Package ‘bmemLavaan’

October 12, 2022

Type Package

Title Mediation Analysis with Missing Data and Non-Normal Data

Version 0.5

Date 2022-05-27

Depends R (>= 3.5.0), Amelia, MASS, snowfall, rsem

Imports lavaan, sem

Description Methods for mediation analysis with missing data and non-normal data are implemented. For missing data, four methods are available: Listwise deletion, Pairwise deletion, Multiple imputation, and Two Stage Maximum Likelihood algorithm. For MI and TS-ML, auxiliary variables can be included to handle missing data. For handling non-normal data, bootstrap and two-stage robust methods can be used. Technical details of the methods can be found in Zhang and Wang (2013, <doi:10.1007/s11336-012-9301-5>), Zhang (2014, <doi:10.3758/s13428-013-0424-0>), and Yuan and Zhang (2012, <doi:10.1007/s11336-012-9282-4>).

License GPL-2

LazyLoad yes

LazyData true

URL https://bigdatalab.nd.edu

ZipData no

NeedsCompilation no

Suggests R.rsp

VignetteBuilder R.rsp

Author Shuigen Ming [aut],
Hong Zhang [aut],
Zhiyong Zhang [aut, cre],
Lijuan Wang [aut]

Maintainer Zhiyong Zhang <johnnyzhz@gmail.com>

RoxygenNote 7.1.2

Repository CRAN

Date/Publication 2022-05-28 14:40:06 UTC
R topics documented:

bmem .. 2
Math ... 4
power.bmem ... 5
power.curve .. 7
summary.bmem ... 8
summary.power ... 9

Index 11

bmem Mediation analysis based on bootstrap

Description

Mediation analysis based on bootstrap

Usage

bmem(data, model, v, method='list', ci='perc', cl=.95,
boot=1000, m=10, varphi=.1, st='i', robust=FALSE,
max_it=500, parallel=FALSE, ncore=1, ...)

Arguments

data A data set
model RAM path for the mediation model
v Indices of variables used in the mediation model. If omitted, all variables are used.
ci norm: normal approximation CI, perc: percentile CI, bc: bias-corrected CI, bca: BCa
cl Confidence level. Can be a vector.
boot Number of bootstraps
m Number of imputations
varphi Percent of data to be downweighted in robust method
st Starting values
robust Whether to use robust method
max_it Maximum number of iterations in EM
parallel Whether to use parallel method to calculate.
core Number of cores for parallel method.
... Other options for sem function can be used.
Details

The indirect effect can be specified using equations such as \(a \times b\), \(a \times b + c\), and \(a \times b \times c + d \times e + f\), which can be defined in `model` parameter.

Value

The on-screen output includes the parameter estimates, bootstrap standard errors, and CIs.

Author(s)

Zhiyong Zhang, Shuigen Ming and Lijuan Wang

References

Examples

```r
data("PoliticalDemocracy")

model_l <- '
ind60 \leftarrow x1 + g \times x2 + h \times x3
dem60 \leftarrow y1 + d \times y2 + e \times y3 + f \times y4
dem65 \leftarrow y5 + d \times y6 + e \times y7 + f \times y8

dem60 \sim a \times \text{ind60}
dem65 \sim c \times \text{ind60} + b \times \text{dem60}

y1 \sim y5
y2 \sim y4 + y6
y3 \sim y7
y4 \sim y8
y6 \sim y8
ind := a \times b
'

fit_l <- bmem(data=PoliticalDemocracy, model = model_l, method='list',
              ci='perc', boot=50, parallel = TRUE, ncore = 8)
summary(fit_l)
```
Math

Parents’ education levels and adolescent mathematics achievement of 76 families in 1986

Description

A dataset containing the mothers’ education level, children’s mathematical achievement and other attributes of 76 families.

Usage

data("Math")

Format

A data frame with 76 observations on the following 4 variables.

- ME mothers’ education level
- HE home environment
- MATH children’s mathematical achievement
- READ reading recognition ability

Details

Data used in this example are randomly sampled from the National Longitudinal Survey of Youth, the 1979 cohort, which were collected in 1986.

