Package ‘bmrm’

October 12, 2022

Type Package
Title Bundle Methods for Regularized Risk Minimization Package
Version 4.1
Date 2019-04-03
Depends R (>= 3.0.2)
Imports methods, lpSolve, LowRankQP, matrixStats, Rcpp
Suggests knitr
VignetteBuilder knitr
Author Julien Prados
Maintainer Julien Prados <julien.prados@unige.ch>

Copyright 2017, University of Geneva

Description Bundle methods for minimization of convex and non-convex risk under L1 or L2 regularization. Implements the algorithm proposed by Teo et al. (JMLR 2010) as well as the extension proposed by Do and Artieres (JMLR 2012). The package comes with lot of loss functions for machine learning which make it powerful for big data analysis. The applications includes: structured prediction, linear SVM, multi-class SVM, f-beta optimization, ROC optimization, ordinal regression, quantile regression, epsilon insensitive regression, least mean square, logistic regression, least absolute deviation regression (see package examples), etc... all with L1 and L2 regularization.

License GPL-3
RoxygenNote 6.1.0
LinkingTo Rcpp
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-04-03 14:00:03 UTC
balanced.cv.fold

Split a dataset for Cross Validation taking into account class balance

Usage

balanced.cv.fold(y, num.cv = 10)

Arguments

y
the class labels of each sample of the dataset
num.cv
number of cross validation required
balanced.loss.weights

Value

a factor of num.cv levels that assign to each sample a test fold

Description

Compute loss.weights so that total losses of each class is balanced

Usage

balanced.loss.weights(y)

Arguments

y

a object coerced to factor that represent the class labels of each sample of the dataset

Value

a numeric vector of the same length as y

bhattacharyya.coefficient

Computes Bhattacharyya coefficient needed for Hellinger distance

Description

Compute Bhattacharyya coefficient needed for Hellinger distance

Usage

bhattacharyya.coefficient(x)

Arguments

x

a numeric matrix

Value

a square matrix containing Bhattacharyya coefficient for each pair of row in x

Author(s)

Julien Prados
binaryClassificationLoss

Loss functions for binary classification

Description

Loss functions for binary classification

Usage

logisticLoss(x, y, loss.weights = 1)

rocLoss(x, y)

fbetaLoss(x, y, beta = 1)

hingeLoss(x, y, loss.weights = 1)

Arguments

x matrix of training instances (one instance by row)
y a logical vector representing the training labels for each instance in x
loss.weights numeric vector of loss weights to incur for each instance of x. Vector length should match length(y), but values are cycled if not of identical size.
beta a numeric value setting the beta parameter is the f-beta score

Value

a function taking one argument w and computing the loss value and the gradient at point w

Functions

• logisticLoss: logistic regression
• rocLoss: Find linear weights maximize area under its ROC curve
• fbetaLoss: F-beta score loss function
• hingeLoss: Hinge Loss for Linear Support Vector Machine (SVM)

References

Teo et al. A Scalable Modular Convex Solver for Regularized Risk Minimization. KDD 2007

See Also

nrbm
Examples

```r
x <- cbind(intercept=100,data.matrix(iris[1:2]))
w <- nrbm(hingeLoss(x, iris$Species=="setosa")); predict(w, x)
w <- nrbm(logisticLoss(x, iris$Species=="setosa")); predict(w, x)
w <- nrbm(rocLoss(x, iris$Species=="setosa")); predict(w, x)
w <- nrbm(fbetaLoss(x, iris$Species=="setosa")); predict(w, x)
```

costMatrix

Compute or check the structure of a cost matrix

Description

Compute or check the structure of a cost matrix

Usage

```r
costMatrix(y, C = c("0/1", "linear"))
```

Arguments

- `y`: a factor representing the labels of the instances
- `C`: either a cost matrix to check for consistency with labels in `y`, or a character string defining the standard matrix to compute. If a character string the accepted values are "0/1" for a 0-1 cost matrix or "linear" for linear cost.

Value

the cost matrix object

See Also

`nrbm`, `ordinalRegressionLoss`

gradient

Return or set gradient attribute

Description

Return or set gradient attribute
Usage

gradient(x, ...)

