
Package ‘brms’
March 14, 2021

Encoding UTF-8

Type Package

Title Bayesian Regression Models using 'Stan'

Version 2.15.0

Date 2021-03-10

Depends R (>= 3.5.0), Rcpp (>= 0.12.0), methods

Imports rstan (>= 2.19.2), ggplot2 (>= 2.0.0), loo (>= 2.3.1), Matrix
(>= 1.1.1), mgcv (>= 1.8-13), rstantools (>= 2.1.1), bayesplot
(>= 1.5.0), shinystan (>= 2.4.0), projpred (>= 2.0.0),
bridgesampling (>= 0.3-0), glue (>= 1.3.0), future (>= 1.19.0),
matrixStats, nleqslv, nlme, coda, abind, stats, utils,
parallel, grDevices, backports

Suggests testthat (>= 0.9.1), emmeans (>= 1.4.2), cmdstanr (>= 0.1.3),
RWiener, rtdists, mice, spdep, mnormt, lme4, MCMCglmm,
splines2, ape, arm, statmod, digest, diffobj, R.rsp, knitr,
rmarkdown

Description Fit Bayesian generalized (non-)linear multivariate multilevel models
using 'Stan' for full Bayesian inference. A wide range of distributions
and link functions are supported, allowing users to fit -- among others --
linear, robust linear, count data, survival, response times, ordinal,
zero-inflated, hurdle, and even self-defined mixture models all in a
multilevel context. Further modeling options include non-linear and
smooth terms, auto-correlation structures, censored data, meta-analytic
standard errors, and quite a few more. In addition, all parameters of the
response distribution can be predicted in order to perform distributional
regression. Prior specifications are flexible and explicitly encourage
users to apply prior distributions that actually reflect their beliefs.
Model fit can easily be assessed and compared with posterior predictive
checks and leave-one-out cross-validation. References: Bürkner (2017)
<doi:10.18637/jss.v080.i01>; Bürkner (2018) <doi:10.32614/RJ-2018-017>;
Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>.

LazyData true

NeedsCompilation no

1

2 R topics documented:

License GPL-2

URL https://github.com/paul-buerkner/brms,

https://discourse.mc-stan.org/

BugReports https://github.com/paul-buerkner/brms/issues

Additional_repositories https://mc-stan.org/r-packages/

VignetteBuilder knitr, R.rsp

RoxygenNote 7.1.1

Author Paul-Christian Bürkner [aut, cre],
Jonah Gabry [ctb],
Sebastian Weber [ctb],
Andrew Johnson [ctb],
Martin Modrak [ctb]

Maintainer Paul-Christian Bürkner <paul.buerkner@gmail.com>

Repository CRAN

Date/Publication 2021-03-14 15:50:31 UTC

R topics documented:
brms-package . 6
addition-terms . 7
add_criterion . 9
add_loo . 10
ar . 11
arma . 12
as.mcmc.brmsfit . 13
AsymLaplace . 14
autocor-terms . 15
autocor.brmsfit . 16
bayes_factor.brmsfit . 17
bayes_R2.brmsfit . 18
bridge_sampler.brmsfit . 19
brm . 21
brmsfamily . 29
brmsfit-class . 34
brmsformula . 35
brmsformula-helpers . 44
brmshypothesis . 46
brmsterms . 48
brm_multiple . 49
car . 52
coef.brmsfit . 54
combine_models . 55
compare_ic . 56
conditional_effects.brmsfit . 57

https://github.com/paul-buerkner/brms
https://discourse.mc-stan.org/
https://github.com/paul-buerkner/brms/issues

R topics documented: 3

conditional_smooths.brmsfit . 62
control_params . 64
cor_ar . 64
cor_arma . 65
cor_brms . 66
cor_car . 67
cor_cosy . 68
cor_fixed . 69
cor_ma . 70
cor_sar . 71
cosy . 72
cs . 73
custom_family . 74
density_ratio . 76
diagnostic-quantities . 77
Dirichlet . 78
emmeans-brms-helpers . 79
epilepsy . 80
ExGaussian . 81
expose_functions.brmsfit . 82
expp1 . 83
family.brmsfit . 83
fcor . 84
fitted.brmsfit . 85
fixef.brmsfit . 87
Frechet . 88
GenExtremeValue . 89
get_prior . 90
get_refmodel.brmsfit . 91
gp . 92
gr . 94
horseshoe . 96
Hurdle . 98
hypothesis.brmsfit . 99
inhaler . 101
InvGaussian . 103
inv_logit_scaled . 103
is.brmsfit . 104
is.brmsfit_multiple . 104
is.brmsformula . 105
is.brmsprior . 105
is.brmsterms . 105
is.cor_brms . 106
is.mvbrmsformula . 106
is.mvbrmsterms . 107
kfold.brmsfit . 107
kfold_predict . 110
kidney . 111

4 R topics documented:

lasso . 112
launch_shinystan.brmsfit . 113
logit_scaled . 114
logm1 . 114
log_lik.brmsfit . 115
loo.brmsfit . 116
loo_compare.brmsfit . 118
loo_model_weights.brmsfit . 119
loo_moment_match.brmsfit . 120
loo_predict.brmsfit . 122
loo_R2.brmsfit . 123
loo_subsample.brmsfit . 124
loss . 125
ma . 127
make_conditions . 128
make_stancode . 129
make_standata . 131
mcmc_plot.brmsfit . 133
me . 135
mi . 136
mixture . 137
mm . 139
mmc . 140
mo . 141
model_weights.brmsfit . 142
MultiNormal . 144
MultiStudentT . 144
mvbind . 145
mvbrmsformula . 146
ngrps.brmsfit . 147
nsamples.brmsfit . 147
pairs.brmsfit . 148
parnames . 149
plot.brmsfit . 149
posterior_average.brmsfit . 151
posterior_epred.brmsfit . 152
posterior_interval.brmsfit . 154
posterior_linpred.brmsfit . 155
posterior_predict.brmsfit . 157
posterior_samples.brmsfit . 159
posterior_smooths.brmsfit . 161
posterior_summary . 162
posterior_table . 163
post_prob.brmsfit . 164
pp_average.brmsfit . 165
pp_check.brmsfit . 167
pp_mixture.brmsfit . 169
predict.brmsfit . 171

R topics documented: 5

predictive_error.brmsfit . 173
predictive_interval.brmsfit . 175
prepare_predictions.brmsfit . 176
print.brmsfit . 178
print.brmsprior . 178
prior_samples.brmsfit . 179
prior_summary.brmsfit . 180
R2D2 . 181
ranef.brmsfit . 182
reloo.brmsfit . 183
rename_pars . 184
residuals.brmsfit . 185
restructure . 187
rows2labels . 188
s . 188
sar . 189
save_pars . 190
set_prior . 191
Shifted_Lognormal . 197
SkewNormal . 198
stancode.brmsfit . 200
standata.brmsfit . 200
stanvar . 201
StudentT . 203
summary.brmsfit . 204
theme_black . 205
theme_default . 206
threading . 206
update.brmsfit . 207
update.brmsfit_multiple . 208
update_adterms . 209
validate_newdata . 210
validate_prior . 211
VarCorr.brmsfit . 212
varsel.brmsfit . 214
vcov.brmsfit . 215
VonMises . 216
waic.brmsfit . 216
Wiener . 218
ZeroInflated . 219

Index 221

6 brms-package

brms-package Bayesian Regression Models using ’Stan’

Description

The brms package provides an interface to fit Bayesian generalized multivariate (non-)linear mul-
tilevel models using Stan, which is a C++ package for obtaining full Bayesian inference (see
https://mc-stan.org/). The formula syntax is an extended version of the syntax applied in
the lme4 package to provide a familiar and simple interface for performing regression analyses.

Details

The main function of brms is brm, which uses formula syntax to specify a wide range of com-
plex Bayesian models (see brmsformula for details). Based on the supplied formulas, data, and
additional information, it writes the Stan code on the fly via make_stancode, prepares the data via
make_standata, and fits the model using Stan.

Subsequently, a large number of post-processing methods can be applied: To get an overview on
the estimated parameters, summary or conditional_effects are perfectly suited. Detailed visual
analyses can be performed by applying the pp_check and stanplot methods, which both rely on
the bayesplot package. Model comparisons can be done via loo and waic, which make use of the
loo package as well as via bayes_factor which relies on the bridgesampling package. For a full
list of methods to apply, type methods(class = "brmsfit").

Because brms is based on Stan, a C++ compiler is required. The program Rtools (available on
https://cran.r-project.org/bin/windows/Rtools/) comes with a C++ compiler for Win-
dows. On Mac, you should use Xcode. For further instructions on how to get the compilers running,
see the prerequisites section at the RStan-Getting-Started page.

When comparing other packages fitting multilevel models to brms, keep in mind that the latter
needs to compile models before actually fitting them, which will require between 20 and 40 seconds
depending on your machine, operating system and overall model complexity.

Thus, fitting smaller models may be relatively slow as compilation time makes up the majority of
the whole running time. For larger / more complex models however, fitting my take several minutes
or even hours, so that the compilation time won’t make much of a difference for these models.

See vignette("brms_overview") and vignette("brms_multilevel") for a general introduc-
tion and overview of brms. For a full list of available vignettes, type vignette(package = "brms").

References

Paul-Christian Buerkner (2017). brms: An R Package for Bayesian Multilevel Models Using Stan.
Journal of Statistical Software, 80(1), 1-28. doi:10.18637/jss.v080.i01

Paul-Christian Buerkner (2018). Advanced Bayesian Multilevel Modeling with the R Package
brms. The R Journal. 10(1), 395–411. doi:10.32614/RJ-2018-017

The Stan Development Team. Stan Modeling Language User’s Guide and Reference Manual.
https://mc-stan.org/users/documentation/.

Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.21.2. https:
//mc-stan.org/

https://mc-stan.org/
https://cran.r-project.org/bin/windows/Rtools/
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
https://mc-stan.org/users/documentation/
https://mc-stan.org/
https://mc-stan.org/

addition-terms 7

See Also

brm, brmsformula, brmsfamily, brmsfit

addition-terms Additional Response Information

Description

Provide additional information on the response variable in brms models, such as censoring, trunca-
tion, or known measurement error.

Usage

resp_se(x, sigma = FALSE)

resp_weights(x, scale = FALSE)

resp_trials(x)

resp_thres(x, gr = NA)

resp_cat(x)

resp_dec(x)

resp_cens(x, y2 = NA)

resp_trunc(lb = -Inf, ub = Inf)

resp_mi(sdy = NA)

resp_rate(denom)

resp_subset(x)

resp_vreal(...)

resp_vint(...)

Arguments

x A vector; usually a variable defined in the data. Allowed values depend on the
function: resp_se and resp_weights require positive numeric values. resp_trials,
resp_thres, and resp_cat require positive integers. resp_dec requires 0 and
1, or alternatively 'lower' and 'upper'. resp_subset requires 0 and 1, or
alternatively FALSE and TRUE. resp_cens requires 'left', 'none', 'right',
and 'interval' (or equivalently -1, 0, 1, and 2) to indicate left, no, right, or
interval censoring.

8 addition-terms

sigma Logical; Indicates whether the residual standard deviation parameter sigma should
be included in addition to the known measurement error. Defaults to FALSE for
backwards compatibility, but setting it to TRUE is usually the better choice.

scale Logical; Indicates whether weights should be scaled so that the average weight
equals one. Defaults to FALSE.

gr A vector of grouping indicators.

y2 A vector specifying the upper bounds in interval censoring. Will be ignored
for non-interval censored observations. However, it should NOT be NA even
for non-interval censored observations to avoid accidental exclusion of these
observations.

lb A numeric vector or single numeric value specifying the lower truncation bound.

ub A numeric vector or single numeric value specifying the upper truncation bound.

sdy Optional known measurement error of the response treated as standard devia-
tion. If specified, handles measurement error and (completely) missing values
at the same time using the plausible-values-technique.

denom A vector of positive numeric values specifying the denominator values from
which the response rates are computed.

... For resp_vreal, vectors of real values. For resp_vint, vectors of integer val-
ues.

Details

These functions are almost solely useful when called in formulas passed to the brms package.
Within formulas, the resp_ prefix may be omitted. More information is given in the ’Details’
section of brmsformula.

Value

A list of additional response information to be processed further by brms.

See Also

brm, brmsformula

Examples

Not run:
Random effects meta-analysis
nstudies <- 20
true_effects <- rnorm(nstudies, 0.5, 0.2)
sei <- runif(nstudies, 0.05, 0.3)
outcomes <- rnorm(nstudies, true_effects, sei)
data1 <- data.frame(outcomes, sei)
fit1 <- brm(outcomes | se(sei, sigma = TRUE) ~ 1,

data = data1)
summary(fit1)

Probit regression using the binomial family

add_criterion 9

n <- sample(1:10, 100, TRUE) # number of trials
success <- rbinom(100, size = n, prob = 0.4)
x <- rnorm(100)
data2 <- data.frame(n, success, x)
fit2 <- brm(success | trials(n) ~ x, data = data2,

family = binomial("probit"))
summary(fit2)

Survival regression modeling the time between the first
and second recurrence of an infection in kidney patients.
fit3 <- brm(time | cens(censored) ~ age * sex + disease + (1|patient),

data = kidney, family = lognormal())
summary(fit3)

Poisson model with truncated counts
fit4 <- brm(count | trunc(ub = 104) ~ zBase * Trt,

data = epilepsy, family = poisson())
summary(fit4)

End(Not run)

add_criterion Add model fit criteria to model objects

Description

Add model fit criteria to model objects

Usage

add_criterion(x, ...)

S3 method for class 'brmsfit'
add_criterion(
x,
criterion,
model_name = NULL,
overwrite = FALSE,
file = NULL,
force_save = FALSE,
...

)

Arguments

x An R object typically of class brmsfit.

... Further arguments passed to the underlying functions computing the model fit
criteria.

10 add_loo

criterion Names of model fit criteria to compute. Currently supported are "loo", "waic",
"kfold", "loo_subsample", "bayes_R2" (Bayesian R-squared), "loo_R2" (LOO-
adjusted R-squared), and "marglik" (log marginal likelihood).

model_name Optional name of the model. If NULL (the default) the name is taken from the
call to x.

overwrite Logical; Indicates if already stored fit indices should be overwritten. Defaults to
FALSE.

file Either NULL or a character string. In the latter case, the fitted model object
including the newly added criterion values is saved via saveRDS in a file named
after the string supplied in file. The .rds extension is added automatically. If
x was already stored in a file before, the file name will be reused automatically
(with a message) unless overwritten by file. In any case, file only applies if
new criteria were actually added via add_criterion or if force_save was set
to TRUE.

force_save Logical; only relevant if file is specified and ignored otherwise. If TRUE, the
fitted model object will be saved regardless of whether new criteria were added
via add_criterion.

