Package ‘bnviewer’

August 21, 2019

Type Package
Title Interactive Visualization of Bayesian Networks
Version 0.1.4
Depends R (>= 3.4)
Author Robson Fernandes
Maintainer Robson Fernandes <robson.fernandes@usp.br>
Description Bayesian networks provide an intuitive framework for probabilistic reasoning and its graphical nature can be interpreted quite clearly. Graph based methods of machine learning are becoming more popular because they offer a richer model of knowledge that can be understood by a human in a graphical format. The ‘bnviewer’ is an R Package that allows the interactive visualization of Bayesian Networks. The aim of this package is to improve the Bayesian Networks visualization over the basic and static views offered by existing packages.
License MIT + file LICENSE
URL http://robsonfernandes.net/bnviewer/
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Repository CRAN
Imports visNetwork (>= 2.0.4), bnlearn (>= 4.3), methods, igraph (>= 1.2.4)
NeedsCompilation no
Date/Publication 2019-08-21 07:40:07 UTC

R topics documented:

bnviewer-package .. 2
bn.to.igraph .. 2
model.to.structure .. 3
strength.viewer .. 4
viewer ... 8
Description

Bayesian networks provide an intuitive framework for probabilistic reasoning and its graphical nature can be interpreted quite clearly. Graph based methods of machine learning are becoming more popular because they offer a richer model of knowledge that can be understood by a human in a graphical format. The 'bnviewer' is an R Package that allows the interactive visualization of Bayesian Networks. The aim of this package is to improve the Bayesian Networks visualization over the basic and static views offered by existing packages.

Details

Package: bnviewer
Type: Package
Version: 0.1.4
Date: 2019-08-12
License: MIT + file LICENSE

Author(s)

Robson Fernandes
Institute of Mathematical and Computer Sciences
University of Sao Paulo - ICMC-USP

Maintainer: Robson Fernandes <robson.fernandes@usp.br>

bn.to.igraph

Bayesian Network to iGraph Model

Description

Converts Bayesian network structure based on package "bnlearn" and "bnviewer" to model based on package "igraph".

Usage

bn.to.igraph(bayesian.network)
model.to.structure

Arguments
 bayesian.network
 Bayesian Network structure.

References
 See online documentation http://robsonfernandes.net/bnviewer

Description
 Creates a Bayesian Network structure based on a high level semantic model.

Usage
 model.to.structure(model)

Arguments
 model Model string

References
 See online documentation http://robsonfernandes.net/bnviewer

Examples

library(bnlearn)
library(bnviewer)

model.left.arrow.op1 = " A <- (B,C,D);
 B <- (E,F);
 F <- (G);
 "

model.left.arrow.op2 = " A <= (B,C,D);
 B <= (E,F);
 F <= (G);
 "

model.right.arrow.op1 = " A -> (B,C,D);
 B -> (E,F);
 F -> (G);
 "
model.right.arrow.op2 = "A => (B,C,D);
 B => (E,F);
 F => (G);
 "

structure = model.to.structure(model.left.arrow.op1)

viewer(structure,
 bayesianNetwork.width = "100%",
 bayesianNetwork.height = "80vh",
 bayesianNetwork.layout = "layout_on_grid",
 node.colors = list(background = "#f4bafd",
 border = "#2b7ce9",
 highlight = list(background = "#97c2fc",
 border = "#2b7ce9"))
)

data.set = bnlearn::gaussian.test

bayesianNetwork.fit = bn.fit(structure, data = data.set)

print(bayesianNetwork.fit$A)

strength.viewer

Interactive Bayesian Network Strength Viewer

Description

Show the strength of the probabilistic relationships expressed by the arcs of a Bayesian network, and use model averaging to build a network containing only the significant arcs.

Usage

```r
strength.viewer(bayesianNetwork, bayesianNetwork.background = NULL,
                bayesianNetwork.boot.strength = NULL,
                bayesianNetwork.arc.strength.threshold.expression = NULL,
                bayesianNetwork.arc.strength.threshold.expression.color = NULL,
                bayesianNetwork.arc.strength.threshold.alternative.color = NULL,
                bayesianNetwork.arc.strength.label = FALSE,
                bayesianNetwork.arc.strength.label.prefix = "",
                bayesianNetwork.arc.strength.label.color = NULL,
                bayesianNetwork.arc.strength.tooltip = FALSE,
                bayesianNetwork.edge.scale.min = 1,
                bayesianNetwork.edge.scale.max = 5,
                bayesianNetwork.edge.scale.label.min = 14,
                bayesianNetwork.edge.scale.label.max = 14,
                bayesianNetwork.title = "", bayesianNetwork.subtitle = "")
```
bayesianNetwork.footer = "", bayesianNetwork.layout = "default",
bayesianNetwork.width = "100\%", bayesianNetwork.height = "500px",
node.shape = c("dot"), node.label.prefix = "",
node.colors = list(), node.font = list(), edges.smooth = TRUE,
edges.dashes = FALSE, edges.colors = list(),
options.highlightNearest = TRUE, options.nodesIdSelection = FALSE)

