Package ‘bluebike’

October 12, 2022

Title Blue Bike Comprehensive Data

Version 0.0.3

Description Facilitates the importation of the Boston Blue Bike trip data since 2015. Functions include the computation of trip distances of given trip data. It can also map the location of stations within a given radius and calculate the distance to nearby stations. Data is from <https://www.bluebikes.com/system-data>.

License MIT + file LICENSE

Depends R (>= 2.10)

Imports dplyr, janitor, leaflet, lubridate, magrittr, readr, sf, stringr, tidyselect, utils

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

NeedsCompilation no

Author Ziyue Yang [aut, cre] (<https://orcid.org/0000-0002-9299-8327>), Tianshu Zhang [aut] (<https://orcid.org/0000-0002-3004-4472>)

Maintainer Ziyue Yang <zyang2k@gmail.com>

Repository CRAN

Date/Publication 2022-05-05 06:00:05 UTC

R topics documented:

bluebike ... 2
import_month_data .. 3
station_data ... 4
station_distance ... 4
bluebike - A Data Package for Bluebike Users

Description

bluebike includes functions and dataset that aids bluebike users to retrieve data and perform data wrangling and visualizations.

Details

This package includes data from the Boston Blue Bike trip history data acquired from the Blue Bikes System Data. The users can import all monthly trip history data from 2020 to 2022 into a cleaned data set that can easily be used for data analysis. The package also includes a sample data set that includes 1000 sampled trip history from Feb. 2022, and a full data set that contains information about all available stations. The package also serves as a visualization tool for user to browse for closest stations as well as trip-planning via computing trip distances.

Available functions are:

- import_month_data
 Takes in numeric year/month values and imports data from Blue Bikes System Data for the specified time
- station_distance
 Returns stations with distance in ascending order given the user’s current location
- station_radius
 Plots the position of the stations within walking distance (500 m), and present the basic information about the stations via leaflet
- trip_distance
 Computes the geographical distance between the start and end stations

Available datasets are:

- trip_history_sample
 A sample of 1000 trip data entries from February 2022
- station_data
 A dataset that includes identification, position, and other basic information about bluebike stations
Examples

```r
library(dplyr)
# Find most used stations:
stations <- trip_history_sample %>%
  group_by('start_station_name') %>%
  summarize(trips_from = n())
head(stations)
```

import_month_data

Import monthly data from bluebike system data

Description

This function takes in numeric year/month values and imports data for the specified time.

Usage

```r
import_month_data(year, month)
```

Arguments

- `year` numeric value of year
- `month` numeric value of month

Value

A `spec_tbl_df` object

Examples

```r
# Pull Jan., 2015 data from web
library(dplyr)
jan_2015 <- import_month_data(2015, 1)

# Pull first quarter of 2015 data from web
spring2015 <- c(1, 2, 3)
quarter_1_2015 <- lapply(spring2015, import_month_data, year = 2015)
quarter_1_2015 <- bind_rows(quarter_1_2015)
```
station_data

Blue bike station data

Description
A dataset that includes identification, position, and other basic information about bluebike stations

Usage
station_data

Format
A data frame of 423 rows and 8 columns

number Station ID
name Station name
latitude Latitude of the station
longitude Longitude of the station
district District of the station
public Character vector showing if a station is public
total_docks The number of docks at each station
deployment_year The year that the station was put into work

Source
The original source of the data are bluebikes system data retrieved from https://www.bluebikes.com/system-data

station_distance

Compute the distance from stations given current location

Description
This function returns stations with distance in ascending order given the user's current location

Usage
station_distance(long, lat)

Arguments
long longitude of user location
lat latitude of user location
Value

a tbl_df object showing the distance between the user and top five closest stations with ID, name, number of docks, and position

Examples

```r
# Calculate distance for user at (-71.11467361, 42.34414899) and show the closest five stations
top_5_station <- head(station_distance(-71.11467361, 42.34414899), 5)
```

Description

This function plots the position of the stations within walking distance

Usage

```r
station_radius(long, lat, r = 1000)
```

Arguments

- `long`: numeric value of longitude
- `lat`: numeric value of latitude
- `r`: numeric value of set radius in meters

Value

A leaflet map

Examples

```r
# Show user at (-71.11467, 42.34415) and set the radius to 500 m
station_radius(long = -71.11467, lat = 42.34415, r = 2000)
```
trip_distance

Description
This function computes the geographical distance between the start and end stations for trips in a given dataset.

Usage
trip_distance(data)

Arguments
data: trip data pulled from the Blue Bike System data

Value
A tbl_df object with an additional distance column.

Examples
Calculate distance for sample trip data
sample_distance <- trip_distance(trip_history_sample)$distance

trip_history_sample

Description
A random sample of bluebike trip history data from February, 2022.

Usage
trip_history_sample

Format
A data frame of 1,000 rows representing each sample of trip history:

- **trip_duration**: Trip duration of each trip measured in seconds
- **start_time**: Start time and date of each trip
- **stop_time**: Stop time and date of each trip
- **start_station_id**: The identification variable of the start station
- **start_station_name**: The name of the end station
start_station_latitude The latitude of the start station
start_station_longitude The longitude of the start station
end_station_id The identification variable of the end station
end_station_name The name of the end station
end_station_latitude The latitude of the end station
end_station_longitude The longitude of the start station
bike_id The identification variable of the bike corresponding to each trip
user_type Type of user in each trip (Casual = Single Trip or Day Pass user; Member = Annual or Monthly Member)
postal_code Postal code of the user

Source

The original source of the data are bluebikes system data retrieved from https://www.bluebikes.com/system-data
Index

* datasets
 station_data, 4
 trip_history_sample, 6

bluebike, 2

import_month_data, 3

station_data, 4
station_distance, 4
station_radius, 5

trip_distance, 6
trip_history_sample, 6