Package ‘boutliers’

November 4, 2020

Type Package
Title Outlier Detection and Influence Diagnostics for Meta-Analysis
Version 1.1-1
Date 2020-10-27
Author Hisashi Noma
Maintainer Hisashi Noma <noma@ism.ac.jp>
Description A R package for implementing outlier detection and influence diagnostics for meta-analysis. Bootstrap distributions of the influence statistics are calculated, and the thresholds to determine influential outliers are provided explicitly.
Depends R (>= 3.5.0)
Imports stats, metafor
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2020-11-04 12:10:06 UTC

R topics documented:

boutliers-package .. 2
custom_bin .. 2
custom_mean .. 3
finasteride ... 4
LRT ... 5
LRT_FE .. 6
PPI ... 7
SMT ... 8
STR ... 8
STR_FE ... 9
VRATIO ... 10
\textbf{boutliers-package} \hspace{1cm} \textit{The 'boutliers' package.}

\textbf{Description}

A R package for implementing outlier detection and influence diagnostics for meta-analysis. Bootstrap distributions of the influence statistics are calculated, and the thresholds to determine influential outliers are provided explicitly.

\textbf{References}

\textbf{convert_bin} \hspace{1cm} \textit{Converting binary data to summary statistics}

\textbf{Description}

Converting binary outcome data to the effect size estimates and the within studies variances vector

\textbf{Usage}

\begin{verbatim}
convert_bin(m1, n1, m2, n2, type = c("logOR", "logRR", "RD"))
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
\item \textbf{m1}: A vector of the number of successes in experimental group
\item \textbf{n1}: A vector of the number of patients in experimental group
\item \textbf{m2}: A vector of the number of successes in control group
\item \textbf{n2}: A vector of the number of patients in control group
\item \textbf{type}: the outcome measure for binary outcome data (default = "logOR").
\end{itemize}

- \textit{logOR}: logarithmic odds ratio, which is defined by $\log \left(\frac{(m_1+0.5)(n_2-m_2+0.5)}{(n_1-m_1+0.5)(m_2+0.5)} \right)$.
- \textit{logRR}: logarithmic relative risk, which is defined by $\log \left(\frac{m_1+0.5}{n_1+0.5} \cdot \frac{n_2+0.5}{m_2+0.5} \right)$.
- \textit{RD}: risk difference, which is defined by $\frac{m_1}{n_1} - \frac{m_2}{n_2}$.
Details

This function implements methods for logarithmic odds ratio, logarithmic relative risk, and risk difference described in Hartung & Knapp (2001).

Value

A data.frame of study data.

- **y**: A numeric vector of the effect size estimates.
- **v**: A numeric vector of the within studies variances.

References

Examples

```r
data(PPI)
attach(PPI)

dat1 <- convert_bin(d1, n1, d2, n2, type = "logOR")
print(dat1)

dat2 <- convert_bin(d1, n1, d2, n2, type = "logRR")
print(dat2)

dat3 <- convert_bin(d1, n1, d2, n2, type = "RD")
print(dat3)
```

convert_mean
Converting means and standard deviations to summary statistics

Description

Converting estimated means and standard deviations in experimental and control groups to the effect size estimates and the within studies variances vector

Usage

```r
convert_mean(n1, m1, s1, n2, m2, s2, pooled = FALSE, type=c("MD", "SMD"))
```
Arguments

- `n1`: A vector of number of observations in experimental group
- `m1`: A vector of estimated mean in experimental group
- `s1`: A vector of standard deviation in experimental group
- `n2`: A vector of number of observations in experimental group
- `m2`: A vector of estimated mean in experimental group
- `s2`: A vector of standard deviation in experimental group

- `type`: the outcome measure for continuous outcome data (default = "MD").
 - MD: Mean difference.
 - SMD: Standardized mean difference.

- `pooled`: logical; if TRUE, a pooled variance is used. The default is FALSE.

Value

A data.frame of study data.

- `y`: A numeric vector of the effect size estimates.
- `v`: A numeric vector of the within studies variance estimates.