Arguments

bayesianNetwork
A Bayesian Network structure from Averaged Network

bayesianNetwork.background
Bayesian network background

bayesianNetwork.boot.strength
A nonparametric bootstrap to assess arc strength and direction

bayesianNetwork.arc.strength.threshold.expression
Logical expression of the force threshold of the arcs of the Bayesian network

bayesianNetwork.arc.strength.threshold.expression.color
Color applied to logical expression of the force threshold of the arcs of the Bayesian network

bayesianNetwork.arc.strength.threshold.alternative.color
Alternative color to logical expression of the force threshold of the arcs of the Bayesian network

bayesianNetwork.arc.strength.label
Enable Bayesian Network arc strength label

bayesianNetwork.arc.strength.label.prefix
Include Bayesian Network arc strength label prefix

bayesianNetwork.arc.strength.label.color
Set Bayesian Network arc strength label color

bayesianNetwork.arc.strength.tooltip
Enable Bayesian Network arc strength tooltip

bayesianNetwork.edge.scale.min
Set bayesian Network edge scale minimum

bayesianNetwork.edge.scale.max
Set bayesian Network edge scale maximum

bayesianNetwork.edge.scale.label.min
Set bayesian Network edge scale label minimum

bayesianNetwork.edge.scale.label.max
Set bayesian Network edge scale label maximum

bayesianNetwork.title
: String. Bayesian Network title

bayesianNetwork.subtitle
: String. Bayesian Network subtitle

bayesianNetwork.footer
: String. Bayesian Network footer
bayesianNetwork.layout
 : String. A layout of a Bayesian Network
 1. layout_on_sphere
 2. layout_on_grid
 3. layout_in_circle
 4. layout_as_star
 5. layout_as_tree
 6. layout_with_sugiyama
 7. layout_with_kk
 8. layout_with_dh
 9. layout_with_lgl
 10. layout_with_mds
 11. layout_with_gem
 12. layout_nicely
 13. layout_components
 14. layout_hierarchical_direction_UD
 15. layout_hierarchical_direction_DU
 16. layout_hierarchical_direction_LR
 17. layout_hierarchical_direction_RL

bayesianNetwork.width
 : String. Bayesian Network width

bayesianNetwork.height
 : String. Bayesian Network height

node.shape
 : String. A node shape of a Bayesian Network
 1. dot (default)
 2. circle
 3. ellipse
 4. database
 5. diamond
 6. square
 7. triangle
 8. box
 9. star
 10. text

node.label.prefix
 : String. Adds a prefix to the node label

node.colors
 : String | named list. Color for the node. Can be 'rgba(120,32,14,1)', '#97C2FC' (hexa notation on 7 char without transparency) or 'red'. Can be just one color, or a list with several elements:
 1. "background" : String. Default to '#97C2FC'. Background color for the node.
 2. "border" : String. Default to '#2B7CE9'. Border color for the node.
3. "highlight": String | named list. Color of the node when selected.
 (a) "background": String. Default to '#97C2FC'. Background color for
 the node when selected.
 (b) "border": String. Default to '#2B7CE9'. Border color for the node
 when selected.

node.font : Node Font : Array. Example list(color = "black", face="Arial")

edges.smooth : Boolean. When true, the edge is drawn as a dynamic quadratic bezier curve.

edges.dashes : Array or Boolean. Default to false. When true, the edge will be drawn as a
dashed line.

edges.colors : Named list or String. Default to named list. Color information of the edge
in every situation. Can be 'rgba(120,32,14,1)', '#97C2FC' (hexa notation on 7 char without transparency) or 'red'.
 • "color": String. Default to '#848484'. The color of the edge when it is
 not selected or hovered over (assuming hover is enabled in the interaction
 module).
 • "highlight": String. Default to '#848484'. The color the edge when it is
 selected.
 • "hover": String. Default to '#848484'. The color the edge when the mouse
 hovers over it (assuming hover is enabled in the interaction module).
 • "inherit": String or Boolean. Default to 'from'. When color, highlight or
 hover are defined, inherit is set to false! Supported options are: true, false,
 'from', 'to', 'both'.
 • "opacity": Number. Default to 1.0. It can be useful to set the opacity of an
 edge without manually changing all the colors. The allowed range of the
 opacity option is between 0 and 1.

options.highlightNearest
 : Boolean. Default to true. Highlight nearest when clicking a node.

options.nodesIdSelection
 : Boolean. Default to false. Add an id node selection creating an HTML select
element.

