Package ‘blocksdesign’

November 3, 2019

Type Package
Title Nested and Crossed Block Designs for Factorial, Fractional
Factorial and Unstructured Treatment Sets
Version 3.8
Date 2019-11-03
Author R. N. Edmondson.
Maintainer Rodney Edmondson <rodney.edmondson@gmail.com>
Depends R (>= 3.1.0)
Description Constructs D-optimal or near D-optimal nested and crossed
block designs for unstructured or general factorial treatment designs.
The treatment design, if required, is found from a model
matrix design formula and can be added sequentially, if required.
The block design is found from a defined
set of block factors and is conditional on the defined treatment design.
The block factors are added in sequence and each added block factor
is optimized conditional on all previously added block factors.
The block design can have repeated nesting down to any required
depth of nesting with either simple nested blocks or
crossed blocks at each level of nesting. Outputs include a table
showing the allocation of treatments to blocks and tables showing
the achieved D-efficiency factors for each block and treatment design.
License GPL (>= 2)
Imports lme4, plyr, PolynomF
LazyData true
RoxygenNote 6.1.1
Encoding UTF-8
Suggests knitr, rmarkdown, R.rsp
VignetteBuilder knitr,R.rsp
NeedsCompilation no
Repository CRAN
Date/Publication 2019-11-03 11:50:07 UTC
\textbf{R topics documented:}

- \texttt{blocksdesign-package} 2
- \texttt{A_bound} ... 3
- \texttt{blocks} ... 4
- \texttt{design} ... 6
- \texttt{durban} ... 11
- \texttt{HCF} .. 12
- \texttt{isPrime} .. 13
- \texttt{isPrimePower} 13
- \texttt{MOLS} ... 14

\textbf{Index} .. 16

\begin{tabular}{ll}
\texttt{blocksdesign-package} & Blocks design package \\
\end{tabular}

\section*{Description}

The \texttt{blocksdesign} package provides functionality for the construction of nested or crossed block designs for general linear model treatment designs.

\section*{Details}

Block designs group experimental units into homogeneous blocks to provide maximum precision of estimation of treatment effects within blocks. The most basic type of block design is a complete randomized blocks design where each block contains one or more complete replicate sets of treatments. Complete randomized block designs estimate all treatment effects fully within individual blocks and are usually the best choice for small experiments. However, for large experiments, the variability within complete blocks can be large and then it may be beneficial to sub-divide each complete block into smaller more homogeneous incomplete blocks.

Block designs with a single level of nesting are widely used in practical research but sometimes for very large experiments a single set of nested blocks may still be too large to give good control of intra-block variability. In this situation, a second set of incomplete blocks can be nested within the first set to reduce the intra-block variability still further. This process of recursive nesting can be repeated as often as required until the bottom set of blocks is sufficiently small to give adequate control of intra-block variability.

Sometimes it can be advantageous to use a double blocking system in which one set of blocks, usually called row blocks, is crossed with a second set of blocks, usually called column blocks. Double blocking systems can be valuable for controlling block effects in two dimensions simultaneously.

The \texttt{blocksdesign} package provides functionality for the construction of general multi-level block designs with nested or crossed blocks for any feasible depth of nesting. The design algorithm proceeds recursively with each nested set of blocks optimized conditionally within the levels of each preceding set of blocks. The analysis of incomplete block designs is complex but the availability of modern computers and modern software, for example the R mixed model software package \texttt{lme4} (Bates et al. 2014), makes the analysis of any feasible nested block designs with any depth of nesting practicable.
The `blocksdesign` package has two design functions:

i) **blocks**: This is a simple recursive function for nested block designs for unstructured treatment sets. The function generates designs for treatments with arbitrary levels of replication and with arbitrary depth of nesting where each successive set of blocks is optimized within the levels of each preceding set of blocks using conditional D-optimality. Special block designs including square and rectangular lattice designs (see Cochran and Cox 1957) are constructed algebraically. The outputs from the `blocks` function include a data frame showing the allocation of treatments to blocks for each plot of the design and a table showing the achieved D- and A-efficiency factors for each set of nested blocks together with A-efficiency upper bounds, where available. A plan showing the allocation of treatments to blocks in the bottom level of the design is also included in the output.

