Package ‘breakfast’
September 28, 2017

Title Multiple Change-Point Detection and Segmentation

Version 1.0.0

Description The breakfast package performs multiple change-point detection in data
sequences, or sequence segmentation, using computationally efficient multiscale
methods. This version of the package implements the "Tail-Greedy Unbalanced Haar",
"Wild Binary Segmentation" and "Adaptive Wild Binary Segmentation" change-point
detection and segmentation methodologies. To start with, see the function
segment.mean.

Depends R (>= 3.4.0)

License GPL

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

Imports plyr

NeedsCompilation no

Author Piotr Fryzlewicz [aut, cre]

Maintainer Piotr Fryzlewicz <p.fryzlewicz@lse.ac.uk>

Repository CRAN

Date/Publication 2017-09-28 15:49:36 UTC

R topics documented:

breakfast .. 2
hybrid.cpt .. 2
segment.mean .. 4
tguh.cpt ... 5
tguh.decomp .. 6
tguh.denoise .. 7
tguh.reconstr .. 9
wbs.bic.cpt .. 10
wbs.cpt ... 11
wbs.K.cpt .. 13
wbs.thresh.cpt .. 14
Description

The breakfast package performs multiple change-point detection in data sequences, or sequence segmentation, using computationally efficient multiscale methods. This version of the package implements the "Tail-Greedy Unbalanced Haar", "Wild Binary Segmentation" and "Adaptive Wild Binary Segmentation" change-point detection and segmentation methodologies. To start with, see the function `segment.mean`.

Author(s)

Piotr Fryzlewicz, <p.fryzlewicz@lse.ac.uk>

References

See Also

`segment.mean`

Examples

#See Examples for segment.mean

Description

This function estimates the number and locations of change-points in the piecewise-constant mean of the noisy input vector, combining the Tail-Greedy Unbalanced Haar and Adaptive Wild Binary Segmentation methods (see Details for the relevant literature references). The constant means between each pair of neighbouring change-points are also estimated. The method works best when the noise in the input vector is independent and identically distributed Gaussian.
Usage

hybrid.cpt(x, M = 1000, sigma = stats::mad(diff(x)/sqrt(2)), th.const = 1, p = 0.01, minseglen = 1, bal = 1/20, num.zero = 10^(-5))

Arguments

x A vector containing the data in which you wish to find change-points.
M The same as the corresponding parameter in wbs.K.cpt.
sigma The same as the corresponding parameter in tguh.cpt.
th.const The same as the corresponding parameter in tguh.cpt.
p The same as the corresponding parameter in tguh.cpt.
minseglen The same as the corresponding parameter in tguh.cpt.
bal The same as the corresponding parameter in tguh.cpt.
um.zero The same as the corresponding parameter in tguh.cpt.

Details

This is a hybrid method, which first estimates the number of change-points using tguh.cpt and then estimates their locations using wbs.K.cpt.
The change-point detection algorithms used in tguh.cpt are: the Tail-Greedy Unbalanced Haar method as described in "Tail-greedy bottom-up data decompositions and fast multiple change-point detection", P. Fryzlewicz (2017), preprint, and Adaptive Wild Binary Segmentation as described in "Data-adaptive Wild Binary Segmentation", P. Fryzlewicz (2017), in preparation as of September 28th, 2017.

Value

A list with the following components:
est The estimated piecewise-constant mean of x.
no.of.cpt The estimated number of change-points in the piecewise-constant mean of x.
cpt The estimated locations of change-points in the piecewise-constant mean of x (these are the final indices before the location of each change-point).

Author(s)

Piotr Fryzlewicz, <p.fryzlewicz@lse.ac.uk>

See Also

segment.mean, wbs.bic.cpt, wbs.thresh.cpt, wbs.cpt, tguh.cpt, wbs.K.cpt

Examples

teeth <- rep(rep(0:1, each=5), 20)
teeth.noisy <- teeth + rnorm(200)/5
teeth.cleaned <- hybrid.cpt(teeth.noisy)
ts.plot(teeth.cleaned$est)
Description

This function estimates the number and locations of change-points in the piecewise-constant mean of the noisy input vector, using a method that puts more emphasis either on "speed" (i.e. is faster but possibly less accurate) or on "accuracy" (i.e. is possibly more accurate but slower). It also estimates the constant means between each pair of neighbouring change-points. It works best when the noise in the input vector is independent and identically distributed Gaussian.

