Package ‘boostrq’

March 5, 2024

Type Package
Title Boosting Regression Quantiles
Version 1.0.0
Description Boosting Regression Quantiles is a component-wise boosting algorithm, that embeds all boosting steps in the well-established framework of quantile regression. It is initialized with the corresponding quantile, uses a quantile-specific learning rate, and uses quantile regression as its base learner. The package implements this algorithm and allows cross-validation and stability selection.

License GPL (>= 2)
URL https://github.com/stefanliner/boostrq
BugReports https://github.com/stefanliner/boostrq/issues
Encoding UTF-8
Depends mboost, stabs, stats, parallel
Imports quantreg, checkmate
RoxygenNote 7.2.3
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
NeedsCompilation no
Author Stefan Linner [aut, cre, cph]
Maintainer Stefan Linner <stefan.linner97@gmail.com>
Repository CRAN
Date/Publication 2024-03-05 11:00:06 UTC

R topics documented:

 coef.boostrq 4
 cvrisk.boostrq 5
Description

Component-wise functional gradient boosting algorithm to fit a quantile regression model.

Usage

```
boostrq(
  formula,  
  data,     
  mstop = 100, 
  nu = NULL, 
  tau = 0.5, 
  offset = NULL, 
  weights = NULL, 
  oobweights = NULL, 
  risk = "inbag", 
  digits = 10, 
  exact.fit = FALSE 
)
```

Arguments

- `formula`: a symbolic description of the model to be fit.
- `data`: a data frame (or data.table) containing the variables stated in the formula.
- `mstop`: number of iterations, as integer
- `nu`: learning rate, as numeric
- `tau`: quantile parameter, as numeric
- `offset`: a numeric vector used as offset.
weights (optional) a numeric vector indicating which weights to used in the fitting process (default: all observations are equally weighted, with 1).
oobweights an additional vector of out-of-bag weights, which is used for the out-of-bag risk.
risk string indicating how the empirical risk should be computed for each boosting iteration. inbag leads to risks computed for the learning sample (i.e. observations with non-zero weights), oobag to risks based on the out-of-bag (i.e. observations with non-zero oobagweights).
digits number of digits the slope parameter different from zero to be considered the best-fitting component, as integer.
exact.fit logical, if set to TRUE the negative gradients of exact fits are set to 0.

Value
A (generalized) additive quantile regression model is fitted using the boosting regression quantiles algorithm, which is a functional component-wise boosting algorithm. The base-learner can be specified via the formula object. brq (linear quantile regression) and brqss (nonlinear quantile regression) are available base-learner.

Examples
boosted.rq <-
boostrq(
 formula = mpg ~ brq(cyl * hp) + brq(am + wt),
 data = mtcars,
 mstop = 200,
 nu = 0.1,
 tau = 0.5
)
boosted.rq$mstop()
boosted.rq$selection.freqs()
boosted.rq$coef()
boosted.rq$risk()

\[
\text{brq} \quad \text{base learner for boosting linear regression quantiles}
\]

Description
Base-learner for linear quantile regression.

Usage
\[
brq(formula, method = "fn")
\]
Arguments

- **formula**: a symbolic description of the base learner.
- **method**: the algorithm used to fit the quantile regression, the default is set to "fn", referring to the Frisch-Newton inferior point method. For more details see the documentation of quantreg::rq.

Value

brq returns a string, which is used to specify the formula in the fitting process.

Examples

brq(cyl * hp)

description

estimated coefficients of boosting regression quantiles

Usage

```r
## S3 method for class 'boostrq'
coef(object, which = NULL, aggregate = "sum", ...)
```

Arguments

- **object**: object of class boostrq
- **which**: a subset of base-learners
- **aggregate**: a character specifying how to aggregate coefficients of single base learners. The default returns the coefficient for the final number of boosting iterations. "sum" returns a list with matrices (one per base-learner) with the cumulative coefficients for all iterations. "none" returns a list of matrices where the jth columns of the respective matrix contains coefficients of the base-learner of the jth boosting iteration. "sum_aggr" ...