i) **design**: This is a general purpose function for unstructured or general qualitative or quantitative factorial treatment sets. The function first finds a D-optimal or near D-optimal treatment design of the required size, possibly a simple unstructured treatment set, and then finds a D-optimal or near D-optimal block design for that treatment design based on a set of defined block factors, if present. The `design` algorithm builds the blocks design by sequentially adding block factors where each block factor is optimized conditional on all previous block factors. Sequential optimization allows the blocking factors to be fitted in order of importance with the largest and most important blocks fitted first and the smaller and less important blocks fitted subsequently. If there are no defined block factors, the algorithm assumes a completely randomised treatment design. The outputs include a data frame of the block and treatment factors for each plot and a table showing the achieved D-efficiency factors for each set of nested or crossed blocks. Fractional factorial efficiency factors based on the generalized variance of the complete factorial design are also shown.

For more details see the 'blocksdesign' vignette: vignette(package = "blocksdesign")

References

A_bound

Efficiency bounds

Description

Finds upper A-efficiency bounds for regular block designs.

Usage

```r
A_bound(n, v, b)
```

Arguments

- `n`: the total number of plots in the design.
- `v`: the total number of treatments in the design.
- `b`: the total number of blocks in the design.
Details

Upper bounds for the A-efficiency factors of regular block designs (see Chapter 2.8 of John and Williams 1995). Non-trivial A-efficiency upper bounds are calculated for regular block designs with equal block sizes and equal replication. All other designs return NA.

References

Examples

50 plots, 10 treatments and 10 blocks for a design with 5 replicates and blocks of size 5
A_bound(n=50,v=10,b=10)

blocks

Block designs for unstructured treatment sets

Description

Constructs randomized nested block designs for unstructured treatment sets with any feasible depth of nesting.

Usage

blocks(treatments, replicates, blocks = NULL, searches = NULL, seed = NULL, jumps = 1)

Arguments

treatments the required number of treatments partitioned into sets of equally replicated treatments.
replicates the treatment replication numbers for each partitioned treatment set.
blocks the number of nested blocks for each level of nesting from the top down.
searches the maximum number of local optima searched for a design optimization.
seed an integer initializing the random number generator. The default is a random seed.
jumps the number of pairwise random treatment swaps used to escape a local maxima. The default is a single swap.
Details

Constructs randomized nested block designs with arbitrary depth of nesting for arbitrary unstructured treatment sets.

The `treatments` parameter is a set of numbers that gives a partition of the total number of treatments while the `replicates` parameter is a matching set of numbers that defines the replication of each treatment set in the partition.

The `blocks` parameter, if any, defines the number of blocks for each level of nesting from the highest to the lowest. The first number, if any, is the number of nested row blocks in the first-level of nesting, the second number, if any, is the number of nested row blocks in the second-level of nesting and so on down to any required feasible depth of nesting.

Block sizes are as nearly equal as possible and will never differ by more than a single plot in any particular block classification.

Unreplicated treatments are allowed and any simple nested block design can be augmented by any number of single unreplicated treatments to give augmented blocks that never differ in size by more than a single plot. However, it may sometimes be preferable to find an efficient block design for the replicated treatments and then add the unreplicated treatments to the design heuristically.

Square lattice designs are resolvable incomplete block designs for r replicates of p*p treatments arranged in blocks of size p where r < p+2 for prime or prime power p or r < 4 for general p. Square lattice designs are constructed algebraically from Latin squares or MOLS.

Rectangular lattice designs are resolvable incomplete block designs for r replicates of (p-1)*p treatments arranged in blocks of size p-1 where r < p+1 for prime or prime power p. Rectangular lattice designs are constructed algebraically by reducing an algebraic square lattice, see Cochran and Cox, Experimental Designs. 2nd Edition. Page 417 (Shrikhande method).

