of the column that identifies unique runs/blocks. If omitted, the data is assumed to belong to a single time series. Code assumes that run IDs are different within an experimental session but can be the same between the session. E.g. session A, runs 1, 2, 3.. and session B, runs 1, 2, 3 but not session A, runs 1, 2, 1.

fixed_effects
String or vector of strings. Name of column(s) with values to be used for fitting an additional fixed effect(s). E.g., contrast in binocular rivalry, rotation speed for kinetic-depth effect, etc.

tau
Time constant of exponential growth/decay normalized to the mean duration of clear percepts within each session. Can be 1) a single positive number (>0) that is used for all participants and runs, 2) NULL (default) - a single value will be fitted for all participants and runs, 3) "random" - an independent tau is fitted for each random cluster, 4) "1|random" - a tau for a random cluster is sampled from a population distribution, i.e., pooled parameter values via a multilevel model.

mixed_state
Specifies an activation level during transition/mixed phases (state #3, see `state`). Either a single number (range 0..1) that will be used as a fixed level or a vector of two numbers c(μ, κ) that specifies, correspondingly, mean (range 0..1) and precision (>0) of beta proportion distribution, it should be sampled from. Defaults to a fixed value of 0.5.

history_init
Initial value for cumulative history computation. Either a numeric scalar in 0..1 range or a vector of two numbers in 0..1 range. In the latter case, two histories will start at different levels.

family
String, distribution used to fit duration of perceptual dominance phases. Options include "gamma" (default), "lognormal", and "normal".

history_priors
Named list of optional priors for population-level cumulative history parameters. Must follow the format `list("tau"=c(1, 0.15))` with values coding mean and standard deviation of the normal distribution.

intercept_priors
A vector of optional priors for population-level intercept parameter. Should be `c(<shape-mean>, <shape-sd>, <scale-mean>, <scale-sd>)` format for Gamma family, `c(<mean>, <sd>)` for normal and lognormal families. The values code mean and standard deviation of the normal distribution.

history_effect_prior
A vector of options priors for population-level slope of history effect. The values code mean and standard deviation of the normal distribution. Defaults to mu=0, sigma=1.

fixed_effects_priors
A named list of optional priors for fixed effects. Must follow the format `list("<name-of-variable>"=c(<mu>, <sigma>))` where `<mu>` and `<sigma>` are mean and standard deviation of a normal distribution. Defaults to mu=0, sigma=1.
`fixef`

- `chains` Number of chains for sampling.
- `cores` Number of CPU cores to use for sampling. If omitted, all cores are used.
- `...` Additional arguments passed to `rstan::sampling()` function.

Value
An object of class `cumhist`

Examples
```
data(br_singleblock)
gamma_fit <- fit_cumhist(br_singleblock, state = "State", duration = "Duration")
```

Description
Extracts models fixed-effect terms for every modeled distribution parameter.

Usage
```
fixef(object, summary = TRUE, probs = c(0.055, 0.945))
```

Arguments
- `object` An object of class `cumhist`
- `summary` Whether summary statistics should be returned instead of raw sample values. Defaults to `TRUE`.
- `probs` The percentiles used to compute summary, defaults to 89% credible interval.

Value

tibble with values or summary, `NULL` if not fixed effects were used.

Examples
```
br_fit <- fit_cumhist(br_singleblock,  
                      state = "State",  
                      duration = "Duration",  
                      fixed_effects = "Time")
fixef(br_fit)
```
historyef

Extract the history-effects estimates

Description

Extracts models population-level coefficients history-specific terms for every modeled distribution parameter.

Usage

```r
descf <- fit_cumhist(br_singleblock, state="State", duration="Duration")
descfef(descf, summary = TRUE, probs = c(0.055, 0.945))
```

Arguments

- `object` An object of class `cumhist`
- `summary` Whether summary statistics should be returned instead of raw sample values. Defaults to `TRUE`
- `probs` The percentiles used to compute summary, defaults to 89% credible interval.