Usage

```r
segment.mean(x, attribute = "speed", M = 1000,
             sigma = stats::mad(diff(x)/sqrt(2)), th.const = 1, p = 0.01,
             minseglen = 1, bal = 1/20, num.zero = 10^(-5))
```

Arguments

- `x`: A vector containing the data in which you wish to find change-points.
- `attribute`: As described in the Details section of this help file.
- `M`: The same as the corresponding parameter in `hybrid.cpt`.
- `sigma`: The same as the corresponding parameter in `tguh.cpt` and `hybrid.cpt`.
- `th.const`: The same as the corresponding parameter in `tguh.cpt` and `hybrid.cpt`.
- `p`: The same as the corresponding parameter in `tguh.cpt` and `hybrid.cpt`.
- `minseglen`: The same as the corresponding parameter in `tguh.cpt` and `hybrid.cpt`.
- `bal`: The same as the corresponding parameter in `tguh.cpt` and `hybrid.cpt`.
- `num.zero`: The same as the corresponding parameter in `tguh.cpt` and `hybrid.cpt`.

Details

In the current version of the package, `attribute="speed"` triggers the function `tguh.cpt` and `attribute="accuracy"` triggers the function `hybrid.cpt`. **Warning:** this can change in future versions of the package. Note that `tguh.cpt` and `hybrid.cpt` return the same number of change-points and the only difference lies in their estimated locations.

Value

A list with the following components:

- `est`: The estimated piecewise-constant mean of `x`.
- `no.of.cpt`: The estimated number of change-points in the piecewise-constant mean of `x`.
- `cpt`: The estimated locations of change-points in the piecewise-constant mean of `x` (these are the final indices before the location of each change-point).
Abstract

Multiple change-point detection in the mean of a vector using the TGUH method

Description

This function estimates the number and locations of change-points in the piecewise-constant mean of the noisy input vector, using the Tail-Greedy Unbalanced Haar method (see Details for the relevant literature reference). It also estimates the constant means between each pair of neighbouring change-points. It works best when the noise in the input vector is independent and identically distributed Gaussian.

Usage

tguh.cpt(x, sigma = stats::mad(diff(x)/sqrt(2)), th.const = 1, p = 0.01, minseglen = 1, bal = 1/20, num.zero = 10^(-5))

Arguments

- **x**: A vector containing the data in which you wish to find change-points.
- **sigma**: The estimate or estimator of the standard deviation of the noise in x; the default is the Median Absolute Deviation of x computed under the assumption that the noise is independent and identically distributed Gaussian.
- **th.const**: Tuning parameter. Change-points are estimated by connected thresholding (of the Tail-Greedy Unbalanced Haar decomposition of x) in which the threshold has magnitude signal * sqrt(2 * (1 + 0.01) * log(n)) * th.const, where n is the length of x. The default value of th.const is 1.
- **p**: Specifies the number of region pairs merged in each pass through the data, as the proportion of all remaining region pairs. The default is 0.01.
- **minseglen**: The minimum permitted length of each segment of constancy in the estimated mean of x; the default is 1.
bal Specifies the minimum ratio of the length of the shorter wing of each Unbalanced Haar wavelet whose coefficient survives the thresholding, to the length of its support. The default is 0.05.
num.zero Numerical zero; the default is 0.00001.

Details
The change-point detection algorithm used in tguh.cpt is the Tail-Greedy Unbalanced Haar method as described in "Tail-greedy bottom-up data decompositions and fast multiple change-point detection", P. Fryzlewicz (2017), preprint. This paper describes two optional post-processing steps; neither of them is implemented in this package.

Value
A list with the following components:
est The estimated piecewise-constant mean of x.
no.of.cpt The estimated number of change-points in the piecewise-constant mean of x.
cpt The estimated locations of change-points in the piecewise-constant mean of x (these are the final indices before the location of each change-point).

Author(s)
Piotr Fryzlewicz, <p.fryzlewicz@lse.ac.uk>

See Also
segment.mean, hybrid.cpt, tguh.decomp, tguh.denoise, tguh.reconstr

Examples
stairs <- rep(1:50, each=10)
stairs.noisy <- stairs + rnorm(500)/5
stairs.cleaned <- tguh.cpt(stairs.noisy)
t.s.plot(stairs.cleaned$est)
stairs.cleaned$no.of.cpt
stairs.cleaned$cpt

tguh.decomp

The Tail-Greedy Unbalanced Haar decomposition of a vector

Description
This function performs the Tail-Greedy Unbalanced Haar decomposition of the input vector.

