Package ‘bkmr’

March 4, 2022

Title Bayesian Kernel Machine Regression
Version 0.2.1
Description Implementation of a statistical approach for estimating the joint health effects of multiple concurrent exposures.
URL https://github.com/jenfb/bkmr
BugReports https://github.com/jenfb/bkmr/issues
Depends R (>= 3.1.2)
License GPL-2
Imports dplyr, magrittr, nlme, fields, truncnorm, tidyr, MASS, tmvtnorm
RoxygenNote 7.1.2
NeedsCompilation no
Author Jennifer F. Bobb [aut, cre]
Maintainer Jennifer F. Bobb <jenniferfederbobb@gmail.com>
Repository CRAN
Date/Publication 2022-03-04 03:30:09 UTC

R topics documented:

CalcGroupPIPs ... 2
CalcPIPs ... 2
CalcWithinGroupPIPs ... 3
ComputePostmeanHnew ... 3
ComputePostmeanHnew.approx 4
ComputePostmeanHnew.exact 5
ExtractEsts ... 6
ExtractPIPs .. 6
ExtractSamps .. 7
InvestigatePrior ... 7
kmbayes ... 8
CalcGroupPIPs

Calculate group-specific posterior inclusion probabilities

Description

Calculate posterior inclusion probabilities for each group of variables

Usage

CalcGroupPIPs(fit, sel = NULL)

Arguments

fit
 An object containing the results returned by a the kmbrayes function

sel
 logical expression indicating samples to keep; defaults to keeping the second half of all samples

CalcPIPs

Calculate variable-specific posterior inclusion probabilities

Description

Calculate variable-specific posterior inclusion probabilities from BKMR model fit

Usage

CalcPIPs(fit, sel = NULL)
CalcWithinGroupPIPs

Arguments

- **fit**: An object containing the results returned by a `kmbayes` function
- **sel**: Logical expression indicating samples to keep; defaults to keeping the second half of all samples

Description

For those predictors within a multi-predictor group, as defined using the `groups` argument, the posterior inclusion probabilities for the predictor conditional on the group being selected into the model.

Usage

```r
CalcWithinGroupPIPs(fit, sel = NULL)
```

Arguments

- **fit**: An object containing the results returned by a `kmbayes` function
- **sel**: Logical expression indicating samples to keep; defaults to keeping the second half of all samples

ComputePostmeanHnew

Compute the posterior mean and variance of \(h \) at a new predictor values

Description

Compute the posterior mean and variance of \(h \) at a new predictor values

Usage

```r
ComputePostmeanHnew(
    fit,
    y = NULL,
    Z = NULL,
    X = NULL,
    Znew = NULL,
    sel = NULL,
    method = "approx"
)
```
Arguments

- **fit**: An object containing the results returned by a the kmbayes function
- **y**: a vector of outcome data of length \(n \).
- **Z**: an \(n \)-by-\(M \) matrix of predictor variables to be included in the \(h \) function. Each row represents an observation and each column represents a predictor.
- **X**: an \(n \)-by-\(K \) matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.
- **Znew**: matrix of new predictor values at which to predict new \(h \), where each row represents a new observation. If set to NULL then will default to using the observed exposures \(Z \).
- **sel**: selects which iterations of the MCMC sampler to use for inference; see details
- **method**: method for obtaining posterior summaries at a vector of new points. Options are "approx" and "exact"; defaults to "approx", which is faster particularly for large datasets; see details

Details

- If method == "approx" then calls the function `ComputePostmeanHnew.approx`. In this case, the argument sel defaults to the second half of the MCMC iterations.
- If method == "exact" then calls the function `ComputePostmeanHnew.exact`. In this case, the argument sel defaults to keeping every 10 iterations after dropping the first 50% of samples, or if this results in fewer than 100 iterations, than 100 iterations are kept.

