Package ‘bnstruct’

July 2, 2019

Description Bayesian Network Structure Learning from Data with Missing Values.

The package implements the Silander-Myllymaki complete search,
the Max-Min Parents-and-Children, the Hill-Climbing, the
Max-Min Hill-climbing heuristic searches, and the Structural
Expectation-Maximization algorithm. Available scoring functions are
BDeu, AIC, BIC. The package also implements methods for generating and using
bootstrap samples, imputed data, inference.

Type Package

Title Bayesian Network Structure Learning from Data with Missing
 Values

Version 1.0.5

Date 2019-07-02

Depends R (>= 3.5.0), bitops, Matrix, igraph, methods

Suggests graph, Rgraphviz, qgraph, knitr, testthat

License GPL (>= 2) | file LICENSE

Encoding UTF-8

RoxygenNote 6.1.1

VignetteBuilder knitr

NeedsCompilation yes

Author Francesco Sambo [aut],
 Alberto Franzin [aut, cre]

Maintainer Alberto Franzin <afrazin@ulb.ac.be>

Repository CRAN

Date/Publication 2019-07-02 09:40:03 UTC

R topics documented:

 add.observations<- ... 4
 asia ... 4
 asia_10000 .. 5
 asia_2_layers .. 6
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>belief.propagation</td>
<td>6</td>
</tr>
<tr>
<td>bn</td>
<td>7</td>
</tr>
<tr>
<td>BN-class</td>
<td>8</td>
</tr>
<tr>
<td>bn<-</td>
<td>9</td>
</tr>
<tr>
<td>BNDataset-class</td>
<td>9</td>
</tr>
<tr>
<td>boot</td>
<td>12</td>
</tr>
<tr>
<td>boots</td>
<td>13</td>
</tr>
<tr>
<td>bootstrap</td>
<td>14</td>
</tr>
<tr>
<td>build.junction.tree</td>
<td>15</td>
</tr>
<tr>
<td>child</td>
<td>16</td>
</tr>
<tr>
<td>child_NA_5000</td>
<td>16</td>
</tr>
<tr>
<td>complete</td>
<td>17</td>
</tr>
<tr>
<td>cpts</td>
<td>18</td>
</tr>
<tr>
<td>cpts<-</td>
<td>18</td>
</tr>
<tr>
<td>dag</td>
<td>19</td>
</tr>
<tr>
<td>dag<-</td>
<td>19</td>
</tr>
<tr>
<td>data.file</td>
<td>20</td>
</tr>
<tr>
<td>data.file<-</td>
<td>21</td>
</tr>
<tr>
<td>discreteness</td>
<td>22</td>
</tr>
<tr>
<td>discreteness<-</td>
<td>23</td>
</tr>
<tr>
<td>edge.dir.wpdag</td>
<td>23</td>
</tr>
<tr>
<td>em</td>
<td>24</td>
</tr>
<tr>
<td>get.most.probable.values</td>
<td>25</td>
</tr>
<tr>
<td>has.boots</td>
<td>26</td>
</tr>
<tr>
<td>has.imputed.boots</td>
<td>26</td>
</tr>
<tr>
<td>has.imputed.data</td>
<td>27</td>
</tr>
<tr>
<td>has.raw.data</td>
<td>28</td>
</tr>
<tr>
<td>header.file</td>
<td>28</td>
</tr>
<tr>
<td>header.file<-</td>
<td>29</td>
</tr>
<tr>
<td>imp.boots</td>
<td>30</td>
</tr>
<tr>
<td>imp.boots<-</td>
<td>30</td>
</tr>
<tr>
<td>impute</td>
<td>31</td>
</tr>
<tr>
<td>imputed.data</td>
<td>31</td>
</tr>
<tr>
<td>imputed.data<-</td>
<td>32</td>
</tr>
<tr>
<td>InferenceEngine-class</td>
<td>32</td>
</tr>
<tr>
<td>jpts</td>
<td>34</td>
</tr>
<tr>
<td>jpts<-</td>
<td>34</td>
</tr>
<tr>
<td>jt.clique</td>
<td>35</td>
</tr>
<tr>
<td>jt.clique<-</td>
<td>35</td>
</tr>
<tr>
<td>junction.tree</td>
<td>36</td>
</tr>
<tr>
<td>junction.tree<-</td>
<td>37</td>
</tr>
<tr>
<td>knn.impute</td>
<td>37</td>
</tr>
<tr>
<td>layering</td>
<td>38</td>
</tr>
<tr>
<td>learn.dynamic.network</td>
<td>39</td>
</tr>
<tr>
<td>learn.network</td>
<td>41</td>
</tr>
<tr>
<td>learn.params</td>
<td>44</td>
</tr>
</tbody>
</table>
R topics documented:

learn.structure .. 45
marginals .. 48
name ... 49
name<- .. 49
node.sizes .. 50
node.sizes<- .. 50
num.boots .. 51
num.boots<- ... 51
num.items .. 52
num.items<- .. 52
num.nodes .. 53
num.nodes<- .. 53
num.time.steps .. 54
num.time.steps<- ... 54
num.variables .. 55
num.variables<- ... 55
observations ... 56
observations<- .. 56
plot ... 57
print ... 58
quantiles ... 59
quantiles<- ... 59
raw.data .. 60
raw.data<- .. 61
read.bif .. 61
read.dataset .. 62
read.dsc ... 63
read.net .. 64
sample.dataset ... 65
sample.row .. 65
save.to.eps .. 66
scoring.func ... 67
scoring.func<- .. 67
shd ... 68
show ... 68
struct.algo .. 69
struct.algo<- .. 69
test.updated.bn ... 70
tune.knn.impute .. 70
updated.bn .. 71
updated.bn<- ... 72
variables .. 72
variables<- .. 73
wpdag .. 73
wpdag.from.dag ... 74
wpdag<- ... 74
write.dsc .. 75
write_xgmml .. 75
add.observations<- function(x) {
 value <- list()
 for (v in observed.vars) {
 value[[v]] <- observed.vals[v]
 }
 x$observations <- c(x$observations, value)
 x$inferenceEngine$addNobservations(x)
}

S4 replacement method for signature 'InferenceEngine'
add.observations(x) <- value

Arguments

- **x**: an `InferenceEngine`
- **value**: the list of observations of the `InferenceEngine`

Details

In case of multiple observations of the same variable, the last observation is the one used, as the most recent.

See Also

- `observations<-`

Description

Wrapper for a loader for the Asia dataset, with only raw data.

Usage

```
asia()
```
Details

The dataset has 10000 items, no missing data, so no imputation needs to be performed.

Value

a BNDataset containing the Child dataset.

See Also

asia_10000

Examples

dataset <- asia()
print(dataset)

<table>
<thead>
<tr>
<th>asia_10000</th>
<th>Asia dataset</th>
</tr>
</thead>
</table>

Description

The Asia dataset contains 10000 complete (no missing data, no latent variables) randomly generated items of the Asia Bayesian Network. No imputation needs to be performed, so only raw data is present.

Format

a BNDataset with raw data slow filled.

Details

The data the BNDataset object is built from is located in files pkg_folder/extdata/asia_10000.header and pkg_folder/extdata/asia_10000.data.

References

See Also

asia
asía_R_layers

load a two-layers dataset derived from the Asia dataset.

Description

Wrapper for a loader for a 2-layers dataset derived from the Asia dataset, with only raw data.

Usage

```r
asía_2_layers()
```

Details

The dataset has 100 items, no missing data, so no imputation needs to be performed.

Value

a BNDataset containing the Child dataset.

See Also

`asía_10000`

Examples

```r
dataset <- asia_2_layers()
print(dataset)
```

belief.propagation

perform belief propagation.

Description

Perform belief propagation for the network of an InferenceEngine, given a set of observations when present. In the current version of bnstruct, belief propagation can be computed only over a junction tree.

Usage

```r
belief.propagation(ie, observations = NULL, return.potentials = FALSE)
```

S4 method for signature 'InferenceEngine'

```r
belief.propagation(ie, observations = NULL,
                   return.potentials = FALSE)
```
Arguments

- `ie` an `InferenceEngine` object.
- `observations` list of observations, consisting in two vectors, `observed.vars` for the observed variables, and `observed.vals` for the values taken by variables listed in `observed.vars`. If no observations are provided, the `InferenceEngine` will use the ones it already contains.
- `return.potentials` if TRUE only the potentials are returned, instead of the default `BN`.

Value

updated `InferenceEngine` object.

Examples

```r
## Not run:
dataset <- BNDataset("file.header", "file.data")
bn <- BN(dataset)
ie <- InferenceEngine(bn)
ie <- belief.propagation(i)

observations(i) <- list("observed.vars"="A","G","X"), "observed.vals"=c(1,2,1))
belief.propagation(i)

## End(Not run)
```

bn

get the BN object contained in an InferenceEngine.

Description

Return a network contained in an InferenceEngine.

Usage

`bn(x)`

```r
## S4 method for signature 'InferenceEngine'
bn(x)
```

Arguments

- `x` an `InferenceEngine`.

Value

the BN object contained in an InferenceEngine.
BN-class

BN class definition.

Description

Instantiate a BN object.

Usage

```r
## S4 method for signature 'BN'
initialize(.Object, dataset = NULL, ...)

BN(dataset = NULL, ...)
```

Arguments

- `.Object` a BN
- `dataset` a `BNDataset` object containing the dataset the network is built upon, if any. The remaining parameters are considered only if a starting dataset is provided.
- `...` potential further arguments of methods.

Details

The constructor may be invoked without parameters – in this case an empty network will be created, and its slots will be filled manually by the user. This is usually viable only if the user already has knowledge about the network structure.

Value

BN object.

Slots

- `name`: name of the network
- `num.nodes`: number of nodes in the network
- `variables`: names of the variables in the network
- `discreteness`: TRUE if variable is discrete, FALSE if variable is continue
- `node.sizes`: if variable i is discrete, `node.sizes[i]` contains the cardinality of i, if i is instead discrete the value is the number of states variable i takes when discretized
- `cpts`: list of conditional probability tables of the network
- `dag`: adjacency matrix of the network
- `wpdag`: weighted partially dag
- `scoring.func`: scoring function used in structure learning (when performed)
- `struct.algo`: algorithm used in structure learning (when performed)
num.time.steps: number of instants in which the network is observed (1, unless it is a Dynamic Bayesian Network)
discreteness: TRUE if variable is discrete, FALSE if variable is continue

Examples

```r
## Not run:
net.1 <- BN()

dataset <- BNDataset()
dataset <- read.dataset(dataset, "file.header", "file.data")
net.2 <- BN(dataset)

## End(Not run)
```

Description

Add an original network to an InferenceEngine.

Usage

\[
bn(x) \leftarrow \text{value}
\]

Arguments

- \(x\): an InferenceEngine.
- \(\text{value}\): the BN object contained in an InferenceEngine.

Description

Contains the all of the data that can be extracted from a given dataset: raw data, imputed data, raw and imputed data with bootstrap.
Usage

BNDataset(data, discreteness, variables = NULL, node.sizes = NULL, ...)