Usage
tguh.decomp(x, p = 0.01)
Arguments

x A vector you wish to decompose.
p Specifies the number of region pairs merged in each pass through the data, as the proportion of all remaining region pairs. The default is 0.01.

Details

The Tail-Greedy Unbalanced Haar decomposition algorithm is described in "Tail-greedy bottom-up data decompositions and fast multiple change-point detection", P. Fryzlewicz (2017), preprint.

Value

A list with the following components:

n The length of x.
decomp.hist The decomposition history: the complete record of the n-1 steps taken to decompose x. This is an array of dimensions 4 by 2 by n-1. Each of the n-1 matrices of dimensions 4 by 2 contains the following: first row - the indices of the regions merged, in increasing order (note: the indexing changes through the transform); second row - the values of the Unbalanced Haar filter coefficients used to produce the corresponding detail coefficient; third row - the (detail coefficient, smooth coefficient) of the decomposition; fourth row - the lengths of (left wing, right wing) of the corresponding Unbalanced Haar wavelet.
tguh.coeffs The coefficients of the Tail-Greedy Unbalanced Haar transform of x.

Author(s)

Piotr Fryzlewicz, <p.fryzlewicz@lse.ac.uk>

See Also

tguh.cpt, tguh.denoise, tguh.reconstr

Examples

rnoise <- rnorm(10)
tguh.decomp(rnoise)

Description

This function performs the connected thresholding of the Tail-Greedy Unbalanced Haar coefficients.
Usage

tguh.denoise(tguh.decomp.obj, lambda, minseglen = 1, bal = 1/20)

Arguments

tguh.decomp.obj
A variable returned by tguh.decomp or tguh.denoise.

lambda
The threshold value.

minseglen
The minimum permitted length of either wing of any Unbalanced Haar wavelet whose corresponding coefficient survives the thresholding.

bal
The minimum permitted ratio of the length of either wing to the sum of the lengths of both wings of any Unbalanced Haar wavelet whose corresponding coefficient survives the thresholding.

Details

Typically, the first parameter of tguh.denoise will be an object returned by tguh.decomp. The function tguh.denoise performs the "connected thresholding" of this object, in the sense that if a Tail-Greedy Unbalanced Haar detail coefficient does not have any surviving children coefficients, then it gets set to zero if it falls under the threshold, or if the corresponding Unbalanced Haar wavelet is too unbalanced or has too short a wing. See "Tail-greedy bottom-up data decompositions and fast multiple change-point detection", P. Fryzlewicz (2017), preprint, for details.

Value

Modified object tguh.decomp.obj; the modification is that the detail coefficients in the decomp.hist field that do not survive the thresholding get set to zero.

Author(s)

Piotr Fryzlewicz, <p.fryzlewicz@lse.ac.uk>

See Also

tguh.cpt, tguh.decomp, tguh.reconstr

Examples

rnoise <- rnorm(10)
rnoise.tguh <- tguh.decomp(rnoise)
print(rnoise.tguh)
rnoise.denoise <- tguh.denoise(rnoise.tguh, 3)
rnoise.clean <- tguh.reconstr(rnoise.denoise)
print(rnoise.clean)
The inverse Tail-Greedy Unbalanced Haar transformation

Description
This function performs the inverse Tail-Greedy Unbalanced Haar transformation, also referred to as reconstruction.

Usage
tguh.reconstr(tguh.decomp.obj)

Arguments
tguh.decomp.obj
A variable returned by tguh.decomp or tguh.denoise.

Details
The Tail-Greedy Unbalanced Haar decomposition and reconstruction algorithms are described in "Tail-greedy bottom-up data decompositions and fast multiple change-point detection", P. Fryzlewicz (2017), preprint.

Value
A vector being the result of the inverse Tail-Greedy Unbalanced Haar transformation of tguh.decomp.obj.

Author(s)
Piotr Fryzlewicz, <p.fryzlewicz@lse.ac.uk>

See Also
tguh cpt, tguh.decomp, tguh.denoise

Examples
rnoise <- rnorm(10)
rnoise.tguh <- tguh.decomp(rnoise)
print(rnoise.tguh)
rnoise.denoise <- tguh.denoise(rnoise.tguh, 3)
rnoise.clean <- tguh.reconstr(rnoise.denoise)
print(rnoise.clean)
Multiple change-point detection in the mean of a vector using the WBS method, with the number of change-points chosen by BIC

Description

This function estimates the number and locations of change-points in the piecewise-constant mean of the noisy input vector, using the Wild Binary Segmentation method (see Details for the relevant literature reference). The number of change-points is chosen via the Bayesian Information Criterion. The constant means between each pair of neighbouring change-points are also estimated. The method works best when the noise in the input vector is independent and identically distributed Gaussian, and when the number change-points is small.