Default S3 method:
gradient(x, ...)

gradient(x, ...) <- value

Default S3 replacement method:
gradient(x, ...) <- value

Arguments

x any R object
...
additional parameters
value new gradient value to set

Details

gradient attribute is used by loss/risk function to return the gradient of the function at a given point together with the function value

Value

attr(x,"gradient")

hclust_fca Find first common ancestor of 2 nodes in an hclust object

Description

Find first common ancestor of 2 nodes in an hclust object

Usage

hclust_fca(hc, a, b)

Arguments

hc an hclust object
a an integer vector with the first leaf node
b an integer vector with the second leaf node (same length as a)

Value

an integer vector of the same length as a and b identifying the first common ancestors of a and b
hellinger.dist

Author(s)

Julien Prados

Examples

```r
hc <- hclust(dist(USArrests), "complete")
plot(hc)
A <- outer(seq_along(hc$order), seq_along(hc$order), hclust_fca, hc=hc)
H <- array(hc$height[A], dim(A))
image(H[hc$order, hc$order])
image(A[hc$order, hc$order])
```
is.convex

Return or set is.convex attribute

Description

Return or set is.convex attribute

Usage

```r
is.convex(x, ...)
```

```r
## Default S3 method:
is.convex(x, ...)
```

```r
is.convex(x, ...) <- value
```

```r
## Default S3 replacement method:
is.convex(x, ...) <- value
```

Arguments

- `x`: any R object
- `...`: additional parameters
- `value`: new loss value to set

Details

is.convex attribute is used by loss/risk function to determine if it is convex

Value

```r
attr(x,"is.convex")
```

iterative.hclust

Perform multiple hierachical clustering on random subsets of a dataset

Description

Perform multiple hierachical clustering on random subsets of a dataset

Usage

```r
iterative.hclust(x, seeds = 1:100, row.rate = 0.3, col.rate = 0.1,
max.cluster = 10L, ret.height = FALSE, hc.method = function(x, PCs
= 1:6, ...) { hclust(dist(prcomp(x, rank. = max(PCs))$x[, PCs, drop =
FALSE]), ...) }, ...)```
linearRegressionLoss  

**Arguments**

- **x**  
  the numeric matrix containing the data to cluster (one instance per row)

- **seeds**  
  a vector of random seed to use.

- **row.rate, col.rate**  
  numeric value in [0,1] to specify the proportion of instance (resp. feature) to subset at each random iteration.

- **max.cluster**  
  upper bound on the number of expected cluster (can by +Inf).

- **ret.height**  
  a logical to specify whether the average merging height should be returned.

- **hc.method**  
  a clustering method of arity 1, taking as input a random subset of the input matrix x and returning an hclust object

- **...**  
  additional arguments are passed to the hc.method

**Value**

a list of 3 square matrices N,H,K of size nrow(x): N is the number of time each pair of instance has been seen in the random subsets; H is the corresponding sum of heights for the pairs; K is the sum of the number of split possible that still preserve the two samples into the same cluster.

**Author(s)**

Julien Prados

---

**linearRegressionLoss**  
Loss functions to perform a regression

**Description**

Loss functions to perform a regression

**Usage**

```r
lmsRegressionLoss(x, y, loss.weights = 1)
ladRegressionLoss(x, y, loss.weights = 1)
quantileRegressionLoss(x, y, q = 0.5, loss.weights = 1)
epsilonInsensitiveRegressionLoss(x, y, epsilon, loss.weights = 1)
```

**Arguments**

- **x**  
  matrix of training instances (one instance by row)

- **y**  
  numeric vector of values representing the training labels for each instance in x

- **loss.weights**  
  numeric vector of loss weights to incur for each instance of x. Vector length should match length(y), but values are cycled if not of identical size.

- **q**  
  a numeric value in the range [0-1] defining quantile value to consider

- **epsilon**  
  a numeric value setting tolerance of the epsilon-regression
Value

a function taking one argument w and computing the loss value and the gradient at point w

Functions

- `lmsRegressionLoss`: Least Mean Square regression
- `ladRegressionLoss`: Least Absolute Deviation regression
- `quantileRegressionLoss`: Quantile Regression
- `epsilonInsensitiveRegressionLoss`: epsilon-insensitive regression (Vapnik et al. 1997)

References

Teo et al. Bundle Methods for Regularized Risk Minimization JMLR 2010

See Also

- `nrbm`

Examples