Value

data.frame with values or summary

Examples

```r
br_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration")
descfef(br_fit)
```

history_mixed_state

Extract values of used or fitted history parameter mixed_state

Description

A short-cut for `history_parameter(object,"mixed_state",...)`.

Usage

```r
history_mixed_state(
  object,
  summary = TRUE,
  probs = c(0.055, 0.945),
  includePopulationLevel = TRUE
)
```
Arguments

- **object**: An object of class `cumhist`
- **summary**: Whether summary statistics should be returned instead of raw sample values. Defaults to `TRUE`
- **probs**: The percentiles used to compute summary, defaults to 89% credible interval.
- **includePopulationLevel**: Logical, for pooled random effect only. Whether to include population mean as a separate "_population" level, default to `TRUE`.

Value

A single value, if fixed value was used. A vector or a tibble, depending on the option used (single intercept, independent or random intercepts), and whether summary was requested.

Examples

```r
br_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration")
history_tau(br_fit)
```

Description

Extract values of used or fitted history parameter

Usage

```r
history_parameter(
  object,
  param,
  summary = TRUE,
  probs = c(0.055, 0.945),
  includePopulationLevel = TRUE
)
```

Arguments

- **object**: An object of class `cumhist`
- **param**: Parameter name: "tau" or "mixed_state"
- **summary**: Whether summary statistics should be returned instead of raw sample values. Defaults to `TRUE`
- **probs**: The percentiles used to compute summary, defaults to 89% credible interval.
- **includePopulationLevel**: Logical, for pooled random effect only. Whether to include population mean as a separate "_population" level, default to `TRUE`.
Value
A vector, if summary was not requested. Or a tibble with a summary or if a fixed value was used.

Examples

```r
br_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration")
history_parameter(br_fit, "tau")
```

history_tau

Extract values of used or fitted history parameter tau

Description
A short-cut for `history_parameter(object,"tau",...)`.

Usage

```r
history_tau(
  object,
  summary = TRUE,
  probs = c(0.055, 0.945),
  includePopulationLevel = TRUE
)
```

Arguments

- **object**: An object of class `cumhist`
- **summary**: Whether summary statistics should be returned instead of raw sample values. Defaults to `TRUE`.
- **probs**: The percentiles used to compute summary, defaults to 89% credible interval.
- **includePopulationLevel**: Logical, for pooled random effect only. Whether to include population mean as a separate "_population" level, default to `TRUE`.

Value
A single value, if fixed value was used. A vector or a tibble, depending on the option used (single intercept, independent or random intercepts), and whether summary was requested.

Examples

```r
br_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration")
history_tau(br_fit)
```
kde

Kinetic-depth effect data

Description

Dataset on kinetic-depth effect for eleven participants.

Usage

kde

Format

A data frame with 38698 rows and 6 variables:

- **Observer** Participant ID.
- **Display** Display, all rows contain "KD"
- **Block** Run / block index.
- **Time** Time relative to the run onset in seconds
- **State** Factor with levels "Left", "Right" (clear states), and "Mixed".
- **Duration** Duration of a dominance phase in seconds. Note that the duration for the last dominance phase is curtailed and, therefore, set to zero.

Source

doi: 10.1167/11.10.12

kde_two_observers

Multirun data for two participants, kinetic-depth effect display

Description

Multirun data for two participants, kinetic-depth effect display

Usage

kde_two_observers
Format

A data frame with 1186 rows and 5 variables:

- **Observer** Participant ID
- **Block** Run / block index
- **State** Factor variable for state with levels -1 and 1 coding two clear perceptual states and -2 the mixed / transition phase
- **Time** Time relative to the run onset in seconds
- **Duration** Duration of a dominance phase in seconds. Note that the duration for the last dominance phase is curtailed and, therefore, set to zero.