For guided examples and additional information, go to https://jenfb.github.io/bkmr/overview.html

ComputePostmeanHnew.approx

Compute the posterior mean and variance of \(h \) at a new predictor values

Description

Function to approximate the posterior mean and variance as a function of the estimated model parameters (e.g., tau, lambda, beta, and sigsq,eps)

Usage

```r
ComputePostmeanHnew.approx(
    fit,
    y = NULL,
    Z = NULL,
    X = NULL,
    Znew = NULL,
    sel = NULL
)
```
Arguments

fit
An object containing the results returned by the `kmbayes` function.

y
a vector of outcome data of length \(n \).

Z
an \(n \)-by-\(M \) matrix of predictor variables to be included in the \(h \) function. Each row represents an observation and each column represents a predictor.

X
an \(n \)-by-\(K \) matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.

Znew
matrix of new predictor values at which to predict new \(h \), where each row represents a new observation. If set to NULL then will default to using the observed exposures \(Z \).

sel
logical expression indicating samples to keep; defaults to keeping the second half of all samples.

Description

Function to estimate the posterior mean and variance by obtaining the posterior mean and variance at particular iterations and then using the iterated mean and variance formulas.

Usage

```r
ComputePostmeanHnew.exact(
  fit,
  y = NULL,
  Z = NULL,
  X = NULL,
  Znew = NULL,
  sel = NULL
)
```

Arguments

fit
An object containing the results returned by the `kmbayes` function.

y
a vector of outcome data of length \(n \).

Z
an \(n \)-by-\(M \) matrix of predictor variables to be included in the \(h \) function. Each row represents an observation and each column represents a predictor.

X
an \(n \)-by-\(K \) matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.

Znew
optional matrix of new predictor values at which to predict \(h \), where each row represents a new observation. This will slow down the model fitting, and can be done as a post-processing step using `SamplePred`.
ExtractPIPs

sel A vector selecting which iterations of the BKMR fit should be retained for inference. If not specified, will default to keeping every 10 iterations after dropping the first 50% of samples, or if this results in fewer than 100 iterations, than 100 iterations are kept.

ExtractEsts

Description

Obtain summary statistics of each parameter from the BKMR fit

Usage

ExtractEsts(fit, q = c(0.025, 0.25, 0.5, 0.75, 0.975), sel = NULL)

Arguments

fit An object containing the results returned by the kmbayes function
q vector of quantiles
sel logical expression indicating samples to keep; defaults to keeping the second half of all samples

ExtractPIPs

Description

Extract posterior inclusion probabilities (PIPs) from Bayesian Kernel Machine Regression (BKMR) model fit

Usage

ExtractPIPs(fit, sel = NULL, z.names = NULL)

Arguments

fit An object containing the results returned by the kmbayes function
sel logical expression indicating samples to keep; defaults to keeping the second half of all samples
z.names optional argument providing the names of the variables included in the h function.

Details

For guided examples, go to https://jenfb.github.io/bkmr/overview.html
Value

a data frame with the variable-specific PIPs for BKMR fit with component-wise variable selection, and with the group-specific and conditional (within-group) PIPs for BKMR fit with hierarchical variable selection.

Description

Extract samples of each parameter from the BKMR fit

Usage

ExtractSamps(fit, sel = NULL)

Arguments

fit An object containing the results returned by a the kmbayes function
sel logical expression indicating samples to keep; defaults to keeping the second half of all samples

Description

Investigate the impact of the \(r[m] \) parameters on the smoothness of the exposure-response function \(h(z[m]) \).

Usage

InvestigatePrior(
 y,
 Z,
 X,
 ngrid = 50,
 q.seq = c(2, 1, 1/2, 1/4, 1/8, 1/16),
 r.seq = NULL,
 Drange = NULL,
 verbose = FALSE
)
Arguments

y a vector of outcome data of length n.
Z an n-by-M matrix of predictor variables to be included in the h function. Each row represents an observation and each column represents an predictor.
X an n-by-K matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.
ngrid Number of grid points over which to plot the exposure-response function
q.seq Sequence of values corresponding to different degrees of smoothness in the estimated exposure-response function. A value of q corresponds to fractions of the range of the data over which there is a decay in the correlation \(\text{cor}(h[i], h[j]) \) between two subjects by 50%.
r.seq sequence of values at which to fix r for estimating the exposure-response function
Drange the range of the \(z_m \) data over which to apply the values of q.seq. If not specified, will be calculated as the maximum of the ranges of \(z_1 \) through \(z_M \).
verbose TRUE or FALSE: flag indicating whether to print to the screen which exposure variable and q value has been completed