Source

https://www.nlsinfo.org/content/cohorts/nlsy79-children/using-and-understanding-the-data/childyoung-adult-documentation

References

Examples

data(Math)
Conducting power analysis

Description

A comprehensive power analysis function, it can conduct power analysis based on normal, bootstrap and robust Huber-type confidence intervals.

Usage

```
power.bmem(model, method="normal", nobs = 100, nrep = 1000, nboot = 1000, alpha = 0.95, skewness = NULL, kurtosis = NULL, ovnames = NULL, ci="perc", boot.type="default", se = "default", estimator = "default", parallel = FALSE, ncore = 1, verbose=TRUE, ...)
```

Arguments

- **model**: A model specified using lavaan notation and above. See `model.syntax` for basic model specification.
 - For the power analysis, the population parameter values should be provided in the following way. For example, the coefficient between math and HE is .39. Then it is specified as `start(.39)`. If the parameter will be referred in the mediation effect, a label should be given as a modifier as `b*HE+start(.39)*HE`.
 - It also specify the indirect or other composite effects using lavaan notation.
    ```
    model<-’ math ~ c*ME+start(0)*ME + b*HE+start(.39)*HE
    ab := a*b
    abc := a*b + c’
    ```

- **method**: Type of confidence intervals based on. Must be "normal", "boot" or "robust", which correspond to the normal, bootstrap or robust Huber-type confidence interval, respectively.

- **nobs**: Number of observations for power analysis. If it is a vector, multiple group analysis will be conducted.

- **nrep**: Number of replications for Monte Carlo simulation. At least 1,000 is recommended.

- **nboot**: Number of bootstrap replicates. It’s only required when bootstrap method is used.

- **alpha**: The alpha level is used to obtain the confidence interval for model parameters.

- **skewness**: A vector to give the skewness for the observed variables.

- **kurtosis**: A vector to give the kurtosis for the observed variables.

- **ovnames**: A vector to give the variable names for the observed variables. This is only needed when the skewness and kurtosis are provided. The skewness, kurtosis and variable names should be in the same order.

- **se**: How to calculate the standard error, for example, robust standard error can be specified using `se="robust"`.
estimator Estimation methods to be used here.
parallel Whether to use parallel method to calculate.
ncore Number of cores to be used in parallel.
ci Type of bootstrap confidence intervals. By default, the percentile one is used. Otherwise get the bias-corrected one. It's only required when bootstrap method is used.
boot.type Type of bootstrap method. By default, the nonparametric one is used. Changing it to "BS" to use the Bollen-Stine method. It's only required when bootstrap method is used.
verbose Whether to print power information.
... Other named arguments for lavaan can be passed here.

Value

- power power for all parameters and required ones in the model
- coverage coverage probability
- pop.value Population parameter values
- results A list to give all intermediate results
- data The last data set generated for checking purpose

Author(s)

Zhiyong Zhang, Shuigen Ming and Lijuan Wang

References

Examples

```r
ex1model<-'
  math ~ c*ME + start(0)*ME + b*HE + start(0.39)*HE
  HE ~ a*ME + start(0.39)*ME
  ab := a*b
'

N <- 50

system.time(power_normal <- power.bmem(ex1model, method = "normal", nobs = N, nrep=100, parallel=TRUE, skewness=c(-.3, -.7, 1.3), kurtosis=c(1.5, 0, 5), ovnames=c('ME', 'HE', 'math'), ncore=8))
summary(power_normal)
```
Generate a power curve either based on Sobel test or bootstrap

Usage

power.curve(model, nobs=seq(100, 2000, 200), method='normal', nrep=1000, nboot=1000, alpha=.95, skewness=NULL, kurtosis=NULL, ovnames=NULL, ci='perc', boot.type='default', se="default", estimator="default", parallel=FALSE, ncore=1, interactive=TRUE, ...)