Examples

```r
data(SMT)
attach(SMT)

dat1 <- convert_mean(n1, m1, s1, n2, m2, s2, type="MD")
print(dat1)

dat2 <- convert_mean(n1, m1, s1, n2, m2, s2, type="SMD")
print(dat2)
```

Description

- center: Center ID
- `n1`: Number of observations in finasteride group
- `m1`: Mean of the change of Boyarsky score from baseline in finasteride group
- `s1`: SD of the change of Boyarsky score from baseline in finasteride group
- `n0`: Number of observations in placebo group
- `m0`: Mean of the change of Boyarsky score from baseline in placebo group
- `s0`: SD of the change of Boyarsky score from baseline in placebo group
Usage
data(PPI)

Format
A data frame with 29 rows and 7 variables

References

LRT

Likelihood ratio test using a mean-shifted model

Description
Implementing the likelihood ratio tests using the mean-shifted model for the DerSimonian-Laird-type random-effects model. The bootstrap p-values are provided.

Usage
LRT(y, v, B=2000, alpha=0.05)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>A vector of the outcome measure estimates (e.g., MD, SMD, log OR, log RR, RD)</td>
</tr>
<tr>
<td>v</td>
<td>A vector of the variance estimate of y</td>
</tr>
<tr>
<td>B</td>
<td>The number of bootstrap resampling (default: 2000)</td>
</tr>
<tr>
<td>alpha</td>
<td>The significance level (default: 0.05)</td>
</tr>
</tbody>
</table>

Value
Results of the likelihood ratio tests involving bootstrap p-values. The outputs are ordered by the p-values.

- id: ID of the study.
- LR: The likelihood ratio statistic for based on the mean-shifted model.
- Q: 1-alpha percentile for the bootstrap distribution of the likelihood ratio statistic.
- P: The bootstrap p-value for the likelihood ratio statistic.
Examples

```r
data(SMT)
attach(SMT)

dat <- convert_mean(n1, m1, s1, n2, m2, s2, type="MD")

LRT(dat$y, dat$v, B=100)
# For quick demonstration, B is set to 100.
# Practically, B should be set to >= 1000 (default is 2000).

detach(SMT)
```

LRT_FE

Likelihood ratio test using a mean-shifted model by the fixed-effect model

Description

Implementing the likelihood ratio tests using the mean-shifted model for the fixed-effect model. The bootstrap p-values are provided.

Usage

```r
LRT_FE(y, v, B=2000, alpha=0.05)
```

Arguments

- `y`: A vector of the outcome measure estimates (e.g., MD, SMD, log OR, log RR, RD)
- `v`: A vector of the variance estimate of `y`
- `B`: The number of bootstrap resampling (default: 2000)
- `alpha`: The significance level (default: 0.05)

Value

Results of the likelihood ratio tests involving bootstrap p-values. The outputs are ordered by the p-values.

- `id`: ID of the study.
- `LR`: The likelihood ratio statistic for based on the mean-shifted model.
- `Q`: 1- alpha percentile for the bootstrap distribution of the likelihood ratio statistic.
- `P`: The bootstrap p-value for the likelihood ratio statistic.
Examples

```r
data(SMT)
attach(SMT)

dat <- convert_mean(n1, m1, s1, n2, m2, s2, type="MD")

LRT_FE(dat$y, dat$v, B=100)
# For quick demonstration, B is set to 100.
# Practically, B should be set to >= 1000 (default is 2000).

detach(SMT)
```

PPI

Crocker et al. (2018)'s patient and public involvement (PPI) intervention data

Description

- **ID**: Study ID
- **d1**: Number of events in PPI intervention group
- **n1**: Number of observations in PPI intervention group
- **d2**: Number of events in non-PPI intervention group
- **n2**: Number of observations in non-PPI intervention group

Usage

```r
data(PPI)
```

Format

A data frame with 21 rows and 5 variables

References

SMT
Rubinstein et al. (2019)'s chronic low back pain data

Description

- **ID**: Study ID
- **Source**: First author name and year of publication
- **m1**: Estimated mean in experimental group
- **s1**: Standard deviation in experimental group
- **n1**: Number of observations in experimental group
- **m2**: Estimated mean in control group
- **s2**: Standard deviation in control group
- **n2**: Number of observations in control group

Usage

```r
data(SMT)
```

Format

A data frame with 23 rows and 8 variables

References

STR
Studentized residuals by leave-one-out analysis

Description

Calculating the studentized residuals by leave-one-out analysis (studentized deleted residuals) and the percentiles of their bootstrap distributions.

Usage

```r
STR(y, v, B=2000, alpha=0.95)
```
Arguments

- **y**: A vector of the outcome measure estimates (e.g., MD, SMD, log OR, log RR, RD)
- **v**: A vector of the variance estimate of y
- **B**: The number of bootstrap resampling (default: 2000)
- **alpha**: The bootstrap percentiles to be outputted; 0.5(1-alpha)th and (1-0.5(1-alpha))th percentiles. Default is 0.95; 2.5th and 97.5th percentiles are calculated.