Details

Functions add_loo and add_waic are aliases of add_criterion with fixed values for the criterion
argument.

Value

An object of the same class as x, but with model fit criteria added for later usage.

Examples

Not run:
fit <- brm(count ~ Trt, data = epilepsy)
add both LOO and WAIC at once
fit <- add_criterion(fit, c("loo", "waic"))
print(fit$criteria$loo)
print(fit$criteria$waic)

End(Not run)

add_loo Add model fit criteria to model objects

Description

Deprecated aliases of add_criterion.

ar 11

Usage

add_loo(x, model_name = NULL, ...)

add_waic(x, model_name = NULL, ...)

add_ic(x, ...)

S3 method for class 'brmsfit'
add_ic(x, ic = "loo", model_name = NULL, ...)

add_ic(x, ...) <- value

Arguments

x An R object typically of class brmsfit.

model_name Optional name of the model. If NULL (the default) the name is taken from the
call to x.

... Further arguments passed to the underlying functions computing the model fit
criteria.

ic, value Names of model fit criteria to compute. Currently supported are "loo", "waic",
"kfold", "R2" (R-squared), and "marglik" (log marginal likelihood).

Value

An object of the same class as x, but with model fit criteria added for later usage. Previously
computed criterion objects will be overwritten.

ar Set up AR(p) correlation structures

Description

Set up an autoregressive (AR) term of order p in brms. The function does not evaluate its arguments
– it exists purely to help set up a model with AR terms.

Usage

ar(time = NA, gr = NA, p = 1, cov = FALSE)

Arguments

time An optional time variable specifying the time ordering of the observations. By
default, the existing order of the observations in the data is used.

gr An optional grouping variable. If specified, the correlation structure is assumed
to apply only to observations within the same grouping level.

12 arma

p A non-negative integer specifying the autoregressive (AR) order of the ARMA
structure. Default is 1.

cov A flag indicating whether ARMA effects should be estimated by means of resid-
ual covariance matrices. This is currently only possible for stationary ARMA
effects of order 1. If the model family does not have natural residuals, latent
residuals are added automatically. If FALSE (the default), a regression formu-
lation is used that is considerably faster and allows for ARMA effects of order
higher than 1 but is only available for gaussian models and some of its gener-
alizations.

Value

An object of class 'arma_term', which is a list of arguments to be interpreted by the formula
parsing functions of brms.

See Also

autocor-terms, arma, ma

Examples

Not run:
data("LakeHuron")
LakeHuron <- as.data.frame(LakeHuron)
fit <- brm(x ~ ar(p = 2), data = LakeHuron)
summary(fit)

End(Not run)

arma Set up ARMA(p,q) correlation structures

Description

Set up an autoregressive moving average (ARMA) term of order (p, q) in brms. The function does
not evaluate its arguments – it exists purely to help set up a model with ARMA terms.

Usage

arma(time = NA, gr = NA, p = 1, q = 1, cov = FALSE)

Arguments

time An optional time variable specifying the time ordering of the observations. By
default, the existing order of the observations in the data is used.

gr An optional grouping variable. If specified, the correlation structure is assumed
to apply only to observations within the same grouping level.

as.mcmc.brmsfit 13

p A non-negative integer specifying the autoregressive (AR) order of the ARMA
structure. Default is 1.

q A non-negative integer specifying the moving average (MA) order of the ARMA
structure. Default is 1.

cov A flag indicating whether ARMA effects should be estimated by means of resid-
ual covariance matrices. This is currently only possible for stationary ARMA
effects of order 1. If the model family does not have natural residuals, latent
residuals are added automatically. If FALSE (the default), a regression formu-
lation is used that is considerably faster and allows for ARMA effects of order
higher than 1 but is only available for gaussian models and some of its gener-
alizations.

Value

An object of class 'arma_term', which is a list of arguments to be interpreted by the formula
parsing functions of brms.

See Also

autocor-terms, ar, ma,

Examples

Not run:
data("LakeHuron")
LakeHuron <- as.data.frame(LakeHuron)
fit <- brm(x ~ arma(p = 2, q = 1), data = LakeHuron)
summary(fit)

End(Not run)

as.mcmc.brmsfit Extract posterior samples for use with the coda package

Description

Extract posterior samples for use with the coda package

Usage

S3 method for class 'brmsfit'
as.mcmc(
x,
pars = NA,
fixed = FALSE,
combine_chains = FALSE,
inc_warmup = FALSE,

14 AsymLaplace

...
)

Arguments

x An R object typically of class brmsfit

pars Names of parameters for which posterior samples should be returned, as given
by a character vector or regular expressions. By default, all posterior samples of
all parameters are extracted.

fixed Indicates whether parameter names should be matched exactly (TRUE) or treated
as regular expressions (FALSE). Default is FALSE.

combine_chains Indicates whether chains should be combined.

inc_warmup Indicates if the warmup samples should be included. Default is FALSE. Warmup
samples are used to tune the parameters of the sampling algorithm and should
not be analyzed.

... currently unused

Value

If combine_chains = TRUE an mcmc object is returned. If combine_chains = FALSE an mcmc.list
object is returned.

AsymLaplace The Asymmetric Laplace Distribution

Description

Density, distribution function, quantile function and random generation for the asymmetric Laplace
distribution with location mu, scale sigma and asymmetry parameter quantile.

Usage

dasym_laplace(x, mu = 0, sigma = 1, quantile = 0.5, log = FALSE)

pasym_laplace(
q,
mu = 0,
sigma = 1,
quantile = 0.5,
lower.tail = TRUE,
log.p = FALSE

)

qasym_laplace(
p,
mu = 0,

autocor-terms 15

sigma = 1,
quantile = 0.5,
lower.tail = TRUE,
log.p = FALSE

)

rasym_laplace(n, mu = 0, sigma = 1, quantile = 0.5)

Arguments

x, q Vector of quantiles.

mu Vector of locations.

sigma Vector of scales.

quantile Asymmetry parameter corresponding to quantiles in quantile regression (hence
the name).

log Logical; If TRUE, values are returned on the log scale.

lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .

log.p Logical; If TRUE, values are returned on the log scale.

p Vector of probabilities.

n Number of samples to draw from the distribution.

Details

See vignette("brms_families") for details on the parameterization.

autocor-terms Autocorrelation structures

Description

Specify autocorrelation terms in brms models. Currently supported terms are arma, ar, ma, cosy,
sar, car, and fcor. Terms can be directly specified within the formula, or passed to the autocor
argument of brmsformula in the form of a one-sided formula. For deprecated ways of specifying
autocorrelation terms, see cor_brms.

Details

The autocor term functions are almost solely useful when called in formulas passed to the brms
package. They do not evaluate its arguments – but exist purely to help set up a model with autocor-
relation terms.

See Also

brmsformula, acformula, arma, ar, ma, cosy, sar, car, fcor

16 autocor.brmsfit

Examples

specify autocor terms within the formula
y ~ x + arma(p = 1, q = 1) + car(M)

specify autocor terms in the 'autocor' argument
bf(y ~ x, autocor = ~ arma(p = 1, q = 1) + car(M))

specify autocor terms via 'acformula'
bf(y ~ x) + acformula(~ arma(p = 1, q = 1) + car(M))

autocor.brmsfit (Deprecated) Extract Autocorrelation Objects

Description

(Deprecated) Extract Autocorrelation Objects

Usage

S3 method for class 'brmsfit'
autocor(object, resp = NULL, ...)

autocor(object, ...)

Arguments

object An object of class brmsfit.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

... Currently unused.

Value

A cor_brms object or a list of such objects for multivariate models. Not supported for models fitted
with brms 2.11.1 or higher.

bayes_factor.brmsfit 17

bayes_factor.brmsfit Bayes Factors from Marginal Likelihoods

Description

Compute Bayes factors from marginal likelihoods.

Usage

S3 method for class 'brmsfit'
bayes_factor(x1, x2, log = FALSE, ...)

Arguments

x1 A brmsfit object

x2 Another brmsfit object based on the same responses.

log Report Bayes factors on the log-scale?

... Additional arguments passed to bridge_sampler.

Details

Computing the marginal likelihood requires samples of all variables defined in Stan’s parameters
block to be saved. Otherwise bayes_factor cannot be computed. Thus, please set save_all_pars
= TRUE in the call to brm, if you are planning to apply bayes_factor to your models.

The computation of Bayes factors based on bridge sampling requires a lot more posterior samples
than usual. A good conservative rule of thumb is perhaps 10-fold more samples (read: the default
of 4000 samples may not be enough in many cases). If not enough posterior samples are provided,
the bridge sampling algorithm tends to be unstable, leading to considerably different results each
time it is run. We thus recommend running bayes_factor multiple times to check the stability of
the results.

More details are provided under bridgesampling::bayes_factor.

See Also

bridge_sampler,post_prob

Examples

Not run:
model with the treatment effect
fit1 <- brm(

count ~ zAge + zBase + Trt,
data = epilepsy, family = negbinomial(),
prior = prior(normal(0, 1), class = b),
save_all_pars = TRUE

)
summary(fit1)

18 bayes_R2.brmsfit

model without the treatment effect
fit2 <- brm(

count ~ zAge + zBase,
data = epilepsy, family = negbinomial(),
prior = prior(normal(0, 1), class = b),
save_all_pars = TRUE

)
summary(fit2)

compute the bayes factor
bayes_factor(fit1, fit2)

End(Not run)

bayes_R2.brmsfit Compute a Bayesian version of R-squared for regression models

Description

Compute a Bayesian version of R-squared for regression models

Usage

S3 method for class 'brmsfit'
bayes_R2(
object,
resp = NULL,
summary = TRUE,
robust = FALSE,
probs = c(0.025, 0.975),
...

)

Arguments

object An object of class brmsfit.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

summary Should summary statistics be returned instead of the raw values? Default is
TRUE.

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

bridge_sampler.brmsfit 19

... Further arguments passed to posterior_epred, which is used in the computa-
tion of the R-squared values.

Details

For an introduction to the approach, see Gelman et al. (2018) and https://github.com/jgabry/
bayes_R2/.

Value

If summary = TRUE, an M x C matrix is returned (M = number of response variables and c =
length(probs) + 2) containing summary statistics of the Bayesian R-squared values. If summary
= FALSE, the posterior samples of the Bayesian R-squared values are returned in an S x M matrix (S
is the number of samples).

References

Andrew Gelman, Ben Goodrich, Jonah Gabry & Aki Vehtari. (2018). R-squared for Bayesian
regression models, The American Statistician. 10.1080/00031305.2018.1549100 (Preprint avail-
able at https://stat.columbia.edu/~gelman/research/published/bayes_R2_v3.pdf)

Examples

Not run:
fit <- brm(mpg ~ wt + cyl, data = mtcars)
summary(fit)
bayes_R2(fit)

compute R2 with new data
nd <- data.frame(mpg = c(10, 20, 30), wt = c(4, 3, 2), cyl = c(8, 6, 4))
bayes_R2(fit, newdata = nd)

End(Not run)

bridge_sampler.brmsfit

Log Marginal Likelihood via Bridge Sampling

Description

Computes log marginal likelihood via bridge sampling, which can be used in the computation of
bayes factors and posterior model probabilities. The brmsfit method is just a thin wrapper around
the corresponding method for stanfit objects.

Usage

S3 method for class 'brmsfit'
bridge_sampler(samples, ...)

https://github.com/jgabry/bayes_R2/
https://github.com/jgabry/bayes_R2/
https://stat.columbia.edu/~gelman/research/published/bayes_R2_v3.pdf

20 bridge_sampler.brmsfit

Arguments

samples A brmsfit object.

... Additional arguments passed to bridge_sampler.stanfit.

Details

Computing the marginal likelihood requires samples of all variables defined in Stan’s parameters
block to be saved. Otherwise bridge_sampler cannot be computed. Thus, please set save_pars =
save_pars(all = TRUE) in the call to brm, if you are planning to apply bridge_sampler to your
models.

The computation of marginal likelihoods based on bridge sampling requires a lot more posterior
samples than usual. A good conservative rule of thump is perhaps 10-fold more samples (read:
the default of 4000 samples may not be enough in many cases). If not enough posterior samples
are provided, the bridge sampling algorithm tends to be unstable leading to considerably different
results each time it is run. We thus recommend running bridge_sampler multiple times to check
the stability of the results.

More details are provided under bridgesampling::bridge_sampler.

See Also

bayes_factor,post_prob

Examples

Not run:
model with the treatment effect
fit1 <- brm(

count ~ zAge + zBase + Trt,
data = epilepsy, family = negbinomial(),
prior = prior(normal(0, 1), class = b),
save_pars = save_pars(all = TRUE)

)
summary(fit1)
bridge_sampler(fit1)

model without the treatment effect
fit2 <- brm(

count ~ zAge + zBase,
data = epilepsy, family = negbinomial(),
prior = prior(normal(0, 1), class = b),
save_pars = save_pars(all = TRUE)

)
summary(fit2)
bridge_sampler(fit2)

End(Not run)

brm 21

brm Fit Bayesian Generalized (Non-)Linear Multivariate Multilevel Mod-
els

Description

Fit Bayesian generalized (non-)linear multivariate multilevel models using Stan for full Bayesian
inference. A wide range of distributions and link functions are supported, allowing users to fit –
among others – linear, robust linear, count data, survival, response times, ordinal, zero-inflated,
hurdle, and even self-defined mixture models all in a multilevel context. Further modeling options
include non-linear and smooth terms, auto-correlation structures, censored data, meta-analytic stan-
dard errors, and quite a few more. In addition, all parameters of the response distributions can
be predicted in order to perform distributional regression. Prior specifications are flexible and ex-
plicitly encourage users to apply prior distributions that actually reflect their beliefs. In addition,
model fit can easily be assessed and compared with posterior predictive checks and leave-one-out
cross-validation.