References
See online documentation http://robsonfernandes.net/bnviewer

Examples

library(bnlearn)
library(bnviewer)

bayesianNetwork.boot.strength = boot.strength(coronary, R = 20, algorithm = "hc")

avg.bayesianNetwork = averaged.network(bayesianNetwork.boot.strength, threshold = 0.2)

strength.viewer(
 avg.bayesianNetwork,
viewer(bayesianNetwork.boot.strength,
bayesianNetwork.background = "white",
bayesianNetwork.arc.strength.threshold.expression = c("@threshold > 0 & @threshold < 0.5",
"@threshold >= 0.5 & @threshold < 0.6",
"@threshold >= 0.6 & @threshold <= 1"),
bayesianNetwork.arc.strength.threshold.expression.color = c("red", "yellow", "green"),
bayesianNetwork.arc.strength.threshold.alternative.color = "white",
bayesianNetwork.arc.strength.label = TRUE,
bayesianNetwork.arc.strength.label.prefix = "",
bayesianNetwork.arc.strength.label.color = "black",
bayesianNetwork.arc.strength.tooltip = TRUE,
bayesianNetwork.edge.scale.min = 1,
bayesianNetwork.edge.scale.max = 3,
bayesianNetwork.edge.scale.label.min = 14,
bayesianNetwork.edge.scale.label.max = 14,
bayesianNetwork.width = "100%",
bayesianNetwork.height = "800px",
bayesianNetwork.layout = "layout_with_sugiyama",
node.colors = list(background = "#97c2fc",
 border = "#2b7ce9",
 highlight = list(background = "#e91eba",
 border = "#2b7ce9")),
node.font = list(color = "black", face="Arial"),
edges.dashes = FALSE,
bayesianNetwork.title="Bayesian Network Strength Analysis - Coronary",
bayesianNetwork.subtitle = "Coronary heart disease data set",
bayesianNetwork.footer = "Fig. 1 - Layout with Sugiyama"
)

viewer

Interactive Bayesian Network Viewer

Description

Interactive Bayesian Network Viewer

Usage

viewer(bayesianNetwork, bayesianNetwork.background = NULL,
bayesianNetwork.title = "", bayesianNetwork.subtitle = "",
bayesianNetwork.footer = "", bayesianNetwork.layout = "default",
bayesianNetwork.boot.strength,
bayesianNetwork.background = "white",
bayesianNetwork.arc.strength.threshold.expression = c("@threshold > 0 & @threshold < 0.5",
"@threshold >= 0.5 & @threshold < 0.6",
"@threshold >= 0.6 & @threshold <= 1"),
bayesianNetwork.arc.strength.threshold.expression.color = c("red", "yellow", "green"),
bayesianNetwork.arc.strength.threshold.alternative.color = "white",
bayesianNetwork.arc.strength.label = TRUE,
bayesianNetwork.arc.strength.label.prefix = "",
bayesianNetwork.arc.strength.label.color = "black",
bayesianNetwork.arc.strength.tooltip = TRUE,
bayesianNetwork.edge.scale.min = 1,
bayesianNetwork.edge.scale.max = 3,
bayesianNetwork.edge.scale.label.min = 14,
bayesianNetwork.edge.scale.label.max = 14,
bayesianNetwork.width = "100%",
bayesianNetwork.height = "800px",
bayesianNetwork.layout = "layout_with_sugiyama",
node.colors = list(background = "#97c2fc",
 border = "#2b7ce9",
 highlight = list(background = "#e91eba",
 border = "#2b7ce9")),
node.font = list(color = "black", face="Arial"),
edges.dashes = FALSE,
bayesianNetwork.title="Bayesian Network Strength Analysis - Coronary",
bayesianNetwork.subtitle = "Coronary heart disease data set",
bayesianNetwork.footer = "Fig. 1 - Layout with Sugiyama"
viewer

```r
bayesianNetwork.width = "100\%", bayesianNetwork.height = "500px",
node.shape = NULL, node.label.prefix = ",", node.colors = list(
node.font = list(), edges.smooth = TRUE, edges.dashes = FALSE,
options.highlightNearest = TRUE, options.nodesIdSelection = FALSE,
clusters.legend.title = "", clusters.legend.options = list(),
clusters = list())
```

Arguments

bayesianNetwork

A Bayesian Network structure. (Example: hill-climbing (HC)).

bayesianNetwork.background

Bayesian network background

bayesianNetwork.title

: String. Bayesian Network title

bayesianNetwork.subtitle

: String. Bayesian Network subtitle

bayesianNetwork.footer

: String. Bayesian Network footer

bayesianNetwork.layout

: String. A layout of a Bayesian Network. The hierarchical layout the available options are: UD, DU, LR, RL. To simplify: up-down, down-up, left-right, right-left.

