Package ‘bmemLavaan’

April 20, 2022

Type Package

Title Mediation Analysis with Missing Data and Non-Normal Data

Version 0.4

Date 2022-04-13

Depends R (>= 3.0), Amelia, MASS, snowfall, rsem

Imports lavaan, sem

Description Methods for mediation analysis with missing data and non-normal data are implemented. For missing data, four methods are available: Listwise deletion, Pairwise deletion, Multiple imputation, and Two Stage Maximum Likelihood algorithm. For MI and TS-ML, auxiliary variables can be included to handle missing data. For handling non-normal data, bootstrap and two-stage robust methods can be used. Technical details of the methods can be found in Zhang and Wang (2013, <doi:10.1007/s11336-012-9301-5>), Zhang (2014, <doi:10.3758/s13428-013-0424-0>), and Yuan and Zhang (2012, <doi:10.1007/s11336-012-9282-4>).

License GPL-2

LazyLoad yes

URL https://bigdatalab.nd.edu

ZipData no

NeedsCompilation no

Suggests R.rsp

VignetteBuilder R.rsp

Author Shuigen Ming [aut],
Hong Zhang [aut],
Zhiyong Zhang [aut, cre],
Lijuan Wang [aut]

Maintainer Zhiyong Zhang <johnnyzhz@gmail.com>

Repository CRAN

Date/Publication 2022-04-20 08:22:34 UTC

1
R topics documented:

bmem ... 2
power.bmem ... 4
power.curve ... 6
summary.bmem ... 7
summary.power .. 8

Index 10

bmem Mediation analysis based on bootstrap

Description

Mediation analysis based on bootstrap

Usage

bmem(data, model, v, method='list', ci='perc', cl=.95, boot=1000, m=10, varphi=.1, st='i', robust=FALSE, max_it=500, parallel=FALSE, ncore=1, ...)

Arguments

data A data set
model RAM path for the mediation model
v Indices of variables used in the mediation model. If omitted, all variables are used.
ci norm: normal approximation CI, perc: percentile CI, bc: bias-corrected CI, bca: BCa
cl Confidence level. Can be a vector.
boot Number of bootstraps
m Number of imputations
varphi Percent of data to be downweighted in robust method
st Starting values
robust Whether to use robust method
max_it Maximum number of iterations in EM
parallel Whether to use parallel method to calculate.
ncore Number of cores for parallel method.
... Other options for sem function can be used.
Details

The indirect effect can be specified using equations such as a*b, a*b+c, and a*b*c+d*e+f, which can be defined in `model` parameter.

Value

The on-screen output includes the parameter estimates, bootstrap standard errors, and CIs.

Author(s)

Zhiyong Zhang, Shuigen Ming and Lijuan Wang

References

Examples

data("PoliticalDemocracy")

model_l <- 'ind60 =~ x1 + g*x2 + h*x3
dem60 =~ y1 + d*y2 + e*y3 + f*y4
dem65 =~ y5 + d*y6 + e*y7 + f*y8
dem60 ~ a * ind60
dem65 ~ c * ind60 + b * dem60

y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8
ind := a*b

fit_l <- bmem(data=PoliticalDemocracy, model = model_l, method='list',
 ci='perc', boot=50, parallel = TRUE, ncore = 8)
summary(fit_l)
Description

A comprehensive power analysis function, it can conduct power analysis based on normal, bootstrap and robust Huber-type confidence intervals.

Usage

```r
power.bmem(model, method="normal", nobs = 100, nrep = 1000, nboot = 1000, alpha = 0.95, skewness = NULL, kurtosis = NULL, ovnames = NULL, ci='perc', boot.type='default', se = "default", estimator = "default", parallel = FALSE, ncore = 1, verbose=TRUE, ...)
```

Arguments

model
A model specified using lavaan notation and above. See `model.syntax` for basic model specification.