Outputs:

- A data frame showing the allocation of treatments to blocks with successive nested strata arranged in standard block order.
- A table showing the replication number of each treatment in the design.
- A table showing the block levels and the achieved D-efficiency and A-efficiency factor for each nested level together with A-efficiency upper bounds, where available.
- A plan showing the allocation of treatments to blocks in the bottom level of the design.

Value

<table>
<thead>
<tr>
<th>Treatments</th>
<th>A table showing the replication number of each treatment in the design.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>Data frame giving the optimized block and treatment design in plot order.</td>
</tr>
<tr>
<td>Plan</td>
<td>Data frame showing a plan view of the treatment design in the bottom level of the design.</td>
</tr>
<tr>
<td>blocks_model</td>
<td>The D-efficiencies and the A-efficiencies of the blocks in each nested level of the design together with A-efficiency upper-bounds, where available.</td>
</tr>
</tbody>
</table>
seed Numerical seed used for random number generator.
searches Maximum number of searches used for each level.
jumps Number of random treatment swaps used to escape a local maxima.

References

Examples

```r
## The number of searches in the following examples have been limited for fast execution.
## In practice, the number of searches may need to be increased for optimum results.
## Designs should be rebuilt several times to check that a near-optimum design has been found.

# 12 treatments x 4 replicates in 4 complete blocks with 4 sub-blocks of size 3
# rectangular lattice see Plan 10.10 Cochran and Cox 1957.
blocks(treatments=12,replicates=4,blocks=list(4,4))

# 3 treatments x 2 replicates + 2 treatments x 4 replicates in two complete randomized blocks
blocks(treatments=list(3,2),replicates=list(2,4),blocks=2,searches=10)

# 50 treatments x 4 replicates with 4 main blocks and 5 nested sub-blocks in each main block
blocks(treatments=50,replicates=4,blocks=list(4,5))

# as above but with 20 additional single replicate treatments, one single treatment per sub-block
blocks(treatments=list(50,20),replicates=list(4,1),blocks=list(4,5))

# 6 replicates of 6 treatments in 4 blocks of size 9 (non-binary block design)
blocks(treatments=6,replicates=6,blocks=4)

# 128 treatments x 2 replicates with two main blocks and 3 levels of nesting
blocks(128,2,list(2,2,2,2))

# 64 treatments x 4 replicates with 4 main blocks nested blocks of size 8 (lattice square)
blocks(64,4,list(4,8))

# 100 treatments x 4 replicates with 4 main blocks nested blocks of size 10 (lattice square)
blocks(100,4,list(4,10))
```

Design

Constructs D-optimal block and treatment designs for any feasible combinations of nested or crossed block factors and any feasible linear treatment model.
Usage

design(treatments, blocks = NULL, treatments_model = NULL,
weighting = 0.5, searches = NULL, seed = NULL, jumps = 1)

Arguments

treatments a single treatment factor or data frame containing any combination of qualitative
level treatment factors and numeric level treatment vectors.
blocks a single block factor or data frame containing one or more qualitative level block
factors in the required order of fitting.
treatments_model a model formula for the required treatments design.
weighting a weighting factor between 0 and 1 for weighting the interaction effects of
crossed blocks factors where the default weighting is 0.5
searches the maximum number of local optima searched at each stage of an optimization.
The default depends on the design size.
seed an integer initializing the random number generator. The null default gives an
arbitrary random initialization.
jumps the number of pairwise random treatment swaps used to escape a local maxima.
The default is a single swap.

Details

The treatments object is a factor or a data frame containing one or more qualitative level treatment
factors or quantitative level treatment vectors defining a set of candidate treatments from which the
optimized treatment design is selected.

The blocks object is a factor or a data frame containing one or more qualitative level block factors.
The default blocks object is a single level factor equal in length to the treatments object. The
size of the blocks object defines the required design size.

The treatments_model can be either a single formula for a single design matrix or a compound
formula for two or more design matrices. A compound formula contains one or more occurrences
of a splitting operator | which splits-off a partial design formula on the left hand side of each |.
Assuming the left hand part of each split is a well defined model design formula and replacing all
remaining | by + in each partial design formula gives a hierarchical set of treatment design matrices
for sequential model fitting. The advantage of sequential model fitting is that it provides improved
flexibility for fitting factors or variables of different status or importance and allows a wider range
of choices of optimized design for different situations (see examples below).