```r
x <- cbind(intercept=100, data.matrix(iris[1:2]))
y <- iris[[3]]
w <- nrbm(lmsRegressionLoss(x, y))
w <- nrbm(ladRegressionLoss(x, y))
w <- nrbm(quantileRegressionLoss(x, y, q=0.5))
w <- nrbm(epsilonInsensitiveRegressionLoss(x, y, epsilon=1))
```

---

**lpSVM**

*Linearily Programmed SVM*

Description

Linearily Programmed L1-loss Linear Support Vector Machine with L1 regularization

Usage

```r
svmLP(x, y, LAMBDA = 1, loss.weights = 1)
```

# S3 method for class 'svmLP'
predict(object, x, ...)

```r
svmMulticlassLP(x, y, LAMBDA = 1, loss.weights = 1)
```

# S3 method for class 'svmMLP'
predict(object, x, ...)

lpSVM

Arguments

x   a numeric data matrix to predict
y   a response factor for each row of x. It must be a 2 levels factor for svmLP, or a 
    &ge;2 levels factor for svmMulticlassLP
LAMBDA control the regularization strength in the optimization process. This is the value 
    used as coefficient of the regularization term.
loss.weights numeric vector of loss weights to incur for each instance of x. Vector length 
    should match length(y), but values are cycled if not of identical size.
object an object of class svmLP or svmMLP
... unused, present to satisfy the generic predict() prototype

Details

svmLP solves a linear program implementing a linear SVM with L1 regularization and L1 loss. It 
solves: min_w LAMBDA*|w| + sum_i(e_i); s.t. y_i * <w.x_i> >= 1-e_i; e_i >= 0 where |w| is the 
L1-norm of w

svmMulticlassLP solves a linear program implementing multiclass-SVM with L1 regularization 
and L1 loss. It solves: min_w LAMBDA*|w| + sum_i(e_i); s.t. <w.x_i> - <w.x_j> >= 1-e_i; e_i >= 
0 where |w| is the L1-norm of w

Value

the optimized weights matrix, with class svmLP

predict() return predictions for row of x, with an attribute "decision.value"

predict() return predictions for row of x, with an attribute "decision.value"

Functions

• svmLP: linear program solving binary-SVM with L1-regularization and L1-norm
• svmMulticlassLP: linear program solving multiclass-SVM with L1-regularization and L1-
norm

Author(s)

Julien Prados

Examples

x <- cbind(100, data.matrix(iris[1:4]))
y <- iris$Species
w <- svmMulticlassLP(x, y)
table(predict(w, x), y)

w <- svmLP(x, y == "setosa")
table(predict(w, x), y)
lvalue  

Return or set lvalue attribute

Description

Return or set lvalue attribute

Usage

lvalue(x, ...)

## Default S3 method:
lvalue(x, ...)

lvalue(x, ...) <- value

## Default S3 replacement method:
lvalue(x, ...) <- value

Arguments

x   any R object
...
value  additional parameters
value  new loss value to set

Details

lvalue attribute is used by loss/risk function to return the loss value of the function at a given point together with the function gradient

Value

attr(x,"lvalue")


mmc  

Convenient wrapper function to solve max-margin clustering problem on a dataset

Description

Solve max-margin clustering problem with multiple random starting points to avoid being trap by local minima. The random starting points are determined by randomly assigning N0 samples to each cluster and solving for multi-class SVM
**Usage**

```r
mmc(x, k = 2L, N0 = 2L, LAMBDA = 1, seeds = 1:50,
 nrbmArgsSvm = list(maxCP = 10L, MAX_ITER = 100L),
 nrbmArgsMmc = list(maxCP = 20L, MAX_ITER = 300L),
 mc.cores = getOption("mc.cores", 1L), ...)
```

**Arguments**

- **x** numeric matrix representing the dataset (one sample per row)
- **k** an integer specifying number of clusters to find
- **N0** number of instance to randomly assign per cluster when determining a random starting point. The classification dataset it defines is used to train a multi-class SVM whose solution is used as the starting point of current MMC iteration.
- **LAMBDA** the complexity parameter for nrbm()
- **seeds** the random seeds to use
- **nrbmArgsSvm** arguments to nrbm() when solving for multi-class SVM problem
- **nrbmArgsMmc** arguments to nrbm() when solving for max-margin clustering problem
- **mc.cores** number of core to use when running the random iterations in parallel
- **...** additional arguments are passed to mmcLoss()

**Value**

the MMC model matrix

**Examples**