... additional arguments passed to callies

Value

coef extracts the regression coefficients of the fitted boostrq model.
Examples

boosted.rq <-
boostqr(
 formula = mpg ~ brq(cyl * hp) + brq(am + wt),
 data = mtcars,
 mstop = 200,
 nu = 0.1,
 tau = 0.5
)

do.call(coef, boosted.rq, aggregate = "cumsum")

cvrisk.boostq

Crossvalidation for boostq

Description

Crossvalidation for boostq

Usage

S3 method for class 'boostq'
cvrisk(
 object,
 folds = mboost::cv(object$weights, type = "kfold"),
 grid = 0:mstop(object),
 papply = parallel::mclapply,
 mc.preschedule = FALSE,
 fun = NULL,
 ...
)

Arguments

object a bootstrq object

folds a matrix indicating the weights for the k resampling iterations

grid a vetor of stopping parameters the empirical quantile risk is to be evaluated for.

papply (parallel) apply function, defaults to mclapply. To run sequentially (i.e. not in parallel), one can use lapply.

mc.preschedule preschedule tasks if are parallelized using mclapply (default: FALSE)? For details see mclapply.

fun if fun is NULL, the out-of-sample risk is returned. fun, as a function of object, may extract any other characteristic of the cross-validated models. These are returned as is.

... additional arguments passed to callies
Value

Cross-validated Boosting regression quantiles

Examples

boosted.rq <-
 bootstrq(
 formula = mpg ~ brq(cyl * hp) + brq(am + wt),
 data = mtcars,
 mstop = 200,
 nu = 0.1,
 tau = 0.5
)

set.seed(101)

cvk.out <-
cvrisk(
 boosted.rq,
 grid = 0:mstop(boosted.rq),
 folds = mboost::cv(boosted.rq$weights, type = "kfold", B = 5)
)

cvk.out

plot(cvk.out)

mstop(cvk.out)

boosted.rq[mstop(cvk.out)]

fitted.boostrq

fitted values of boosting regression quantiles

Description

fitted values of boosting regression quantiles

Usage

S3 method for class 'boostrq'
fitted(object, ...)

Arguments

object object of class boostrq
...
additional arguments passed to callies
Value

fitted returns the fitted values of the fitted boostrq model.

Examples

```r
boosted.rq <-
    boostrq(
        formula = mpg ~ brq(cyl * hp) + brq(am + wt),
        data = mtcars,
        mstop = 200,
        nu = 0.1,
        tau = 0.5
    )

fitted(boosted.rq)
```

mstop.boostrq
Current number of iterations of boostrq

Description

Current number of iterations of boostrq

Usage

```r
## S3 method for class 'boostrq'
mstop(object, ...)
```

Arguments

- `object`: a boostrq object
- `...`: additional arguments passed to callies

Value

current number of boosting iterations

Examples

```r
boosted.rq <-
    boostrq(
        formula = mpg ~ brq(cyl * hp) + brq(am + wt),
        data = mtcars,
        mstop = 200,
        nu = 0.1,
        tau = 0.5
    )
```
predict.boostrq

mstop(boosted.rq)

predict.boostrq
Model predictions for boosting regression quantiles

Description

Model predictions for boosting regression quantiles

Usage

```r
## S3 method for class 'boostrq'
predict(object, newdata = NULL, which = NULL, aggregate = "sum", ...)
```

Arguments

- `object`: a boostrq object
- `newdata`: a data.frame (or data.table) including all covariates contained in the baselearners
- `which`: a subset of base-learners
- `aggregate`: a character specifying how to aggregate coefficients of single base learners. The default returns the coefficient for the final number of boosting iterations. "cumsum" returns a list with matrices (one per base-learner) with the cumulative coefficients for all iterations. "none" returns a list of matrices where the jth columns of the respective matrix contains coefficients of the base-learner of the jth boosting iteration.
- `...`: additional arguments passed to callies

Value

predictions for the new data

Examples

```r
boosted.rq <-
boostrq(
  formula = mpg ~ brq(cyl * hp) + brq(am + wt),
  data = mtcars,
  mstop = 200,
  nu = 0.1,
  tau = 0.5
)

predict.data <- data.frame(hp = 165, cyl = 6, am = 1, wt = 3.125)

predict(boosted.rq, newdata = predict.data)
```
print.boostrq

printing boosting regression quantiles

Description

printing boosting regression quantiles

Usage

S3 method for class 'boostrq'
print(x, ...)