Details

For guided examples, go to https://jenfb.github.io/bkmr/overview.html

kmbayes Fit Bayesian kernel machine regression

Description

Fits the Bayesian kernel machine regression (BKMR) model using Markov chain Monte Carlo (MCMC) methods.

Usage

kmbayes(
 y,
 Z,
 X = NULL,
 iter = 1000,
 family = "gaussian",
 id = NULL,
 verbose = TRUE,
 Znew = NULL,
 starting.values = NULL,
 control.params = NULL,
 varsel = FALSE,
groups = NULL,
knots = NULL,
ztest = NULL,
rmethod = "varying",
est.h = FALSE
)

Arguments

y a vector of outcome data of length n.
Z an n-by-M matrix of predictor variables to be included in the h function. Each row represents an observation and each column represents a predictor.
X an n-by-K matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.
iter number of iterations to run the sampler
family a description of the error distribution and link function to be used in the model. Currently implemented for gaussian and binomial families.
id optional vector (of length n) of grouping factors for fitting a model with a random intercept. If NULL then no random intercept will be included.
verbose TRUE or FALSE: flag indicating whether to print intermediate diagnostic information during the model fitting.
Znew optional matrix of new predictor values at which to predict h, where each row represents a new observation. This will slow down the model fitting, and can be done as a post-processing step using SamplePred
starting.values list of starting values for each parameter. If not specified default values will be chosen.
control.params list of parameters specifying the prior distributions and tuning parameters for the MCMC algorithm. If not specified default values will be chosen.
varsel TRUE or FALSE: indicator for whether to conduct variable selection on the Z variables in h
groups optional vector (of length M) of group indicators for fitting hierarchical variable selection if varsel=TRUE. If varsel=TRUE without group specification, component-wise variable selections will be performed.
knots optional matrix of knot locations for implementing the Gaussian predictive process of Banerjee et al. (2008). Currently only implemented for models without a random intercept.
ztest optional vector indicating on which variables in Z to conduct variable selection (the remaining variables will be forced into the model).
rmethod for those predictors being forced into the h function, the method for sampling the r[m] values. Takes the value of 'varying' to allow separate r[m] for each predictor; 'equal' to force the same r[m] for each predictor; or 'fixed' to fix the r[m] to their starting values
est.h TRUE or FALSE: indicator for whether to sample from the posterior distribution of the subject-specific effects h_i within the main sampler. This will slow down the model fitting.
OverallRiskSummaries

Value

an object of class "bkmrfit", which has the associated methods:

- print (i.e., print.bkmrfit)
- summary (i.e., summary.bkmrfit)

References

See Also

For guided examples, go to https://jenfb.github.io/bkmr/overview.html

OverallRiskSummaries Calculate overall risk summaries

Description

Compare estimated h function when all predictors are at a particular quantile to when all are at a second fixed quantile

Usage

OverallRiskSummaries(
 fit,
 y = NULL,
 Z = NULL,
 X = NULL,
 qs = seq(0.25, 0.75, by = 0.05),
 q.fixed = 0.5,
 method = "approx",
 sel = NULL
)

Arguments

fit An object containing the results returned by a the kmbayes function

y a vector of outcome data of length n.