Usage

brm(
formula,
data,
family = gaussian(),
prior = NULL,
autocor = NULL,
data2 = NULL,
cov_ranef = NULL,
sample_prior = "no",
sparse = NULL,
knots = NULL,
stanvars = NULL,
stan_funs = NULL,
fit = NA,
save_pars = NULL,
save_ranef = NULL,
save_mevars = NULL,
save_all_pars = NULL,
inits = "random",
chains = 4,
iter = 2000,
warmup = floor(iter/2),
thin = 1,
cores = getOption("mc.cores", 1),
threads = NULL,
normalize = getOption("brms.normalize", TRUE),
control = NULL,
algorithm = getOption("brms.algorithm", "sampling"),

22 brm

backend = getOption("brms.backend", "rstan"),
future = getOption("future", FALSE),
silent = 1,
seed = NA,
save_model = NULL,
stan_model_args = list(),
file = NULL,
file_refit = "never",
empty = FALSE,
rename = TRUE,
...

)

Arguments

formula An object of class formula, brmsformula, or mvbrmsformula (or one that can
be coerced to that classes): A symbolic description of the model to be fitted.
The details of model specification are explained in brmsformula.

data An object of class data.frame (or one that can be coerced to that class) con-
taining data of all variables used in the model.

family A description of the response distribution and link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a link argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details of supported families see brmsfamily. By
default, a linear gaussian model is applied. In multivariate models, family
might also be a list of families.

prior One or more brmsprior objects created by set_prior or related functions and
combined using the c method or the + operator. See also get_prior for more
help.

autocor (Deprecated) An optional cor_brms object describing the correlation structure
within the response variable (i.e., the ’autocorrelation’). See the documentation
of cor_brms for a description of the available correlation structures. Defaults to
NULL, corresponding to no correlations. In multivariate models, autocor might
also be a list of autocorrelation structures. It is now recommend to specify auto-
correlation terms directly within formula. See brmsformula for more details.

data2 A named list of objects containing data, which cannot be passed via argument
data. Required for some objects used in autocorrelation structures to specify
dependency structures as well as for within-group covariance matrices.

cov_ranef (Deprecated) A list of matrices that are proportional to the (within) covariance
structure of the group-level effects. The names of the matrices should corre-
spond to columns in data that are used as grouping factors. All levels of the
grouping factor should appear as rownames of the corresponding matrix. This
argument can be used, among others to model pedigrees and phylogenetic ef-
fects. It is now recommended to specify those matrices in the formula interface
using the gr and related functions. See vignette("brms_phylogenetics")
for more details.

brm 23

sample_prior Indicate if samples from priors should be drawn additionally to the posterior
samples. Options are "no" (the default), "yes", and "only". Among others,
these samples can be used to calculate Bayes factors for point hypotheses via
hypothesis. Please note that improper priors are not sampled, including the
default improper priors used by brm. See set_prior on how to set (proper) pri-
ors. Please also note that prior samples for the overall intercept are not obtained
by default for technical reasons. See brmsformula how to obtain prior samples
for the intercept. If sample_prior is set to "only", samples are drawn solely
from the priors ignoring the likelihood, which allows among others to generate
samples from the prior predictive distribution. In this case, all parameters must
have proper priors.

sparse (Deprecated) Logical; indicates whether the population-level design matrices
should be treated as sparse (defaults to FALSE). For design matrices with many
zeros, this can considerably reduce required memory. Sampling speed is cur-
rently not improved or even slightly decreased. It is now recommended to use
the sparse argument of brmsformula and related functions.

knots Optional list containing user specified knot values to be used for basis construc-
tion of smoothing terms. See gamm for more details.

stanvars An optional stanvars object generated by function stanvar to define additional
variables for use in Stan’s program blocks.

stan_funs (Deprecated) An optional character string containing self-defined Stan func-
tions, which will be included in the functions block of the generated Stan code.
It is now recommended to use the stanvars argument for this purpose instead.

fit An instance of S3 class brmsfit derived from a previous fit; defaults to NA. If
fit is of class brmsfit, the compiled model associated with the fitted result is
re-used and all arguments modifying the model code or data are ignored. It is
not recommended to use this argument directly, but to call the update method,
instead.

save_pars An object generated by save_pars controlling which parameters should be
saved in the model. The argument has no impact on the model fitting itself.

save_ranef (Deprecated) A flag to indicate if group-level effects for each level of the group-
ing factor(s) should be saved (default is TRUE). Set to FALSE to save memory.
The argument has no impact on the model fitting itself.

save_mevars (Deprecated) A flag to indicate if samples of latent noise-free variables obtained
by using me and mi terms should be saved (default is FALSE). Saving these sam-
ples allows to better use methods such as predict with the latent variables but
leads to very large R objects even for models of moderate size and complexity.

save_all_pars (Deprecated) A flag to indicate if samples from all variables defined in Stan’s
parameters block should be saved (default is FALSE). Saving these samples is
required in order to apply the methods bridge_sampler, bayes_factor, and
post_prob.

inits Either "random" or "0". If inits is "random" (the default), Stan will randomly
generate initial values for parameters. If it is "0", all parameters are initialized
to zero. This option is sometimes useful for certain families, as it happens that
default ("random") inits cause samples to be essentially constant. Generally,
setting inits = "0" is worth a try, if chains do not behave well. Alternatively,

24 brm

inits can be a list of lists containing the initial values, or a function (or function
name) generating initial values. The latter options are mainly implemented for
internal testing but are available to users if necessary. If specifying initial values
using a list or a function then currently the parameter names must correspond
to the names used in the generated Stan code (not the names used in R). For
more details on specifying initial values you can consult the documentation of
the selected backend.

chains Number of Markov chains (defaults to 4).

iter Number of total iterations per chain (including warmup; defaults to 2000).

warmup A positive integer specifying number of warmup (aka burnin) iterations. This
also specifies the number of iterations used for stepsize adaptation, so warmup
samples should not be used for inference. The number of warmup should not be
larger than iter and the default is iter/2.

thin Thinning rate. Must be a positive integer. Set thin > 1 to save memory and
computation time if iter is large.

cores Number of cores to use when executing the chains in parallel, which defaults to
1 but we recommend setting the mc.cores option to be as many processors as
the hardware and RAM allow (up to the number of chains). For non-Windows
OS in non-interactive R sessions, forking is used instead of PSOCK clusters.

threads Number of threads to use in within-chain parallelization. For more control over
the threading process, threads may also be a brmsthreads object created by
threading. Within-chain parallelization is experimental! We recommend its
use only if you are experienced with Stan’s reduce_sum function and have a
slow running model that cannot be sped up by any other means.

normalize Logical. Indicates whether normalization constants should be included in the
Stan code (defaults to TRUE). Setting it to FALSE requires Stan version >= 2.25 to
work. If FALSE, sampling efficiency may be increased but some post processing
functions such as bridge_sampler will not be available. Can be controlled
globally for the current R session via the ‘brms.normalize‘ option.

control A named list of parameters to control the sampler’s behavior. It defaults to
NULL so all the default values are used. The most important control parameters
are discussed in the ’Details’ section below. For a comprehensive overview see
stan.

algorithm Character string naming the estimation approach to use. Options are "sampling"
for MCMC (the default), "meanfield" for variational inference with indepen-
dent normal distributions, "fullrank" for variational inference with a multi-
variate normal distribution, or "fixed_param" for sampling from fixed parame-
ter values. Can be set globally for the current R session via the "brms.algorithm"
option (see options).

backend Character string naming the package to use as the backend for fitting the Stan
model. Options are "rstan" (the default) or "cmdstanr". Can be set globally
for the current R session via the "brms.backend" option (see options). Details
on the rstan and cmdstanr packages are available at https://mc-stan.org/
rstan/ and https://mc-stan.org/cmdstanr/, respectively.

future Logical; If TRUE, the future package is used for parallel execution of the chains
and argument cores will be ignored. Can be set globally for the current R

https://mc-stan.org/rstan/
https://mc-stan.org/rstan/
https://mc-stan.org/cmdstanr/

brm 25

session via the future option. The execution type is controlled via plan (see
the examples section below).

silent Verbosity level between 0 and 2. If 1 (the default), most of the informational
messages of compiler and sampler are suppressed. If 2, even more messages
are suppressed. The actual sampling progress is still printed. Set refresh = 0 to
turn this off as well. If using backend = "rstan" you can also set open_progress
= FALSE to prevent opening additional progress bars.

seed The seed for random number generation to make results reproducible. If NA (the
default), Stan will set the seed randomly.

save_model Either NULL or a character string. In the latter case, the model’s Stan code is
saved via cat in a text file named after the string supplied in save_model.

stan_model_args

A list of further arguments passed to stan_model.

file Either NULL or a character string. In the latter case, the fitted model object is
saved via saveRDS in a file named after the string supplied in file. The .rds
extension is added automatically. If the file already exists, brm will load and
return the saved model object instead of refitting the model. Unless you specify
the file_refit argument as well, the existing files won’t be overwritten, you
have to manually remove the file in order to refit and save the model under an
existing file name. The file name is stored in the brmsfit object for later usage.

file_refit Modifies when the fit stored via the file parameter is re-used. For "never"
(default) the fit is always loaded if it exists and fitting is skipped. If set to
"on_change", brms will refit the model if model, data or algorithm as passed
to Stan differ from what is stored in the file. This also covers changes in pri-
ors, sample_prior, stanvars, covariance structure, etc. If you believe there
was a false positive, you can use brmsfit_needs_refit to see why refit is
deemed necessary. Refit will not be triggered for changes in additional parame-
ters of the fit (e.g., initial values, number of iterations, control arguments, ...). A
known limitation is that a refit will be triggered if within-chain parallelization is
switched on/off.

empty Logical. If TRUE, the Stan model is not created and compiled and the corre-
sponding 'fit' slot of the brmsfit object will be empty. This is useful if you
have estimated a brms-created Stan model outside of brms and want to feed it
back into the package.

rename For internal use only.

... Further arguments passed to Stan. For backend = "rstan" the arguments are
passed to sampling or vb. For backend = "cmdstanr" the arguments are passed
to the cmdstanr::sample or cmdstanr::variational method.

Details

Fit a generalized (non-)linear multivariate multilevel model via full Bayesian inference using Stan.
A general overview is provided in the vignettes vignette("brms_overview") and vignette("brms_multilevel").
For a full list of available vignettes see vignette(package = "brms").

Formula syntax of brms models
Details of the formula syntax applied in brms can be found in brmsformula.

26 brm

Families and link functions

Details of families supported by brms can be found in brmsfamily.

Prior distributions

Priors should be specified using the set_prior function. Its documentation contains detailed in-
formation on how to correctly specify priors. To find out on which parameters or parameter classes
priors can be defined, use get_prior. Default priors are chosen to be non or very weakly infor-
mative so that their influence on the results will be negligible and you usually don’t have to worry
about them. However, after getting more familiar with Bayesian statistics, I recommend you to start
thinking about reasonable informative priors for your model parameters: Nearly always, there is at
least some prior information available that can be used to improve your inference.

Adjusting the sampling behavior of Stan

In addition to choosing the number of iterations, warmup samples, and chains, users can control the
behavior of the NUTS sampler, by using the control argument. The most important reason to use
control is to decrease (or eliminate at best) the number of divergent transitions that cause a bias in
the obtained posterior samples. Whenever you see the warning "There were x divergent transitions
after warmup." you should really think about increasing adapt_delta. To do this, write control =
list(adapt_delta = <x>), where <x> should usually be value between 0.8 (current default) and
1. Increasing adapt_delta will slow down the sampler but will decrease the number of divergent
transitions threatening the validity of your posterior samples.

Another problem arises when the depth of the tree being evaluated in each iteration is exceeded.
This is less common than having divergent transitions, but may also bias the posterior samples.
When it happens, Stan will throw out a warning suggesting to increase max_treedepth, which
can be accomplished by writing control = list(max_treedepth = <x>) with a positive integer
<x> that should usually be larger than the current default of 10. For more details on the control
argument see stan.

Value

An object of class brmsfit, which contains the posterior samples along with many other useful
information about the model. Use methods(class = "brmsfit") for an overview on available
methods.

Author(s)

Paul-Christian Buerkner <paul.buerkner@gmail.com>

References

Paul-Christian Buerkner (2017). brms: An R Package for Bayesian Multilevel Models Using Stan.
Journal of Statistical Software, 80(1), 1-28. doi:10.18637/jss.v080.i01

Paul-Christian Buerkner (2018). Advanced Bayesian Multilevel Modeling with the R Package
brms. The R Journal. 10(1), 395–411. doi:10.32614/RJ-2018-017

See Also

brms, brmsformula, brmsfamily, brmsfit

brm 27

Examples

Not run:
Poisson regression for the number of seizures in epileptic patients
using normal priors for population-level effects
and half-cauchy priors for standard deviations of group-level effects
prior1 <- prior(normal(0,10), class = b) +

prior(cauchy(0,2), class = sd)
fit1 <- brm(count ~ zAge + zBase * Trt + (1|patient),

data = epilepsy, family = poisson(), prior = prior1)

generate a summary of the results
summary(fit1)

plot the MCMC chains as well as the posterior distributions
plot(fit1, ask = FALSE)

predict responses based on the fitted model
head(predict(fit1))

plot conditional effects for each predictor
plot(conditional_effects(fit1), ask = FALSE)

investigate model fit
loo(fit1)
pp_check(fit1)

Ordinal regression modeling patient's rating of inhaler instructions
category specific effects are estimated for variable 'treat'
fit2 <- brm(rating ~ period + carry + cs(treat),

data = inhaler, family = sratio("logit"),
prior = set_prior("normal(0,5)"), chains = 2)

summary(fit2)
plot(fit2, ask = FALSE)
WAIC(fit2)

Survival regression modeling the time between the first
and second recurrence of an infection in kidney patients.
fit3 <- brm(time | cens(censored) ~ age * sex + disease + (1|patient),

data = kidney, family = lognormal())
summary(fit3)
plot(fit3, ask = FALSE)
plot(conditional_effects(fit3), ask = FALSE)

Probit regression using the binomial family
ntrials <- sample(1:10, 100, TRUE)
success <- rbinom(100, size = ntrials, prob = 0.4)
x <- rnorm(100)
data4 <- data.frame(ntrials, success, x)
fit4 <- brm(success | trials(ntrials) ~ x, data = data4,

28 brm

family = binomial("probit"))
summary(fit4)

Non-linear Gaussian model
fit5 <- brm(

bf(cum ~ ult * (1 - exp(-(dev/theta)^omega)),
ult ~ 1 + (1|AY), omega ~ 1, theta ~ 1,
nl = TRUE),

data = loss, family = gaussian(),
prior = c(
prior(normal(5000, 1000), nlpar = "ult"),
prior(normal(1, 2), nlpar = "omega"),
prior(normal(45, 10), nlpar = "theta")

),
control = list(adapt_delta = 0.9)

)
summary(fit5)
conditional_effects(fit5)

Normal model with heterogeneous variances
data_het <- data.frame(

y = c(rnorm(50), rnorm(50, 1, 2)),
x = factor(rep(c("a", "b"), each = 50))

)
fit6 <- brm(bf(y ~ x, sigma ~ 0 + x), data = data_het)
summary(fit6)
plot(fit6)
conditional_effects(fit6)

extract estimated residual SDs of both groups
sigmas <- exp(posterior_samples(fit6, "^b_sigma_"))
ggplot(stack(sigmas), aes(values)) +

geom_density(aes(fill = ind))

Quantile regression predicting the 25%-quantile
fit7 <- brm(bf(y ~ x, quantile = 0.25), data = data_het,

family = asym_laplace())
summary(fit7)
conditional_effects(fit7)

use the future package for more flexible parallelization
library(future)
plan(multiprocess)
fit7 <- update(fit7, future = TRUE)

fit a model manually via rstan
scode <- make_stancode(count ~ Trt, data = epilepsy)
sdata <- make_standata(count ~ Trt, data = epilepsy)

brmsfamily 29

stanfit <- rstan::stan(model_code = scode, data = sdata)
feed the Stan model back into brms
fit8 <- brm(count ~ Trt, data = epilepsy, empty = TRUE)
fit8$fit <- stanfit
fit8 <- rename_pars(fit8)
summary(fit8)

End(Not run)

brmsfamily Special Family Functions for brms Models

Description

Family objects provide a convenient way to specify the details of the models used by many model
fitting functions. The family functions presented here are for use with brms only and will **not**
work with other model fitting functions such as glm or glmer. However, the standard family func-
tions as described in family will work with brms. You can also specify custom families for use in
brms with the custom_family function.