For the power analysis, the population parameter values should be provided in the following way. For example, the coefficient between math and HE is .39. Then it is specified as start(.39). If the parameter will be referred in the mediation effect, a label should be given as a modifier as b*HE+start(.39)*HE.

It also specify the indirect or other composite effects using lavaan notation.

```r
model<-' math ~ c*ME+start(0)*ME + b*HE+start(.39)*HE HE ~ a*ME+start(.39)*ME ab := a*b abc := a*b + c '
```

method
Type of confidence intervals based on. Must be "normal", "boot" or "robust", which correspond to the normal, bootstrap or robust Huber-type confidence interval, respectively.

nobs
Number of observations for power analysis. If it is a vector, multiple group analysis will be conducted.

nrep
Number of replications for Monte Carlo simulation. At least 1,000 is recommended.

nboot
Number of bootstrap replicates. It’s only required when bootstrap method is used.

alpha
The alpha level is used to obtain the confidence interval for model parameters.

skewness
A vector to give the skewness for the observed variables.

kurtosis
A vector to give the kurtosis for the observed variables.

ovnames
A vector to give the variable names for the observed variables. This is only needed when the skewness and kurtosis are provided. The skewness, kurtosis and variable names should be in the same order.

se
How to calculate the standard error, for example, robust standard error can be specified using se="robust".
power.bmem

 estimator Estimation methods to be used here.
 parallel Whether to use parallel method to calculate.
 ncore Number of cores to be used in parallel.
 ci Type of bootstrap confidence intervals. By default, the percentile one is used.
 otherwise get the bias-corrected one. It's only required when bootstrap method
 is used.
 boot.type Type of bootstrap method. By default, the nonparametric one is used. Changing
 it to "BS" to use the Bollen-Stine method. It's only required when bootstrap
 method is used.
 verbose Whether to print power information.
 ... Other named arguments for lavaan can be passed here.

Value

 power power for all parameters and required ones in the model
 coverage coverage probability
 pop.value Population parameter values
 results A list to give all intermediate results
 data The last data set generated for checking purpose

Author(s)

 Zhiyong Zhang, Shuigen Ming and Lijuan Wang

References

Examples

```
ex1model<-'Var math ~ c*ME + start(0)*ME + b*HE + start(0.39)*HE
       HE ~ a*ME + start(0.39)*ME
       ab := a*b
'

N <- 50

system.time(power_normal <- power.bmem(ex1model, method = "normal", nobs = N,
                         nrep=100, parallel=TRUE, skewness=c(-.3, -.7, 1.3),
                         kurtosis=c(1.5, 0, 5), ovnames=c('ME', 'HE', 'math'), ncore=8))
system.time(power_normal)
summary(power_normal)
```
power.curve

Generate a power curve

Description
Generate a power curve either based on Sobel test or bootstrap

Usage
power.curve(model, nobs=seq(100, 2000, 200), method='normal', nrep=1000, nboot=1000, alpha=.95, skewness=NULL, kurtosis=NULL, ovnames=NULL, ci='perc', boot.type='default', se="default", estimator="default", parallel=FALSE, ncore=1, interactive=TRUE, ...)

Arguments

model A model specified using lavaan notation and above. See model.syntax for basic model specification.

For the power analysis, the population parameter values should be provided in the following way. For example, the coefficient between math and HE is .39. Then it is specified as start(.39). If the parameter will be referred in the mediation effect, a label should be given as a modifier as b*HE+start(.39)*HE.