S4 method for signature 'BNDataset'
initialize(.Object)

Arguments

- `.Object` an empty BNDataset.
- `data` raw data.frame or path/name of the file containing the raw dataset (see 'Details').
- `discreteness` a vector of booleans indicating if the variables are discrete or continuous (TRUE and FALSE, respectively), or path/name of the file containing header information for the dataset (discreteness, variable names, cardinality - see 'Details').
- `variables` vector of variable names.
- `node.sizes` vector of variable cardinalities (for discrete variables) or quantization ranges (for continuous variables).
- `...` further arguments for reading a dataset from files (see documentation for `read.dataset`).

Details

There are two ways to build a BNDataset: using two files containing respectively header informations and data, and manually providing the data table and the related header informations (variable names, cardinality and discreteness).

The key informations needed are: 1. the data; 2. the state of variables (discrete or continuous); 3. the names of the variables; 4. the cardinalities of the variables (if discrete), or the number of levels they have to be quantized into (if continuous). Names and cardinalities/values can be guessed by looking at the data, but it is strongly advised to provide all of the informations, in order to avoid problems later on during the execution.

Data can be provided in form of data.frame or matrix. It can contain NAs. By default, NAs are indicated with `?`; to specify a different character for NAs, it is possible to provide also the `na.string.symbol` parameter. The values contained in the data have to be numeric (real for continuous variables, integer for discrete ones). The default range of values for a discrete variable X is $[1, |X|]$, with $|X|$ being the cardinality of X. The same applies for the levels of quantization for continuous variables. If the value ranges for the data are different from the expected ones, it is possible to specify a different starting value (for the whole dataset) with the `starts.from` parameter. E.g. by `starts.from=0` we assume that the values of the variables in the dataset have range $[0, |X|-1]$. Please keep in mind that the internal representation of bnstruct starts from 1, and the original starting values are then lost.

It is possible to use two files, one for the data and one for the metadata, instead of providing manually all of the info. bnstruct requires the data files to be in a format subsequently described. The actual data has to be in (a text file containing data in) tabular format, one tuple per row, with the values for each variable separated by a space or a tab. Values for each variable have to be numbers, starting from 1 in case of discrete variables. Data files can have a first row containing the names of the corresponding variables.

In addition to the data file, a header file containing additional informations can also be provided. An header file has to be composed by three rows of tab-delimited values: 1. list of names of the...
variables, in the same order of the data file; 2. a list of integers representing the cardinality of the variables, in case of discrete variables, or the number of levels each variable has to be quantized in, in case of continuous variables; 3. a list that indicates, for each variable, if the variable is continuous \((c\) or \(C\)), and thus has to be quantized before learning, or discrete \((d\) or \(D\)). In case of need of more advanced options when reading a dataset from files, please refer to the documentation of the \texttt{read.dataset} method. Imputation and bootstrap are also available as separate routines \texttt{(impute} and \texttt{bootstrap}, respectively).

In case of an evolving system to be modeled as a Dynamic Bayesian Network, it is possible to specify only the description of the variables of a single instant; the information will be replicated for all the \texttt{num.time.steps} instants that compose the dataset, where \texttt{num.time.steps} needs to be set as parameter. In this case, it is assumed that the \(N\) variables \(v_1, v_2, \ldots, v_N\) of a single instant appear in the dataset as \(v_1_{t1}, v_2_{t1}, \ldots, v_N_{t1}, v_1_{t2}, v_2_{t2}, \ldots\), in this exact order. The user can however provide information for all the variables in all the instants; if it is not the case, the name of the variables will be edited to include the instant. In case of an evolving system, the \texttt{num.variables} slots refers anyway to the total number of variables observed in all the instants (the number of columns in the dataset), and not to a single instant.

Value

BNDataset object.

a BNDataset object.

Slots

- \texttt{name}: name of the dataset
- \texttt{header.file}: name and location of the header file
- \texttt{data.file}: name and location of the data file
- \texttt{variables}: names of the variables in the network
- \texttt{node.sizes}: cardinality of each variable of the network
- \texttt{num.variables}: number of variables (columns) in the dataset
- \texttt{discreteness}: \texttt{TRUE} if variable is discrete, \texttt{FALSE} if variable is continuous
- \texttt{quantiles}: list of vectors containing the quantiles, one vector per variable. Each vector is \texttt{NULL} if the variable is discrete, and contains the quantiles if it is continuous
- \texttt{num.items}: number of observations (rows) in the dataset
- \texttt{has.raw.data}: \texttt{TRUE} if the dataset contains data read from a file
- \texttt{has.imputed.data}: \texttt{TRUE} if the dataset contains imputed data (computed from raw data)
- \texttt{raw.data}: matrix containing raw data
- \texttt{imputed.data}: matrix containing imputed data
- \texttt{has.boots}: dataset has bootstrap samples
- \texttt{boots}: list of bootstrap samples
- \texttt{has.imputed.boots}: dataset has imputed bootstrap samples
- \texttt{imp.boots}: list of imputed bootstrap samples
- \texttt{num.boots}: number of bootstrap samples
- \texttt{num.time.steps}: number of instants in which the network is observed (1, unless it is a dynamic system)
See Also

read.dataset, impute, bootstrap

Examples

Not run:
create from files
dataset <- BNDataset("file.data", "file.header")

other way: create from raw dataset and metadata
data <- matrix(c(1:16), nrow = 4, ncol = 4)
dataset <- BNDataset(data = data,
discreteness = rep('d',4),
variables = c("a", "b", "c", "d"),
node.sizes = c(4,8,12,16))

End(Not run)

boot

get selected element of bootstrap list.

Description

Given a BNDataset, return the sample corresponding to given index.

Usage

boot(dataset, index, use.imputed.data = FALSE)

S4 method for signature 'BNDataset,numeric'
boot(dataset, index,
use.imputed.data = FALSE)

Arguments

dataset a BNDataset object.
index the index of the requested sample.
use.imputed.data
TRUE if samples from imputed dataset are to be used. Default if FALSE.

See Also

bootstrap

bootstrap
boots

Examples

```r
## Not run:
dataset <- BNdataset("file.data", "file.header")
dataset <- bootstrap(dataset, num.boots = 1000)

for (i in 1:num.boots(dataset))
  print(boot(dataset, i))
## End(Not run)
```

description

get list of bootstrap samples of a `BNDataset`.

Description

Return the list of samples computed from raw data of a dataset.

Usage

```r
boots(x)
```

Arguments

- `x` a `BNDataset` object.

Value

the list of bootstrap samples.

See Also

- `has.boots`, `has.imputed.boots`, `imp.boots`
boots<-

set list of bootstrap samples of a BNDataset.

Description

Add to a dataset a list of samples from raw data computed using bootstrap.

Usage

```r
boots(x) <- value
```

```r
## S4 replacement method for signature 'BNDataset'
boots(x) <- value
```

Arguments

- `x`: a *BNDataset* object.
- `value`: the list of bootstrap samples.

bootstrap

Perform bootstrap.

Description

Create a list of `num.Boots` samples of the original dataset.

Usage

```r
bootstrap(object, num.boots = 100, seed = 0, imputation = FALSE, k.impute = 10)
```

```r
## S4 method for signature 'BNDataset'
bootstrap(object, num.boots = 100, seed = 0,
          imputation = FALSE, k.impute = 10)
```

Arguments

- `object`: the *BNDataset* object.
- `num.boots`: number of sampled datasets for bootstrap.
- `seed`: random seed.
- `imputation`: TRUE if imputation has to be performed. Default is FALSE.
- `k.impute`: number of neighbours to be used; for discrete variables we use mode, for continuous variables the median value is instead taken (useful only if imputation == TRUE).
build.junction.tree

Examples

```r
## Not run:
dataset <- BNdataset("file.data", "file.header")
dataset <- bootstrap(dataset, num.boots = 1000)

## End(Not run)
```

build.junction.tree
build a JunctionTree.

Description

Starting from the adjacency matrix of the directed acyclic graph of the network contained in an InferenceEngine, build a JunctionTree for the network and store it into an InferenceEngine.

Usage

```r
build.junction.tree(object, ...)
```

Arguments

- `object`
an *InferenceEngine* object.
- `...`
potential further arguments for methods.

See Also

- InferenceEngine

Examples

```r
## Not run:
dataset <- BNdataset("file.header", "file.data")
net <- BN(dataset)
eng <- InferenceEngine()
eng <- build.junction.tree(eng)

## End(Not run)
```
child

\textit{load Child dataset.}

\textbf{Description}

Wrapper for a loader for the Child raw dataset; also perform imputation.

\textbf{Usage}

\texttt{child()}

\textbf{Details}

The dataset has 5000 items, with random missing values (no latent variables). BNDataset object contains the raw dataset and imputed dataset, with \texttt{k=10} (see \texttt{impute} for related explanation).

\textbf{Value}

a BNDataset containing the Child dataset.

\textbf{See Also}

\texttt{child_NA_5000}

\textbf{Examples}

\begin{verbatim}
dataset <- child()
print(dataset)
\end{verbatim}

\texttt{child_NA_5000}

\textit{Child dataset.}

\textbf{Description}

The Child dataset contains 5000 randomly generated items with missing data (no latent variables) of the Child Bayesian Network. Imputation is performed, so both raw and imputed data is present.

\textbf{Format}

a \texttt{BNDataset} with a raw and imputed data slow filled with 5000 items.

\textbf{Details}

The data the BNDataset object is built from is located in files \texttt{pkg_folder/extdata/extdata/Child_data_na_5000_header} and \texttt{pkg_folder/extdata/extdata/Child_data_na_5000_data}.
References

See Also

child

complete

Subset a BNDataset to get only complete cases.

Description

Given a BNDataset, return a copy of the original object where the raw data consists only in the observations that do not contain missing values.

Usage

```
complete(x, complete.vars = seq_len(num.variables(x)))
```

```
# S4 method for signature 'BNDataset'
complete(x,
    complete.vars = seq_len(num.variables(x)))
```

Arguments

- `x` a BNDataset.
- `complete.vars` vector containing the indices of the variables to be considered for the subsetting; variables not included in the vector can still contain NAs.

Details

Non-missingness can be required on a subset of variables (by default, on all variables).

If present, imputed data and bootstrap samples are eliminated from the new BNDataset, as using this method *after* using impute or bootstrap, there may likely be a loss of correspondence between the subsetted raw data and the previously generated imputed data and bootstrap samples.

Value

a copy of the original BNDataset containing only complete observations.
cpts

get the list of conditional probability tables of a BN.

Description

Return the list of conditional probability tables of the variables of a BN object. Each probability table is associated to the corresponding variable, and its dimensions are named according to the variable they represent.

Usage

cpts(x)

```r
## S4 method for signature 'BN'
cpts(x)
```

Arguments

- `x`: an object.

Details

Each conditional probability table is represented as a multidimensional array. The ordering of the dimensions of each variable is not guaranteed to follow the actual conditional distribution. E.g. dimensions for conditional probability $P(C|A,B)$ can be either (C,A,B) or (A,B,C), depending on if some operations have been performed, or how the probability table has been computed. Users should not rely on dimension numbers, but should instead select the dimensions using their names.