Usage

brmsfamily(
family,
link = NULL,
link_sigma = "log",
link_shape = "log",
link_nu = "logm1",
link_phi = "log",
link_kappa = "log",
link_beta = "log",
link_zi = "logit",
link_hu = "logit",
link_zoi = "logit",
link_coi = "logit",
link_disc = "log",
link_bs = "log",
link_ndt = "log",
link_bias = "logit",
link_xi = "log1p",
link_alpha = "identity",
link_quantile = "logit",
threshold = "flexible",
refcat = NULL,
bhaz = NULL

)

30 brmsfamily

student(link = "identity", link_sigma = "log", link_nu = "logm1")

bernoulli(link = "logit")

negbinomial(link = "log", link_shape = "log")

geometric(link = "log")

lognormal(link = "identity", link_sigma = "log")

shifted_lognormal(link = "identity", link_sigma = "log", link_ndt = "log")

skew_normal(link = "identity", link_sigma = "log", link_alpha = "identity")

exponential(link = "log")

weibull(link = "log", link_shape = "log")

frechet(link = "log", link_nu = "logm1")

gen_extreme_value(link = "identity", link_sigma = "log", link_xi = "log1p")

exgaussian(link = "identity", link_sigma = "log", link_beta = "log")

wiener(
link = "identity",
link_bs = "log",
link_ndt = "log",
link_bias = "logit"

)

Beta(link = "logit", link_phi = "log")

dirichlet(link = "logit", link_phi = "log", refcat = NULL)

von_mises(link = "tan_half", link_kappa = "log")

asym_laplace(link = "identity", link_sigma = "log", link_quantile = "logit")

cox(link = "log", bhaz = NULL)

hurdle_poisson(link = "log")

hurdle_negbinomial(link = "log", link_shape = "log", link_hu = "logit")

hurdle_gamma(link = "log", link_shape = "log", link_hu = "logit")

hurdle_lognormal(link = "identity", link_sigma = "log", link_hu = "logit")

brmsfamily 31

zero_inflated_beta(link = "logit", link_phi = "log", link_zi = "logit")

zero_one_inflated_beta(
link = "logit",
link_phi = "log",
link_zoi = "logit",
link_coi = "logit"

)

zero_inflated_poisson(link = "log", link_zi = "logit")

zero_inflated_negbinomial(link = "log", link_shape = "log", link_zi = "logit")

zero_inflated_binomial(link = "logit", link_zi = "logit")

categorical(link = "logit", refcat = NULL)

multinomial(link = "logit", refcat = NULL)

cumulative(link = "logit", link_disc = "log", threshold = "flexible")

sratio(link = "logit", link_disc = "log", threshold = "flexible")

cratio(link = "logit", link_disc = "log", threshold = "flexible")

acat(link = "logit", link_disc = "log", threshold = "flexible")

Arguments

family A character string naming the distribution of the response variable be used in
the model. Currently, the following families are supported: gaussian, student,
binomial, bernoulli, poisson, negbinomial, geometric, Gamma, skew_normal,
lognormal, shifted_lognormal, exgaussian, wiener, inverse.gaussian,
exponential, weibull, frechet, Beta, dirichlet, von_mises, asym_laplace,
gen_extreme_value, categorical, multinomial, cumulative, cratio, sratio,
acat, hurdle_poisson, hurdle_negbinomial, hurdle_gamma, hurdle_lognormal,
zero_inflated_binomial, zero_inflated_beta, zero_inflated_negbinomial,
zero_inflated_poisson, and zero_one_inflated_beta.

link A specification for the model link function. This can be a name/expression or
character string. See the ’Details’ section for more information on link functions
supported by each family.

link_sigma Link of auxiliary parameter sigma if being predicted.

link_shape Link of auxiliary parameter shape if being predicted.

link_nu Link of auxiliary parameter nu if being predicted.

link_phi Link of auxiliary parameter phi if being predicted.

link_kappa Link of auxiliary parameter kappa if being predicted.

32 brmsfamily

link_beta Link of auxiliary parameter beta if being predicted.

link_zi Link of auxiliary parameter zi if being predicted.

link_hu Link of auxiliary parameter hu if being predicted.

link_zoi Link of auxiliary parameter zoi if being predicted.

link_coi Link of auxiliary parameter coi if being predicted.

link_disc Link of auxiliary parameter disc if being predicted.

link_bs Link of auxiliary parameter bs if being predicted.

link_ndt Link of auxiliary parameter ndt if being predicted.

link_bias Link of auxiliary parameter bias if being predicted.

link_xi Link of auxiliary parameter xi if being predicted.

link_alpha Link of auxiliary parameter alpha if being predicted.

link_quantile Link of auxiliary parameter quantile if being predicted.

threshold A character string indicating the type of thresholds (i.e. intercepts) used in
an ordinal model. "flexible" provides the standard unstructured thresholds,
"equidistant" restricts the distance between consecutive thresholds to the
same value, and "sum_to_zero" ensures the thresholds sum to zero.

refcat Optional name of the reference response category used in categorical, multino-
mial, and dirichlet models. If NULL (the default), the first category is used as the
reference. If NA, all categories will be predicted, which requires strong priors or
carefully specified predictor terms in order to lead to an identified model.

bhaz Currently for experimental purposes only.

Details

Below, we list common use cases for the different families. This list is not ment to be exhaustive.

• Family gaussian can be used for linear regression.

• Family student can be used for robust linear regression that is less influenced by outliers.

• Family skew_normal can handle skewed responses in linear regression.

• Families poisson, negbinomial, and geometric can be used for regression of unbounded
count data.

• Families bernoulli and binomial can be used for binary regression (i.e., most commonly
logistic regression).

• Families categorical and multinomial can be used for multi-logistic regression when there
are more than two possible outcomes.

• Families cumulative, cratio (’continuation ratio’), sratio (’stopping ratio’), and acat (’ad-
jacent category’) leads to ordinal regression.

• Families Gamma, weibull, exponential, lognormal, frechet, inverse.gaussian, and cox
(Cox proportional hazards model) can be used (among others) for time-to-event regression
also known as survival regression.

• Families weibull, frechet, and gen_extreme_value (’generalized extreme value’) allow
for modeling extremes.

brmsfamily 33

• Families beta and dirichlet can be used to model responses representing rates or probabil-
ities.

• Family asym_laplace allows for quantile regression when fixing the auxiliary quantile pa-
rameter to the quantile of interest.

• Family exgaussian (’exponentially modified Gaussian’) and shifted_lognormal are espe-
cially suited to model reaction times.

• Family wiener provides an implementation of the Wiener diffusion model. For this family,
the main formula predicts the drift parameter ’delta’ and all other parameters are modeled as
auxiliary parameters (see brmsformula for details).

• Families hurdle_poisson, hurdle_negbinomial, hurdle_gamma, hurdle_lognormal, zero_inflated_poisson,
zero_inflated_negbinomial, zero_inflated_binomial, zero_inflated_beta, and zero_one_inflated_beta
allow to estimate zero-inflated and hurdle models. These models can be very helpful when
there are many zeros in the data (or ones in case of one-inflated models) that cannot be ex-
plained by the primary distribution of the response.

Below, we list all possible links for each family. The first link mentioned for each family is the
default.

• Families gaussian, student, skew_normal, exgaussian, asym_laplace, and gen_extreme_value
support the links (as names) identity, log, inverse, and softplus.

• Families poisson, negbinomial, geometric, zero_inflated_poisson, zero_inflated_negbinomial,
hurdle_poisson, and hurdle_negbinomial support log, identity, sqrt, and softplus.

• Families binomial, bernoulli, Beta, zero_inflated_binomial, zero_inflated_beta,
and zero_one_inflated_beta support logit, probit, probit_approx, cloglog, cauchit,
and identity.

• Families cumulative, cratio, sratio, and acat support logit, probit, probit_approx,
cloglog, and cauchit.

• Families categorical, multinomial, and dirichlet support logit.

• Families Gamma, weibull, exponential, frechet, and hurdle_gamma support log, identity,
inverse, and softplus.

• Families lognormal and hurdle_lognormal support identity and inverse.

• Family inverse.gaussian supports 1/mu^2, inverse, identity, log, and softplus.

• Family von_mises supports tan_half and identity.

• Family cox supports log, identity, and softplus for the proportional hazards parameter.

• Family wiener supports identity, log, and softplus for the main parameter which repre-
sents the drift rate.

Please note that when calling the Gamma family function of the stats package, the default link will
be inverse instead of log although the latter is the default in brms. Also, when using the family
functions gaussian, binomial, poisson, and Gamma of the stats package (see family), special link
functions such as softplus or cauchit won’t work. In this case, you have to use brmsfamily to
specify the family with corresponding link function.

See Also

brm, family, customfamily

34 brmsfit-class

Examples

create a family object
(fam1 <- student("log"))
alternatively use the brmsfamily function
(fam2 <- brmsfamily("student", "log"))
both leads to the same object
identical(fam1, fam2)

brmsfit-class Class brmsfit of models fitted with the brms package

Description

Models fitted with the brms package are represented as a brmsfit object, which contains the pos-
terior samples, model formula, Stan code, relevant data, and other information.

Details

See methods(class = "brmsfit") for an overview of available methods.

Slots

formula A brmsformula object.

data A data.frame containing all variables used in the model.

data2 A list of data objects which cannot be passed via data.

prior A brmsprior object containing information on the priors used in the model.

stanvars A stanvars object.

model The model code in Stan language.

ranef A data.frame containing the group-level structure.

exclude The names of the parameters for which samples are not saved.

algorithm The name of the algorithm used to fit the model.

backend The name of the backend used to fit the model.

fit An object of class stanfit among others containing the posterior samples.

criteria An empty list for adding model fit criteria after estimation of the model.

file Optional name of a file in which the model object was stored in or loaded from.

version The versions of brms and rstan with which the model was fitted.

family (Deprecated) A brmsfamily object.

autocor (Deprecated) An cor_brms object containing the autocorrelation structure if specified.

cov_ranef (Deprecated) A list of customized group-level covariance matrices.

stan_funs (Deprecated) A character string of length one or NULL.

data.name (Deprecated) The name of data as specified by the user.

brmsformula 35

See Also

brms, brm, brmsformula, brmsfamily

brmsformula Set up a model formula for use in brms

Description

Set up a model formula for use in the brms package allowing to define (potentially non-linear)
additive multilevel models for all parameters of the assumed response distribution.

Usage

brmsformula(
formula,
...,
flist = NULL,
family = NULL,
autocor = NULL,
nl = NULL,
loop = NULL,
center = NULL,
cmc = NULL,
sparse = NULL,
decomp = NULL,
unused = NULL

)

Arguments

formula An object of class formula (or one that can be coerced to that class): a symbolic
description of the model to be fitted. The details of model specification are given
in ’Details’.

... Additional formula objects to specify predictors of non-linear and distributional
parameters. Formulas can either be named directly or contain names on their
left-hand side. Alternatively, it is possible to fix parameters to certain values by
passing numbers or character strings in which case arguments have to be named
to provide the parameter names. See ’Details’ for more information.

flist Optional list of formulas, which are treated in the same way as formulas passed
via the ... argument.

family Same argument as in brm. If family is specified in brmsformula, it will over-
write the value specified in other functions.

autocor An optional formula which contains autocorrelation terms as described in autocor-terms
or alternatively a cor_brms object (deprecated). If autocor is specified in
brmsformula, it will overwrite the value specified in other functions.

36 brmsformula

nl Logical; Indicates whether formula should be treated as specifying a non-linear
model. By default, formula is treated as an ordinary linear model formula.

loop Logical; Only used in non-linear models. Indicates if the computation of the
non-linear formula should be done inside (TRUE) or outside (FALSE) a loop over
observations. Defaults to TRUE.

center Logical; Indicates if the population-level design matrix should be centered,
which usually increases sampling efficiency. See the ’Details’ section for more
information. Defaults to TRUE for distributional parameters and to FALSE for
non-linear parameters.

cmc Logical; Indicates whether automatic cell-mean coding should be enabled when
removing the intercept by adding 0 to the right-hand of model formulas. De-
faults to TRUE to mirror the behavior of standard R formula parsing.

sparse Logical; indicates whether the population-level design matrices should be treated
as sparse (defaults to FALSE). For design matrices with many zeros, this can con-
siderably reduce required memory. Sampling speed is currently not improved or
even slightly decreased.

decomp Optional name of the decomposition used for the population-level design matrix.
Defaults to NULL that is no decomposition. Other options currently available are
"QR" for the QR decomposition that helps in fitting models with highly corre-
lated predictors.

unused An optional formula which contains variables that are unused in the model but
should still be stored in the model’s data frame. This can be useful, for example,
if those variables are required for post-processing the model.