Usage

\[\text{wbs.bic.cpt}(x, M = 20000, \text{Kmax} = \text{ceiling}(\text{length}(x)/5)) \]

Arguments

- **x**: A vector containing the data in which you wish to find change-points.
- **M**: The number of randomly selected sub-segments of the data on which to build the CUSUM statistics in the Wild Binary Segmentation algorithm; generally, the larger the value of M, the more accurate but slower the algorithm - but see the remarks below about the BIC penalty.
- **Kmax**: The maximum number of change-points that can be detected.

Details

The BIC penalty is unsuitable as a model selection tool in long signals with frequent change-points; if you need a more versatile function that works well regardless of the number of change-points, try \text{segment.mean} (for a default recommended estimation technique), \text{wbs.thresh.cpt}, \text{wbs.cpt} (if you require an (Adaptive) WBS-based technique), \text{tguh.cpt} (if you require a TGUH-based technique), or \text{hybrid.cpt} (to use a hybrid between TGUH and Adaptive WBS). If you are unsure where to start, try \text{segment.mean}. (If you know how many change-points you wish to detect, try \text{wbs.K.cpt}.)

The change-point detection algorithm used in \text{wbs.bic.cpt} is the Wild Binary Segmentation method as described in "Wild Binary Segmentation for multiple change-point detection", P. Fryzlewicz (2014), Annals of Statistics, 42, 2243-2281.

Value

A list with the following components:

- **est**: The estimated piecewise-constant mean of \(x \).
- **no.of.cpt**: The estimated number of change-points in the piecewise-constant mean of \(x \).
- **cpt**: The estimated locations of change-points in the piecewise-constant mean of \(x \) (these are the final indices before the location of each change-point).
wbs.cpt

Author(s)

Piotr Fryzlewicz. <p.fryzlewicz@lse.ac.uk>

See Also

`segment.mean`, `wbs.thresh.cpt`, `wbs.cpt`, `tguh.cpt`, `hybrid.cpt`, `wbs.K.cpt`

Examples

```r
  teeth <- rep(rep(0:1, each=5), 20)
  teeth.noisy <- teeth + rnorm(200)/5
  teeth.cleaned <- wbs.bic.cpt(teeth.noisy)
  ts.plot(teeth.cleaned$est)
  teeth.cleaned$no.of cpt
  teeth.cleaned$cpt
```

wbs.cpt

Multiple change-point detection in the mean of a vector using the (Adaptive) WBS method.

Description

This function estimates the number and locations of change-points in the piecewise-constant mean of the noisy input vector, using the (Adaptive) Wild Binary Segmentation method (see Details for the relevant literature references). The constant means between each pair of neighbouring change-points are also estimated. The method works best when the noise in the input vector is independent and identically distributed Gaussian.

Usage

```r
  wbs.cpt(x, sigma = stats::mad(diff(x)/sqrt(2)), M.bic = 20000,
          Kmax = ceiling(length(x)/5), universal = TRUE, M.thresh = NULL,
          th.const = NULL, th.const.min.mult = 0.825, adapt = TRUE,
          lambda = 0.9)
```

Arguments

- **x**: A vector containing the data in which you wish to find change-points.
- **sigma**: Only relevant to the `wbs.thresh.cpt` part (see Details below); the same as the corresponding parameter in `wbs.thresh.cpt`.
- **M.bic**: Only relevant to the `wbs.bic.cpt` part (see Details below); the same as the `M` parameter in `wbs.bic.cpt`.
- **Kmax**: Only relevant to the `wbs.bic.cpt` part (see Details below); the same as the corresponding parameter in `wbs.bic.cpt`.
- **universal**: Only relevant to the `wbs.thresh.cpt` part (see Details below); the same as the corresponding parameter in `wbs.thresh.cpt`.
M. thresh Only relevant to the \texttt{wbs.thresh.cpt} part (see Details below); the same as the \texttt{M} parameter in \texttt{wbs.thresh.cpt}.

\texttt{th. const} Only relevant to the \texttt{wbs.thresh.cpt} part (see Details below); the same as the corresponding parameter in \texttt{wbs.thresh.cpt}.