Treatments are selected from the design candidate set with replacement unless the size of the candi-
date set exactly equals the size of the required design and the treatments_model is null, in which
case the full candidate set is used for the treatment design. This option allows any arbitrary treatment
set with any arbitrary treatment replication to be input as the required treatment design. If the size
of the candidate set is different from the size of the required design, or if the treatments_model is
non-null, the treatment design is optimized by selection with replacement.

The treatment design criterion is the ratio of the generalized variance of the treatment design based
on the full treatment candidate set relative to the generalized variance of the treatment design based
on the optimized treatment set (D-optimality). If the required design is a fractional factorial and
the candidate set is a full factorial, the candidate set will be orthogonal and any design selected
from the candidate set will have a relative efficiency less than or equal to 1. For quantitative level
treatments, however, a full factorial design may not provide an optimal design and then the relative
efficiency of the optimized design may exceed 1. The efficiency factor is used to compare different
optimizations of the same design with the best design having the largest efficiency.

The design algorithm fits the blocks design by sequentially adding the block factors in the column
order of the blocks data frame. Each block factor is optimized conditional on all preceding block
factors remaining fixed but ignoring all succeeding block factors. This method allows the blocking
factors to be fitted in order of importance with the largest and most important blocks fitted first and
the smaller and less important blocks fitted subsequently.

For crossed blocks designs, a differential weighting factor \(w \) is used to determine the relative im-
portance of the block main effects versus the block interaction effects. If \(w = 0 \) the algorithm fits a
simple additive main effects design whereas if \(w = 1 \) the algorithm fits a fully crossed blocks design.
For intermediate \(0 < w < 1 \), the block factor interaction effects are downweighted relative to the main
effects, the smaller the value of \(w \) the greater the downweighting. The default weighting is 0.5 and
provided that all block effects are estimable, this weighting gives a compromise design where all
factorial block effects are included in the blocks design but where the main block effects are given
greater importance than the block interaction effects. See vignette(package = "blocksdesign")
for more details.

The blocks design criterion is the D-efficiency of the treatment design without block effects versus
the efficiency of the treatment design with block effects. The D-efficiency factor is necessarily
less than or equal to one with the most efficient design giving the largest D-efficiency factor. For
unstructured treatment designs, the A-efficiency factor is also shown together with an estimated
A-efficiency upper-bound, where available.

For more details see vignette(package = "blocksdesign")

Value

- **treatments**: The treatments included in the design and the replication of each individual
treatment taken in de-randomized standard order.
- **design**: The design layout showing the randomized allocation of treatments to blocks
and plots.
- **treatments_model**: The fitted treatment model, the number of model parameters (DF) and the D-
efficiency of each sequentially fitted treatment model.
- **blocks_model**: The blocks sub-model design and the D- and A-efficiency factors of each suc-
cessively fitted sub-blocks model.
- **seed**: Numerical seed for random number generator.
- **searches**: Maximum number of searches in each stratum.
- **jumps**: Number of random treatment swaps to escape a local maxima.

References

Examples

For optimum results, the number of searches may need to be increased.

4 replicates of 12 treatments with 16 nested blocks of size 3
rectangular lattice see Plan 10.10 Cochran and Cox 1957.
treatments = factor(1:12)
blocks = data.frame(Main = gl(4,12), Sub = gl(16,3))
design(treatments,blocks)

4 x 12 design for 4 replicates of 12 treatments with 3 plots in each intersection block
The optimal design is Trojan with known A-efficiency = 22/31 for the intersection blocks
treatments = factor(1:12)
blocks = data.frame(Rows = gl(4,12), Cols = gl(4,3,48))
design(treatments,blocks)

4 x 12 design for 4 replicates of 12 treatments with 3 sub-column blocks nested
as above but showing 3 sub-columns nested within each main column
treatments = factor(1:12)
blocks = data.frame(Rows = gl(4,12), Cols = gl(4,3,48), subCols = gl(12,1,48))
design(treatments,blocks,searches=200)