Details

General formula structure
The formula argument accepts formulas of the following syntax:

response | aterms ~ pterms + (gterms | group)

The pterms part contains effects that are assumed to be the same across observations. We call them
’population-level’ or ’overall’ effects, or (adopting frequentist vocabulary) ’fixed’ effects. The op-
tional gterms part may contain effects that are assumed to vary across grouping variables specified
in group. We call them ’group-level’ or ’varying’ effects, or (adopting frequentist vocabulary) ’ran-
dom’ effects, although the latter name is misleading in a Bayesian context. For more details type
vignette("brms_overview") and vignette("brms_multilevel").

Group-level terms
Multiple grouping factors each with multiple group-level effects are possible. (Of course we can
also run models without any group-level effects.) Instead of | you may use || in grouping terms to
prevent correlations from being modeled. Equivalently, the cor argument of the gr function can be
used for this purpose, for example, (1 + x || g) is equivalent to (1 + x | gr(g,cor = FALSE)).

It is also possible to model different group-level terms of the same grouping factor as correlated
(even across different formulas, e.g., in non-linear models) by using |<ID>| instead of |. All group-
level terms sharing the same ID will be modeled as correlated. If, for instance, one specifies the
terms (1+x|i|g) and (1+z|i|g) somewhere in the formulas passed to brmsformula, correlations
between the corresponding group-level effects will be estimated. In the above example, i is not a

brmsformula 37

variable in the data but just a symbol to indicate correlations between multiple group-level terms.
Equivalently, the id argument of the gr function can be used as well, for example, (1 + x | gr(g,id
= "i")).

If levels of the grouping factor belong to different sub-populations, it may be reasonable to assume
a different covariance matrix for each of the sub-populations. For instance, the variation within the
treatment group and within the control group in a randomized control trial might differ. Suppose
that y is the outcome, and x is the factor indicating the treatment and control group. Then, we
could estimate different hyper-parameters of the varying effects (in this case a varying intercept) for
treatment and control group via y ~ x + (1 | gr(subject,by = x)).

You can specify multi-membership terms using the mm function. For instance, a multi-membership
term with two members could be (1 | mm(g1,g2)), where g1 and g2 specify the first and second
member, respectively. Moreover, if a covariate x varies across the levels of the grouping-factors g1
and g2, we can save the respective covariate values in the variables x1 and x2 and then model the
varying effect as (1 + mmc(x1,x2) | mm(g1,g2)).

Special predictor terms

Flexible non-linear smooth terms can modeled using the s and t2 functions in the pterms part of
the model formula. This allows to fit generalized additive mixed models (GAMMs) with brms. The
implementation is similar to that used in the gamm4 package. For more details on this model class
see gam and gamm.

Gaussian process terms can be fitted using the gp function in the pterms part of the model formula.
Similar to smooth terms, Gaussian processes can be used to model complex non-linear relationships,
for instance temporal or spatial autocorrelation. However, they are computationally demanding and
are thus not recommended for very large datasets or approximations need to be used.

The pterms and gterms parts may contain four non-standard effect types namely monotonic, mea-
surement error, missing value, and category specific effects, which can be specified using terms of
the form mo(predictor), me(predictor,sd_predictor), mi(predictor), and cs(<predictors>),
respectively. Category specific effects can only be estimated in ordinal models and are explained in
more detail in the package’s main vignette (type vignette("brms_overview")). The other three
effect types are explained in the following.

A monotonic predictor must either be integer valued or an ordered factor, which is the first dif-
ference to an ordinary continuous predictor. More importantly, predictor categories (or integers)
are not assumed to be equidistant with respect to their effect on the response variable. Instead,
the distance between adjacent predictor categories (or integers) is estimated from the data and may
vary across categories. This is realized by parameterizing as follows: One parameter takes care of
the direction and size of the effect similar to an ordinary regression parameter, while an additional
parameter vector estimates the normalized distances between consecutive predictor categories. A
main application of monotonic effects are ordinal predictors that can this way be modeled without
(falsely) treating them as continuous or as unordered categorical predictors. For more details and
examples see vignette("brms_monotonic").

Quite often, predictors are measured and as such naturally contain measurement error. Although
most researchers are well aware of this problem, measurement error in predictors is ignored in
most regression analyses, possibly because only few packages allow for modeling it. Notably,
measurement error can be handled in structural equation models, but many more general regression
models (such as those featured by brms) cannot be transferred to the SEM framework. In brms,
effects of noise-free predictors can be modeled using the me (for ’measurement error’) function. If,
say, y is the response variable and x is a measured predictor with known measurement error sdx, we

38 brmsformula

can simply include it on the right-hand side of the model formula via y ~ me(x,sdx). This can easily
be extended to more general formulas. If x2 is another measured predictor with corresponding error
sdx2 and z is a predictor without error (e.g., an experimental setting), we can model all main effects
and interactions of the three predictors in the well known manner: y ~ me(x,sdx) * me(x2,sdx2)
* z. In future version of brms, a vignette will be added to explain more details about these so called
’error-in-variables’ models and provide real world examples.

When a variable contains missing values, the corresponding rows will be excluded from the data by
default (row-wise exclusion). However, quite often we want to keep these rows and instead estimate
the missing values. There are two approaches for this: (a) Impute missing values before the model
fitting for instance via multiple imputation (see brm_multiple for a way to handle multiple imputed
datasets). (b) Impute missing values on the fly during model fitting. The latter approach is explained
in the following. Using a variable with missing values as predictors requires two things, First, we
need to specify that the predictor contains missings that should to be imputed. If, say, y is the
primary response, x is a predictor with missings and z is a predictor without missings, we go for y
~ mi(x) + z. Second, we need to model x as an additional response with corresponding predictors
and the addition term mi(). In our example, we could write x | mi() ~ z. See mi for examples with
real data.

Autocorrelation terms
Autocorrelation terms can be directly specified inside the pterms part as well. Details can be found
in autocor-terms.

Additional response information
Another special of the brms formula syntax is the optional aterms part, which may contain multiple
terms of the form fun(<variable>) separated by + each providing special information on the
response variable. fun can be replaced with either se, weights, subset, cens, trunc, trials,
cat, dec, rate, vreal, or vint. Their meanings are explained below. (see also addition-terms).

For families gaussian, student and skew_normal, it is possible to specify standard errors of the
observations, thus allowing to perform meta-analysis. Suppose that the variable yi contains the
effect sizes from the studies and sei the corresponding standard errors. Then, fixed and random
effects meta-analyses can be conducted using the formulas yi | se(sei) ~ 1 and yi | se(sei) ~ 1
+ (1|study), respectively, where study is a variable uniquely identifying every study. If desired,
meta-regression can be performed via yi | se(sei) ~ 1 + mod1 + mod2 + (1|study) or
yi | se(sei) ~ 1 + mod1 + mod2 + (1 + mod1 + mod2|study), where mod1 and mod2 represent mod-
erator variables. By default, the standard errors replace the parameter sigma. To model sigma in
addition to the known standard errors, set argument sigma in function se to TRUE, for instance, yi
| se(sei,sigma = TRUE) ~ 1.

For all families, weighted regression may be performed using weights in the aterms part. In-
ternally, this is implemented by multiplying the log-posterior values of each observation by their
corresponding weights. Suppose that variable wei contains the weights and that yi is the response
variable. Then, formula yi | weights(wei) ~ predictors implements a weighted regression.

For multivariate models, subset may be used in the aterms part, to use different subsets of the data
in different univariate models. For instance, if sub is a logical variable and y is the response of one
of the univariate models, we may write y | subset(sub) ~ predictors so that y is predicted only
for those observations for which sub evaluates to TRUE.

For log-linear models such as poisson models, rate may be used in the aterms part to specify the
denominator of a response that is expressed as a rate. The numerator is given by the actual response
variable and has a distribution according to the family as usual. Using rate(denom) is equivalent

brmsformula 39

to adding offset(log(denom)) to the linear predictor of the main parameter but the former is
arguably more convenient and explicit.

With the exception of categorical, ordinal, and mixture families, left, right, and interval censor-
ing can be modeled through y | cens(censored) ~ predictors. The censoring variable (named
censored in this example) should contain the values 'left', 'none', 'right', and 'interval'
(or equivalently -1, 0, 1, and 2) to indicate that the corresponding observation is left censored,
not censored, right censored, or interval censored. For interval censored data, a second vari-
able (let’s call it y2) has to be passed to cens. In this case, the formula has the structure y |
cens(censored,y2) ~ predictors. While the lower bounds are given in y, the upper bounds are
given in y2 for interval censored data. Intervals are assumed to be open on the left and closed on
the right: (y,y2].

With the exception of categorical, ordinal, and mixture families, the response distribution can be
truncated using the trunc function in the addition part. If the response variable is truncated be-
tween, say, 0 and 100, we can specify this via yi | trunc(lb = 0,ub = 100) ~ predictors. Instead
of numbers, variables in the data set can also be passed allowing for varying truncation points across
observations. Defining only one of the two arguments in trunc leads to one-sided truncation.

For all continuous families, missing values in the responses can be imputed within Stan by using
the addition term mi. This is mostly useful in combination with mi predictor terms as explained
above under ’Special predictor terms’.

For families binomial and zero_inflated_binomial, addition should contain a variable indicat-
ing the number of trials underlying each observation. In lme4 syntax, we may write for instance
cbind(success,n -success), which is equivalent to success | trials(n) in brms syntax. If
the number of trials is constant across all observations, say 10, we may also write success |
trials(10). Please note that the cbind() syntax will not work in brms in the expected way
because this syntax is reserved for other purposes.

For all ordinal families, aterms may contain a term thres(number) to specify the number thresh-
olds (e.g, thres(6)), which should be equal to the total number of response categories - 1. If not
given, the number of thresholds is calculated from the data. If different threshold vectors should be
used for different subsets of the data, the gr argument can be used to provide the grouping variable
(e.g, thres(6,gr = item), if item is the grouping variable). In this case, the number of thresholds
can also be a variable in the data with different values per group.

A deprecated quasi alias of thres() is cat() with which the total number of response categories
(i.e., number of thresholds + 1) can be specified.

In Wiener diffusion models (family wiener) the addition term dec is mandatory to specify the
(vector of) binary decisions corresponding to the reaction times. Non-zero values will be treated as
a response on the upper boundary of the diffusion process and zeros will be treated as a response
on the lower boundary. Alternatively, the variable passed to dec might also be a character vector
consisting of 'lower' and 'upper'.

For custom families, it is possible to pass an arbitrary number of real and integer vectors via the addi-
tion terms vreal and vint, respectively. An example is provided in vignette('brms_customfamilies').

Multiple addition terms may be specified at the same time using the + operator. For example, the
formula formula = yi | se(sei) + cens(censored) ~ 1 implies a censored meta-analytic model.

The addition argument disp (short for dispersion) has been removed in version 2.0. You may
instead use the distributional regression approach by specifying sigma ~ 1 + offset(log(xdisp))
or shape ~ 1 + offset(log(xdisp)), where xdisp is the variable being previously passed to disp.

40 brmsformula

Parameterization of the population-level intercept
By default, the population-level intercept (if incorporated) is estimated separately and not as part
of population-level parameter vector b As a result, priors on the intercept also have to be speci-
fied separately. Furthermore, to increase sampling efficiency, the population-level design matrix
X is centered around its column means X_means if the intercept is incorporated. This leads to a
temporary bias in the intercept equal to <X_means,b>, where <,> is the scalar product. The bias
is corrected after fitting the model, but be aware that you are effectively defining a prior on the
intercept of the centered design matrix not on the real intercept. You can turn off this special han-
dling of the intercept by setting argument center to FALSE. For more details on setting priors on
population-level intercepts, see set_prior.

This behavior can be avoided by using the reserved (and internally generated) variable Intercept.
Instead of y ~ x, you may write y ~ 0 + Intercept + x. This way, priors can be defined on the real
intercept, directly. In addition, the intercept is just treated as an ordinary population-level effect and
thus priors defined on b will also apply to it. Note that this parameterization may be less efficient
than the default parameterization discussed above.

Formula syntax for non-linear models
In brms, it is possible to specify non-linear models of arbitrary complexity. The non-linear model
can just be specified within the formula argument. Suppose, that we want to predict the response
y through the predictor x, where x is linked to y through y = alpha -beta * lambda^x, with pa-
rameters alpha, beta, and lambda. This is certainly a non-linear model being defined via formula
= y ~ alpha -beta * lambda^x (addition arguments can be added in the same way as for ordinary
formulas). To tell brms that this is a non-linear model, we set argument nl to TRUE. Now we have
to specify a model for each of the non-linear parameters. Let’s say we just want to estimate those
three parameters with no further covariates or random effects. Then we can pass alpha + beta +
lambda ~ 1 or equivalently (and more flexible) alpha ~ 1,beta ~ 1,lambda ~ 1 to the ... argu-
ment. This can, of course, be extended. If we have another predictor z and observations nested
within the grouping factor g, we may write for instance alpha ~ 1,beta ~ 1 + z + (1|g),lambda ~
1. The formula syntax described above applies here as well. In this example, we are using z and
g only for the prediction of beta, but we might also use them for the other non-linear parameters
(provided that the resulting model is still scientifically reasonable).

By default, non-linear covariates are treated as real vectors in Stan. However, if the data of the
covariates is of type ‘integer‘ in R (which can be enforced by the ‘as.integer‘ function), the Stan
type will be changed to an integer array. That way, covariates can also be used for indexing purposes
in Stan.

Non-linear models may not be uniquely identified and / or show bad convergence. For this reason
it is mandatory to specify priors on the non-linear parameters. For instructions on how to do that,
see set_prior. For some examples of non-linear models, see vignette("brms_nonlinear").

Formula syntax for predicting distributional parameters
It is also possible to predict parameters of the response distribution such as the residual standard
deviation sigma in gaussian models or the hurdle probability hu in hurdle models. The syntax
closely resembles that of a non-linear parameter, for instance sigma ~ x + s(z) + (1+x|g). For
some examples of distributional models, see vignette("brms_distreg").