\texttt{th. const. min.m ult} Only relevant to the \texttt{wbs.thresh.cpt} part (see Details below); the same as the corresponding parameter in \texttt{wbs.thresh.cpt}.

\texttt{adapt} Only relevant to the \texttt{wbs.thresh.cpt} part (see Details below); the same as the corresponding parameter in \texttt{wbs.thresh.cpt}.

\texttt{lambda} Only relevant to the \texttt{wbs.thresh.cpt} part (see Details below); the same as the corresponding parameter in \texttt{wbs.thresh.cpt}.

\textbf{Details}

This is a hybrid method, which returns the result of \texttt{wbs.thresh.cpt} or \texttt{wbs.bic.cpt}, whichever of the two detect the larger number of change-points. If there is a tie, \texttt{wbs.bic.cpt} is returned.

\textbf{Value}

A list with the following components:

- \texttt{est} The estimated piecewise-constant mean of \texttt{x}.
- \texttt{no.of.cpt} The estimated number of change-points in the piecewise-constant mean of \texttt{x}.
- \texttt{cpt} The estimated locations of change-points in the piecewise-constant mean of \texttt{x} (these are the final indices before the location of each change-point).

\textbf{Author(s)}

Piotr Fryzlewicz, \texttt{<p.fryzlewicz@lse.ac.uk>}

\textbf{See Also}

\texttt{segment.mean}, \texttt{wbs.bic.cpt}, \texttt{wbs.thresh.cpt}, \texttt{tguh.cpt}, \texttt{hybrid.cpt}, \texttt{wbs.K.cpt}

\textbf{Examples}

```r
  teeth <- rep(rep(0:1, each=5), 20)
  teeth.noisy <- teeth + rnorm(200)/5
  teeth.cleaned <- wbs.cpt(teeth.noisy)
  ts.plot(teeth.cleaned$est)
```
Detecting exactly k change-points in the mean of a vector using the Adaptive WBS method

Description

This function estimates the number and locations of change-points in the piecewise-constant mean of the noisy input vector, using the Adaptive Wild Binary Segmentation method (see Details for the relevant literature reference). The number of change-points is exactly k. The constant means between each pair of neighbouring change-points are also estimated. The method works best when the noise in the input vector is independent and identically distributed Gaussian. As a by-product, the function also computes the entire solution path, i.e. all estimated $n-1$ change-point locations (where n is the length of the input data) sorted from the most to the least important.

Usage

\[\text{wbs.K.cpt}(x, K, M = 1000) \]

Arguments

- **x**: A vector containing the data in which you wish to find change-points.
- **K**: The number of change-points you wish to detect.
- **M**: The number of randomly selected sub-segments of the data on which to build the CUSUM statistics on each recursively identified interval in the Adaptive Wild Binary Segmentation algorithm.

Details

This function should only be used if (a) you know exactly how many change-points you wish to detect, or (b) you wish to order all possible change-points from the most to the least important. If you need a function to estimate the number of change-points for you, try `segment.mean` (for a default recommended estimation technique), `wbs.thresh.cpt`, `wbs.bic.cpt`, `wbs.cpt` (if you require an (Adaptive) WBS-based technique), `tguh.cpt` (if you require a TGUH-based technique), or `hybrid.cpt` (to use a hybrid between TGUH and Adaptive WBS). If you are unsure where to start, try `segment.mean`.

Value

A list with the following components:

- **est**: The estimated piecewise-constant mean of x.
- **no.of.cpt**: The estimated number of change-points in the piecewise-constant mean of x; the minimum of K and $n-1$, where n is the length of x.
The estimated locations of change-points in the piecewise-constant mean of \(x \) (these are the final indices \textit{before} the location of each change-point).

cpt.sorted

The list of all possible change-point locations, sorted from the most to the least likely

Author(s)

Piotr Fryzlewicz, \(<p.fryzlewicz@lse.ac.uk>\)

See Also

\texttt{segment.mean}, \texttt{wbs.thresh.cpt}, \texttt{wbs.cpt}, \texttt{tguh.cpt}, \texttt{hybrid.cpt}, \texttt{wbs.bic.cpt}

Examples

\begin{verbatim}
 teeth <- rep(rep(0:1, each=5), 20)
 teeth.noisy <- teeth + rnorm(200)/5
 teeth.cleaned <- wbs.K.cpt(teeth.noisy, 39)
 teeth.cleaned$cpt
 teeth.cleaned <- wbs.K.cpt(teeth.noisy, 78)
 teeth.cleaned$cpt
 teeth.cleaned$cpt.sorted
\end{verbatim}