1. `layout_on_sphere`
2. `layout_on_grid`
3. `layout_in_circle`
4. `layout_as_star`
5. `layout_as_tree`
6. `layout_with_sugiyama`
7. `layout_with_kk`
8. `layout_with_dh`
9. `layout_with_lgl`
10. `layout_with_mds`
11. `layout_with_gem`
12. `layout_nicely`
13. `layout_components`
14. `layout_hierarchical_direction_UD`
15. `layout_hierarchical_direction_DU`
16. `layout_hierarchical_direction_LR`
17. `layout_hierarchical_direction_RL`

bayesianNetwork.width

: String. Bayesian Network width

bayesianNetwork.height

: String. Bayesian Network height
node.shape : String. A node shape of a Bayesian Network
1. dot (default)
2. circle
3. ellipse
4. database
5. diamond
6. square
7. triangle
8. box
9. star
10. text

node.label.prefix : String. Adds a prefix to the node label

node.colors : String | named list. Color for the node. Can be 'rgba(120,32,14,1)', '#97C2FC' (hexa notation on 7 char without transparency) or 'red'. Can be just one color, or a list with several elements:
1. "background" : String. Default to '#97C2FC'. Background color for the node.
2. "border" : String. Default to '#2B7CE9'. Border color for the node.
3. "highlight" : String | named list, Color of the node when selected.
 (a) "background" : String. Default to '#97C2FC'. Background color for the node when selected.
 (b) "border" : String. Default to '#2B7CE9'. Border color for the node when selected.

node.font : Node Font : Array. Example list(color = "black", face="Arial")
edges.smooth : Boolean. When true, the edge is drawn as a dynamic quadratic bezier curve.
edges.dashes : Array or Boolean. Default to false. When true, the edge will be drawn as a dashed line.

options.highlightNearest : Boolean. Default to true. Highlight nearest when clicking a node.
options.nodesIdSelection : Boolean. Default to false. Add an id node selection creating an HTML select element.

clusters.legend.title : Array. Get details in the example.
clusters.legend.options : Array of Array. Get details in the example.

clusters : Array of Array. Get details in the example.

References
See online documentation http://robsonfernandes.net/bnviewer
See the code fontAwesome for icons in groups and nodes https://fontawesome.com/v4.7.0/cheatsheet/
library(bnlearn)
library(bnviewer)

data("alarm")
bayesianNetwork = hc(alarm)

viewer(bayesianNetwork,
 bayesianNetwork.background = "-webkit-radial-gradient(center, ellipse cover,
 rgba(255,255,255,1) 0%,
 rgba(246,246,246,1) 47%,
 rgba(237,237,237,1) 100%)",
 bayesianNetwork.width = "100%",
 bayesianNetwork.height = "100vh",
 bayesianNetwork.layout = "layout_components",
 bayesianNetwork.title="
Discrete Bayesian Network - Alarm",
 bayesianNetwork.subtitle = "Monitoring of emergency care patients",

 node.colors = list(background = "white",
 border = "black",
 highlight = list(background = "#e91eba",
 border = "black")),
 node.font = list(color = "black", face="Arial"),

 clusters.legend.title = list(text = "Legend
 Variable Categories",
 style = "font-size:18px; font-family:Arial; color:black; text-align:center;"),

 clusters.legend.options = list(
 list(label = "Pressure",
 shape = "icon",
 icon = list(code = "f1ce",
 size = 50,
 color = "#e91e63")),
 list(label = "Volume",
 shape = "icon",
 icon = list(code = "f140",
 size = 50,
 color = "#03a9f4")),
 list(label = "Ventilation",
 shape = "icon",
 icon = list(code = "f192",
 size = 50,
 color = "#4caf50")),
 list(label = "Saturation",
 shape = "icon",
 icon = list(code = "f10c",
 size = 50,
 color = "#ffc107"))
),
)
clusters = list(
 list(label = "Pressure",
 shape = "icon",
 icon = list(code = "f1ce", color = "#e91e63"),
 nodes = list("CVP","BP","HRBP","PAP","PRSS")),
 list(label = "Volume",
 shape = "icon",
 icon = list(code = "f140", color = "#03a9f4"),
 nodes = list("MINV","MVS","LVV","STKV")),
 list(label = "Ventilation",
 shape = "icon",
 icon = list(code = "f192", color = "#4caf50"),
 nodes = list("VALV","VLNG","VTUB","VMCH")),
 list(label = "Saturation",
 shape = "icon",
 icon = list(code = "f10c", color = "#ffc107"),
 nodes = list("HRSA","SAO2","PVS"))
)
Index

bn.to.igraph, 2
bnviewer (bnviewer-package), 2
bnviewer-package, 2
model.to.structure, 3
strength.viewer, 4
viewer, 8