```r
-- Prepare a 2D dataset to cluster with an intercept
x <- cbind(intercept=100,scale(data.matrix(iris[,c(1,3)]),center=TRUE,scale=FALSE))

-- Find max-margin clusters
y <- mmc(x,k=3,LAMBDA=0.001,minClusterSize=10,seeds=5)
table(y,iris$Species)

-- Plot the dataset and the MMC decision boundaries
gx <- seq(min(x[,2]),max(x[,2]),length=100)
gy <- seq(min(x[,3]),max(x[,3]),length=100)
Y <- outer(gx,gy,function(a,b){predict(y,cbind(100,a,b))})
image(gx,gy,Y,asp=1,main="MMC clustering",xlab=colnames(x)[1],ylab=colnames(x)[2])
points(x[,-1],pch=19+y)
```
multivariateHingeLoss

**Description**

The loss function for multivariate hinge loss

**Usage**

```r
multivariateHingeLoss(x, y, loss.weights = 1)
```

**Arguments**

- `x`: numeric matrix representing the dataset (one sample per row)
- `y`: a vector of class labels
- `loss.weights`: a weight vector for each instance

**Value**

The loss function for multivariate hinge loss
**Arguments**

- **x**: matrix of training instances (one instance by row)
- **y**: logical matrix of targets: \( y(t) \) is the vector of binary labels for \( x(t) \)
- **loss.weights**: numeric vector of loss weights to incur for each instance of \( x \). Vector length should match nrow(\( x \)), but values are cycled if not of identical size.

**Value**

A function taking one argument \( w \) and computing the loss value and the gradient at point \( w \)

**See Also**

- nrbm

**Examples**

```r
x <- cbind(intercept=100, data.matrix(iris[1:4]))
y <- model.matrix(~iris$Species+0)>0
w <- nrbm(multivariateHingeLoss(x, y), LAMBDA=1)
table(y, predict(w, x)>0, col(y))
table(
 do.call(paste0, as.data.frame(y+0)),
 do.call(paste0, as.data.frame((predict(w, x)>0)+0))
)
```

---

**nrbm**

*Convex and non-convex risk minimization with L2 regularization and limited memory*

**Description**

Use algorithm of Do and Artieres, JMLR 2012 to find \( w \) minimizing:

\[
f(w) = 0.5 \times \text{LAMBDA} \times \text{l2norm}(w) + \text{riskFun}(w)
\]

where riskFun is either a convex or a non-convex risk function.

**Usage**

```r
nrbm(riskFun, LAMBDA = 1, MAX_ITER = 1000L, EPSILON_TOL = 0.01, w0 = 0, maxCP = 50L, convexRisk = is.convex(riskFun), LowRankQP.method = "LU", line.search = !convexRisk)
nrbmL1(riskFun, LAMBDA = 1, MAX_ITER = 300L, EPSILON_TOL = 0.01, w0 = 0, maxCP = +Inf, line.search = FALSE)
```
Arguments

riskFun  the risk function to use in the optimization (e.g.: hingeLoss, softMarginVectorLoss). The function must evaluate the loss value and its gradient for a given point vector (w). The function must return the given point vector w, with attributes "lvalue" and "gradient" set.

LAMBDA  control the regularization strength in the optimization process. This is the value used as coefficient of the regularization term.

MAX_ITER  the maximum number of iteration to perform. The function stop with a warning message if the number of iteration exceed this value

EPSILON_TOL  a numeric value between 0 and 1 controlling stopping criteria: the optimization end when the ratio between the optimization gap and the objective value is below this threshold

w0  initial weight vector where optimization start

maxCP  maximal number of cutting plane to use to limit memory footprint

convexRisk  a length 1 logical telling if the risk function riskFun is convex. If TRUE, use CRBM algorithm; if FALSE use NRBM algorithm from Do and Artieres, JMLR 2012

LowRankQP.method  a single character value defining the method used by LowRankQP (should be either "LU" or "CHOL")

line.search  a logical, when TRUE use line search to speed up convergence

Value

the optimal weight vector (w)

Functions

• nrbm: original L2-regularized version of nrbm
• nrbml1: L1-regularized version of nrbm that can only handle convex risk

References

Do and Artieres Regularized Bundle Methods for Convex and Non-Convex Risks JMLR 2012

Examples

# -- Create a 2D dataset with the first 2 features of iris, with binary labels
x <- data.matrix(iris[1:2])

# -- Add a constant dimension to the dataset to learn the intercept
x <- cbind(intercept=1000,x)

# -- train scalar prediction models with maxMarginLoss and fbetaLoss
models <- list(
  svm_L1 = nrbml1(hingeLoss(x,iris$Species=="setosa"),LAMBDA=1),
  svm_L2 = nrbm(hingeLoss(x,iris$Species=="setosa"),LAMBDA=1),
)
ontologyLoss

Ontology Loss Function

Description

Ontology loss function may be used when the class labels are organized has an ontology structure.

Usage