Arguments

x
object of class boostrq

...
additional arguments passed to callies

Value

print shows a dense representation of the boostrq model fit.

Examples

boosted.rq <-
boostrq(
 formula = mpg ~ brq(cyl * hp) + brq(am + wt),
 data = mtcars,
 mstop = 200,
 nu = 0.1,
 tau = 0.5
)

boosted.rq

print.summary.boostrq

Print result summaries for a boostrq object

Description

Print result summaries for a boostrq object

Usage

S3 method for class 'summary.boostrq'
print(x, ...)

residuals.bootrq

Description

residuals of boosting regression quantiles

Usage

```r
## S3 method for class 'bootrq'
residuals(object, ...)  
```

Arguments

- `object`: object of class `bootrq`
- `...`: additional arguments passed to `callies`

Value

residuals returns the residuals of the fitted `bootrq` model.
Examples

```r
boosted.rq <-
boostrq(
  formula = mpg ~ brq(cyl * hp) + brq(am + wt),
  data = mtcars,
  mstop = 200,
  nu = 0.1,
  tau = 0.5
)

residuals(boosted.rq)
```

risk.bootrq

Empirical Quantile Risk of boostrq Object

Description

Empirical Quantile Risk of boostrq Object

Usage

```r
## S3 method for class 'boostrq'
risk(object, ...)
```

Arguments

- `object` - a boostrq object
- `...` - additional arguments passed to callies

Value

numeric vector containing the respective empirical quantile risk of the different boosting iterations.

Examples

```r
boosted.rq <-
boostrq(
  formula = mpg ~ brq(cyl * hp) + brq(am + wt),
  data = mtcars,
  mstop = 200,
  nu = 0.1,
  tau = 0.5
)

risk(boosted.rq)
```
selected.boostrq Extract indices of selected base learners

Description

Extract indices of selected base learners

Usage

S3 method for class 'boostrq'
selected(object, ...)

Arguments

object a boostrq object
...
additional arguments passed to callies

Value

an index vector indicating the selected base learner in each iteration

Examples

boosted.rq <-
boostrq(
 formula = mpg ~ brq(cyl * hp) + brq(am + wt),
data = mtcars,
mstop = 200,
 nu = 0.1,
 tau = 0.5
)

selected(boosted.rq)

stabsel.boostrq Stability Selection for boosting regression quantiles

Description

Stability Selection for boosting regression quantiles
Usage

```r
## S3 method for class 'boostrq'
stabsel(
  x,
  cutoff,
  q,
  PFER,
  grid = 0:mstop(x),
  folds = stabs::subsample(x$weights, B = B),
  B = ifelse(sampling.type == "MB", 100, 50),
  assumption = "unimodal",
  sampling.type = "SS",
  papply = parallel::mclapply,
  verbose = TRUE,
  ...
)
```

Arguments

- **x**: a fitted model of class "boostrq"
- **cutoff**: cutoff between 0.5 and 1. Preferably a value between 0.6 and 0.9 should be used
- **q**: number of (unique) selected components (base-learners) that are selected in each subsample.
- **PFER**: upper bound for the per-family error rate. This specifies the amount of falsely selected base-learners, which is tolerated.
- **grid**: a numeric vector of the form 0:m.
- **folds**: a weight matrix with number of rows equal to the number of observations. Usually one should not change the default here as subsampling with a fraction of 1/2 is needed for the error bounds to hold.
- **B**: number of subsampling replicates. Per default, we use 50 complementary pairs for the error bounds of Shah & Samworth (2013) and 100 for the error bound derived in Meinshausen & Buehlmann (2010). As we use B complementary pairs in the former case this leads to 2B subsamples.
- **assumption**: Defines the type of assumptions on the distributions of the selection probabilities and simultaneous selection probabilities. Only applicable for sampling.type = "SS". For sampling.type = "MB" we always use code"none".
- **sampling.type**: use sampling scheme of of Shah & Samworth (2013), i.e., with complementary pairs (sampling.type = "SS"), or the original sampling scheme of Meinshausen & Buehlmann (2010).
- **papply**: (parallel) apply function, defaults to mclapply. To run sequentially (i.e. not in parallel), one can use lapply.
- **verbose**: logical (default: TRUE) that determines wether warnings should be issued.
- **...**: additional arguments passed to callies
Value