Z an n-by-M matrix of predictor variables to be included in the h function. Each row represents an observation and each column represents an predictor.
PlotPriorFits

X an n-by-K matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.

qs vector of quantiles at which to calculate the overall risk summary

q.fixed a second quantile at which to compare the estimated h function

method method for obtaining posterior summaries at a vector of new points. Options are "approx" and "exact"; defaults to "approx", which is faster particularly for large datasets; see details

sel selects which iterations of the MCMC sampler to use for inference; see details

Details

• If method == "approx" then calls the function ComputePostmeanHnew.approx. In this case, the argument sel defaults to the second half of the MCMC iterations.

• If method == "exact" then calls the function ComputePostmeanHnew.exact. In this case, the argument sel defaults to keeping every 10 iterations after dropping the first 50% of samples, or if this results in fewer than 100 iterations, than 100 iterations are kept

For guided examples and additional information, go to https://jenfb.github.io/bkmr/overview.html

PlotPriorFits

Plot of exposure-response function from univariate KMR fit

Description

Plot the estimated h(z[m]) estimated from frequentist KMR for r[m] fixed to specific values

Usage

PlotPriorFits(
 y,
 X,
 Z,
 fits,
 which.z = NULL,
 which.q = NULL,
 plot.resid = TRUE,
 ylim = NULL,
 ...
)

Arguments

y a vector of outcome data of length n.

X an n-by-K matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.
PredictorResponseBivar

Predict the exposure-response function at a new grid of points

Description

Predict the exposure-response function at a new grid of points

Usage

PredictorResponseBivar(
 fit,
 y = NULL,
 Z = NULL,
 X = NULL,
 z.pairs = NULL,
 method = "approx",
 ngrid = 50,
 q.fixed = 0.5,
 sel = NULL,
 min.plot.dist = 0.5,
 center = TRUE,
 z.names = colnames(Z),
 verbose = TRUE,
 ...
)

Arguments

fit An object containing the results returned by a the kmbayes function
y a vector of outcome data of length \(n \).
Z an \(n \)-by-\(M \) matrix of predictor variables to be included in the \(h \) function. Each row represents an observation and each column represents an predictor.
X an \(n \)-by-\(K \) matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.
PredictorResponseBivarLevels

Plot cross-sections of the bivariate predictor-response function

Description

Function to plot the \(h \) function of a particular variable at different levels (quantiles) of a second variable

Usage

```r
PredictorResponseBivarLevels(
  pred.resp.df,
  Z = NULL,
  qs = c(0.25, 0.5, 0.75),
  both_pairs = TRUE,
  z.names = NULL
)
```
Arguments

- `pred.resp.df`: object obtained from running the function `PredictorResponseBivar`
- `Z`: an n-by-M matrix of predictor variables to be included in the h function. Each row represents an observation and each column represents an predictor.
- `qs`: vector of quantiles at which to fix the second variable
- `both_pairs`: flag indicating whether, if \(h(z_1) \) is being plotted for \(z_2 \) fixed at different levels, that they should be plotted in the reverse order as well (for \(h(z_2) \) at different levels of \(z_1 \))
- `z.names`: optional vector of names for the columns of `z`

Details

For guided examples, go to `https://jenfb.github.io/bkmr/overview.html`

PredictorResponseBivarPair

Plot bivariate predictor-response function on a new grid of points

Description

Plot bivariate predictor-response function on a new grid of points

Usage

```r
PredictorResponseBivarPair(
  fit,
  y,
  Z,
  X,
  whichz1 = 1,
  whichz2 = 2,
  whichz3 = NULL,
  method = "approx",
  prob = 0.5,
  q.fixed = 0.5,
  sel = NULL,
  ngrid = 50,
  min.plot.dist = 0.5,
  center = TRUE,
  ...
)
```
Arguments