It also specify the indirect or other composite effects using lavaan notation.
model<-' math ~ c*ME+start(0)*ME + b*HE+start(.39)*HE HE ~ a*ME+start(.39)*ME ab := a*b abc := a*b + c '

method Type of confidence intervals based on. Must be "normal", "boot" or "robust", which correspond to the normal, bootstrap or robust Huber-type confidence interval, respectively.

nobs Number of observations for power analysis. It is typically should be a vector for single group analysis. For multiple group analysis, it should be a matrix.

nrep Number of replications for Monte Carlo simulation. At least 1,000 is recommended.

nboot Number of bootstraps to conduct.

alpha The alpha level is used to obtain the confidence interval for model parameters.

skewness A vector to give the skewness for the observed variables.

kurtosis A vector to give the kurtosis for the observed variables.

ovnames A vector to give the variable names for the observed variables. This is only needed when the skewness and kurtosis are provided. The skewness, kurtosis and variable names should be in the same order.

se How to calculate the standard error, for example, robust standard error can be specified using se="robust".

estimator Estimation methods to be used here.
Parallel methods, snow or multicore, can be used here.

ncore

Number of cores to be used in parallel. By default, the maximum number of cores are used.

ci

Type of bootstrap confidence intervals. By default, the percentile one is used. To get the bias-corrected one, use `ci='BC'`

boot.type

Type of bootstrap method. By default, the nonparametric one is used. Changing it to "BS" to use the Bollen-Stine method.

interactive

Whether to get the figure interactively.

... Other named arguments for lavaan can be passed here.

Value

Generate the nobs-power curves for all relationships given in the model.

Examples

```r
ex1model<-'
math ~ c*ME + start(0)*ME + b*HE + start(0.39)*HE
HE ~ a*ME + start(0.39)*ME
ab := a*b
'

nobs <- seq(50, 200, by=50)

power.curve(model=ex1model, nobs=nobs, method='normal', nrep = 100, parallel=TRUE, ncore=8)
```

summary.bmem

Sumarize the results of function 'bmem'

Description

Sumarize the results of function ‘bmem’

Usage

```r
## S3 method for class 'bmem'
summary(object, estimates=TRUE,...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>An output object from the function <code>bmem</code></td>
</tr>
<tr>
<td>estimates</td>
<td>Whether output a more detailed results of parameters and values of statistics</td>
</tr>
<tr>
<td>other options can be used for the generic summary function.</td>
<td></td>
</tr>
</tbody>
</table>
Details

The other type of confidence intervals can be constructed from the output of the function \texttt{bmem}. Note if the BCa is required, the \texttt{ci='BCa'} should have been specified in the function \texttt{bmem}.

Value

The on-screen output includes the parameter estimates, bootstrap standard errors, and CIs.

Examples

```r
data("PoliticalDemocracy")
model_l <- 'ind60 =~ x1 + g*x2 + h*x3
dem60 =~ y1 + d*y2 + e*y3 + f*y4
dem65 =~ y5 + d*y6 + e*y7 + f*y8
dem60 ~ a * ind60
dem65 ~ c * ind60 + b * dem60

y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8
ind := a*b'

fit_l <- bmem(data=PoliticalDemocracy, model = model_l, method='list',
   ci='perc', boot=50, parallel = TRUE, ncore = 8)
summary.bmem(fit_l)
```

summary.power

Organize the results into a table

Description

This function is adapted from the \texttt{lavaan} summary function to put the results in a table.

Usage

```r
## S3 method for class 'power'
summary(object,...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Output from the function either \texttt{power.bmem}.</td>
</tr>
<tr>
<td>...</td>
<td>Other options</td>
</tr>
</tbody>
</table>
Value

The on-screen output includes the basic information of this power analysis, parameters’ true values, parameter estimates, average bootstrap standard error, standard deviation of the parameter estimates, powers, standard error of the estimated powers and empirical coverage probability of the constructed CIs.

Examples

```r
ex1model<-'
math ~ c*ME + start(0)*ME + b*HE + start(0.39)*HE
HE ~ a*ME + start(0.39)*ME
ab := a*b
';

N <- 50

system.time(power_robust <- power.bmem(ex1model, method = "robust", nobs = N, nrep=100, parallel=TRUE, ncore=8))
summary.power(power_robust)
```
Index

bmem, 2, 7, 8
lavaan, 8
model.syntax, 4, 6
power.bmem, 4, 8
power.curve, 6
sem, 2
summary (summary.bmem), 7
summary.bmem, 7
summary.power, 8