Parameter mu exists for every family and can be used as an alternative to specifying terms in
formula. If both mu and formula are given, the right-hand side of formula is ignored. Accordingly,
specifying terms on the right-hand side of both formula and mu at the same time is deprecated. In
future versions, formula might be updated by mu.

brmsformula 41

The following are distributional parameters of specific families (all other parameters are treated
as non-linear parameters): sigma (residual standard deviation or scale of the gaussian, student,
skew_normal, lognormal exgaussian, and asym_laplace families); shape (shape parameter of
the Gamma, weibull, negbinomial, and related zero-inflated / hurdle families); nu (degrees of
freedom parameter of the student and frechet families); phi (precision parameter of the beta
and zero_inflated_beta families); kappa (precision parameter of the von_mises family); beta
(mean parameter of the exponential component of the exgaussian family); quantile (quantile pa-
rameter of the asym_laplace family); zi (zero-inflation probability); hu (hurdle probability); zoi
(zero-one-inflation probability); coi (conditional one-inflation probability); disc (discrimination)
for ordinal models; bs, ndt, and bias (boundary separation, non-decision time, and initial bias of
the wiener diffusion model). By default, distributional parameters are modeled on the log scale if
they can be positive only or on the logit scale if the can only be within the unit interval.

Alternatively, one may fix distributional parameters to certain values. However, this is mainly useful
when models become too complicated and otherwise have convergence issues. We thus suggest to
be generally careful when making use of this option. The quantile parameter of the asym_laplace
distribution is a good example where it is useful. By fixing quantile, one can perform quantile
regression for the specified quantile. For instance, quantile = 0.25 allows predicting the 25%-
quantile. Furthermore, the bias parameter in drift-diffusion models, is assumed to be 0.5 (i.e. no
bias) in many applications. To achieve this, simply write bias = 0.5. Other possible applications
are the Cauchy distribution as a special case of the Student-t distribution with nu = 1, or the geomet-
ric distribution as a special case of the negative binomial distribution with shape = 1. Furthermore,
the parameter disc (’discrimination’) in ordinal models is fixed to 1 by default and not estimated,
but may be modeled as any other distributional parameter if desired (see examples). For reasons of
identification, 'disc' can only be positive, which is achieved by applying the log-link.

In categorical models, distributional parameters do not have fixed names. Instead, they are named
after the response categories (excluding the first one, which serves as the reference category), with
the prefix 'mu'. If, for instance, categories are named cat1, cat2, and cat3, the distributional
parameters will be named mucat2 and mucat3.

Some distributional parameters currently supported by brmsformula have to be positive (a negative
standard deviation or precision parameter does not make any sense) or are bounded between 0 and
1 (for zero-inflated / hurdle probabilities, quantiles, or the initial bias parameter of drift-diffusion
models). However, linear predictors can be positive or negative, and thus the log link (for positive
parameters) or logit link (for probability parameters) are used by default to ensure that distributional
parameters are within their valid intervals. This implies that, by default, effects for such distribu-
tional parameters are estimated on the log / logit scale and one has to apply the inverse link function
to get to the effects on the original scale. Alternatively, it is possible to use the identity link to
predict parameters on their original scale, directly. However, this is much more likely to lead to
problems in the model fitting, if the parameter actually has a restricted range.

See also brmsfamily for an overview of valid link functions.

Formula syntax for mixture models

The specification of mixture models closely resembles that of non-mixture models. If not specified
otherwise (see below), all mean parameters of the mixture components are predicted using the right-
hand side of formula. All types of predictor terms allowed in non-mixture models are allowed in
mixture models as well.

Distributional parameters of mixture distributions have the same name as those of the corresponding
ordinary distributions, but with a number at the end to indicate the mixture component. For instance,

42 brmsformula

if you use family mixture(gaussian,gaussian), the distributional parameters are sigma1 and
sigma2. Distributional parameters of the same class can be fixed to the same value. For the above
example, we could write sigma2 = "sigma1" to make sure that both components have the same
residual standard deviation, which is in turn estimated from the data.

In addition, there are two types of special distributional parameters. The first are named mu<ID>, that
allow for modeling different predictors for the mean parameters of different mixture components.
For instance, if you want to predict the mean of the first component using predictor x and the mean
of the second component using predictor z, you can write mu1 ~ x as well as mu2 ~ z. The second
are named theta<ID>, which constitute the mixing proportions. If the mixing proportions are fixed
to certain values, they are internally normalized to form a probability vector. If one seeks to predict
the mixing proportions, all but one of the them has to be predicted, while the remaining one is
used as the reference category to identify the model. The softmax function is applied on the linear
predictor terms to form a probability vector.

For more information on mixture models, see the documentation of mixture.

Formula syntax for multivariate models

Multivariate models may be specified using mvbind notation or with help of the mvbf function. Sup-
pose that y1 and y2 are response variables and x is a predictor. Then mvbind(y1,y2) ~ x specifies a
multivariate model. The effects of all terms specified at the RHS of the formula are assumed to vary
across response variables. For instance, two parameters will be estimated for x, one for the effect
on y1 and another for the effect on y2. This is also true for group-level effects. When writing, for
instance, mvbind(y1,y2) ~ x + (1+x|g), group-level effects will be estimated separately for each
response. To model these effects as correlated across responses, use the ID syntax (see above). For
the present example, this would look as follows: mvbind(y1,y2) ~ x + (1+x|2|g). Of course, you
could also use any value other than 2 as ID.

It is also possible to specify different formulas for different responses. If, for instance, y1 should be
predicted by x and y2 should be predicted by z, we could write mvbf(y1 ~ x,y2 ~ z). Alternatively,
multiple brmsformula objects can be added to specify a joint multivariate model (see ’Examples’).

Value

An object of class brmsformula, which is essentially a list containing all model formulas as well
as some additional information.

See Also

mvbrmsformula, brmsformula-helpers

Examples

multilevel model with smoothing terms
brmsformula(y ~ x1*x2 + s(z) + (1+x1|1) + (1|g2))

additionally predict 'sigma'
brmsformula(y ~ x1*x2 + s(z) + (1+x1|1) + (1|g2),

sigma ~ x1 + (1|g2))

use the shorter alias 'bf'
(formula1 <- brmsformula(y ~ x + (x|g)))

brmsformula 43

(formula2 <- bf(y ~ x + (x|g)))
will be TRUE
identical(formula1, formula2)

incorporate censoring
bf(y | cens(censor_variable) ~ predictors)

define a simple non-linear model
bf(y ~ a1 - a2^x, a1 + a2 ~ 1, nl = TRUE)

predict a1 and a2 differently
bf(y ~ a1 - a2^x, a1 ~ 1, a2 ~ x + (x|g), nl = TRUE)

correlated group-level effects across parameters
bf(y ~ a1 - a2^x, a1 ~ 1 + (1 |2| g), a2 ~ x + (x |2| g), nl = TRUE)
alternative but equivalent way to specify the above model
bf(y ~ a1 - a2^x, a1 ~ 1 + (1 | gr(g, id = 2)),

a2 ~ x + (x | gr(g, id = 2)), nl = TRUE)

define a multivariate model
bf(mvbind(y1, y2) ~ x * z + (1|g))

define a zero-inflated model
also predicting the zero-inflation part
bf(y ~ x * z + (1+x|ID1|g), zi ~ x + (1|ID1|g))

specify a predictor as monotonic
bf(y ~ mo(x) + more_predictors)

for ordinal models only
specify a predictor as category specific
bf(y ~ cs(x) + more_predictors)
add a category specific group-level intercept
bf(y ~ cs(x) + (cs(1)|g))
specify parameter 'disc'
bf(y ~ person + item, disc ~ item)

specify variables containing measurement error
bf(y ~ me(x, sdx))

specify predictors on all parameters of the wiener diffusion model
the main formula models the drift rate 'delta'
bf(rt | dec(decision) ~ x, bs ~ x, ndt ~ x, bias ~ x)

fix the bias parameter to 0.5
bf(rt | dec(decision) ~ x, bias = 0.5)

specify different predictors for different mixture components
mix <- mixture(gaussian, gaussian)
bf(y ~ 1, mu1 ~ x, mu2 ~ z, family = mix)

fix both residual standard deviations to the same value
bf(y ~ x, sigma2 = "sigma1", family = mix)

44 brmsformula-helpers

use the '+' operator to specify models
bf(y ~ 1) +

nlf(sigma ~ a * exp(b * x), a ~ x) +
lf(b ~ z + (1|g), dpar = "sigma") +
gaussian()

specify a multivariate model using the '+' operator
bf(y1 ~ x + (1|g)) +

gaussian() + cor_ar(~1|g) +
bf(y2 ~ z) + poisson()

specify correlated residuals of a gaussian and a poisson model
form1 <- bf(y1 ~ 1 + x + (1|c|obs), sigma = 1) + gaussian()
form2 <- bf(y2 ~ 1 + x + (1|c|obs)) + poisson()

model missing values in predictors
bf(bmi ~ age * mi(chl)) +

bf(chl | mi() ~ age) +
set_rescor(FALSE)

model sigma as a function of the mean
bf(y ~ eta, nl = TRUE) +

lf(eta ~ 1 + x) +
nlf(sigma ~ tau * sqrt(eta)) +
lf(tau ~ 1)

brmsformula-helpers Linear and Non-linear formulas in brms

Description

Helper functions to specify linear and non-linear formulas for use with brmsformula.

Usage

nlf(formula, ..., flist = NULL, dpar = NULL, resp = NULL, loop = NULL)

lf(
...,
flist = NULL,
dpar = NULL,
resp = NULL,
center = NULL,
cmc = NULL,
sparse = NULL,
decomp = NULL

)

brmsformula-helpers 45

acformula(autocor, resp = NULL)

set_nl(nl = TRUE, dpar = NULL, resp = NULL)

set_rescor(rescor = TRUE)

set_mecor(mecor = TRUE)

Arguments

formula Non-linear formula for a distributional parameter. The name of the distribu-
tional parameter can either be specified on the left-hand side of formula or via
argument dpar.

... Additional formula objects to specify predictors of non-linear and distributional
parameters. Formulas can either be named directly or contain names on their
left-hand side. Alternatively, it is possible to fix parameters to certain values by
passing numbers or character strings in which case arguments have to be named
to provide the parameter names. See ’Details’ for more information.

flist Optional list of formulas, which are treated in the same way as formulas passed
via the ... argument.

dpar Optional character string specifying the distributional parameter to which the
formulas passed via ... and flist belong.

resp Optional character string specifying the response variable to which the formulas
passed via ... and flist belong. Only relevant in multivariate models.

loop Logical; Only used in non-linear models. Indicates if the computation of the
non-linear formula should be done inside (TRUE) or outside (FALSE) a loop over
observations. Defaults to TRUE.

center Logical; Indicates if the population-level design matrix should be centered,
which usually increases sampling efficiency. See the ’Details’ section for more
information. Defaults to TRUE for distributional parameters and to FALSE for
non-linear parameters.

cmc Logical; Indicates whether automatic cell-mean coding should be enabled when
removing the intercept by adding 0 to the right-hand of model formulas. De-
faults to TRUE to mirror the behavior of standard R formula parsing.

sparse Logical; indicates whether the population-level design matrices should be treated
as sparse (defaults to FALSE). For design matrices with many zeros, this can con-
siderably reduce required memory. Sampling speed is currently not improved or
even slightly decreased.

decomp Optional name of the decomposition used for the population-level design matrix.
Defaults to NULL that is no decomposition. Other options currently available are
"QR" for the QR decomposition that helps in fitting models with highly corre-
lated predictors.

autocor A one sided formula containing autocorrelation terms. All none autocorrelation
terms in autocor will be silently ignored.

46 brmshypothesis

nl Logical; Indicates whether formula should be treated as specifying a non-linear
model. By default, formula is treated as an ordinary linear model formula.

rescor Logical; Indicates if residual correlation between the response variables should
be modeled. Currently this is only possible in multivariate gaussian and student
models. Only relevant in multivariate models.

mecor Logical; Indicates if correlations between latent variables defined by me terms
should be modeled. Defaults to TRUE.

Value

For lf and nlf a list that can be passed to brmsformula or added to an existing brmsformula
or mvbrmsformula object. For set_nl and set_rescor a logical value that can be added to an
existing brmsformula or mvbrmsformula object.

See Also

brmsformula, mvbrmsformula

Examples

add more formulas to the model
bf(y ~ 1) +

nlf(sigma ~ a * exp(b * x)) +
lf(a ~ x, b ~ z + (1|g)) +
gaussian()

specify 'nl' later on
bf(y ~ a * inv_logit(x * b)) +

lf(a + b ~ z) +
set_nl(TRUE)

specify a multivariate model
bf(y1 ~ x + (1|g)) +

bf(y2 ~ z) +
set_rescor(TRUE)

add autocorrelation terms
bf(y ~ x) + acformula(~ arma(p = 1, q = 1) + car(W))

brmshypothesis Descriptions of brmshypothesis Objects

Description

A brmshypothesis object contains posterior samples as well as summary statistics of non-linear
hypotheses as returned by hypothesis.

brmshypothesis 47

Usage

S3 method for class 'brmshypothesis'
print(x, digits = 2, chars = 20, ...)

S3 method for class 'brmshypothesis'
plot(
x,
N = 5,
ignore_prior = FALSE,
chars = 40,
colors = NULL,
theme = NULL,
ask = TRUE,
plot = TRUE,
...

)

Arguments

x An object of class brmsfit.
digits Minimal number of significant digits, see print.default.
chars Maximum number of characters of each hypothesis to print or plot. If NULL,

print the full hypotheses. Defaults to 20.
... Currently ignored.
N The number of parameters plotted per page.
ignore_prior A flag indicating if prior distributions should also be plotted. Only used if priors

were specified on the relevant parameters.
colors Two values specifying the colors of the posterior and prior density respectively.

If NULL (the default) colors are taken from the current color scheme of the
bayesplot package.

theme A theme object modifying the appearance of the plots. For some basic themes
see ggtheme and theme_default.

ask Logical; indicates if the user is prompted before a new page is plotted. Only
used if plot is TRUE.

plot Logical; indicates if plots should be plotted directly in the active graphic device.
Defaults to TRUE.

Details

The two most important elements of a brmshypothesis object are hypothesis, which is a data.frame
containing the summary estimates of the hypotheses, and samples, which is a data.frame containing
the corresponding posterior samples.

See Also

hypothesis

48 brmsterms

brmsterms Parse Formulas of brms Models

Description

Parse formulas objects for use in brms.

Usage

brmsterms(formula, ...)

Default S3 method:
brmsterms(formula, ...)

S3 method for class 'brmsformula'
brmsterms(formula, check_response = TRUE, resp_rhs_all = TRUE, ...)

S3 method for class 'mvbrmsformula'
brmsterms(formula, ...)