- **fit**: An object containing the results returned by a `kmbayes` function
- **y**: a vector of outcome data of length n.
- **Z**: an n-by-M matrix of predictor variables to be included in the h function. Each row represents an observation and each column represents a predictor.
- **X**: an n-by-K matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.
- **whichz1**: vector identifying the first predictor that (column of Z) should be plotted
- **whichz2**: vector identifying the second predictor that (column of Z) should be plotted
- **whichz3**: vector identifying the third predictor that will be set to a pre-specified fixed quantile (determined by `prob`)
- **method**: method for obtaining posterior summaries at a vector of new points. Options are "approx" and "exact"; defaults to "approx", which is faster particularly for large datasets; see details
- **prob**: pre-specified quantile to set the third predictor (determined by `whichz3`); defaults to 0.5 (50th percentile)
- **q.fixed**: vector of quantiles at which to fix the remaining predictors in Z
- **sel**: logical expression indicating samples to keep; defaults to keeping the second half of all samples
- **ngrid**: number of grid points to cover the range of each predictor (column in Z)
- **min.plot.dist**: specifies a minimum distance that a new grid point needs to be from an observed data point in order to compute the prediction; points further than this will not be computed
- **center**: flag for whether to scale the exposure-response function to have mean zero
- **...**: other arguments to pass on to the prediction function

PredictorResponseUnivar

Plot univariate predictor-response function on a new grid of points

Description

Plot univariate predictor-response function on a new grid of points

Usage

```r
PredictorResponseUnivar(
  fit,
  y = NULL,
  Z = NULL,
  X = NULL,
  which.z = 1:ncol(Z),
```
method = "approx",
 ngrid = 50,
 q.fixed = 0.5,
 sel = NULL,
 min.plot.dist = Inf,
 center = TRUE,
 z.names = colnames(Z),
 ...
)

Arguments

 fit An object containing the results returned by a the kmbayes function
 y a vector of outcome data of length n.
 Z an n-by-M matrix of predictor variables to be included in the h function. Each row represents an observation and each column represents a predictor.
 X an n-by-K matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.
 which.z vector identifying which predictors (columns of Z) should be plotted
 method method for obtaining posterior summaries at a vector of new points. Options are "approx" and "exact"; defaults to "approx", which is faster particularly for large datasets; see details
 ngrid number of grid points to cover the range of each predictor (column in Z)
 q.fixed vector of quantiles at which to fix the remaining predictors in Z
 sel logical expression indicating samples to keep; defaults to keeping the second half of all samples
 min.plot.dist specifies a minimum distance that a new grid point needs to be from an observed data point in order to compute the prediction; points further than this will not be computed
 center flag for whether to scale the exposure-response function to have mean zero
 z.names optional vector of names for the columns of Z
 ... other arguments to pass on to the prediction function

Details

For guided examples, go to https://jenfb.github.io/bkmr/overview.html
print.bkmrfit

Print basic summary of BKMR model fit

Description

print method for class "bkmrfit"

Usage

S3 method for class 'bkmrfit'
print(x, digits = 5, ...)

Arguments

x
an object of class "bkmrfit"
digits
the number of digits to show when printing
...
further arguments passed to or from other methods.

SamplePred

Obtain posterior samples of predictions at new points

Description

Obtains posterior samples of $E(Y) = h(Z_{new}) + \beta X_{new}$ or of $g^{-1}[E(y)]$

Usage

SamplePred(
 fit,
 Znew = NULL,
 Xnew = NULL,
 Z = NULL,
 X = NULL,
 y = NULL,
 sel = NULL,
 type = c("link", "response"),
 ...
)
Arguments

fit An object containing the results returned by a the kmbayes function

Znew optional matrix of new predictor values at which to predict new \(h \), where each row represents a new observation. If not specified, defaults to using observed \(Z \) values

Xnew optional matrix of new covariate values at which to obtain predictions. If not specified, defaults to using observed \(X \) values

\(\mathbf{Z} \) an \(n \)-by-\(M \) matrix of predictor variables to be included in the \(h \) function. Each row represents an observation and each column represents an predictor.

\(\mathbf{X} \) an \(n \)-by-\(K \) matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.