4 x 13 Row-and-column design for 4 replicates of 13 treatments
Youden design Plan 13.5 Cochran and Cox (1957).
treatments = factor(1:13)
blocks = data.frame(Rows = gl(4,13), Cols = gl(13,1,52))
design(treatments,blocks,searches = 700)

differential replication
 treatments=factor(c(rep(1:12,2),rep(13,12)))
blocks = data.frame(Main = gl(2,18), Sub = gl(12,3,36))
design(treatments,blocks,searches = 5)

48 treatments in 2 replicate blocks with 2 nested rows in each replicate and 3 main columns
(Reps/Rows) x Cols
treatments=factor(1:48)
blocks = data.frame(Reps = gl(2,48), Rows = gl(4,24,96), Cols = gl(3,8,96))
design(treatments,blocks,searches=5)

48 treatments in 2 replicate blocks with 2 main columns
The default weighting gives non-estimable Reps:Cols effects due to inherent aliasing
Increased weighting gives estimable Reps:Cols effects but non-orthogonal main effects
treatments=factor(1:48)
blocks = data.frame(Reps = gl(2,48), Cols = gl(2,24,96))
design(treatments,blocks,searches=5,weighting=.9)

Factorial treatment designs defined by a single factorial treatment model

Main effects of five 2-level factors in a half-fraction in 2/2/2 nested blocks design
(may require 100's of repeats to find a fully orthogonal solution - a VERY long wait!)
treatments = expand.grid(F1 = factor(1:2), F2 = factor(1:2),
design

F3 = factor(1:2), F4 = factor(1:2), F5 = factor(1:2))
b = data.frame(b1 = gl(2,8), b2 = gl(4,4), b3 = gl(8,2))
model = "~ F1 + F2 + F3 + F4 + F5"
repeat {z = design(treatments, blocks, treatments_model=model, searches=50)
if (isTRUE(all.equal(z$blocks_model[3,3], 1))) break}
print(z)

Second-order model for five qualitative 2-level factors in 4 randomized blocks
treatments = expand.grid(F1 = factor(1:2), F2 = factor(1:2), F3 = factor(1:2),
F4 = factor(1:2), F5 = factor(1:2))
b = data.frame(b = gl(4,8))
model = "~ (F1 + F2 + F3 + F4 + F5)^2"
design(treatments, blocks, treatments_model=model, searches=10)

Main effects of five 2-level factors in a half-fraction of
a 4 x 4 row-and column design.
treatments = expand.grid(F1 = factor(1:2), F2 = factor(1:2), F3 = factor(1:2),
F4 = factor(1:2), F5 = factor(1:2))
b = data.frame(rows = gl(4,4), cols = gl(4,1,16))
model = "~ F1 + F2 + F3 + F4 + F5"
repeat {z = design(treatments, blocks, treatments_model=model, searches=50)
if (isTRUE(all.equal(z$blocks_model[2,3], 1))) break}
print(z)

Quadratic regression for three 3-level numeric factor assuming a 10/27 fraction
treatments = expand.grid(A = 1:3, B = 1:3, C = 1:3)
b = data.frame(main=gl(10,1))
model = "~ (A + B + C)^2 + I(A^2) + I(B^2) + I(C^2)"
design(treatments, blocks, treatments_model=model, searches=10)

Quadratic regression for three 3-level numeric factor crossed with a qualitative 2-level factor
treatments = expand.grid(F = factor(1:2), A = 1:3, B = 1:3, C = 1:3)
b = data.frame(main=gl(18,1))
model = "~ F + A + B + C + F:A + F:B + F:C + A:B + A:C + B:C + I(A^2) + I(B^2) + I(C^2)"
design(treatments, blocks, treatments_model=model, searches=5)

1st-order model for 1/3rd fraction of four qualitative 3-level factors in 3 blocks
(may require many repeats to find a fully orthogonal solution)
treatments = expand.grid(F1 = factor(1:3), F2 = factor(1:3), F3 = factor(1:3),
F4 = factor(1:3))
b = data.frame(main=gl(3,9))
model = "~ F1 + F2 + F3 + F4"
design(treatments, blocks, treatments_model=model, searches=25)