Arguments

formula An object of class formula, brmsformula, or mvbrmsformula (or one that can
be coerced to that classes): A symbolic description of the model to be fitted.
The details of model specification are explained in brmsformula.

... Further arguments passed to or from other methods.

check_response Logical; Indicates whether the left-hand side of formula (i.e. response variables
and addition arguments) should be parsed. If FALSE, formula may also be one-
sided.

resp_rhs_all Logical; Indicates whether to also include response variables on the right-hand
side of formula .$allvars, where . represents the output of brmsterms.

Details

This is the main formula parsing function of brms. It should usually not be called directly, but
is exported to allow package developers making use of the formula syntax implemented in brms.
As long as no other packages depend on this functions, it may be changed without deprecation
warnings, when new features make this necessary.

Value

An object of class brmsterms or mvbrmsterms (for multivariate models), which is a list containing
all required information initially stored in formula in an easier to use format, basically a list of
formulas (not an abstract syntax tree).

brm_multiple 49

See Also

brm, brmsformula, mvbrmsformula

brm_multiple Run the same brms model on multiple datasets

Description

Run the same brms model on multiple datasets and then combine the results into one fitted model
object. This is useful in particular for multiple missing value imputation, where the same model is
fitted on multiple imputed data sets. Models can be run in parallel using the future package.

Usage

brm_multiple(
formula,
data,
family = gaussian(),
prior = NULL,
data2 = NULL,
autocor = NULL,
cov_ranef = NULL,
sample_prior = c("no", "yes", "only"),
sparse = NULL,
knots = NULL,
stanvars = NULL,
stan_funs = NULL,
silent = 1,
recompile = FALSE,
combine = TRUE,
fit = NA,
seed = NA,
file = NULL,
file_refit = "never",
...

)

Arguments

formula An object of class formula, brmsformula, or mvbrmsformula (or one that can
be coerced to that classes): A symbolic description of the model to be fitted.
The details of model specification are explained in brmsformula.

data A list of data.frames each of which will be used to fit a separate model. Alter-
natively, a mids object from the mice package.

50 brm_multiple

family A description of the response distribution and link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a link argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details of supported families see brmsfamily. By
default, a linear gaussian model is applied. In multivariate models, family
might also be a list of families.

prior One or more brmsprior objects created by set_prior or related functions and
combined using the c method or the + operator. See also get_prior for more
help.

data2 A list of named lists each of which will be used to fit a separate model. Each
of the named lists contains objects representing data which cannot be passed via
argument data (see brm for examples). The length of the outer list should match
the length of the list passed to the data argument.

autocor (Deprecated) An optional cor_brms object describing the correlation structure
within the response variable (i.e., the ’autocorrelation’). See the documentation
of cor_brms for a description of the available correlation structures. Defaults to
NULL, corresponding to no correlations. In multivariate models, autocor might
also be a list of autocorrelation structures. It is now recommend to specify auto-
correlation terms directly within formula. See brmsformula for more details.

cov_ranef (Deprecated) A list of matrices that are proportional to the (within) covariance
structure of the group-level effects. The names of the matrices should corre-
spond to columns in data that are used as grouping factors. All levels of the
grouping factor should appear as rownames of the corresponding matrix. This
argument can be used, among others to model pedigrees and phylogenetic ef-
fects. It is now recommended to specify those matrices in the formula interface
using the gr and related functions. See vignette("brms_phylogenetics")
for more details.

sample_prior Indicate if samples from priors should be drawn additionally to the posterior
samples. Options are "no" (the default), "yes", and "only". Among others,
these samples can be used to calculate Bayes factors for point hypotheses via
hypothesis. Please note that improper priors are not sampled, including the
default improper priors used by brm. See set_prior on how to set (proper) pri-
ors. Please also note that prior samples for the overall intercept are not obtained
by default for technical reasons. See brmsformula how to obtain prior samples
for the intercept. If sample_prior is set to "only", samples are drawn solely
from the priors ignoring the likelihood, which allows among others to generate
samples from the prior predictive distribution. In this case, all parameters must
have proper priors.

sparse (Deprecated) Logical; indicates whether the population-level design matrices
should be treated as sparse (defaults to FALSE). For design matrices with many
zeros, this can considerably reduce required memory. Sampling speed is cur-
rently not improved or even slightly decreased. It is now recommended to use
the sparse argument of brmsformula and related functions.

knots Optional list containing user specified knot values to be used for basis construc-
tion of smoothing terms. See gamm for more details.

brm_multiple 51

stanvars An optional stanvars object generated by function stanvar to define additional
variables for use in Stan’s program blocks.

stan_funs (Deprecated) An optional character string containing self-defined Stan func-
tions, which will be included in the functions block of the generated Stan code.
It is now recommended to use the stanvars argument for this purpose instead.

silent Verbosity level between 0 and 2. If 1 (the default), most of the informational
messages of compiler and sampler are suppressed. If 2, even more messages
are suppressed. The actual sampling progress is still printed. Set refresh = 0 to
turn this off as well. If using backend = "rstan" you can also set open_progress
= FALSE to prevent opening additional progress bars.

recompile Logical, indicating whether the Stan model should be recompiled for every im-
puted data set. Defaults to FALSE. If NULL, brm_multiple tries to figure out
internally, if recompilation is necessary, for example because data-dependent
priors have changed. Using the default of no recompilation should be fine in
most cases.

combine Logical; Indicates if the fitted models should be combined into a single fitted
model object via combine_models. Defaults to TRUE.

fit An instance of S3 class brmsfit_multiple derived from a previous fit; defaults
to NA. If fit is of class brmsfit_multiple, the compiled model associated with
the fitted result is re-used and all arguments modifying the model code or data
are ignored. It is not recommended to use this argument directly, but to call the
update method, instead.

seed The seed for random number generation to make results reproducible. If NA (the
default), Stan will set the seed randomly.

file Either NULL or a character string. In the latter case, the fitted model object is
saved via saveRDS in a file named after the string supplied in file. The .rds
extension is added automatically. If the file already exists, brm will load and
return the saved model object instead of refitting the model. Unless you specify
the file_refit argument as well, the existing files won’t be overwritten, you
have to manually remove the file in order to refit and save the model under an
existing file name. The file name is stored in the brmsfit object for later usage.

file_refit Modifies when the fit stored via the file parameter is re-used. For "never"
(default) the fit is always loaded if it exists and fitting is skipped. If set to
"on_change", brms will refit the model if model, data or algorithm as passed
to Stan differ from what is stored in the file. This also covers changes in pri-
ors, sample_prior, stanvars, covariance structure, etc. If you believe there
was a false positive, you can use brmsfit_needs_refit to see why refit is
deemed necessary. Refit will not be triggered for changes in additional parame-
ters of the fit (e.g., initial values, number of iterations, control arguments, ...). A
known limitation is that a refit will be triggered if within-chain parallelization is
switched on/off.

... Further arguments passed to brm.

Details

The combined model may issue false positive convergence warnings, as the MCMC chains corre-
sponding to different datasets may not necessarily overlap, even if each of the original models did

52 car

converge. To find out whether each of the original models converged, investigate fit$rhats, where
fit denotes the output of brm_multiple.

Value

If combine = TRUE a brmsfit_multiple object, which inherits from class brmsfit and behaves
essentially the same. If combine = FALSE a list of brmsfit objects.

Author(s)

Paul-Christian Buerkner <paul.buerkner@gmail.com>

Examples

Not run:
library(mice)
imp <- mice(nhanes2)

fit the model using mice and lm
fit_imp1 <- with(lm(bmi ~ age + hyp + chl), data = imp)
summary(pool(fit_imp1))

fit the model using brms
fit_imp2 <- brm_multiple(bmi ~ age + hyp + chl, data = imp, chains = 1)
summary(fit_imp2)
plot(fit_imp2, pars = "^b_")
investigate convergence of the original models
fit_imp2$rhats

use the future package for parallelization
library(future)
plan(multiprocess)
fit_imp3 <- brm_multiple(bmi~age+hyp+chl, data = imp, chains = 1)
summary(fit_imp3)

End(Not run)

car Spatial conditional autoregressive (CAR) structures

Description

Set up an spatial conditional autoregressive (CAR) term in brms. The function does not evaluate
its arguments – it exists purely to help set up a model with CAR terms.

Usage

car(M, gr = NA, type = "escar")

car 53

Arguments

M Adjacency matrix of locations. All non-zero entries are treated as if the two
locations are adjacent. If gr is specified, the row names of M have to match the
levels of the grouping factor.

gr An optional grouping factor mapping observations to spatial locations. If not
specified, each observation is treated as a separate location. It is recommended
to always specify a grouping factor to allow for handling of new data in post-
processing methods.

type Type of the CAR structure. Currently implemented are "escar" (exact sparse
CAR), "esicar" (exact sparse intrinsic CAR), "icar" (intrinsic CAR), and
"bym2". More information is provided in the ’Details’ section.

Details

The escar and esicar types are implemented based on the case study of Max Joseph (https://
github.com/mbjoseph/CARstan). The icar and bym2 type is implemented based on the case study
of Mitzi Morris (https://mc-stan.org/users/documentation/case-studies/icar_stan.html).

Value

An object of class 'car_term', which is a list of arguments to be interpreted by the formula parsing
functions of brms.

See Also

autocor-terms

Examples

Not run:
generate some spatial data
east <- north <- 1:10
Grid <- expand.grid(east, north)
K <- nrow(Grid)

set up distance and neighbourhood matrices
distance <- as.matrix(dist(Grid))
W <- array(0, c(K, K))
W[distance == 1] <- 1

generate the covariates and response data
x1 <- rnorm(K)
x2 <- rnorm(K)
theta <- rnorm(K, sd = 0.05)
phi <- rmulti_normal(

1, mu = rep(0, K), Sigma = 0.4 * exp(-0.1 * distance)
)
eta <- x1 + x2 + phi
prob <- exp(eta) / (1 + exp(eta))
size <- rep(50, K)

https://github.com/mbjoseph/CARstan
https://github.com/mbjoseph/CARstan
https://mc-stan.org/users/documentation/case-studies/icar_stan.html

54 coef.brmsfit

y <- rbinom(n = K, size = size, prob = prob)
dat <- data.frame(y, size, x1, x2)

fit a CAR model
fit <- brm(y | trials(size) ~ x1 + x2 + car(W),

data = dat, data2 = list(W = W),
family = binomial())

summary(fit)

End(Not run)

coef.brmsfit Extract Model Coefficients

Description

Extract model coefficients, which are the sum of population-level effects and corresponding group-
level effects

Usage

S3 method for class 'brmsfit'
coef(object, summary = TRUE, robust = FALSE, probs = c(0.025, 0.975), ...)

Arguments

object An object of class brmsfit.

summary Should summary statistics be returned instead of the raw values? Default is
TRUE.

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

... Further arguments passed to fixef.brmsfit and ranef.brmsfit.

Value

A list of 3D arrays (one per grouping factor). If summary is TRUE, the 1st dimension contains the
factor levels, the 2nd dimension contains the summary statistics (see posterior_summary), and the
3rd dimension contains the group-level effects. If summary is FALSE, the 1st dimension contains the
posterior draws, the 2nd dimension contains the factor levels, and the 3rd dimension contains the
group-level effects.

combine_models 55

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1+Trt|visit),

data = epilepsy, family = gaussian(), chains = 2)
extract population and group-level coefficients separately
fixef(fit)
ranef(fit)
extract combined coefficients
coef(fit)

End(Not run)

combine_models Combine Models fitted with brms

Description

Combine multiple brmsfit objects, which fitted the same model. This is usefully for instance when
having manually run models in parallel.

Usage

combine_models(..., mlist = NULL, check_data = TRUE)

Arguments

... One or more brmsfit objects.

mlist Optional list of one or more brmsfit objects.

check_data Logical; indicates if the data should be checked for being the same across mod-
els (defaults to TRUE). Setting it to FALSE may be useful for instance when com-
bining models fitted on multiple imputed data sets.

Details

This function just takes the first model and replaces its stanfit object (slot fit) by the combined
stanfit objects of all models.

Value

A brmsfit object.

56 compare_ic

compare_ic Compare Information Criteria of Different Models

Description

Compare information criteria of different models fitted with waic or loo. Deprecated and will be
removed in the future. Please use loo_compare instead.

Usage

compare_ic(..., x = NULL, ic = c("loo", "waic", "kfold"))

Arguments

... At least two objects returned by waic or loo. Alternatively, brmsfit objects
with information criteria precomputed via add_ic may be passed, as well.

x A list containing the same types of objects as can be passed via

ic The name of the information criterion to be extracted from brmsfit objects.
Ignored if information criterion objects are only passed directly.

Details

See loo_compare for the recommended way of comparing models with the loo package.

Value

An object of class iclist.

See Also

loo, loo_compare add_criterion

Examples

Not run:
model with population-level effects only
fit1 <- brm(rating ~ treat + period + carry,

data = inhaler)
waic1 <- waic(fit1)

model with an additional varying intercept for subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),

data = inhaler)
waic2 <- waic(fit2)

compare both models
compare_ic(waic1, waic2)

conditional_effects.brmsfit 57

End(Not run)

conditional_effects.brmsfit

Display Conditional Effects of Predictors

Description

Display conditional effects of one or more numeric and/or categorical predictors including two-way
interaction effects.

Usage

S3 method for class 'brmsfit'
conditional_effects(
x,
effects = NULL,
conditions = NULL,
int_conditions = NULL,
re_formula = NA,
prob = 0.95,
robust = TRUE,
method = "posterior_epred",
spaghetti = FALSE,
surface = FALSE,
categorical = FALSE,
ordinal = FALSE,
transform = NULL,
resolution = 100,
select_points = 0,
too_far = 0,
probs = NULL,
...

)

conditional_effects(x, ...)

S3 method for class 'brms_conditional_effects'
plot(
x,
ncol = NULL,
points = FALSE,
rug = FALSE,
mean = TRUE,
jitter_width = 0,
stype = c("contour", "raster"),

58 conditional_effects.brmsfit

line_args = list(),
cat_args = list(),
errorbar_args = list(),
surface_args = list(),
spaghetti_args = list(),
point_args = list(),
rug_args = list(),
facet_args = list(),
theme = NULL,
ask = TRUE,
plot = TRUE,
...