\(\mathbf{y} \) a vector of outcome data of length \(n \).

sel A vector selecting which iterations of the BKMR fit should be retained for inference. If not specified, will default to keeping every 10 iterations after dropping the first 50\% of samples, or if this results in fewer than 100 iterations, than 100 iterations are kept

type whether to make predictions on the scale of the link or of the response; only relevant for the binomial outcome family

... other arguments; not currently used

Details

For guided examples, go to https://jenfb.github.io/bkmr/overview.html

set_verbose_opts

Options for printing summary of model fit to the console

Description

Set options for what will be printed to the console when verbose = TRUE in the main kmbayes function

Usage

```r
set_verbose_opts(
  verbose_freq = NULL,
  verbose_show_ests = NULL,
  verbose_digits = NULL
)
```
SimData

Arguments

- `verbose_freq`: After this percentage of iterations has been completed the summary of the model fit so far will be printed to the console.
- `verbose_show_est`: TRUE or FALSE: flag indicating whether to print out summary statistics of all posterior samples obtained up until this point, for select parameters.
- `verbose_digits`: Number of digits to be printed to the console.

SimData

Simulate dataset

Description

Simulate predictor, covariate, and continuous outcome data.

Usage

```r
SimData(
  n = 100,
  M = 5,
  sigsq.true = 0.5,
  beta.true = 2,
  hfun = 3,
  Zgen = "norm",
  ind = 1:2,
  family = "gaussian"
)
```

Arguments

- `n`: Number of observations.
- `M`: Number of predictor variables to generate.
- `sigsq.true`: Variance of normally distributed residual error.
- `beta.true`: Coefficient on the covariate.
- `hfun`: An integer from 1 to 3 identifying which predictor-response function to generate.
- `Zgen`: Method for generating the matrix Z of exposure variables, taking one of the values `c("unif", "norm", "corr", "realistic")`.
- `ind`: Select which predictor(s) will be included in the h function; how many predictors that can be included will depend on which h function is being used.
- `family`: A description of the error distribution and link function to be used in the model. Currently implemented for `gaussian` and `binomial` families.
Details

- **hfun = 1**: A nonlinear function of the first predictor
- **hfun = 2**: A linear function of the first two predictors and their product term
- **hfun = 3**: A nonlinear and nonadditive function of the first two predictor variables

Examples

```r
set.seed(5)
dat <- SimData()

SingVarIntSummaries
```

Description

Compare the single-predictor health risks when all of the other predictors in Z are fixed to their a specific quantile to when all of the other predictors in Z are fixed to their a second specific quantile.

Usage

```r
SingVarIntSummaries(
  fit,
  y = NULL,
  Z = NULL,
  X = NULL,
  which.z = 1:ncol(Z),
  qs.diff = c(0.25, 0.75),
  qs.fixed = c(0.25, 0.75),
  method = "approx",
  sel = NULL,
  z.names = colnames(Z),
  ...
)
```

Arguments

- **fit**: An object containing the results returned by a the `kmbayes` function
- **y**: a vector of outcome data of length n.
- **Z**: an n-by-M matrix of predictor variables to be included in the h function. Each row represents an observation and each column represents an predictor.
- **X**: an n-by-K matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.
- **which.z**: vector indicating which variables (columns of Z) for which the summary should be computed
SingVarRiskSummaries

Description

Compute summaries of the risks associated with a change in a single variable in Z from a single level (quantile) to a second level (quantile), for the other variables in Z fixed to a specific level (quantile)

Usage

SingVarRiskSummaries(
 fit,
 y = NULL,
 Z = NULL,
 X = NULL,
 which.z = 1:ncol(Z),
 qs.diff = c(0.25, 0.75),
 qs.fixed = c(0.25, 0.5, 0.75),
 method = "approx",
 sel = NULL,
 z.names = colnames(Z),
 ...
)

Details

- If method == "approx" then calls the function ComputePostmeanHnew.approx. In this case, the argument sel defaults to the second half of the MCMC iterations.
- If method == "exact" then calls the function ComputePostmeanHnew.exact. In this case, the argument sel defaults to keeping every 10 iterations after dropping the first 50% of samples, or if this results in fewer than 100 iterations, than 100 iterations are kept