Value

The studentized residuals by leave-one-out analysis. The outputs are ordered by the sizes of the studentized residuals.

- **id**: ID of the study.
- **psi**: The studentized residuals by leave-one-out analysis (studentized deleted residuals).
- **Q1**: 0.5(1-alpha)th percentile for the bootstrap distribution of the studentized residual (default: 2.5th percentile).
- **Q2**: 1-0.5(1-alpha)th percentile for the bootstrap distribution of the studentized residual (default: 97.5th percentile).

Examples

```r
data(PPI)
attach(PPI)

dat <- convert_bin(d1, n1, d2, n2, type = "logOR")
print(dat)

STR(dat$y, dat$v, B=100)
# For quick demonstration, B is set to 100.
# Practically, B should be set to >= 1000 (default is 2000).

detach(PPI)
```

STR_FE
Studentized residuals by leave-one-out analysis for the fixed-effect model

Description

Calculating the studentized residuals by leave-one-out analysis (studentized deleted residuals) for the fixed-effect model and the percentiles of their bootstrap distributions.

Usage

```r
STR_FE(y, v, B=2000, alpha=0.95)
```
Arguments

- **y**: A vector of the outcome measure estimates (e.g., MD, SMD, log OR, log RR, RD)
- **v**: A vector of the variance estimate of y
- **B**: The number of bootstrap resampling (default: 2000)
- **alpha**: The bootstrap percentiles to be outputted; 0.5(1-alpha)th and (1-0.5(1-alpha))th percentiles. Default is 0.95; 2.5th and 97.5th percentiles are calculated.

Value

The studentized residuals by leave-one-out analysis. The outputs are ordered by the sizes of the studentized residuals.

- **id**: ID of the study.
- **psi**: The studentized residuals by leave-one-out analysis (studentized deleted residuals).
- **Q1**: 0.5(1-alpha)th percentile for the bootstrap distribution of the studentized residual (default: 2.5th percentile).
- **Q2**: 1-0.5(1-alpha)th percentile for the bootstrap distribution of the studentized residual (default: 97.5th percentile).

Examples

```r
data(PPI)
attach(PPI)

dat <- convert_bin(d1, n1, d2, n2, type = "logOR")
print(dat)

STR_FE(dat$y, dat$v, B=100)
# For quick demonstration, B is set to 100.
# Practically, B should be set to >= 1000 (default is 2000).

detach(PPI)
```

VRATIO: Variance ratio influential statistics

Description

Calculating the variance ratio influential statistics by leave-one-out analysis and the percentiles of their bootstrap distributions.

Usage

`VRATIO(y, v, B=2000, alpha=0.05)`
Arguments

- **y**: A vector of the outcome measure estimates (e.g., MD, SMD, log OR, log RR, RD)
- **v**: A vector of the variance estimate of y
- **B**: The number of bootstrap resampling (default: 2000)
- **alpha**: The bootstrap percentile to be outputted (default: 0.05)

Value

The variance ratio influential statistics by leave-one-out analysis and their bootstrap percentiles. The outputs are ordered by the sizes of the variance ratio statistics.

- **id**: ID of the study.
- **VR**: The VRATIO statistic (relative change of the variance of the overall estimator) by leave-one-out analysis.
- **Q1**: alpha percentile for the bootstrap distribution of the VRATIO statistic.
- **TR**: The TAU2RATIO statistic (relative change of the heterogeneity variance) by leave-one-out analysis.
- **Q2**: alpha percentile for the bootstrap distribution of the TAU2RATIO statistic.

Examples

```r
data(finasteride)
attach(finasteride)

dat <- convert_mean(n1, m1, s1, n0, m0, s0, type="MD")
print(dat)

VRATIO(dat$y, dat$v, B=100)
# For quick demonstration, B is set to 100.
# Practically, B should be set to >= 1000 (default is 2000).

detach(finasteride)
```
Index

* datasets
 finasteride, 4
 PPI, 7
 SMT, 8

boutliers-package, 2

convert_bin, 2
convert_mean, 3

finasteride, 4
LRT, 5
LRT_FE, 6

PPI, 7
SMT, 8
STR, 8
STR_FE, 9

VRATIO, 10