2nd-order model for a 1/3rd fraction of five qualitative 3-level factors in 3 blocks
(may require many repeats to find a fully orthogonal solution)
treatments = expand.grid(F1 = factor(1:3), F2 = factor(1:3), F3 = factor(1:3),
F4 = factor(1:3), F5 = factor(1:3))
b = data.frame(main=gl(3,27))
model = "~ (F1 + F2 + F3 + F4 + F5)^2"
repeat {z = design(treatments, blocks, treatments_model=model, searches=50)
if (isTRUE(all.equal(z$blocks_model[1,3], 1))) break}
print(z)
2nd-order model for two qualitative and two quantitative level factors in 2 blocks of size 18

\[
treatments = \text{expand.grid}(F1 = \text{factor}(1:2), \ F2 = \text{factor}(1:3), \ V1 = 1:3, \ V2 = 1:4)
\]
\[
blocks = \text{data.frame}(main = \text{gl}(2,18))
\]
\[
model = \sim (F1 + F2 + V1 + V2)^2 + \text{I}(V1^2) + \text{I}(V2^2)
\]
\[
design(treatments,blocks,treatments_model=model,searches=5)
\]

Plackett and Burman design for eleven 2-level factors in 12 runs

\[
GF = \text{expand.grid}(F1 = \text{factor}(1:2,\text{labels}=c("a","b")), \ F2 = \text{factor}(1:2,\text{labels}=c("a","b")), \ F3 = \text{factor}(1:2,\text{labels}=c("a","b")), \ F4 = \text{factor}(1:2,\text{labels}=c("a","b")), \ F5 = \text{factor}(1:2,\text{labels}=c("a","b")), \ F6 = \text{factor}(1:2,\text{labels}=c("a","b")), \ F7 = \text{factor}(1:2,\text{labels}=c("a","b")), \ F8 = \text{factor}(1:2,\text{labels}=c("a","b")), \ F9 = \text{factor}(1:2,\text{labels}=c("a","b")), \ F10= \text{factor}(1:2,\text{labels}=c("a","b")), \ F11= \text{factor}(1:2,\text{labels}=c("a","b")))
\]
\[
blocks=data.frame(main=gl(1,12))
\]
\[
model = \sim F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8 + F9 + F10 + F11
\]
\[
design(GF,blocks,treatments_model=model,searches=25)
\]

Factorial treatment designs defined by sequentially fitted factorial treatment models

2 varieties x 3 levels of N x 3 levels of K assuming 1st-order interactions and 12 plots
the single stage model gives an unequal 7 + 5 split for the two varieties
whereas the two stage model forces an equal 6 + 6 split
NB the two stage model is slightly less efficient than the single stage model

\[
treatments = \text{expand.grid}(Variety = \text{factor}(\text{rep}(1:2)), \ N = 1:3, \ K = 1:3)
\]
\[
blocks=data.frame(main=gl(1,12))
\]
\[
treatments_model = \sim (Variety + N + K)^2 + \text{I}(N^2) + \text{I}(K^2)
\]
\[
design(treatments,blocks,treatments_model=treatments_model,searches=10)
\]
\[
treatments_model = \sim Variety | (Variety + N + K)^2 + \text{I}(N^2) + \text{I}(K^2)
\]
\[
design(treatments,blocks,treatments_model=treatments_model,searches=10)
\]

A 6 x 6 row-and-column design with linear row by linear column interaction.
Crossed blocks with interactions fitted in the treatments model and additive
treatments fitted in the blocks model as a dual design
may require many separate attempts to get the best overall design efficiency

\[
LS_grid = \text{expand.grid}(rows=factor(1:6), \ cols=factor(1:6))
\]
\[
blocks = \text{data.frame}(varieties=factor(rep(1:6,6)))
\]
\[
lin_rows = \text{as.numeric(levels(LS_grid$rows))[LS_grid$rows]}
\]
\[
lin_cols = \text{as.numeric(levels(LS_grid$cols))[LS_grid$cols]}
\]
\[
latin_sq = \sim rows | cols + lin_rows:lin_cols
\]
\[
design(LS_grid,blocks,latin_sq,searches=2000)
\]

durban
Durban example data design

Description

Usage

data(durban)

Format

An object of class data.frame with 544 rows and 5 columns.