Value

List of the conditional probability tables of the desired object.

cpts<-

set the list of conditional probability tables of a network.

Description

Set the list of conditional probability tables of a BN object.

Usage

cpts(x) <- value

```r
## S4 replacement method for signature 'BN'
cpts(x) <- value
```
Args

 x
 value

Details

 Each conditional probability table is represented as a multidimensional array. To retrieve single dimensions (e.g. to compute marginals), users should provide dimensions names.

dag

get adjacency matrix of a network.

Description

Return the adjacency matrix of the directed acyclic graph representing the structure of a network.

Usage

dag(x)

 ## S4 method for signature 'BN'
 dag(x)

Arguments

 x

Value

 matrix containing the adjacency matrix of the directed acyclic graph representing the structure of the object.

dag.to.cpdag

convert a DAG to a CPDAG

Description

Convert the adjacency matrix representing the DAG of a BN into the adjacency matrix representing a CPDAG for the network.

Usage

dag.to.cpdag(dag.adj.matrix, layering = NULL)
Arguments

- dag.adj.matrix: the adjacency matrix representing the DAG of a BN.
- layering: vector containing the layers each node belongs to.

Value

the adjacency matrix representing a CPDAG for the network.

See Also

wpdag.from.dag

Examples

```
## Not run:
net <- learn.network(dataset, layering=layering)
pdag <- dag.to.cpdag(dag(net), layering)
wpdag(net) <- pdag

## End(Not run)
```

dag<- set adjacency matrix of an object.

Description

Set the adjacency matrix of the directed acyclic graph representing the structure of a network.

Usage

```
dag(x) <- value
```

S4 replacement method for signature 'BN'
dag(x) <- value

Arguments

- x: an object.
- value: matrix containing the adjacency matrix of the directed acyclic graph representing the structure of the object.
Description

Return the data filename of a dataset (with the path to its position, as given by the user). The data filename may contain a header in the first row, containing the list of names of the variables, in the same order as in the header file. After the header, if present, the file contains a data.frame with the observations, one item per row.

Usage

data.file(x)

S4 method for signature 'BNdataset'
data.file(x)

Arguments

x a BNdataset.

Value

data filename of the dataset.

See Also
data.file

data.file<- set data file of a BNdataset.

Description

Set the data filename of a dataset (with the path to its position, as given by the user). The data filename may contain a header in the first row, containing the list of names of the variables, in the same order as in the header file. After the header, if present, the file contains a data.frame with the observations, one item per row.

Usage

data.file(x) <- value

S4 replacement method for signature 'BNdataset'
data.file(x) <- value
Arguments

x a BNDataset.

value data filename.

See Also

header.file<-

discreteness get status (discrete or continuous) of the variables of an object.

Description

Get a vector representing the status of the variables (with their names) of a BN or BNDataset. Elements of the vector are c if the variable is continue, and d if the variable is discrete.

Usage

discreteness(x)

S4 method for signature 'BN'
discreteness(x)

S4 method for signature 'BNDataset'
discreteness(x)

Arguments

x an object.

Value

vector containing, for each variable of the desired object, c if the variable is continue, and d if the variable is discrete.
discreteness<-

set status (discrete or continuous) of the variables of an object.

Description

Set the list of variable status for the variables in a network or a dataset.

Usage

```
discreteness(x) <- value
```

S4 replacement method for signature 'BN'
```
discreteness(x) <- value
```

S4 replacement method for signature 'BNDataset'
```
discreteness(x) <- value
```

Arguments

- **x** an object.
- **value** a vector of elements in \{c,d\} for continuous and discrete variables (respectively).

edge.dir.wpdag

counts the edges in a WPDAG with their directionality

Description

Given a BN with a WPDAG, it counts the edges, with their directionality.

Usage

```
edge.dir.wpdag(x, use.node.names = TRUE)
```

Arguments

- **x** the BN
- **use.node.names** use node names rather than number (TRUE by default).

Value

a matrix containing the node pairs with the count of the edges between them in the WPDAG.
Description

Learn parameters of a network using the Expectation-Maximization algorithm.

Usage

```r
em(x, dataset, threshold = 0.001, max.em.iterations = 10, ess = 1)
```

S4 method for signature 'InferenceEngine,BNDataset'

```r
em(x, dataset, threshold = 0.001,
    max.em.iterations = 10, ess = 1)
```

Arguments

- `x` an `InferenceEngine`
- `dataset` observed dataset with missing values for the Bayesian Network of `x`.
- `threshold` threshold for convergence, used as stopping criterion.
- `max.em.iterations` maximum number of iterations to run in case of no convergence.
- `ess` Equivalent Sample Size value.

Value

a list containing: an `InferenceEngine` with a new updated network ("InferenceEngine"), and the imputed dataset ("BNDataset").

Examples

```r
## Not run:
em(x, dataset)
```

End(Not run)
get.most.probable.values

compute the most probable values to be observed.

Description

Return an array containing the values that each variable of the network is more likely to take, according to the CPTS. In case of ties take the first value.

Usage

```r
get.most.probable.values(x, prev.values = NULL)
```

Arguments

- `x` a BN or `inferenceengine` object.
- `prev.values` vector of size `num.nodes` containing an existing observation to complete (NULL if none).

Value

array containing, in each position, the most probable value for the corresponding variable.

Examples

```r
## Not run:
# try with a BN object x
get.most.probable.values(x)

# now build an InferenceEngine object
eng <- InferenceEngine(x)
get.most.probable.values(eng)

## End(Not run)
```
has.boots

check whether a BNdataset has bootstrap samples or not.

Description
Return TRUE if the given dataset contains samples for bootstrap, FALSE otherwise.

Usage
has.boots(x)

S4 method for signature 'BNdataset'
has.boots(x)

Arguments
x a BNDataset object.

Value
TRUE if dataset has bootstrap samples.

See Also
has.imputed.boots, boots, imp.boots

has.imputed.boots

check whether a BNdataset has bootstrap samples from imputed data or not.

Description
Return TRUE if the given dataset contains samples for bootstrap from imputed dataset, FALSE otherwise.

Usage
has.imputed.boots(x)

S4 method for signature 'BNdataset'
has.imputed.boots(x)

Arguments
x a BNDataset object.
Value

TRUE if dataset has bootstrap samples from imputed data.

See Also

has.boots, boots.imp.boots

Description

Check whether a BNData object actually contains imputed data.

Usage

has.imputed.data(x)

S4 method for signature 'BNData'
has.imputed.data(x)

Arguments

x a BNData.

See Also

has.raw.data, raw.data, imputed.data

Examples

Not run:
x <- BNData()
has.imputed.data(x) # FALSE

x <- read.dataset(x, "file.header", "file.data")
has.imputed.data(x) # FALSE, since read.dataset() actually reads raw data.

x <- impute(x)
has.imputed.data(x) # TRUE

End(Not run)
has.raw.data

Check if a BNDataset contains raw data.

Description

Check whether a BNDataset object actually contains raw data.

Usage

has.raw.data(x)

S4 method for signature 'BNdataset'

has.raw.data(x)

Arguments

x a BNDataset.

See Also

has.imputed.data, raw.data, imputed.data

Examples

Not run:

x <- BNdataset()
has.raw.data(x) # FALSE

x <- read.dataset(x, "file.header", "file.data")
has.raw.data(x) # TRUE, since read.dataset() actually reads raw data.

End(Not run)

header.file

Get header file of a BNDataset.

Description

Return the header filename of a dataset (with the path to its position, as given by the user), present if the dataset has been read from a file and not manually inserted. The header file contains three rows:

1. list of names of the variables, in the same order as in the data file;
2. list of cardinalities of the variables, if discrete, or levels for quantization if continuous;
3. list of status of the variables: c for continuous variables, d for discrete ones.
Usage

header.file(x)

S4 method for signature 'BNdataset'
header.file(x)

Arguments

x a BNdataset.

Value

header filename of the dataset.

See Also

data.file

header.file<- set header file of a BNdataset.

Description

Set the header filename of a dataset (with the path to its position, as given by the user). The header file has to contain three rows:

1. list of names of the variables, in the same order as in the data file;
2. list of cardinalities of the variables, if discrete, or levels for quantization if continuous;
3. list of status of the variables: c for continuous variables, d for discrete ones.

Further rows are ignored.

Usage

header.file(x) <- value

S4 replacement method for signature 'BNdataset'
header.file(x) <- value

Arguments

x a BNdataset.

value header filename.

See Also

data.file<-
imp.boots<-
get list of bootstrap samples from imputed data of a BNDataset.

Description

Return the list of samples computed from raw data of a dataset.

Usage

```r
imp.boots(x)
```

Arguments

- `x` a `BNDataset` object.

Value

the list of bootstrap samples from imputed data.

See Also

`has.boots`, `has.imputed.boots`, `boots`

imp.boots<-
set list of bootstrap samples from imputed data of a BNDataset.

Description

Add to a dataset a list of samples from imputed data computed using bootstrap.

Usage

```r
imp.boots(x) <- value
```

Arguments

- `x` a `BNDataset` object.
- `value` the list of bootstrap samples from imputed data.
impute

Impute a BNDataset raw data with missing values.

Description

Impute a BNDataset raw data with missing values.

Usage

```r
impute(object, k.impute = 10)
```

```r
## S4 method for signature 'BNDataset'
impute(object, k.impute = 10)
```

Arguments

- `object`: the BNDataset object.
- `k.impute`: number of neighbours to be used; for discrete variables we use mode, for continuous variables the median value is instead taken.

Examples

```r
## Not run:
dataset <- BNDataset("file.data", "file.header")
dataset <- impute(dataset)

## End(Not run)
```

imputed.data

get imputed data of a BNDataset.

Description

Return imputed data contained in a BNDataset object, if any.

Usage

```r
imputed.data(x)
```

```r
## S4 method for signature 'BNDataset'
imputed.data(x)
```

Arguments

- `x`: a BNDataset.
See Also

has.raw.data, has.imputed.data, raw.data

imputed.data <- add imputed data.

Description

Insert imputed data in a BNdataset object.

Usage

imputed.data(x) <- value

S4 replacement method for signature 'BNdataset'
imputed.data(x) <- value

Arguments

x a BNdataset.
value a matrix of integers containing a dataset.

See Also

has.imputed.data, imputed.data.read.dataset

InferenceEngine-class InferenceEngine class.

Description

InferenceEngine class.
Constructor method of InferenceEngine class.
constructor for InferenceEngine object

Usage

S4 method for signature 'InferenceEngine'
initialize(.Object, ...)

InferenceEngine(bn = NULL, observations = NULL, ...)
InferenceEngine-class

Arguments

- `...`: potential further arguments of methods.
- `bn`: a BN object.
- `observations`: a list of observations composed by the two following vectors:
 - `observed.vars`: vector of observed variables;
 - `observed.vals`: vector of values observed for the variables in `observed.vars` in the corresponding position.

Value

- an InferenceEngine object.
- InferenceEngine object.