Arguments

model A model specified using lavaan notation and above. See model.syntax for basic model specification. For the power analysis, the population parameter values should be provided in the following way. For example, the coefficient between math and HE is .39. Then it is specified as start(.39). If the parameter will be referred in the mediation effect, a label should be given as a modifier as b*HE+start(.39)*HE. It also specify the indirect or other composite effects using lavaan notation. model<-' math ~ c*ME+start(0)*ME + b*HE+start(.39)*HE HE ~ a*ME+start(.39)*ME ab := a*b abc := a*b + c'

method Type of confidence intervals based on. Must be "normal", "boot" or "robust", which correspond to the normal, bootstrap or robust Huber-type confidence interval, respectively.

nobs Number of observations for power analysis. It is typically should be a vector for single group analysis. For multiple group analysis, it should be a matrix.

nrep Number of replications for Monte Carlo simulation. At least 1,000 is recommended.

nboot Number of bootstraps to conduct.

alpha The alpha level is used to obtain the confidence interval for model parameters.

skewness A vector to give the skewness for the observed variables.

kurtosis A vector to give the kurtosis for the observed variables.

ovnames A vector to give the variable names for the observed variables. This is only needed when the skewness and kurtosis are provided. The skewness, kurtosis and variable names should be in the same order.

se How to calculate the standard error, for example, robust standard error can be specified using se="robust".

estimator Estimation methods to be used here.
parallel Parallel methods, snow or multicore, can be used here.
ncore Number of cores to be used in parallel. By default, the maximum number of cores are used.
ci Type of bootstrap confidence intervals. By default, the percentile one is used. To get the bias-corrected one, use ci='BC'.
boot.type Type of bootstrap method. By default, the nonparametric one is used. Changing it to "BS" to use the Bollen-Stine method.
interactive Whether to get the figure interactively.
... Other named arguments for lavaan can be passed here.

Value
Generate the nobs-power curves for all relationships given in the model.

Examples

```r
ex1model<-'
  math ~ c*ME + start(0)*ME + b*HE + start(0.39)*HE
  HE ~ a*ME + start(0.39)*ME
  ab := a*b
'

  nobs <- seq(50, 200, by=50)
  power.curve(model=ex1model, nobs=nobs, method='normal', nrep = 100, parallel=TRUE, ncore=8)
```

summary.bmem Sumarize the results of function 'bmem'

Description
Sumarize the results of function 'bmem'

Usage
```r
## S3 method for class 'bmem'
summary(object, estimates=TRUE,...)
```

Arguments

object An output object from the function bmem
estimates Whether output a more detailed results of parameters and values of statistics
...
other options can be used for the generic summary function.
Details

The other type of confidence intervals can be constructed from the output of the function `bmem`. Note if the BCa is required, the `ci=’BCa’` should have been specified in the function `bmem`.

Value

The on-screen output includes the parameter estimates, bootstrap standard errors, and CIs.

Examples

data("PoliticalDemocracy")

model_l <- '
ind60 =~ x1 + g*x2 + h*x3
dem60 =~ y1 + d*y2 + e*y3 + f*y4
dem65 =~ y5 + d*y6 + e*y7 + f*y8
dem60 ~ a * ind60
dem65 ~ c * ind60 + b * dem60

y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8
ind := a*b'

fit_l <- bmem(data=PoliticalDemocracy, model = model_l, method=list,
 ci='perc', boot=30, parallel = TRUE, ncore = 8)
summary.bmem(fit_l)

summary.power

Organize the results into a table

Description

This function is adapted from the `lavaan` summary function to put the results in a table.

Usage

```r
## S3 method for class 'power'
summary(object,...)
```

Arguments

- `object` Output from the function either `power.bmem`
- `...` Other options
Value

The on-screen output includes the basic information of this power analysis, parameters’ true values, parameter estimates, average bootstrap standard error, standard deviation of the parameter estimates, powers, standard error of the estimated powers and empirical coverage probability of the constructed CIs.

Examples

```r
ex1model<-
math ~ c*ME + start(0)*ME + b*HE + start(0.39)*HE
HE ~ a*ME + start(0.39)*ME
ab := a*b
;

N <- 50

system.time(power_robust <- power.bmem(ex1model, method = "robust", nobs = N,
                                       nrep=100, parallel=TRUE, ncore=8))

summary.power(power_robust)
```
Index

* datasets
 Math, 4
 bmem, 2, 8, 9
 lavaan, 9

Math, 4
 model.syntax, 5, 7

power.bmem, 5, 9
 power.curve, 7

sem, 2
summary (summary.bmem), 8
summary.bmem, 8
summary.power, 9