Source

doi: 10.1167/11.10.12

`loo.cumhist` Computes an efficient approximate leave-one-out cross-validation via `loo` library. It can be used for a model comparison via `loo::loo_compare()` function.

Description

Computes an efficient approximate leave-one-out cross-validation via `loo` library. It can be used for a model comparison via `loo::loo_compare()` function.

Usage

```r
# S3 method for class 'cumhist'
loo(x, ...)
```

Arguments

- `x` A `cumhist` object
- `...` unused

Value

A named list, see `loo::loo()` for details.

Examples

```r
data(br_singleblock)

gamma_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration")
loo_gamma <- loo(gamma_fit)
```
Necker cube data

Description

Dataset on Necker cube for five participants.

Usage

nc

Format

A data frame with 3464 rows and 6 variables:

- **Observer** Participant ID.
- **Display** Display, all rows contain "NC"
- **Block** Run / block index.
- **Time** Time relative to the run onset in seconds
- **State** Factor with levels "Left", "Right" (clear states), and "Mixed".
- **Duration** Duration of a dominance phase in seconds. Note that the duration for the last dominance phase is curtailed and, therefore, set to zero.

Source

doi: 10.1167/11.10.12

predict.cumhist

Computes predicted dominance phase durations using posterior predictive distribution.

Description

Computes predicted dominance phase durations using fitted model.

Usage

```r
## S3 method for class 'cumhist'
predict(
  object,
  summary = TRUE,
  probs = NULL,
  full_length = TRUE,
  predict_history = NULL,
  ... )
```

predict_history

Arguments

- **object**: An object of class `cumhist`
- **summary**: Whether summary statistics should be returned instead of raw sample values. Defaults to `TRUE`.
- **probs**: The percentiles used to compute summary, defaults to NULL (no CI).
- **full_length**: Only for `summary = TRUE`, whether the summary table should include rows with no predictions. I.e., rows with mixed phases, first/last dominance phase in the run, etc. See `preprocess_data()`. Defaults to `TRUE`.
- **predict_history**: Option to predict a cumulative history state (or their difference). It is disabled by default by setting it to NULL. You can specify "1" or "2" for cumulative history for the first or second perceptual states (with indexes 1 and 2, respectively), "dominant" or "suppressed" for cumulative history for states that either dominant or suppressed during the following phase, "difference" for difference between suppressed and dominant. See cumulative history vignette for details.
- **...**: Unused

Value

If `summary=FALSE`, a numeric matrix iterationsN x clearN. If `summary=TRUE` but `probs=NULL` a vector of mean predicted durations or requested cumulative history values. If `summary=TRUE` and `probs` is not NULL, a data.frame with a column "Predicted" (mean) and a column for each specified quantile.

See Also

- `fit_cumhist`

Examples

```r
br_fit <- fit_cumhist(br_singleblock, state = "State", duration = "Duration")
predict(br_fit)

# full posterior prediction samples
predictions_samples <- predict(br_fit, summary=FALSE)
```

| predict_history | Computes predicted cumulative history using posterior predictive distribution. |

Description

Computes predicted cumulative history using fitted model. This is just a wrapper for `predict(object, summary, probs, full_length, predict_history)`.
predict_history

Usage

predict_history(
 object,
 history_type,
 summary = TRUE,
 probs = NULL,
 full_length = TRUE,
 ...
)

Arguments

object An object of class cumhist

history_type "1" or "2" for cumulative history for the first or second perceptual states (with indexes 1 and 2, respectively), "dominant" or "suppressed" for cumulative history for states that either dominant or suppressed during the following phase, "difference" for difference between suppressed and dominant. See cumulative history vignette for details.

summary Whether summary statistics should be returned instead of raw sample values. Defaults to TRUE

probs The percentiles used to compute summary, defaults to NULL (no CI).

full_length Only for summary = TRUE, whether the summary table should include rows with no predictions. I.e., rows with mixed phases, first/last dominance phase in the run, etc. See preprocess_data(). Defaults to TRUE.