Slots

- `junction.tree`: junction tree adjacency matrix.
- `num.nodes`: number of nodes in the junction tree.
- `cliques`: list of cliques composing the nodes of the junction tree.
- `triangulated.graph`: adjacency matrix of the original triangulated graph.
- `jpts`: inferred joint probability tables.
- `bn`: original Bayesian Network (as object of class BN) as provided by the user, or learnt from a dataset. NULL if missing.
- `updated.bn`: Bayesian Network (as object of class BN) as modified by a belief propagation computation. In particular, it will have different conditional probability tables with respect to its original version. NULL if missing.
- `observed.vars`: list of observed variables, by name or number.
- `observed.vals`: list of observed values for the corresponding variables in `observed.vars`.

Examples

```r
## Not run:
dataset <- BNDataset()
dataset <- read.dataset(dataset, "file.header", "file.data")
bn <- BN(dataset)
eng <- InferenceEngine(bn)

obs <- list(c("A","G","X"),c(1,2,1))
eng.2 <- InferenceEngine(bn, obs)
## End(Not run)
```
jpts <- get the list of joint probability tables compiled by an InferenceEngine.

Description

Return the list of joint probability tables for the cliques of the junction tree obtained after belief propagation has been performed.

Usage

jpts(x)

S4 method for signature 'InferenceEngine'
jpts(x)

Arguments

x

an InferenceEngine.

Details

Each joint probability table is represented as a multidimensional array. To retrieve single dimensions (e.g. to compute marginals), users should not rely on dimension numbers, but should instead select the dimensions using their names.

Value

the list of joint probability tables compiled by the InferenceEngine.

jpts <- set the list of joint probability tables compiled by an InferenceEngine.

Description

Add a list of joint probability tables for the cliques of the junction tree.

Usage

jpts(x) <- value

S4 replacement method for signature 'InferenceEngine'
jpts(x) <- value
Arguments

x an InferenceEngine.
value the list of joint probability tables compiled by the InferenceEngine.

Details

Each joint probability table is represented as a multidimensional array. To retrieve single dimensions (e.g. to compute marginals), users should provide dimension names.

jt.clique get the list of cliques of the junction tree of an InferenceEngine.

Description

Return the list of cliques containing the variables associated to each node of a junction tree.

Usage

jt.clique(x)

S4 method for signature 'InferenceEngine'
jt.clique(x)

Arguments

x an InferenceEngine.

Value

the list of cliques of the junction tree contained in the InferenceEngine.

jt.clique<- set the list of cliques of the junction tree of an InferenceEngine.

Description

Add to the InferenceEngine a list containing the cliques of variables composing the nodes of the junction tree.

Usage

jt.clique(x) <- value

S4 replacement method for signature 'InferenceEngine'
jt.clique(x) <- value
junction.tree

Arguments

- `x`: an `InferenceEngine`.
- `value`: the list of cliques of the junction tree contained in the `InferenceEngine`.

Description

Return the adjacency matrix representing the junction tree computed for a network.

Usage

```r
junction.tree(x)
```

S4 method for signature 'InferenceEngine'

```r
ejunction.tree(x)
```

Arguments

- `x`: an `InferenceEngine`.

Details

Rows and columns are named after the (variables in the) cliques that each node of the junction tree represent.

Value

the junction tree contained in the `InferenceEngine`.

See Also

`build.junction.tree`
junction.tree<- set the junction tree of an InferenceEngine.

Description
Set the adjacency matrix of the junction tree computed for a network.

Usage
junction.tree(x) <- value

S4 replacement method for signature 'InferenceEngine'
junction.tree(x) <- value

Arguments

x an InferenceEngine.
value the junction tree to be inserted in the InferenceEngine.

knn.impute Perform imputation of a data frame using k-NN.

Description
Perform imputation of missing data in a data frame using the k-Nearest Neighbour algorithm. For discrete variables we use the mode, for continuous variables the median value is instead taken.

Usage
knn.impute(data, k = 10, cat.var = 1:ncol(data),
 to.impute = 1:nrow(data), using = 1:nrow(data))

Arguments

data a data frame
k number of neighbours to be used; for categorical variables the mode of the neighbours is used, for continuous variables the median value is used instead. Default: 10.
cat.var vector containing the indices of the variables to be considered as categorical. Default: all variables.
to.impute vector indicating which rows of the dataset are to be imputed. Default: impute all rows.
using vector indicating which rows of the dataset are to be used to search for neighbours. Default: use all rows.
Value

imputed data frame.

layering

return the layering of the nodes.

Description

Compute the topological ordering of the nodes of a network, in order to divide the network in layers.

Usage

layering(x)

S4 method for signature 'BN'
layering(x)

Arguments

x a BN object.

Value

a vector containing layers the nodes can be divided into.

Examples

Not run:
dataset <- BNdataset("file.header", "file.data")
x <- BN(dataset)
x <- learn.network(x, dataset)
layering(x)

End(Not run)
Description

Learn a dynamic network (structure and parameters) of a BN from a BNDataset (see the Details section). This method is a wrapper for `learn.network` to simplify the learning of a dynamic network. It provides an automated generation of the layering required to represent the set of time constraints encoded in a dynamic network. In this function, it is assumed that the dataset contains the observations for each variable in all the time steps: \(V_1^{t_1}, V_2^{t_1}, \ldots, V_n^{t_1}, V_1^{t_2}, \ldots, V_n^{t_k} \). Variables in time step \(j \) can be parents for any variable in time steps \(k > j \), but not for variables \(i < j \). If a layering is provided for a time step, it is valid in each time step, and not throughout the whole dynamic network; a global layering can however be provided.

Usage

```r
learn.dynamic.network(x, ...)  
## S4 method for signature 'BN'
learn.dynamic.network(x, y = NULL,
  num.time.steps = num.time.steps(y), algo = "mmhc",
  scoring.func = "BDeu", initial.network = NULL, alpha = 0.05,
  ess = 1, bootstrap = FALSE, layering = c(),
  max.fanin = num.variables(y) - 1, max.fanin.layers = NULL,
  max.parents = num.variables(y) - 1, max.parents.layers = NULL,
  layer.struct = NULL, cont.nodes = c(), use.imputed.data = FALSE,
  use.cpc = TRUE, mandatory.edges = NULL, ...)

## S4 method for signature 'BNDataset'
learn.dynamic.network(x,
  num.time.steps = num.time.steps(x), algo = "mmhc",
  scoring.func = "BDeu", initial.network = NULL, alpha = 0.05,
  ess = 1, bootstrap = FALSE, layering = c(),
  max.fanin = num.variables(x) - 1, max.fanin.layers = NULL,
  max.parents = num.variables(x) - 1, max.parents.layers = NULL,
  layer.struct = NULL, cont.nodes = c(), use.imputed.data = FALSE,
  use.cpc = TRUE, mandatory.edges = NULL, ...)
```

Arguments

- `x` can be a BN or a BNDataset. If `x` is a BN, then also the dataset parameter must be given.
- `...` potential further arguments for methods.
- `y` a BNDataset object, to be provided only if `x` is a BN.
- `num.time.steps` the number of time steps to be represented in the dynamic BN.
algo the algorithm to use. Currently, one among sm (Silander-Myllymaki), mmpc (Max-Min Parent-and-Children), mmhc (Max-Min Hill Climbing, default), hc (Hill Climbing) and sem (Structural Expectation Maximization).

scoring.func the scoring function to use. Currently, one among BDeu, AIC, BIC.

initial.network network structure to be used as starting point for structure search. Can take different values: a BN object, a matrix containing the adjacency matrix of the structure of the network, or the string random.chain to sample a random chain as starting point.

alpha confidence threshold (only for mmhc).

ess Equivalent Sample Size value.

bootstrap TRUE to use bootstrap samples.

layering vector containing the layers each node belongs to.

max.fanin maximum number of parents for each node (only for hc, mmhc).

max.fanin.layers matrix of available parents in each layer (only for sm – DEPRECATED, use max.parents.layers instead).

max.parents maximum number of parents for each node (for sm, hc, mmhc).

max.parents.layers matrix of available parents in each layer (only for sm).

layer.struct 0/1 matrix for indicating which layers can contain parent nodes for nodes in a layer (only for mmhc, mmpc).

cont.nodes vector containing the index of continuous variables.

use.imputed.data TRUE to learn the structure from the imputed dataset (if available, a check is performed). Default is to use raw dataset

use.cpc (when using mmhc) compute Candidate Parent-and-Children sets instead of starting the Hill Climbing from an empty graph.

mandatory.edges binary matrix, where a 1 in cell [i, j] indicates that an edge from node i to node j must be present in the final network.

Details

The other parameters available are the ones of learn.network, refer to the documentation of that function for more details. See also the documentation for learn.structure and learn.params for more informations.

Value

new BN object with structure (DAG) and conditional probabilities as learnt from the given dataset.

See Also

learn.network learn.structure learn.params
Examples

```r
## Not run:
mydataset <- BNdataset("data.file", "header.file")

net <- learn.dynamic.network(mydataset, num.time.steps=2)

## End(Not run)
```

learn.network

learn a network (structure and parameters) of a BN from a BN Dataset.

Description

Learn a network (structure and parameters) of a BN from a BN Dataset (see the Details section).

Usage

```r
learn.network(x, ...)  
```

S4 method for signature 'BN'

```r
learn.network(x, y = NULL, algo = "mmhc",  
  scoring.func = "BDeu", initial.network = NULL, alpha = 0.05,  
  ess = 1, bootstrap = FALSE, layering = c(),  
  max.fanin = num.variables(y) - 1, max.fanin.layers = NULL,  
  max.parents = num.variables(y) - 1, max.parents.layers = NULL,  
  layer.struct = NULL, cont.nodes = c(), use.imputed.data = FALSE,  
  use.cpc = TRUE, mandatory.edges = NULL, ...)  
```

S4 method for signature 'BNDataset'

```r
learn.network(x, algo = "mmhc",  
  scoring.func = "BDeu", initial.network = NULL, alpha = 0.05,  
  ess = 1, bootstrap = FALSE, layering = c(),  
  max.fanin = num.variables(x) - 1, max.fanin.layers = NULL,  
  max.parents = num.variables(x) - 1, max.parents.layers = NULL,  
  layer.struct = NULL, cont.nodes = c(), use.imputed.data = FALSE,  
  use.cpc = TRUE, mandatory.edges = NULL, ...)  
```

Arguments

- **x** can be a BN or a BN Dataset. If x is a BN, then also the dataset parameter must be given.
- **...** potential further arguments for methods.
- **y** a BN Dataset object, to be provided only if x is a BN.
- **algo** the algorithm to use. Currently, one among sm (Silander-Myllymaki), mmpc (Max-Min Parent-and-Children), mmhc (Max-Min Hill Climbing, default), hc (Hill Climbing) and sem (Structural Expectation Maximization).
`scoring.func` the scoring function to use. Currently, one among BDeu, AIC, BIC.

`initial.network` network structure to be used as starting point for structure search. Can take different values: a BN object, a matrix containing the adjacency matrix of the structure of the network, or the string `random.chain` to sample a random chain as starting point.