An object of class stabsel.

Examples

```r
boosted.rq <- boostrq(
  formula = mpg ~ brq(cyl) + brq(hp) + brq(am) + brq(wt) + brq(drat),
  data = mtcars,
  mstop = 600,
  nu = 0.1,
  tau = 0.5
)

stabsel_parameters(
  q = 3,
  PFER = 1,
  p = 5,
  sampling.type = "SS",
  assumption = "unimodal"
)

set.seed(100)
brq.stabs <- stabsel(
  x = boosted.rq,
  q = 3,
  PFER = 1,
  sampling.type = "SS",
  assumption = "unimodal"
)

brq.stabs
```

summary.boostrq

Result summaries for a boostrq object

Description

Result summaries for a boostrq object

Usage

```r
## S3 method for class 'boostrq'
summary(object, ...)
```
update.boostrq

Arguments

object a boostrq object
...
additional arguments passed to callies

Value

result summaries for a boostrq object including the print-information, estimated coefficients, and selection frequencies

Examples

boosted.rq <-
boostrq(
 formula = mpg ~ brq(cyl * hp) + brq(am + wt),
 data = mtcars,
 mstop = 200,
 nu = 0.1,
 tau = 0.5
)

summary(boosted.rq)

update.boostrq Update and Re-fit a boostrq model

Description

Update and Re-fit a boostrq model

Usage

S3 method for class 'boostrq'
update(object, weights, oobweights, risk, ...)

Arguments

object a boostrq object
weights (optional) a numeric vector indicating which weights to used in the fitting process (default: all observations are equally weighted, with 1).
oobweights an additional vector of out-of-bag weights, which is used for the out-of-bag risk.
risk string indicating how the empirical risk should be computed for each boosting iteration. inbag leads to risks computed for the learning sample (i.e. observations with non-zero weights), oobag to risks based on the out-of-bag (i.e. observations with non-zero oobagweights).
...
additional arguments passed to callies
Value

a re-fitted bootstrq model

Examples

```r
boosted.rq <-
  bootstrq(
    formula = mpg ~ brq(cyl * hp) + brq(am + wt),
    data = mtcars,
    mstop = 200,
    nu = 0.1,
    tau = 0.5
  )

  update(
    boosted.rq,
    weights = c(rep(1, 30), 0, 0),
    oobweights = c(rep(0, 30), 1, 1),
    risk = "oobag"
  )
```

Description

Updating number of iterations

Usage

```r
## S3 method for class 'bootstrq'
x[i, return = TRUE, ...]
```

Arguments

- `x`: a bootstrq object
- `i`: desired number of boosting iterations
- `return`: TRUE, if the result should be returned
- `...`: additional arguments passed to callies

Value

a bootstrq object with the updated number of iterations
Examples

boosted.rq <-
boostrq(
 formula = mpg ~ brq(cyl * hp) + brq(am + wt),
 data = mtcars,
 mstop = 200,
 nu = 0.1,
 tau = 0.5
)

boosted.rq[500]
Index

[.boostrq, 16
boostrq, 2
brq, 3
coef.boostrq, 4
cvrisk.boostrq, 5
fitted.boostrq, 6
mstop.boostrq, 7
predict.boostrq, 8
print.boostrq, 9
print.summary.boostrq, 9
residuals.boostrq, 10
risk.boostrq, 11
selected.boostrq, 12
stabsel.boostrq, 12
summary.boostrq, 14
update.boostrq, 15