For guided examples and additional information, go to https://jenfb.github.io/bkmr/overview.html
Arguments

- **fit**: An object containing the results returned by a the kmbayes function
- **y**: a vector of outcome data of length n.
- **Z**: an n-by-M matrix of predictor variables to be included in the h function. Each row represents an observation and each column represents a predictor.
- **X**: an n-by-K matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.
- **which.z**: vector indicating which variables (columns of Z) for which the summary should be computed
- **qs.diff**: vector indicating the two quantiles \(q_1 \) and \(q_2 \) at which to compute \(h(z_{q2}) - h(z_{q1}) \)
- **q.fixed**: vector of quantiles at which to fix the remaining predictors in Z
- **method**: method for obtaining posterior summaries at a vector of new points. Options are "approx" and "exact"; defaults to "approx", which is faster particularly for large datasets; see details
- **sel**: logical expression indicating samples to keep; defaults to keeping the second half of all samples
- **z.names**: optional vector of names for the columns of Z
- **...**: other arguments to pass on to the prediction function

Details

- If method == "approx" then calls the function `ComputePostmeanHnew.approx`. In this case, the argument sel defaults to the second half of the MCMC iterations.
- If method == "exact" then calls the function `ComputePostmeanHnew.exact`. In this case, the argument sel defaults to keeping every 10 iterations after dropping the first 50% of samples, or if this results in fewer than 100 iterations, than 100 iterations are kept

For guided examples and additional information, go to https://jenfb.github.io/bkmr/overview.html
SummarySamps

Usage

S3 method for class 'bkmrfit'
summary(
 object,
 q = c(0.025, 0.975),
 digits = 5,
 show_est = TRUE,
 show_MH = TRUE,
 ...
)

Arguments

- **object**: an object of class "bkmrfit"
- **q**: quantiles of posterior distribution to show
- **digits**: the number of digits to show when printing
- **show_est**: logical; if TRUE, prints summary statistics of posterior distribution
- **show_MH**: logical; if TRUE, prints acceptance rates from the Metropolis-Hastings algorithm
- **...**: further arguments passed to or from other methods.

SummarySamps

Compute summary statistics

Description

Compute summary statistics

Usage

SummarySamps(s, q = c(0.025, 0.25, 0.5, 0.75, 0.975))

Arguments

- **s**: vector of posterior samples
- **q**: vector of quantiles
TracePlot

Description

Trace plot

Usage

```
TracePlot(
    fit,
    par,
    comp = 1,
    sel = NULL,
    main = "",
    xlab = "iteration",
    ylab = "parameter value",
    ...
)
```

Arguments

- `fit` An object containing the results returned by a `kmbayes` function
- `par` which parameter to plot
- `comp` which component of the parameter vector to plot
- `sel` logical expression indicating samples to keep; defaults to keeping the second half of all samples
- `main` title
- `xlab` x axis label
- `ylab` y axis label
- `...` other arguments to pass onto the plotting function

Details

For guided examples, go to https://jenfb.github.io/bkmr/overview.html
Index

CalcGroupPIPs, 2
CalcPIPs, 2
CalcWithinGroupPIPs, 3
ComputePostmeanHnew, 3
ComputePostmeanHnew.approx, 4, 4, 11, 21, 22
ComputePostmeanHnew.exact, 4, 5, 11, 21, 22

ExtractEsts, 6
ExtractPIPs, 6
ExtractSamps, 7

InvestigatePrior, 7, 12

kmbayes, 8

OverallRiskSummaries, 10

PlotPriorFits, 11
PredictorResponseBivar, 12, 14
PredictorResponseBivarLevels, 13
PredictorResponseBivarPair, 14
PredictorResponseUnivar, 15
print, 10
print.bkmrfit, 10, 17

SamplePred, 5, 9, 17
set_verbose_opts, 18
SimData, 19
SingVarIntSummaries, 20
SingVarRiskSummaries, 21
summary, 10
summary.bkmrfit, 10, 22
SummarySamps, 23

TracePlot, 24