```r
ontologyLoss(x, y, l = 1 - table(seq_along(y), y),
 dag = diag(nlevels(y)))
```

Arguments

- `x` instance matrix, where `x(t,)` defines the features of instance `t`
- `y` target vector where `y(t)` is an integer encoding target of `x(t)`
- `l` loss matrix. `l(t,p(t))` must be the loss for predicting target `p(t)` instead of `y(t)` for instance `t`. By default, the parameter is set to a 0/1 loss matrix.
- `dag` a numeric matrix defining the path in the Direct Acyclic Graph (DAG) to each class label

Value

a function taking one argument `w` and computing the loss value and the gradient at point `w`
ordinalRegressionLoss

The loss function for ordinal regression

Description

The loss function for ordinal regression

Usage

ordinalRegressionLoss(x, y, C = "0/1", impl = c("loglin", "quadratic"))

Arguments

x     matrix of training instances (one instance by row)
y     integer vector of positive values (>=1) representing the training labels for each
      instance in x
C     the cost matrix to use, C[i,j] being the cost for predicting label i instead of label
      j.
impl  either the string "loglin" or "quadratic", that define the implementation to use
      for the computation of the loss.

Value

a function taking one argument w and computing the loss value and the gradient at point w

References

Teo et al. Bundle Methods for Regularized Risk Minimization JMLR 2010

See Also

nrbm

Examples

# -- Load the data
x <- cbind(intercept=100,data.matrix(iris[1:4]))
dag <- matrix(nrow=nlevels(iris$Species),byrow=TRUE,dimnames=list(levels(iris$Species)),c(1,0,0,0,0,1,1,0,0,1,0,1))

w <- nrbm(ontologyLoss(x,iris$Species,dag=dag))
table(predict(w,x),iris$Species)
Examples

```r
-- Load the data
x <- data.matrix(iris[1:4])
y <- as.integer(iris$Species)

-- Train the model
w <- nrbm(ordinalRegressionLoss(x,y),LAMBDA=0.001,EPSILON_TOL=0.0001)
w2 <- nrbm(ordinalRegressionLoss(x,y,impl="quadratic"),LAMBDA=0.001,EPSILON_TOL=0.0001)

-- plot predictions
f <- x %*% w
f2 <- x %*% w2
layout(1:2)
plot(y,f)
plot(f,f2,main="compare predictions of quadratic and loglin implementations")

-- Compute accuracy
ij <- expand.grid(i=seq(nrow(x)),j=seq(nrow(x)))
n <- tapply(f[ij$i] - f[ij$j]>0,list(y[ij$i],y[ij$j]),sum)
N <- table(y[ij$i],y[ij$j])
print(n/N)
```

predict.mmc

**Predict class of new instances according to a mmc model**

### Description

Predict class of new instances according to a mmc model

### Usage