`alpha` confidence threshold (only for mmhc).

`ess` Equivalent Sample Size value.

`bootstrap` TRUE to use bootstrap samples.

`layering` vector containing the layers each node belongs to.

`max.fanin` maximum number of parents for each node (only for hc, mmhc).

`max.fanin.layers` matrix of available parents in each layer (only for sm – DEPRECATED, use `max.parents.layers` instead).

`max.parents` maximum number of parents for each node (for sm, hc, mmhc).

`max.parents.layers` matrix of available parents in each layer (only for sm).

`layer.struct` 0/1 matrix for indicating which layers can contain parent nodes for nodes in a layer (only for mmhc, mmpc).

`cont.nodes` vector containing the index of continuous variables.

`use.imputed.data` TRUE to learn the structure from the imputed dataset (if available, a check is performed). Default is to use raw dataset.

`use.cpc` (when using mmhc) compute Candidate Parent-and-Children sets instead of starting the Hill Climbing from an empty graph.

`mandatory.edges` binary matrix, where a 1 in cell [i,j] indicates that an edge from node i to node j must be present in the final network.

Details

Learn the structure (the directed acyclic graph) of a BN object according to a BN dataset. We provide five algorithms for learning the structure of the network, that can be chosen with the `algo` parameter. The first one is the Silander-Myllymäki (sm) exact search-and-score algorithm, that performs a complete evaluation of the search space in order to discover the best network; this algorithm may take a very long time, and can be inapplicable when discovering networks with more than 25–30 nodes. Even for small networks, users are strongly encouraged to provide meaningful parameters such as the layering of the nodes, or the maximum number of parents – refer to the documentation in package manual for more details on the method parameters.

The second method is the constraint-based Max-Min Parents-and-Children (mmpc), that returns the skeleton of the network. Given the possible presence of loops, due to the non-directionality of the edges discovered, no parameter learning is possible using this algorithm. Also note that in the case of a very dense network and lots of observations, the statistical evaluation of the search space may take a long time. Also for this algorithm there are parameters that may need to be tuned, mainly
the confidence threshold of the statistical pruning. Please refer to the rest of this documentation for their explanation.

The third algorithm is another heuristic, the Hill-Climbing (hc). It can start from the complete space of possibilities (default) or from a reduced subset of possible edges, using the cpc argument.

The fourth algorithm (and the default one) is the Max-Min Hill-Climbing heuristic (mmhc), that performs a statistical sieving of the search space followed by a greedy evaluation, by combining the MMPC and the HC algorithms. It is considerably faster than the complete method, at the cost of a (likely) lower quality. As for MMPC, the computational time depends on the density of the network, the number of observations and the tuning of the parameters.

The fifth method is the Structural Expectation-Maximization (sem) algorithm, for learning a network from a dataset with missing values. It iterates a sequence of Expectation-Maximization (in order to “fill in” the holes in the dataset) and structure learning from the guessed dataset, until convergence. The structure learning used inside SEM, due to computational reasons, is MMHC. Convergence of SEM can be controlled with the parameters struct.threshold and param.threshold, for the structure and the parameter convergence, respectively.

Search-and-score methods also need a scoring function to compute an estimated measure of each configuration of nodes. We provide three of the most popular scoring functions, BDEU (Bayesian-Dirichlet equivalent uniform, default), AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion). The scoring function can be chosen using the scoring.func parameter.

Structure learning sets the dag field of the BN under study, unless bootstrap or the mmhc algorithm are employed. In these cases, given the possible presence of loops, the wpdag field is set.

In case of missing data, the default behaviour (with no other indication from the user) is to learn the structure using mmhc starting from the raw dataset, using only the available cases with no imputation.

In case of learning from a dataset containing observations of a dynamic system, learn.dynamic.network will be employed.

Then, the parameters of the network are learnt using MAP (Maximum A Posteriori) estimation (when not using bootstrap or mmhc).

See documentation for learn.structure and learn.params for more informations.

Value

new BN object with structure (DAG) and conditional probabilities as learnt from the given dataset.

See Also

learn.structure learn.params learn.dynamic.network

Examples

Not run:
mydataset <- BNDataset("data.file", "header.file")

starting from a BN
net <- BN(mydataset)
net <- learn.network(net, mydataset)

start directly from the dataset
learn.params

Description

Learn the parameters of a BN object according to a BNDataset using MAP (Maximum A Posteriori) estimation.

Usage

learn.params(bn, dataset, ess = 1, use.imputed.data = F)

S4 method for signature 'BN,BNDataset'
learn.params(bn, dataset, ess = 1,
 use.imputed.data = FALSE)

Arguments

bn a BN object.
dataset a BNDataset object.
ess Equivalent Sample Size value.
use.imputed.data use imputed data.

Details

Parameter learning is not possible in case of networks learnt using the mmpc algorithm, or from bootstrap samples, as there may be loops.

Value

new BN object with conditional probabilities.

See Also

learn.network
Examples

Not run:
first create a BN and learn its structure from a dataset
dataset <- BNDataset("file.header", "file.data")
bn <- BN(dataset)
bn <- learn.structure(bn, dataset)
bn <- learn.params(bn, dataset, ess=1)

End(Not run)

learn.structure

Description

Learn the structure (the directed acyclic graph) of a BN object according to a BNDataset.

Usage

```r
learn.structure(bn, dataset, algo = "mmhc", scoring.func = "BDeu",
initial.network = NULL, alpha = 0.05, ess = 1, bootstrap = FALSE,
layering = c(), max.fanin = num.variables(dataset),
max.fanin.layers = NULL, max.parents = num.variables(dataset),
max.parents.layers = NULL, layer.struct = NULL, cont.nodes = c(),
use.imputed.data = FALSE, use.cpc = TRUE, mandatory.edges = NULL, ...
)
```

S4 method for signature 'BN,BNDataset'

```r
learn.structure(bn, dataset, algo = "mmhc",
scoring.func = "BDeu", initial.network = NULL, alpha = 0.05,
ess = 1, bootstrap = FALSE, layering = c(),
max.fanin = num.variables(dataset) - 1, max.fanin.layers = NULL,
max.parents = num.variables(dataset) - 1, max.parents.layers = NULL,
layer.struct = NULL, cont.nodes = c(), use.imputed.data = FALSE,
use.cpc = TRUE, mandatory.edges = NULL, ...)
```

Arguments

- **bn** a BN object.
- **dataset** a BNDataset.
- **algo** the algorithm to use. Currently, one among sm (Silander-Myllymaki), mmpc (Max-Min Parent-and-Children), mmhc (Max-Min Hill Climbing, default), hc (Hill Climbing) and sem (Structural Expectation Maximization).
- **scoring.func** the scoring function to use. Currently, one among BDeu, AIC, BIC.
network structure to be used as starting point for structure search. Can take
different values: a BN object, a matrix containing the adjacency matrix of the
structure of the network, or the string `random.chain` to sample a random chain
as starting point.

alpha

Confidence threshold (only for mmhc).

ess

Equivalent Sample Size value.

bootstrap

TRUE to use bootstrap samples.

layering

Vector containing the layers each node belongs to (only for sm).

max.fanin

Maximum number of parents for each node (only for hc, mmhc).

max.fanin.layers

Matrix of available parents in each layer (only for sm – DEPRECATED, use
`max.parents.layers` instead).

max.parents

Maximum number of parents for each node (for sm, hc, mmhc).

max.parents.layers

Matrix of available parents in each layer (only for sm).

layer.struct

0/1 matrix for indicating which layers can contain parent nodes for nodes in a
layer (only for mmhc, mmpc).

cont.nodes

Vector containing the index of continuous variables.

use.imputed.data

TRUE to learn the structure from the imputed dataset (if available, a check is
performed). Default is to use raw dataset.

use.cpc

(when using mmhc) compute Candidate Parent-and-Children sets instead of start-
ing the Hill Climbing from an empty graph.

mandatory.edges

Binary matrix, where a 1 in cell [i, j] indicates that an edge from node i to
node j must be present in the final network.

... Potential further arguments for method.

Details

We provide three algorithms in order to learn the structure of the network, that can be chosen with
the `algo` parameter. The first is the Silander-Myllymäki (`sm`) exact search-and-score algorithm,
that performs a complete evaluation of the search space in order to discover the best network; this
algorithm may take a very long time, and can be inapplicable when discovering networks with more
than 25–30 nodes. Even for small networks, users are strongly encouraged to provide meaningful
parameters such as the layering of the nodes, or the maximum number of parents – refer to the
documentation in package manual for more details on the method parameters.

The second method is the constraint-based Max-Min Parents-and-Children (`mmpc`), that returns the
skeleton of the network. Given the possible presence of loops, due to the non-directionality of the
edges discovered, no parameter learning is possible using this algorithm. Also note that in the case
of a very dense network and lots of observations, the statistical evaluation of the search space may
take a long time. Also for this algorithm there are parameters that may need to be tuned, mainly
the confidence threshold of the statistical pruning. Please refer to the rest of this documentation for
their explanation.
The third algorithm is another heuristic, the Hill-Climbing (hc). It can start from the complete space of possibilities (default) or from a reduced subset of possible edges, using the cpc argument.

The fourth algorithm (and the default one) is the Max-Min Hill-Climbing heuristic (mmhc), that performs a statistical sieving of the search space followed by a greedy evaluation, by combining the MMPC and the HC algorithms. It is considerably faster than the complete method, at the cost of a (likely) lower quality. As for MMPC, the computational time depends on the density of the network, the number of observations and the tuning of the parameters.

The fifth method is the Structural Expectation-Maximization (sem) algorithm, for learning a network from a dataset with missing values. It iterates a sequence of Expectation-Maximization (in order to "fill in" the holes in the dataset) and structure learning from the guessed dataset, until convergence. The structure learning used inside SEM, due to computational reasons, is MMHC. Convergence of SEM can be controlled with the parameters struct.threshold and param.threshold, for the structure and the parameter convergence, respectively. For learning a network from a dataset with missing values. It iterates a sequence of Expectation-Maximization (in order to "fill in" the holes in the dataset) and structure learning from the guessed dataset, until convergence. The structure learning used inside SEM, due to computational reasons, is MMHC. Convergence of SEM can be controlled with the parameters struct.threshold and param.threshold, for the structure and the parameter convergence, respectively.

Search-and-score methods also need a scoring function to compute an estimated measure of each configuration of nodes. We provide three of the most popular scoring functions, BDeu (Bayesian-Dirichlet equivalent uniform, default), AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion). The scoring function can be chosen using the scoring.func parameter.

Structure learning sets the dag field of the BN under study, unless bootstrap or the mmpc algorithm are employed. In these cases, given the possible presence of loops, the wpdag field is set.

In case of missing data, the default behaviour (with no other indication from the user) is to learn the structure using mmhc starting from the raw dataset.

Value

new BN object with DAG.

