Package ‘breathteststan’

April 7, 2022

Type Package
Title Stan-Based Fit to Gastric Emptying Curves
Version 0.8.4
Description Stan-based curve-fitting function for use with package 'breathtestcore' by the same author. Stan functions are refactored here for easier testing.
License GPL (>= 3)
Encoding UTF-8
ByteCompile true
Depends R (>= 4.0.0), methods, Rcpp (>= 1.0.6)
Imports dplyr, purrr, rstan (>= 2.21.2), rstantools (>= 2.1.1), stringr, tidyr
Suggests ggplot2, shinystan, igraph, bayesplot, testthat, covr, knitr, rmarkdown, RcppParallel (>= 5.0.1), breathtestcore(>= 0.8.1)
LinkingTo StanHeaders, rstan, BH (>= 1.72), Rcpp, RcppEigen, RcppParallel (>= 5.0.1)
URL https://github.com/dmenne/breathteststan
BugReports https://github.com/dmenne/breathteststan/issues
NeedsCompilation yes
RoxygenNote 7.1.2.9000
Biarch FALSE
SystemRequirements GNU make
Author Dieter Menne [aut, cre], Menne Biomed Consulting Tuebingen [cph], Benjamin Misselwitz [fnd], Mark Fox [fnd], University Hospital of Zurich, Dep. Gastroenterology [fnd, dtc]
Maintainer Dieter Menne <dieter.menne@menne-biomed.de>
Repository CRAN
Date/Publication 2022-04-07 10:42:31 UTC
sigma.breathteststanfit

S3 method to extract the residual standard deviation

Description

Functions for S3 method defined in breathtestcore for `stan_fit` and `stan_group_fit`.

Usage

```r
## S3 method for class 'breathteststanfit'
sigma(object, ...)
```

Arguments

- `object` A Stan-based fit
- `...` Not used

Value

A numeric value giving the sigma (= average residual standard deviation) term from the Stan fit.

stan_fit

Bayesian Stan fit to 13C Breath Data

Description

Fits exponential beta curves to 13C breath test series data using Bayesian Stan methods. See https://menne-biomed.de/blog/breath-test-stan for a comparison between single curve, mixed-model population and Bayesian methods.
stan_fit

Usage

stan_fit(
 data,
 dose = 100,
 sample_minutes = 15,
 student_t_df = 10,
 chains = 2,
 iter = 1000,
 model = "breath_test_1",
 seed = 4711
)

Arguments

data Data frame or tibble as created by cleanup_data, with mandatory columns
 patient_id, group, minute and pdr. It is recommended to run all data through
 cleanup_data which will insert dummy columns for patient_id and minute
 if the data are distinct, and report an error if not. Since the Bayesian method is
 stabilized by priors, it is possible to fit single curves.
dose Dose of acetate or octanoate. Currently, only one common dose for all records
 is supported.
sample_minutes If mean sampling interval is < sampleMinutes, data are subsampled using a
 spline algorithm
student_t_df When student_t_df < 10, the student distribution is used to model the resid-
 uals. Recommended values to model typical outliers are from 3 to 6. When
 student_t_df >= 10, the normal distribution is used.
chains Number of chains for Stan
iter Number of iterations for each Stan chain
model Name of model; use names(stanmodels) for other models.
seed Optional seed for rstan

Value

A list of classes "breathteststanfit" and "breathtestfit" with elements

- coef Estimated parameters as data frame in a key-value format with columns patient_id, group, parameter, method
 and value. Has an attribute AIC.
- data The effectively analyzed data. If density of points is too high, e.g. with BreathId devices,
 data are subsampled before fitting.
- stan_fit The Stan fit for use with shinystan::launch_shiny or extraction of chains.

See Also

Base methods coef, plot, print; methods from package broom: tidy, augment.
Examples

```r
library(breathtestcore)
suppressPackageStartupMessages(library(dplyr))
d = breathtestcore::simulate_breathtest_data(n_records = 3)  # default 3 records
data = breathtestcore::cleanup_data(d$data)
# Use more than 80 iterations and 4 chains for serious fits
fit = stan_fit(data, chains = 1, iter = 80)
plot(fit)  # calls plot.breathtestfit
# Extract coefficients and compare these with those
# used to generate the data
options(digits = 2)
cf = coef(fit)
cf %>%
  filter(grepl("m|k|beta", parameter )) %>%
  select(-method, -group) %>%
  tidyr::spread(parameter, value) %>%
  inner_join(d$record, by = "patient_id") %>%
  select(patient_id, m_in = m.y, m_out = m.x,
         beta_in = beta.y, beta_out = beta.x,
         k_in = k.y, k_out = k.x)
# For a detailed analysis of the fit, use the shinystan library
library(shinystan)
# launch_shinystan(fit$stan_fit)

# The following plots are somewhat degenerate because
# of the few iterations in stan_fit
suppressPackageStartupMessages(library(rstan))
stan_plot(fit$stan_fit, pars = c("beta[1]","beta[2]","beta[3]"))
stan_plot(fit$stan_fit, pars = c("k[1]","k[2]","k[3]"))
stan_plot(fit$stan_fit, pars = c("m[1]","m[2]","m[3]"))
```
Index

cleanup_data, 3

sigma_breath_teststanfit, 2
stan_fit, 2