```r
S3 method for class 'mmc'
predict(object, x, ...)
```

### Arguments

- **object**: a mmc object
- **x**: a matrix similar to the dataset used, i.e. where rows are instances for which class must be predicted
- **...**: unused, present to satisfy the generic predict() prototype

### Value

A integer vector whose length match nrow(x) and containing the predicted class for each of the given instances.
The loss function for Preference loss

**Usage**

preferenceLoss(x, P)

**Arguments**

- **x**: matrix of training instances (one instance by row)
- **P**: a data.frame with 3 fields (i,j,cost) that specify the cost for preferring sample j over sample i.

**Value**

a function taking one argument w and computing the loss value and the gradient at point w

**References**

Teo et al. Bundle Methods for Regularized Risk Minimization JMLR 2010

**See Also**

nrbm

**Examples**

```r
x <- data.matrix(iris[1:4])
P <- expand.grid(i=which(iris$Species=='virginica'), j=which(iris$Species!='virginica'))
w <- nrbm(preferenceLoss(x,P), LAMBDA=0.001, EPSILON_TOL=0.0001)
```

---

**Generic method overlaid to print object of class roc.stat**

**Description**

Generic method overlaid to print object of class roc.stat

**Usage**

```r
S3 method for class 'roc.stat'
print(x, ...)
```
**rank.linear.weights**  

**Arguments**  
- `x` a roc.stat object return by the function roc.stat  
- `...` additional parameters

**Description**  
Rank linear weight of a linear model

**Usage**  

```r
rank.linear.weights(w)
```

**Arguments**  
- `w` a numeric vector of linear weights

**Value**  
a data.frame with a rank for each feature as well as z-score, p-value, and false discovery rate.

---

**roc.stat**  

**Compute statistics for ROC curve plotting**

**Description**  
Compute statistics for ROC curve plotting

**Usage**  

```r
roc.stat(f, y)
```

**Arguments**  
- `f` decision value for each instance  
- `y` a logical that specify binary labels

**Value**  
a data.frame() that compute for each threshold value 'f' roc curve statistics: TP, FP, TN, FN, FPR, TPR, sensitivity, specificity, precision, recall, accuracy
**Author(s)**

Julien Prados, adapted from Bob Horton code

**Examples**

```r
x <- cbind(data.matrix(iris[1:4]))
w <- nrbmL1(rocLoss(x, iris$Species == "versicolor"), LAMBDA = 0.01)
plot(roc.stat(x %*% w, iris$Species == "versicolor"))
lines(roc.stat(-x[,2], iris$Species == "versicolor"), col = "blue")
```

**rowmean**

*Column means of a matrix based on a grouping variable*

**Description**

Similar to rowsum, but for mean values.

**Usage**

```r
rowmean(x, group, ...)
```

**Arguments**

- `x`: a matrix
- `group`: a factor with one element per row of `x`
- `...`: additional arguments are passed to rowsum()

**Value**

A matrix containing the means, with one row per level of `group`.

**softMarginVectorLoss**

*Soft Margin Vector Loss function for multiclass SVM*

**Description**

Soft Margin Vector Loss function for multiclass SVM

**Usage**

```r
softMarginVectorLoss(x, y, l = 1 - table(seq_along(y), y))
```
**softmaxLoss**

**Description**
softmax loss function may be used to predict probability distributions

**Usage**
softmaxLoss(x, y, loss.weights = 1)

**Args**
- **x**: instance matrix, where \( x(t,) \) defines the features of instance \( t \)
- **y**: target vector where \( y(t) \) is an integer encoding target of \( x(t,) \). If it contains NAs, the return function is a non-convex loss for transductive multiclass-SVM.
- **l**: loss matrix. \( l(t,p(t)) \) must be the loss for predicting target \( p(t) \) instead of \( y(t) \) for instance \( t \). By default, the parameter is set to character value "0/1" so that the loss is set to a 0/1 loss matrix.

**Value**
a function taking one argument \( w \) and computing the loss value and the gradient at point \( w \)

**References**
Teo et al. A Scalable Modular Convex Solver for Regularized Risk Minimization. KDD 2007

**Examples**
```r
-- Build a 2D dataset from iris, and add an intercept
dx <- cbind(intercept=100, data.matrix(iris[c(1,2)]))
df <- data.frame(x)
y <- iris$Species

-- build the multiclass SVM model
w <- nrbm(softMarginVectorLoss(x, y))
table(predict(w, x), y)