See Also
learn.network learn.dynamic.network

Examples

```r
## Not run: dataset <- BNDataset("file.header", "file.data") bn <- BN(dataset) # use MMHC bn <- learn.structure(bn, dataset, alpha=0.05, ess=1, bootstrap=FALSE) # now use Silander-Myllymaki layers <- layering(bn) mfl <- as.matrix(read.table(header=F, text="0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 8 7 0 0 0 14 6 0 0 0 0 19")) bn <- learn.structure(bn, dataset, algo='sm', max.fanin=3, cont.nodes=c(), layering=layers, max.fanin.layers=mfl, use.imputed.data=FALSE)
```
marginals

compute the list of inferred marginals of a BN.

Description

Given an InferenceEngine, it returns a list containing the marginals for the variables in the network, according to the propagated beliefs.

Usage

marginals(x, ...)

S4 method for signature 'InferenceEngine'
marginals(x, ...)

Arguments

x an InferenceEngine

... potential further arguments of methods.

Value

a list containing the marginals of each variable, as probability tables.

Examples

Not run:
eng <- InferenceEngine(net)
marginals(eng)

End(Not run)
name

get name of an object.

Description

Return the name of an object, of class `BN` or `BNDataset`.

Usage

```r
name(x)
```

```r
## S4 method for signature 'BN'
name(x)
```

```r
## S4 method for signature 'BNDataset'
name(x)
```

Arguments

- `x` an object.

Value

name of the object.

name<-

set name of an object.

Description

Set the name slot of an object of type `BN` or `BNDataset`.

Usage

```r
name(x) <- value
```

```r
## S4 replacement method for signature 'BN'
name(x) <- value
```

```r
## S4 replacement method for signature 'BNDataset'
name(x) <- value
```

Arguments

- `x` an object.
- `value` the new name of the object.
node.sizes <-

node.sizes

get size of the variables of an object.

Description

Return a list containing the size of the variables of an object. It is the actual cardinality of discrete variables, and the cardinality of the discretized variable for continuous variables.

Usage

node.sizes(x)

```r
## S4 method for signature 'BN'
node.sizes(x)
```

```r
## S4 method for signature 'BNdataset'
node.sizes(x)
```

Arguments

x

an object.

Value

vector containing the size of each variable of the desired object.

node.sizes<-

set the size of variables of an object.

Description

Set the size of the variables of a BN or BNDataset object. It represents the actual cardinality of discrete variables, and the cardinality of the discretized variable for continuous variables.

Usage

node.sizes(x) <- value

```r
## S4 replacement method for signature 'BN'
node.sizes(x) <- value
```

```r
## S4 replacement method for signature 'BNDataset'
node.sizes(x) <- value
```
Arguments

x an object.

value vector containing the size of each variable of the object.

num.boots get number of bootstrap samples of a BNdataset.

Description

Return the number of bootstrap samples computed from a dataset.

Usage

```r
class(num.boots)
num.boots(x)
```

S4 method for signature 'BNdataset'
num.boots(x)

Arguments

x a BNdataset object.

Value

the number of bootstrap samples.

num.boots<- set number of bootstrap samples of a BNdataset.

Description

Set the length of the list of samples of a dataset computed using bootstrap.

Usage

```r
class(num.boots)
num.boots(x) <- value
```

S4 replacement method for signature 'BNdataset'
num.boots(x) <- value

Arguments

x a BNdataset object.

value the number of bootstrap samples.
Description

Return the number of items in a dataset, that is, the number of rows in its data slot.

Usage

num.items(x)

S4 method for signature 'BNdataset'
num.items(x)

Arguments

x a BNdataset object.

Value

number of items of the desired dataset.

Description

Set the number of observed items (rows) in a dataset.

Usage

num.items(x) <- value

S4 replacement method for signature 'BNdataset'
num.items(x) <- value

Arguments

x a BNdataset object.

value number of items of the desired dataset.
num.nodes get number of nodes of an object.

Description

Return the name of an object, of class BN or InferenceEngine.

Usage

num.nodes(x)

S4 method for signature 'BN'
num.nodes(x)

S4 method for signature 'InferenceEngine'
num.nodes(x)

Arguments

x an object.

Value

number of nodes of the desired object.

num.nodes<- set number of nodes of an object.

Description

Set the number of nodes of an object of type BN (number of nodes of the network) or InferenceEngine (where parameter contains the number of nodes of the junction tree).

Usage

num.nodes(x) <- value

S4 replacement method for signature 'BN'
num.nodes(x) <- value

S4 replacement method for signature 'InferenceEngine'
num.nodes(x) <- value

Arguments

x an object.
value the number of nodes in the object.
num.time.steps <-

generate number of time steps observed in a BN or a BNdataset.

Description
Return the number of time steps observed in a dataset.

Usage
num.time.steps(x)

S4 method for signature 'BN'
num.time.steps(x)

S4 method for signature 'BNdataset'
num.time.steps(x)

Arguments
x
a BN or a BNDataset object.

Value
the number of time steps.

num.time.steps <- set number of time steps of a BN or a BNDataset.

Description
Set the number of time steps of a dataset.

Usage
num.time.steps(x) <- value

S4 replacement method for signature 'BN'
num.time.steps(x) <- value

S4 replacement method for signature 'BNDataset'
num.time.steps(x) <- value

Arguments
x
a BN or a BNDataset object.
value
the number of time steps.
num.variables

get number of variables of a `BNdataset`.

Description

Return the number of the variables contained in a dataset. This value corresponds to the value of `num.nodes` of a network built upon the same dataset.

Usage

```
num.variables(x)
```

```
## S4 method for signature 'BNdataset'
num.variables(x)
```

```
## S4 method for signature 'BNdataset'
num.variables(x)
```

Arguments

- `x` a `BNdataset` object.

Value

number of variables of the desired dataset.

See Also

- `num.nodes`

num.variables<-

set number of variables of a `BNdataset`.

Description

Set the number of variables observed in a dataset.

Usage

```
num.variables(x) <- value
```

```
## S4 replacement method for signature 'BNdataset'
num.variables(x) <- value
```

Arguments

- `x` a `BNdataset` object.
- `value` number of variables of the dataset.
observations<- get the list of observations of an InferenceEngine.

Description
Return the list of observations added to an InferenceEngine.

Usage
observations(x)

S4 method for signature 'InferenceEngine'
observations(x)

Arguments
x an InferenceEngine.

Details
Output is a list in the following format:

- observed.vars vector of observed variables;
- observed.vals vector of values observed for the variables in observed.vars in the corresponding position.

Value
the list of observations of the InferenceEngine.

observations<- set the list of observations of an InferenceEngine.

Description
Add a list of observations to an InferenceEngine, using a list of observations composed by the two following vectors:

- observed.vars vector of observed variables;
- observed.vals vector of values observed for the variables in observed.vars in the corresponding position.
plot

Usage

observations(x) <- value

```r
## S4 replacement method for signature 'InferenceEngine'
observations(x) <- value
```

Arguments

- `x`: an **InferenceEngine**.
- `value`: the list of observations of the **InferenceEngine**.

Details

Replace previous list of observations, if present. In order to add evidence, and not just replace it, one must use the `add.observations<-` method.

In case of multiple observations of the same variable, the last observation is the one used, as the most recent.

See Also

- `add.observations<-`

plot

plot a BN as a picture.

Description

plot a **BN** as a picture.

Usage

```r
## S3 method for class 'BN'
plot(x, method = "default", use.node.names = TRUE,
     frac = 0.2, max.weight = max(dag(x)), node.size.lab = 14,
     node.col = rep("white", num.nodes(x)), plot.wpdag = FALSE, ...)
```

Arguments

- `x`: a **BN** object.
- `method`: either default of qgraph. The default method requires the Rgraphviz package, while qgraph requires the qgraph package and allows for a greater customization.
- `use.node.names`: TRUE if node names have to be printed. If FALSE, numbers are used instead.
- `frac`: minimum fraction [0,1] of presence of an edge to be plotted (used in case of `plot.wpdag=TRUE`).
max.weight maximum possible weight of an edge (used in case of plot.wpdag=TRUE).
node.size.lab font size for the node labels in the default mode.
node.col list of (R) colors for the nodes.
plot.wpdag if TRUE plot the network according to the WPDAG computed using bootstrap instead of the DAG.

Description

print a BN, BNdataset or InferenceEngine to stdout.

Usage

S3 method for class 'BN'
print(x, ...)

S3 method for class 'BNdataset'
print(x, show.raw.data = FALSE,
 show.imputed.data = FALSE, ...)

S3 method for class 'InferenceEngine'
print(x, engine = "jt", ...)

Arguments

x a BN, BNdataset or InferenceEngine.

... potential other arguments.

show.raw.data if x is a BNdataset, print also raw dataset, if available.

show.imputed.data if x is a BNdataset, print also imputed dataset, if available.

engine if x is an InferenceEngine, specify the inference engine to be shown. Currently only engine = 'jt' is supported.
quantiles

get the list of quantiles of an object.

Description

Return the list of quantiles of a BN or a BNDataset. It is set when a discretization needs to be performed.

Usage

quantiles(x)

S4 method for signature 'BN'
quantiles(x)

S4 method for signature 'BNDataset'
quantiles(x)

Arguments

x a list of vectors.

Details

Output is a list of num.nodes vectors, one per variable. Each vector is NULL if the corresponding variable is discrete in the original dataset, and contains the cut points for the quantiles if the corresponding variable is continuous.

Value

the list of quantiles of the BN of BNDataset.

quantiles<- set the list of quantiles of an object.

Description

Set the list of quantiles of a BN or a BNDataset.

Usage

quantiles(x) <- value

S4 replacement method for signature 'BN'
quantiles(x) <- value

S4 replacement method for signature 'BNDataset'
quantiles(x) <- value
Arguments

- `x`: a BN or BNdataset.
- `value`: a list of vectors.

Details

It is used when a discretization needs to be performed.

See Also

- `quantiles`

raw.data

get raw data of a BNdataset.

Description

Return raw data contained in a BNdataset object, if any.

Usage

```r
raw.data(x)
```

```r
## S4 method for signature 'BNdataset'
raw.data(x)
```

Arguments

- `x`: a BNdataset.

See Also

- `has.raw.data, has.imputed.data`
raw.data<- *add raw data.*

Description

Insert raw data in a `BNdataset` object.

Usage

```
raw.data(x) <- value
```

```r
## S4 replacement method for signature 'BNdataset'
raw.data(x) <- value
```

Arguments

- `x` a `BNdataset`.
- `value` a matrix of integers containing a dataset.

See Also

`has.raw.data, raw.data, read.dataset`

read.bif *Read a network from a .bif file.*

Description

Read a network described in a .bif-formatted file, and build a `BN` object.

Usage

```
read.bif(x)
```

```r
## S4 method for signature 'character'
read.bif(x)
```

Arguments

- `x` the .bif file, with absolute/relative position.

Details

The method relies on a coherent ordering of variable values and parameters in the file.

Value

- a `BN` object.
read.dataset

Read a dataset from file.

Description

There are two ways to build a BN Dataset: using two files containing respectively header informations and data, and manually providing the data table and the related header informations (variable names, cardinality and discreteness).