\vspace{1cm}

\begin{verbatim}
 wbs.thresh.cpt(x, sigma = stats::mad(diff(x)/sqrt(2)), universal = TRUE,
 M = NULL, th.const = NULL, th.const.min.mult = 0.825, adapt = TRUE,
 lambda = 0.9)
\end{verbatim}

Description

This function estimates the number and locations of change-points in the piecewise-constant mean of the noisy input vector, using the (Adaptive) Wild Binary Segmentation method (see Details for the relevant literature references). The number of change-points is chosen via a thresholding-type criterion. The constant means between each pair of neighbouring change-points are also estimated. The method works best when the noise in the input vector is independent and identically distributed Gaussian.

Usage

\begin{verbatim}
 wbs.thresh.cpt(x, sigma = stats::mad(diff(x)/sqrt(2)), universal = TRUE,
 M = NULL, th.const = NULL, th.const.min.mult = 0.825, adapt = TRUE,
 lambda = 0.9)
\end{verbatim}
Arguments

- **x**: A vector containing the data in which you wish to find change-points.
- **sigma**: The estimate or estimator of the standard deviation of the noise in x; the default is the Median Absolute Deviation of x computed under the assumption that the noise is independent and identically distributed Gaussian.
- **universal**: If TRUE, then M and th.const (see below) are chosen automatically in such a way that if the mean of x is constant (i.e. if there are no change-points), the probability of no detection (i.e. est being constant) is approximately lambda. When universal is TRUE, then M=1000 for longer signals and M<1000 for shorter signals to avoid th.const being larger than 1.3, which empirically appears to be too high a value. If universal is FALSE, then both M and th.const must be specified.
- **M**: The number of randomly selected sub-segments of the data on which to build the CUSUM statistics in the (Adaptive) Wild Binary Segmentation algorithm. If you are using Adaptive Wild Binary Segmentation (adapt=TRUE) and do not wish to set universal to TRUE (and therefore have M chosen for you), try M=1000. If you are using standard Wild Binary Segmentation (adapt=TRUE), try M=20000 or higher.
- **th.const**: Tuning parameter. Change-points are estimated by thresholding [of the (Adaptive) WBS CUSUMs of x] in which the threshold has magnitude th.const * sqrt(R * log(n)) * sigma, where n is the length of x. There is an extra twist if adapt=TRUE, see th.const.min.mult below.
- **th.const.min.mult**: If adapt=TRUE, then the threshold gradually decreases in each recursive pass through the data, but in such a way that in never goes below th.const.min.mult * th.const * sqrt(2 * log(n)) * sigma.
- **adapt**: If TRUE (respectively, FALSE), then Adaptive (respectively, standard) Wild Binary Segmentation is used.
- **lambda**: See the description for the universal parameter above. Currently, the only permitted values are 0.9 and 0.95.

Details

Value

A list with the following components:

- **est**: The estimated piecewise-constant mean of x.
- **no.of.cpt**: The estimated number of change-points in the piecewise-constant mean of x.
- **cpt**: The estimated locations of change-points in the piecewise-constant mean of x (these are the final indices before the location of each change-point).
Author(s)

Piotr Fryzlewicz. <p.fryzlewicz@lse.ac.uk>

See Also

segment.mean, wbs.bic, wbs cpt, tguh cpt, hybrid cpt, wbs K cpt

Examples

tooth <- rep(rep(0:1, each=5), 20)
tooth.noisy <- tooth + rnorm(200)/5
tooth.cleaned <- wbs.thresh.cpt(tooth.noisy)
ts.plot(tooth.cleaned$est)
tooth.cleaned$no.of.cpt
tooth.cleaned$cpt
Index

breakfast, 2
breakfast-package (breakfast), 2

hybrid.cpt, 2, 4–6, 10–14, 16
segment.mean, 2, 3, 4, 6, 10–14, 16

tguh.cpt, 3–5, 5, 7–14, 16
tguh.decomp, 6, 6, 8, 9
tguh.denoise, 6, 7, 7, 9
tguh.reconstr, 6–8, 9

wbs.bic.cpt, 3, 10, 11–14, 16
wbs.cpt, 3, 5, 10, 11, 11, 13, 14, 16
wbs.K.cpt, 3, 10–12, 13, 16
wbs.thresh.cpt, 3, 10–14, 14