-- Plot the dataset, the decision boundaries, the convergence curve, and the predictions
gx <- seq(min(x[,2]), max(x[,2]), length=200) # positions of the probes on x-axis
gy <- seq(min(x[,3]), max(x[,3]), length=200) # positions of the probes on y-axis
Y <- outer(gx, gy, function(a, b) {predict(w, cbind(100, a, b))})
image(gx, gy, unclass(Y), asp = 1, main = "dataset & decision boundaries",
 xlab = colnames(x)[2], ylab = colnames(x)[3])
points(x[,-1], pch = 19 + as.integer(y))
```
Arguments

- **x**: instance matrix, where x(t) defines the features of instance t
- **y**: target matrix where y(t) is a probability distribution that should sum to 1
- **loss.weights**: numeric vector of loss weights to incur for each instance of x. Vector length should match nrow(y), but values are recycled if not of identical size.

Value

- a function taking one argument w and computing the loss value and the gradient at point w

References

Teo et al. Bundle Methods for Regularized Risk Minimization JMLR 2010

Examples

```r
-- Load the data
x <- cbind(intercept=100, data.matrix(iris[1:4]))
y <- model.matrix(~iris$Species+0)
w <- nrbm(softmaxLoss(x, y))
P <- predict(w, x)
table(max.col(P), iris$Species)
```

---

**wolfe.linesearch**  
Wolfe Line Search

Description

Implements Wolfe Line Search algorithm. The code is inspired from Matlab code of Do and Artiere, but not tested. The function is not used yet, but might be used later to speed up bmmr/nrbm convergence.

Usage

```r
wolfe.linesearch(f, x0, s0, ..., a1 = 0.5, amax = 1.1, c1 = 1e-04, c2 = 0.9, maxiter = 5L, f.adjust = identity)
```

Arguments

- **f**: a function to minimize. It must accept as first argument a numeric vector representing the optimization point and return a numeric value, with gradient attribute setted
- **x0**: initial search point
- **s0**: direction of the search from x0
- **...**: additional parameters passed to f()
- **a1**: first step coefficient guess
wolfe.linesearch

amax  max coefficient value
   c1   lower bound
    c2  upper bound
   maxiter  maximum number of iteration for this linesearch
    f.adjust  an adjustment method to adjust lvalue and gradient of f

Value

the optimal point

Author(s)

Julien Prados

References

Do and Artieres Regularized Bundle Methods for Convex and Non-Convex Risks JMLR 2012

See Also

nrbm

Examples

fun <- function(w) {
    gradient(w) <- w
    lvalue(w) <- 0.5*sum(w*w)
    w
}
wolfe.linesearch(fun,fun(c(5,5)),c(-1,-1))
wolfe.linesearch(fun,fun(c(5,5)),c(1,1))
Index

balanced.cv.fold, 2
balanced.loss.weights, 3
bhattacharyya.coefficient, 3
binaryClassificationLoss, 4
costMatrix, 5
epsilonInsensitiveRegressionLoss
  (linearRegressionLoss), 9
fbetaLoss (binaryClassificationLoss), 4
gradient, 5
gradient<- (gradient), 5
hclust_fca, 6
hellinger.dist, 7
hingeLoss (binaryClassificationLoss), 4
is.convex, 8
is.convex<- (is.convex), 8
iterative.hclust, 8
ladRegressionLoss
  (linearRegressionLoss), 9
linearRegressionLoss, 9
lmsRegressionLoss
  (linearRegressionLoss), 9
logisticLoss
  (binaryClassificationLoss), 4
lpSVM, 10
lvalue, 12
lvalue<- (lvalue), 12
mmc, 12
mmcLoss, 14
multivariateHingeLoss, 14
nrbm, 15, 25
nrbml1 (nrbm), 15
ontologyLoss, 17
ordinalRegressionLoss, 18
predict.mmc, 19
predict.svmLP (lpSVM), 10
predict.svmMLP (lpSVM), 10
preferenceLoss, 20
print.roc.stat, 20
quantileRegressionLoss
  (linearRegressionLoss), 9
rank.linear.weights, 21
roc.stat, 21
rocLoss (binaryClassificationLoss), 4
rowmean, 22
softMarginVectorLoss, 22
softmaxLoss, 23
svmLP (lpSVM), 10
svmMulticlassLP (lpSVM), 10
wolfe.linesearch, 24