Usage

read.dataset(object, data.file, header.file, data.with.header = FALSE,
na.string.symbol = "?", sep.symbol = "", starts.from = 1,
num.time.steps = 1)

S4 method for signature 'BNDataset,character,character'
read.dataset(object, data.file,
header.file, data.with.header = FALSE, na.string.symbol = "?",
sep.symbol = "", starts.from = 1, num.time.steps = 1)

Arguments

object the BNDataset object.
data.file the data file.
header.file the header file.
data.with.header TRUE if the first row of dataset file is an header (e.g. it contains the variable names).
na.string.symbol character that denotes NA in the dataset.
sep.symbol separator among values in the dataset.
starts.from starting value for entries in the dataset (observed values, default is 1).
num.time.steps number of instants composing the observations (1, unless it is a dynamic system).

Details

The key informations needed are: 1. the data; 2. the state of variables (discrete or continuous); 3. the names of the variables; 4. the cardinalities of the variables (if discrete), or the number of levels they have to be quantized into (if continuous). Names and cardinalities/leves can be guessed by looking at the data, but it is strongly advised to provide _all_ of the informations, in order to avoid problems later on during the execution.

Data can be provided in form of data.frame or matrix. It can contain NAs. By default, NAs are indicated with '?'; to specify a different character for NAs, it is possible to provide also the
na.string.symbol parameter. The values contained in the data have to be numeric (real for continuous variables, integer for discrete ones). The default range of values for a discrete variable X is \([1, |X|]\), with \(|X|\) being the cardinality of X. The same applies for the levels of quantization for continuous variables. If the value ranges for the data are different from the expected ones, it is possible to specify a different starting value (for the whole dataset) with the starts.from parameter. E.g. by starts.from=0 we assume that the values of the variables in the dataset have range \([0, |X|-1]\). Please keep in mind that the internal representation of bnstruct starts from 1, and the original starting values are then lost.

It is possible to use two files, one for the data and one for the metadata, instead of providing manually all of the info. bnstruct requires the data files to be in a format subsequently described. The actual data has to be in (a text file containing data in) tabular format, one tuple per row, with the values for each variable separated by a space or a tab. Values for each variable have to be numbers, starting from 1 in case of discrete variables. Data files can have a first row containing the names of the corresponding variables.

In addition to the data file, a header file containing additional informations can also be provided. An header file has to be composed by three rows of tab-delimited values: 1. list of names of the variables, in the same order of the data file; 2. a list of integers representing the cardinality of the variables, in case of discrete variables, or the number of levels each variable has to be quantized in, in case of continuous variables; 3. a list that indicates, for each variable, if the variable is continuous (c or C), and thus has to be quantized before learning, or discrete (d or D).

See Also

BNDataset

Examples

```r
## Not run:
dataset <- BNDataset()
dataset <- read.dataset(dataset, "file.data", "file.header")
## End(Not run)
```

Description

Read a network described in a .dsc-formatted file, and build a BN object.

Usage

```r
read.dsc(x)
```

S4 method for signature 'character'

```r
read.dsc(x)
```
Arguments

x the .dsc file, with absolute/relative position.

Details

The method relies on a coherent ordering of variable values and parameters in the file.

Value

a BN object.

read.net

Read a network from a .net file.

Description

Read a network described in a .net-formatted file, and build a BN object.

Usage

read.net(x)

S4 method for signature 'character'
read.net(x)

Arguments

x the .net file, with absolute/relative position.

Details

The method relies on a coherent ordering of variable values and parameters in the file.

Value

a BN object.
sample.dataset

Description

sample a **BNDataset** from a network of an inference engine.

Usage

```r
sample.dataset(x, n = 100, mar = 0)
```

```r
## S4 method for signature 'BN'
sample.dataset(x, n = 100, mar = 0)
```

```r
## S4 method for signature 'InferenceEngine'
sample.dataset(x, n = 100)
```

Arguments

- `x` a **BN** or **InferenceEngine** object.
- `n` number of items to sample.
- `mar` fraction [0,1] of missing values in the sampled dataset (missing at random), default value is 0 (no missing values).

Value

- a **BNDataset**

sample.row

Description

sample a row vector of values for a network.

Usage

```r
sample.row(x, mar = 0)
```

```r
## S4 method for signature 'BN'
sample.row(x, mar = 0)
```
Arguments

- `x`: a BN or `InferenceEngine` object.
- `mar`: fraction $[0,1]$ of missing values in the sampled vector (missing at random), default value is 0 (no missing values).

Value

- a vector of values.

Description

Save an image of a Bayesian Network as an .eps file.

Usage

```r
save.to.eps(x, filename, ...)  # S4 method for signature 'BN,character'
```

Arguments

- `x`: a BN object
- `filename`: name (with path, if needed) of the file to be created
- `...`: parameters for the `plot` method.

See Also

- `plot`

Examples

```r
## Not run:
save.to.eps(x, "out.eps")

## End(Not run)
```
scoring.func

Read the scoring function used to learn the structure of a network.

Description

Read the scoring function used in the `learn.structure` method. Outcome is meaningful only if the structure of a network has been learnt.

Usage

```r
scoring.func(x)
```

```r
## S4 method for signature 'BN'
scoring.func(x)
```

Arguments

- `x` the `BN` object.

Value

the scoring function used.

scoring.func<-

Set the scoring function used to learn the structure of a network.

Description

Set the scoring function used in the `learn.structure` method.

Usage

```r
scoring.func(x) <- value
```

```r
## S4 replacement method for signature 'BN'
scoring.func(x) <- value
```

Arguments

- `x` the `BN` object.
- `value` the scoring function used.

Value

updated BN.
compute the Structural Hamming Distance between two adjacency matrices.

Description

Compute the Structural Hamming Distance between two adjacency matrices, that is, the distance, in terms of edges, between two network structures. The lower the shd, the more similar are the two network structures.

Usage

shd(g1, g2)

Arguments

g1 first adjacency matrix.
g2 second adjacency matrix.

show

Show method for objects.

Description

The show method allows to provide a custom aspect for the output that is generated when the name of an instance is gives as command in an R session.

Usage

show(object)

Arguments

object an object.
struct.algo

Read the algorithm used to learn the structure of a network.

Description

Read the algorithm used in the learn.structure method. Outcome is meaningful only if the structure of a network has been learnt.

Usage

struct.algo(x)

S4 method for signature 'BN'
struct.algo(x)

Arguments

x the BN object.

Value

the structure learning algorithm used.

struct.algo<- Set the algorithm used to learn the structure of a network.

Description

Set the algorithm used in the learn.structure method.

Usage

struct.algo(x) <- value

S4 replacement method for signature 'BN'
struct.algo(x) <- value

Arguments

x the BN object.
value the scoring function used.

Value

updated BN.
Description

Check if an InferenceEngine actually contains an updated network, in order to provide the chance of a fallback and use the original network if no belief propagation has been performed.

Usage

test.updated.bn(x)

S4 method for signature 'InferenceEngine'
test.updated.bn(x)

Arguments

x an InferenceEngine.

Value

TRUE if an updated network is contained in the InferenceEngine, FALSE otherwise.

Examples

Not run:
dataset <- BNdataset("file.header", "file.data")
bn <- BN(dataset)
ie <- InferenceEngine(bn)
test.updated.bn.ie # FALSE

observations.ie <- list("observed.vars"="A", "G", "X"), "observed.vals"=c(1,2,1))
ie <- belief.propagation.ie

test.updated.bn.ie # TRUE

End(Not run)

tune.knn.impute tune the parameter k of the knn algorithm used in imputation.

Description

tune the parameter k of the knn algorithm used in imputation.
Usage

tune.knn.impute(data, cat.var = 1:ncol(data), k.min = 1, k.max = 20,
frac.miss = 0.1, n.iter = 20, seed = 0)

Arguments

data a data frame
cat.var vector containing the categorical variables
k.min minimum value for k
k.max maximum value for k
frac.miss fraction of missing values to add
n.iter number of iterations for each k
seed random seed

Value

matrix of error distributions

description

Return an updated network contained in an InferenceEngine.

Usage

updated.bn(x)

S4 method for signature 'InferenceEngine'
updated.bn(x)

Arguments

x an InferenceEngine.

Value

the updated BN object contained in an InferenceEngine.
Description

Add an updated network to an InferenceEngine.

Usage

```r
class(updated.bn) <- Value

## S4 method for signature 'InferenceEngine'
class(updated.bn) <- Value
```

Arguments

- `x`: an `InferenceEngine`.
- `value`: the updated BN object contained in an `InferenceEngine`.

Description

Get the list of variables (with their names) of a BN or BNDataset.

Usage

```r
class(variables) <- Value

## S4 method for signature 'BN'
class(variables) <- Value

## S4 method for signature 'BNDataset'
class(variables) <- Value
```

Arguments

- `x`: an object.

Value

vector of the variables names of the desired object.
variables<-

Set variables of an object.

Description

Set the list of variable names in a BN or BNDataset object.

Usage

variables(x) <- value

```r
# S4 replacement method for signature 'BN'
variables(x) <- value
```

```r
# S4 replacement method for signature 'BNDataset'
variables(x) <- value
```

Arguments

- **x**: an object.
- **value**: vector containing the variable names of the object. Overwrites num.nodes slot if non-matching.

wpdag

get the WPDAG of an object.

Description

Return the weighted partially directed acyclic graph of a network, when available (e.g. when bootstrap on dataset is performed).

Usage

wpdag(x)

```r
# S4 method for signature 'BN'
wpdag(x)
```

Arguments

- **x**: an object.

Value

matrix containing the WPDAG of the object.
wpdag::

wpdag.from.dag

Initialize a WPDAG from a DAG.

Description
Given a BN object with a dag, return a network with its wpdag set as the CPDAG computed starting from the dag.

Usage

```r
wpdag.from.dag(x, layering = NULL)
```

```
## S4 method for signature 'BN'
wpdag.from.dag(x, layering = NULL)
```

Arguments
- `x`: a BN object.
- `layering`: vector containing the layers each node belongs to.

Value
- a BN object with an initialized wpdag.

See Also
- `dag.to.cpdag`

Examples

```r
## Not run:
net <- learn.network(dataset, layering=layering)
wp.net <- wpdag.from.dag(net, layering)

## End(Not run)
```

wpdag<-

set WPDAG of the object.

Description
Set the weighted partially directed acyclic graph of a network (e.g. in case bootstrap on dataset is performed).
write.dsc

Usage

wdag(x) <- value

S4 replacement method for signature 'BN'
wdag(x) <- value

Arguments

x an object.
value matrix containing the WPDAG of the object.

write.dsc Write a network saving it in a .dsc file.

Description

Write a network on disk, saving it in a .dsc-formatted file.

Usage

write.dsc(x, path = "/.")

S4 method for signature 'BN'
write.dsc(x, path = "/.")

Arguments

x the BN object.
path the relative or absolute path of the directory of the created file.

write_xgmml Write a network saving it in an XGMML file.

Description

Write a network on disk, saving it in an XGMML file, for importing it in Cytoscape.