... Unused

Value

If summary=FALSE, a numeric matrix iterationsN x clearN. If summary=TRUE but probs=NULL a vector of requested cumulative history values. If summary=TRUE and probs is not NULL, a data.frame with a column "Predicted" (mean) and a column for each specified quantile.

See Also

fit_cumhist, predict.cumhist

Examples

br_fit <- fit_cumhist(br_singleblock, state = "State", duration = "Duration")

history_difference_summary <- predict_history(br_fit, "difference")

full posterior prediction samples
history_difference <- predict_history(br_fit,
 "difference",
 summary = FALSE,
 full_length = TRUE)
predict_samples

Computes prediction for a each sample.

Description

Computing prediction for each sample, recomputing cumulative history and uses fitted parameter values.

Usage

```r
predict_samples(
    family,
    fixedN,
    randomN,
    lmN,
    istate,
    duration,
    is_used,
    run_start,
    session_tmean,
    irandom,
    fixed,
    tau_ind,
    mixed_state_ind,
    history_init,
    a,
    bH,
    bF,
    sigma
)
```

Arguments

- `family`: int, distribution family: gamma (1), lognormal(2), or normal (3).
- `fixedN`: int, number of fixed parameters (>= 0).
- `randomN`: int, number of random factors (>= 1).
- `lmN`: int, number of linear models (>= 1).
- `istate`: IntegerVector, zero-based perceptual state 0 or 1, 2 is mixed state.
- `duration`: DoubleVector, duration of a dominance phase.
- `is_used`: IntegerVector, whether dominance phase is used for prediction (1) or not (0).
- `run_start`: IntegerVector, 1 whenever a new run starts.
- `session_tmean`: DoubleVector, average dominance phase duration.
- `irandom`: IntegerVector, zero-based index of a random effect.
- `fixed`: NumericMatrix, matrix with fixed effect values.
preprocess_data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tau_ind</td>
<td>NumericMatrix, matrix with samples of tau for each random level.</td>
</tr>
<tr>
<td>mixed_state_ind</td>
<td>NumericMatrix, matrix with samples of mixed_state for each random level.</td>
</tr>
<tr>
<td>history_init</td>
<td>DoubleVector, Initial values of history for a run</td>
</tr>
<tr>
<td>a</td>
<td>NumericMatrix, matrix with samples of a (intercept) for each random level.</td>
</tr>
<tr>
<td>bH</td>
<td>NumericMatrix, matrix with sample of bH for each linear model and random level.</td>
</tr>
<tr>
<td>bF</td>
<td>NumericMatrix, matrix with sample of bF for each linear model and fixed factor.</td>
</tr>
<tr>
<td>sigma</td>
<td>DoubleVector, samples of sigma.</td>
</tr>
</tbody>
</table>

Value

NumericMatrix with predicted durations for each sample.

Description

Preprocesses time-series data for fitting

Performs sanity checks (e.g., whether data can be used as a data.frame), computes duration of dominance phases (if necessary), assumes a single entry for any missing session, run, random_effect.