HCF

Finds hcf of any set of positive integers

Description

Finds the highest common factor (hcf) of a set of integer numbers greater than zero (Euclidean algorithm).

Usage

HCF(...)

Arguments

... any set of positive integers, in any order, for which the hcf is required.

Details

Finds the hcf of any set of positive integers which can be in any order.

Value

hcf

Examples

hcf of vectors of integers
HCF(56, 77, 616)
HCF(3, 56, 77, 616)
isPrime

Prime number test

Description
Tests if a given number is prime and returns TRUE or FALSE

Usage
isPrime(v)

Arguments

v the number to be tested for primality

Details
Tests for the primality of any positive integer using the fact that all primes except 2 and 3 can be expressed as 6k-1 or 6k+1 for integer k.

Value
logical TRUE or FALSE

Examples

isPrime(731563)
isPrime(7315631)
isPrime(31**2)

isPrimePower

Finds a prime power solution for N, if available.

Description
Tests if a given number N is a prime power and returns either the base prime p and power q or p = 0 and q = 0.

Usage
isPrimePower(N)

Arguments

N the number to be tested for primality
Details

Finds the smallest integral solution for \(s = N^{(1/i)} \), which gives the smallest \(s \) such that \(s^i = N \). Then, if \(s \) is a prime, the number \(N \) is a prime power with \(p = s \) and \(q = i \).

Value

Returns the base prime \(p \) and the power \(q \) if \(N \) is a prime power; otherwise returns \(p = 0 \) and \(q = 0 \).

Examples

\[
isPrimePower(10000)
\]

MOLS

Prime power MOLS from finite fields

Description

Constructs sets of mutually orthogonal Latin squares (MOLS) of dimension \(p^q \) where \(p \) is prime. The number of squares \(r \) can be any number less than \(p^q \) and the exponent \(q \) can be any value from 1 up to a maximum dependent on the choice of \(p \). The permitted values of \(p \) and \(q \) are:

<table>
<thead>
<tr>
<th>prime (p)</th>
<th>maximum (q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>11, 13, 17, 19</td>
<td>3</td>
</tr>
<tr>
<td>101, 103, 107, etc.</td>
<td>1</td>
</tr>
</tbody>
</table>

Usage

\[
MOLS(p, q, r)
\]

Arguments

- \(p \) is any odd prime greater than one
- \(q \) is any suitable integer power (see description for available powers)
- \(r \) is any number of squares up to a maximum of \(p^q - 1 \)

Details

Generates MOLS by cyclic permutation of a basic Latin square \(L_0 \) constructed from a vector of ordered elements \(X \) of a prime-power finite field of size \(p^q \) and a unit vector \(1 \) of length \(p^q \) (see Chapter I of Raghavarao 1971).
\[L0 = \text{crossprod}(X, t(1)) + \text{crosssprod}(1, t(X)) \]

The primitive polynomials for the MOLS generated by this package were extracted from the Table of Primitive Polynomials given in the Supplement to Hansen and Mullen (1992).

The output is a single data frame for a \(p \times q \times p \times q \) square classified by rows and columns with a separate column for the allocation of treatments to each individual square.

Value

Data frame of factor levels for rows, columns and treatment sets

References

Examples

\[
\begin{align*}
\text{MOLS}(2, 3, 7) \\
\text{MOLS}(3, 2, 4) \\
\text{MOLS}(3, 3, 4) \\
\text{MOLS}(23, 2, 2)
\end{align*}
\]
Index

*Topic data
 durban, 11

A_bound, 3

blocks, 3, 4
blocksdesign (blocksdesign-package), 2
blocksdesign-package, 2

design, 3, 6
durban, 11

HCF, 12

isPrime, 13
isPrimePower, 13

MOLS, 14