Usage

write_xgmml(x, path = "/network", write.wpdag = FALSE,
node.col = rep("white", num.nodes(x)), frac = 0.2,
max.weight = max(wpdag(x)))

S4 method for signature 'BN'
write_xgmml(x, path = "/network", write.wpdag = FALSE,
node.col = rep("white", num.nodes(x)), frac = 0.2,
max.weight = max(wpdag(x)))
Arguments

- **x**: the BN object.
- **path**: file name with relative or absolute path to be written.
- **write.wpdag**: write the weighted PDAG computed using bootstrap samples or the MMPC structure algorithm, instead of the normaldag (default FALSE).
- **node.col**: vector of colors for each node of the network (in R colornames).
- **frac**: minimum fraction \([0,1]\) of presence of an edge to be plotted (used in case of write.wpdag=TRUE).
- **max.weight**: maximum possible weight of an edge (used in case of write.wpdag=TRUE).
Index

add.observations <-, 4
add.observations <-, InferenceEngine-method (add.observations <-), 4
asia, 4, 5
asia_10000, 5, 5, 6
asia_2_layers, 6

belief.propagation, 6
belief.propagation, InferenceEngine (belief.propagation), 6
belief.propagation, InferenceEngine-method (belief.propagation), 6
BN, 7–9, 18–20, 22, 25, 33, 38–45, 47, 49, 53, 54, 57–61, 63–67, 69–76
BN (BN-class), 8
bn, 7
BN, BN-class (BN-class), 8
bn, InferenceEngine (bn), 7
bn, InferenceEngine-method (bn), 7
BN-class, 8
bn <-, 9
bn <-, InferenceEngine-method (bn <-), 9
BNDataset, 5, 8, 12–14, 16, 17, 21, 22, 26–32, 39, 41, 42, 44, 45, 49, 51, 52, 54, 55, 58–62, 65, 72, 73
BNDataset (BNDataset-class), 9
BNDataset, BNDataset-class (BNDataset-class), 9
BNDataset-class, 9
boot, 12
boot, BNDataset (boot), 12
boot, BNDataset, numeric-method (boot), 12
boots, 13, 26, 27, 30
boots, BNDataset (boots), 13
boots, BNDataset-method (boots), 13
boots <-, 14
boots <-, BNDataset-method (boots <-), 14
bootstrap, 11, 12, 14, 17
bootstrap, BNDataset (bootstrap), 14
bootstrap, BNDataset-method (bootstrap), 14
build.junction.tree, 15, 36
build.junction.tree, InferenceEngine (build.junction.tree), 15
build.junction.tree, InferenceEngine-method (build.junction.tree), 15
child, 16, 17
child NA_5000, 16, 16
complete, 17
complete, BNDataset (complete), 17
complete, BNDataset-method (complete), 17
cpts, 18
cpts, BN (cpts), 18
cpts, BN-method (cpts), 18
cpts <-, 18
cpts <-, BN-method (cpts <-), 18
dag, 19
dag, BN (dag), 19
dag, BN-method (dag), 19
dag, to.cpdag, 19, 74
dag <-, 20
dag <-, BN-method (dag <-), 20
data.file, 21, 21, 29
data.file, BNDataset (data.file), 21
data.file, BNDataset-method (data.file), 21
data.file <-, 21
data.file <-, BNDataset-method (data.file <-), 21
discreteness, 22
discreteness, BN (discreteness), 22
discreteness, BN-method (discreteness), 22
discreteness, BNDataset (discreteness), 22
discreteness, BNDataset-method (discreteness), 22
junction.tree<-, 37
junction.tree<-,InferenceEngine-method
 (junction.tree<-, 37)
knn.impute, 37
layering, 38
layering,BN (layering), 38
layering,BN-method (layering), 38
learn.dynamic.network, 39, 43
learn.dynamic.network,BN
 (learn.dynamic.network, 39)
learn.dynamic.network,BN-method
 (learn.dynamic.network, 39)
learn.dynamic.network,BNDataset
 (learn.dynamic.network, 39)
learn.dynamic.network,BNDataset-method
 (learn.dynamic.network, 39)
learn.network, 39, 40, 41
learn.network,BN (learn.network), 41
learn.network,BN-method
 (learn.network, 41)
learn.network,BNDataset
 (learn.network, 41)
learn.network,BNDataset-method
 (learn.network, 41)
learn.params, 40, 43, 44
learn.params,BN,BNDataset
 (learn.params, 44)
learn.params,BN,BNDataset-method
 (learn.params, 44)
learn.structure, 40, 43, 45, 67, 69
learn.structure,BN,BNDataset
 (learn.structure, 45)
learn.structure,BN,BNDataset-method
 (learn.structure, 45)
marginals, 48
marginals,InferenceEngine (marginals),
 48
marginals,InferenceEngine-method
 (marginals, 48)
name, 49
name,BN (name), 49
name,BN-method (name), 49
name,BNDataset (name), 49
name,BNDataset-method (name), 49
name<-, 49
name<-,BN-method (name<-, 49
name<-,BNDataset-method (name<-, 49
node.sizes, 50
node.sizes,BN (node.sizes), 50
node.sizes,BN-method (node.sizes), 50
node.sizes,BNDataset (node.sizes), 50
node.sizes,BNDataset-method
 (node.sizes), 50
node.sizes<-, 50
node.sizes<-,BN-method (node.sizes<-, 50
node.sizes<-,BNDataset-method
 (node.sizes<-, 50
num.boots, 51
num.boots,BNDataset (num.boots), 51
num.boots,BNDataset-method (num.boots),
 51
num.boots<-, 51
num.boots<-,BNDataset-method
 (num.boots<-, 51
num.items, 52
num.items,BNDataset (num.items), 52
num.items,BNDataset-method (num.items),
 52
num.items<-, 52
num.items<-,BNDataset-method
 (num.items<-, 52
num.nodes, 25, 53, 55, 59
num.nodes,BN (num.nodes), 53
num.nodes,BN-method (num.nodes), 53
num.nodes,InferenceEngine (num.nodes),
 53
num.nodes,InferenceEngine-method
 (num.nodes), 53
num.nodes<-, 53
num.nodes<-,BN-method (num.nodes<-, 53
num.nodes<-,InferenceEngine-method
 (num.nodes<-, 53
num.time.steps, 54
num.time.steps,BN (num.time.steps), 54
num.time.steps,BN-method
 (num.time.steps), 54
num.time.steps,BNDataset
 (num.time.steps), 54
num.time.steps,BNDataset-method
 (num.time.steps), 54
num.time.steps<-, 54
num.time.steps<-,BN-method
(num.time.steps<-) 54
num.time.steps<-,BNdataset-method
(num.time.steps<-) 54
num.variables 55
num.variables,BNdataset
(num.variables) 55
num.variables,BNdataset-method
(num.variables) 55
num.variables<-, 55
num.variables<-,BNdataset-method
(num.variables<-) 55

observations 56
observations,InferenceEngine
(observations) 56
observations,InferenceEngine-method
(observations) 56
observations<- 56
observations<-,InferenceEngine-method
(observations<-) 56

plot 57,66
plot,BN(plot), 57
plot,BN(plot), 57
plot,BN, BN(plot), 57
print 58
print,BN(print), 58
print,BNdataset (print), 58
print,InferenceEngine (print), 58
print,BN(print), 58
print,BN, BN(print), 58
print,BNdataset (print), 58
print,BNdataset, BNdataset (print), 58
print,InferenceEngine (print), 58
print,InferenceEngine, InferenceEngine
(print), 58

quantiles 59,60
quantiles,BN (quantiles), 59
quantiles, BN-method (quantiles), 59
quantiles,BNdataset (quantiles), 59
quantiles,BNdataset-method (quantiles), 59
quantiles<-, 59
quantiles<-,BN-method (quantiles<-), 59
quantiles<-,BNdataset-method
(quantiles<-), 59

raw.data, 27,28,32,60,61
raw.data,BNdataset (raw.data), 60
raw.data,BNdataset-method (raw.data), 60
raw.data<-, 61
raw.data<-,BNdataset-method
(raw.data<-) 61
read.bif, 61
read.bif, character (read.bif), 61
read.bif, character-method (read.bif), 61
read.dataset, 11,32,61,62
read.dataset,BNdataset, character, character
(read.dataset), 62
read.dataset,BNdataset, character, character-method
(read.dataset), 62
read.dataset,BNdataset, character, character-method
(read.dataset), 62
read.dataset,BNdataset, character, character-method
(read.dataset), 62
read.dataset, 63
read.dsc, 63
read.dsc, character (read.dsc), 63
read.dsc, character-method (read.dsc), 63
read.net, 64
read.net, character (read.net), 64
read.net, character-method (read.net), 64
sample.dataset, 65
sample.dataset, BN (sample.dataset), 65
sample.dataset, BN-method
(sample.dataset), 65
sample.dataset, InferenceEngine
(sample.dataset), 65
sample.dataset, InferenceEngine-method
(sample.dataset), 65
sample.row, 65
sample.row,BN (sample.row), 65
sample.row,BN-method (sample.row), 65
save.to.eps, 66
save.to.eps,BN, character (save.to.eps), 66
save.to.eps,BN, character-method
(save.to.eps), 66
scoring.func, 67
scoring.func, BN (scoring.func), 67
scoring.func, BN-method (scoring.func), 67
scoring.func<-, 67
scoring.func<-,BN-method
(scoring.func<-), 67
shd, 68
show, 68
show,AllTheClasses-method (show), 68
show, BN-method (show), 68
show, BNdataset-method (show), 68
show, InferenceEngine-method (show), 68
struct.algo, 69
struct.algo,BN(struct.algo), 69
struct.algo,BN-method(struct.algo), 69
struct.algo<-, 69
struct.algo<-,BN-method
(struct.algo<->), 69
test.updated.bn, 70
test.updated.bn,InferenceEngine
(test.updated.bn), 70
test.updated.bn,InferenceEngine-method
(test.updated.bn), 70
tune.knn.impute, 70
updated.bn, 71
updated.bn,InferenceEngine
(updated.bn), 71
updated.bn,InferenceEngine-method
(updated.bn), 71
updated.bn<-, 72
updated.bn<-,InferenceEngine-method
(updated.bn<->), 72
variables, 72
variables,BN(variables), 72
variables,BN-method(variables), 72
variables,BNDataset(variables), 72
variables,BNDataset-method(variables), 72
variables<-, 73
variables<-,BN-method(variables<->), 73
variables<-,BNDataset-method
(variables<->), 73
wpdag, 73
wpdag,BN(wpdag), 73
wpdag,BN-method (wpdag), 73
wpdag.from.dag, 20, 74
wpdag.from.dag,BN(wpdag.from.dag), 74
wpdag.from.dag,BN-method
(wpdag.from.dag), 74
wpdag<-, 74
wpdag<-,BN-method (wpdag<->), 74
write.dsc, 75
write.dsc,BN(write.dsc), 75
write.dsc,BN-method (write.dsc), 75
write_xgml, 75
write_xgml,BN(write_xgml), 75
write_xgml,BN-method (write_xgml), 75