Usage

```r
preprocess_data(
  data, 
  state, 
  duration = NULL, 
  onset = NULL, 
  random_effect = NULL, 
  session = NULL, 
  run = NULL 
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>A table with one or many time-series.</td>
</tr>
<tr>
<td>state</td>
<td>String, the name of the column that specifies perceptual state. The column type should be a factor with two or three levels (the third level is assumed to correspond to a transition/mixed phase) or should be convertible to a two level factor (as it would be impossible to infer the identity of transition/mixed phase).</td>
</tr>
<tr>
<td>duration</td>
<td>String, name of the column with duration of individual perceptual dominance phases. Optional, you can specify onset instead.</td>
</tr>
</tbody>
</table>
onset String, name of the column with onsets of the perceptual dominance states. Optional, used to compute duration of the dominance phases, if these are not provided explicitly via duration parameter.

random_effect String, name of the column that identifies random effect, e.g. individual participants, stimuli for a single participant, etc. If omitted, no random effect is assumed. If specified and there is more than one level (participant, stimulus, etc.), it is used in a hierarchical model.

session String, name of the column that identifies unique experimental session for which a mean dominance phase duration will be computed (see norm_tau parameter). Code assumes that session IDs are different within a participant but can be the same between them. If omitted, a single mean dominance duration based on the entire time series is used.

run String, name of the column that identifies unique runs/blocks. If omitted, the data is assumed to belong to a single time series. Code assumes that run IDs are different within an experimental session but can be the same between the session. E.g. session A, runs 1, 2, 3.. and session B, runs 1, 2, 3 but not session A, runs 1, 2, 1.

Value

A tibble with columns
- state
- duration
- random
- irandom - integer, index of random values,
- session
- run
- session_tmean - numeric, mean duration of clear percepts for every combination of random and session.
- is_used - integer, whether computed history value needs to be used for linear model fitting.
- run_start - integer, 1 for the first row of the run time-series.

Examples

\[
\text{df <- preprocess_data(br_singleblock, state="State", duration="Duration")}
\]

print.cumhist Prints out cumhist object

Description

Prints out cumhist object
Usage

```r
## S3 method for class 'cumhist'
print(x, ...)
```

Arguments

- `x`: A `cumhist` object
- `...`: Unused

Value
Nothing, console output only.

Examples

```r
br_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration", fixed_effects="Time")
br_fit
summary(br_fit)
```

Description

Summary for a `cumhist` object

Usage

```r
## S3 method for class 'cumhist'
summary(object, ...)
```

Arguments

- `object`: A `cumhist` object
- `...`: Unused

Value
Nothing, console output only.

Examples

```r
br_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration")
summary(br_fit)
```
waic.cumhist

Computes widely applicable information criterion (WAIC).

Description

Computes widely applicable information criterion via loo library. It can be used for a model comparison via loo::loo_compare() function.

Usage

S3 method for class 'cumhist'
waic(x, ...)

Arguments

x A cumhist object.
...
 Additional arguments (unused)

Value

A named list, see loo::waic() for details.

Examples

data(br_singleblock)
gamma_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration")
waic_gamma <- waic(gamma_fit)
normal_fit <- fit_cumhist(br_singleblock, state="State", duration="Duration", family="normal")
waic_normal <- waic(normal_fit)
loo::loo_compare(waic_gamma, waic_normal)
Index

* datasets
 br, 4
 br_contrast, 5
 br_single_subject, 6
 br_singleblock, 5
 kde, 19
 kde_two_observers, 19
 nc, 21

 loo, 28
 loo.cumhist, 20
 loo::loo(), 20
 loo::loo_compare(), 28
 loo::waic(), 28
 nc, 21

 predict.cumhist, 21, 23
 predict_history, 22
 predict_samples, 24
 preprocess_data, 25
 preprocess_data(), 22, 23
 print.cumhist, 26

 rstan::sampling(), 15

 stanfit, 9
 summary.cumhist, 27
 waic.cumhist, 28

bayes_R2, 3
bistablehistory
 (bistablehistory-package), 3
bistablehistory-package, 3
br, 4
br_contrast, 5
br_single_subject, 6
br_singleblock, 5

cumhist, 3, 7, 9–12, 15–18, 20, 22, 23, 27, 28
cumhist (cumhist-class), 9
cumhist-class, 9

effect, 6
compute_history, 7

extract_history, 9
extract_history_parameter, 10
extract_replicate_term_to_matrix, 11
extract_term_to_matrix, 11

fast_history_compute, 12
fit.cumhist, 9, 13, 22, 23
fixef, 15

history_mixed_state, 16
history_parameter, 17
history_tau, 18
historyef, 16

kde, 19
kde_two_observers, 19