)

Arguments

x An object of class brmsfit.

effects An optional character vector naming effects (main effects or interactions) for
which to compute conditional plots. Interactions are specified by a : between
variable names. If NULL (the default), plots are generated for all main effects and
two-way interactions estimated in the model. When specifying effects man-
ually, all two-way interactions (including grouping variables) may be plotted
even if not originally modeled.

conditions An optional data.frame containing variable values to condition on. Each effect
defined in effects will be plotted separately for each row of conditions. Val-
ues in the cond__ column will be used as titles of the subplots. If cond__ is not
given, the row names will be used for this purpose instead. It is recommended
to only define a few rows in order to keep the plots clear. See make_conditions
for an easy way to define conditions. If NULL (the default), numeric variables
will be conditionalized by using their means and factors will get their first level
assigned. NA values within factors are interpreted as if all dummy variables of
this factor are zero. This allows, for instance, to make predictions of the grand
mean when using sum coding.

int_conditions An optional named list whose elements are vectors of values of the variables
specified in effects. At these values, predictions are evaluated. The names of
int_conditions have to match the variable names exactly. Additionally, the
elements of the vectors may be named themselves, in which case their names
appear as labels for the conditions in the plots. Instead of vectors, functions
returning vectors may be passed and are applied on the original values of the
corresponding variable. If NULL (the default), predictions are evaluated at the
mean and at mean + / − sd for numeric predictors and at all categories for
factor-like predictors.

re_formula A formula containing group-level effects to be considered in the conditional
predictions. If NULL, include all group-level effects; if NA (default), include no
group-level effects.

prob A value between 0 and 1 indicating the desired probability to be covered by the
uncertainty intervals. The default is 0.95.

conditional_effects.brmsfit 59

robust If TRUE (the default) the median is used as the measure of central tendency. If
FALSE the mean is used instead.

method Method used to obtain predictions. Can be set to "posterior_epred" (the de-
fault), "posterior_predict", or "posterior_linpred". For more details, see
the respective function documentations.

spaghetti Logical. Indicates if predictions should be visualized via spaghetti plots. Only
applied for numeric predictors. If TRUE, it is recommended to set argument
nsamples to a relatively small value (e.g., 100) in order to reduce computation
time.

surface Logical. Indicates if interactions or two-dimensional smooths should be visu-
alized as a surface. Defaults to FALSE. The surface type can be controlled via
argument stype of the related plotting method.

categorical Logical. Indicates if effects of categorical or ordinal models should be shown in
terms of probabilities of response categories. Defaults to FALSE.

ordinal (Deprecated) Please use argument categorical. Logical. Indicates if effects in
ordinal models should be visualized as a raster with the response categories on
the y-axis. Defaults to FALSE.

transform A function or a character string naming a function to be applied on the predicted
responses before summary statistics are computed. Only allowed if method =
"posterior_predict".

resolution Number of support points used to generate the plots. Higher resolution leads to
smoother plots. Defaults to 100. If surface is TRUE, this implies 10000 support
points for interaction terms, so it might be necessary to reduce resolution
when only few RAM is available.

select_points Positive number. Only relevant if points or rug are set to TRUE: Actual data
points of numeric variables that are too far away from the values specified in
conditions can be excluded from the plot. Values are scaled into the unit inter-
val and then points more than select_points from the values in conditions
are excluded. By default, all points are used.

too_far Positive number. For surface plots only: Grid points that are too far away from
the actual data points can be excluded from the plot. too_far determines what
is too far. The grid is scaled into the unit square and then grid points more than
too_far from the predictor variables are excluded. By default, all grid points
are used. Ignored for non-surface plots.

probs (Deprecated) The quantiles to be used in the computation of uncertainty inter-
vals. Please use argument prob instead.

... Further arguments such as subset or nsamples passed to posterior_predict
or posterior_epred.

ncol Number of plots to display per column for each effect. If NULL (default), ncol
is computed internally based on the number of rows of conditions.

points Logical. Indicates if the original data points should be added via geom_jitter.
Default is FALSE. Note that only those data points will be added that match the
specified conditions defined in conditions. For categorical predictors, the con-
ditions have to match exactly. For numeric predictors, argument select_points
is used to determine, which points do match a condition.

60 conditional_effects.brmsfit

rug Logical. Indicates if a rug representation of predictor values should be added
via geom_rug. Default is FALSE. Depends on select_points in the same way
as points does.

mean Logical. Only relevant for spaghetti plots. If TRUE (the default), display the
mean regression line on top of the regression lines for each sample.

jitter_width Only used if points = TRUE: Amount of horizontal jittering of the data points.
Mainly useful for ordinal models. Defaults to 0 that is no jittering.

stype Indicates how surface plots should be displayed. Either "contour" or "raster".

line_args Only used in plots of continuous predictors: A named list of arguments passed
to geom_smooth.

cat_args Only used in plots of categorical predictors: A named list of arguments passed
to geom_point.

errorbar_args Only used in plots of categorical predictors: A named list of arguments passed
to geom_errorbar.

surface_args Only used in surface plots: A named list of arguments passed to geom_contour
or geom_raster (depending on argument stype).

spaghetti_args Only used in spaghetti plots: A named list of arguments passed to geom_smooth.

point_args Only used if points = TRUE: A named list of arguments passed to geom_jitter.

rug_args Only used if rug = TRUE: A named list of arguments passed to geom_rug.

facet_args Only used if if multiple condtions are provided: A named list of arguments
passed to facet_wrap.

theme A theme object modifying the appearance of the plots. For some basic themes
see ggtheme and theme_default.

ask Logical; indicates if the user is prompted before a new page is plotted. Only
used if plot is TRUE.

plot Logical; indicates if plots should be plotted directly in the active graphic device.
Defaults to TRUE.

Details

When creating conditional_effects for a particular predictor (or interaction of two predictors),
one has to choose the values of all other predictors to condition on. By default, the mean is used
for continuous variables and the reference category is used for factors, but you may change these
values via argument conditions. This also has an implication for the points argument: In the
created plots, only those points will be shown that correspond to the factor levels actually used in
the conditioning, in order not to create the false impression of bad model fit, where it is just due to
conditioning on certain factor levels.

To fully change colors of the created plots, one has to amend both scale_colour and scale_fill.
See scale_colour_grey or scale_colour_gradient for more details.

Value

An object of class 'brms_conditional_effects' which is a named list with one data.frame per
effect containing all information required to generate conditional effects plots. Among others, these

conditional_effects.brmsfit 61

data.frames contain some special variables, namely estimate__ (predicted values of the response),
se__ (standard error of the predicted response), lower__ and upper__ (lower and upper bounds
of the uncertainty interval of the response), as well as cond__ (used in faceting when conditions
contains multiple rows).

The corresponding plot method returns a named list of ggplot objects, which can be further cus-
tomized using the ggplot2 package.

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1 | patient),

data = epilepsy, family = poisson())

plot all conditional effects
plot(conditional_effects(fit), ask = FALSE)

change colours to grey scale
library(ggplot2)
me <- conditional_effects(fit, "zBase:Trt")
plot(me, plot = FALSE)[[1]] +

scale_color_grey() +
scale_fill_grey()

only plot the conditional interaction effect of 'zBase:Trt'
for different values for 'zAge'
conditions <- data.frame(zAge = c(-1, 0, 1))
plot(conditional_effects(fit, effects = "zBase:Trt",

conditions = conditions))

also incorporate group-level effects variance over patients
also add data points and a rug representation of predictor values
plot(conditional_effects(fit, effects = "zBase:Trt",

conditions = conditions, re_formula = NULL),
points = TRUE, rug = TRUE)

change handling of two-way interactions
int_conditions <- list(

zBase = setNames(c(-2, 1, 0), c("b", "c", "a"))
)
conditional_effects(fit, effects = "Trt:zBase",

int_conditions = int_conditions)
conditional_effects(fit, effects = "Trt:zBase",

int_conditions = list(zBase = quantile))

fit a model to illustrate how to plot 3-way interactions
fit3way <- brm(count ~ zAge * zBase * Trt, data = epilepsy)
conditions <- make_conditions(fit3way, "zAge")
conditional_effects(fit3way, "zBase:Trt", conditions = conditions)
only include points close to the specified values of zAge
me <- conditional_effects(

fit3way, "zBase:Trt", conditions = conditions,
select_points = 0.1

62 conditional_smooths.brmsfit

)
plot(me, points = TRUE)

End(Not run)

conditional_smooths.brmsfit

Display Smooth Terms

Description

Display smooth s and t2 terms of models fitted with brms.

Usage

S3 method for class 'brmsfit'
conditional_smooths(
x,
smooths = NULL,
int_conditions = NULL,
prob = 0.95,
spaghetti = FALSE,
resolution = 100,
too_far = 0,
subset = NULL,
nsamples = NULL,
probs = NULL,
...

)

conditional_smooths(x, ...)

Arguments

x An object of class brmsfit.

smooths Optional character vector of smooth terms to display. If NULL (the default) all
smooth terms are shown.

int_conditions An optional named list whose elements are vectors of values of the variables
specified in effects. At these values, predictions are evaluated. The names of
int_conditions have to match the variable names exactly. Additionally, the
elements of the vectors may be named themselves, in which case their names
appear as labels for the conditions in the plots. Instead of vectors, functions
returning vectors may be passed and are applied on the original values of the
corresponding variable. If NULL (the default), predictions are evaluated at the
mean and at mean + / − sd for numeric predictors and at all categories for
factor-like predictors.

conditional_smooths.brmsfit 63

prob A value between 0 and 1 indicating the desired probability to be covered by the
uncertainty intervals. The default is 0.95.

spaghetti Logical. Indicates if predictions should be visualized via spaghetti plots. Only
applied for numeric predictors. If TRUE, it is recommended to set argument
nsamples to a relatively small value (e.g., 100) in order to reduce computation
time.

resolution Number of support points used to generate the plots. Higher resolution leads to
smoother plots. Defaults to 100. If surface is TRUE, this implies 10000 support
points for interaction terms, so it might be necessary to reduce resolution
when only few RAM is available.

too_far Positive number. For surface plots only: Grid points that are too far away from
the actual data points can be excluded from the plot. too_far determines what
is too far. The grid is scaled into the unit square and then grid points more than
too_far from the predictor variables are excluded. By default, all grid points
are used. Ignored for non-surface plots.

subset A numeric vector specifying the posterior samples to be used. If NULL (the
default), all samples are used.

nsamples Positive integer indicating how many posterior samples should be used. If NULL
(the default) all samples are used. Ignored if subset is not NULL.

probs (Deprecated) The quantiles to be used in the computation of uncertainty inter-
vals. Please use argument prob instead.

... Currently ignored.

Details

Two-dimensional smooth terms will be visualized using either contour or raster plots.

Value

For the brmsfit method, an object of class brms_conditional_effects. See conditional_effects
for more details and documentation of the related plotting function.

Examples

Not run:
set.seed(0)
dat <- mgcv::gamSim(1, n = 200, scale = 2)
fit <- brm(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat)
show all smooth terms
plot(conditional_smooths(fit), rug = TRUE, ask = FALSE)
show only the smooth term s(x2)
plot(conditional_smooths(fit, smooths = "s(x2)"), ask = FALSE)

fit and plot a two-dimensional smooth term
fit2 <- brm(y ~ t2(x0, x2), data = dat)
ms <- conditional_smooths(fit2)
plot(ms, stype = "contour")
plot(ms, stype = "raster")

64 cor_ar

End(Not run)

control_params Extract Control Parameters of the NUTS Sampler

Description

Extract control parameters of the NUTS sampler such as adapt_delta or max_treedepth.

Usage

control_params(x, ...)

S3 method for class 'brmsfit'
control_params(x, pars = NULL, ...)

Arguments

x An R object

... Currently ignored.

pars Optional names of the control parameters to be returned. If NULL (the default)
all control parameters are returned. See stan for more details.

Value

A named list with control parameter values.

cor_ar (Deprecated) AR(p) correlation structure

Description

This function is deprecated. Please see ar for the new syntax. This function is a constructor for the
cor_arma class, allowing for autoregression terms only.

Usage

cor_ar(formula = ~1, p = 1, cov = FALSE)

cor_arma 65

Arguments

formula A one sided formula of the form ~ t, or ~ t | g, specifying a time covariate
t and, optionally, a grouping factor g. A covariate for this correlation struc-
ture must be integer valued. When a grouping factor is present in formula, the
correlation structure is assumed to apply only to observations within the same
grouping level; observations with different grouping levels are assumed to be
uncorrelated. Defaults to ~ 1, which corresponds to using the order of the obser-
vations in the data as a covariate, and no groups.

p A non-negative integer specifying the autoregressive (AR) order of the ARMA
structure. Default is 1.

cov A flag indicating whether ARMA effects should be estimated by means of resid-
ual covariance matrices. This is currently only possible for stationary ARMA
effects of order 1. If the model family does not have natural residuals, latent
residuals are added automatically. If FALSE (the default) a regression formula-
tion is used that is considerably faster and allows for ARMA effects of order
higher than 1 but is only available for gaussian models and some of its gener-
alizations.

Details

AR refers to autoregressive effects of residuals, which is what is typically understood as autoregres-
sive effects. However, one may also model autoregressive effects of the response variable, which is
called ARR in brms.

Value

An object of class cor_arma containing solely autoregression terms.

See Also

cor_arma

Examples

cor_ar(~visit|patient, p = 2)

cor_arma (Deprecated) ARMA(p,q) correlation structure

Description

This function is deprecated. Please see arma for the new syntax. This functions is a constructor for
the cor_arma class, representing an autoregression-moving average correlation structure of order
(p, q).

66 cor_brms

Usage

cor_arma(formula = ~1, p = 0, q = 0, r = 0, cov = FALSE)

Arguments

formula A one sided formula of the form ~ t, or ~ t | g, specifying a time covariate
t and, optionally, a grouping factor g. A covariate for this correlation struc-
ture must be integer valued. When a grouping factor is present in formula, the
correlation structure is assumed to apply only to observations within the same
grouping level; observations with different grouping levels are assumed to be
uncorrelated. Defaults to ~ 1, which corresponds to using the order of the obser-
vations in the data as a covariate, and no groups.

p A non-negative integer specifying the autoregressive (AR) order of the ARMA
structure. Default is 0.

q A non-negative integer specifying the moving average (MA) order of the ARMA
structure. Default is 0.

r No longer supported.

cov A flag indicating whether ARMA effects should be estimated by means of resid-
ual covariance matrices. This is currently only possible for stationary ARMA
effects of order 1. If the model family does not have natural residuals, latent
residuals are added automatically. If FALSE (the default) a regression formula-
tion is used that is considerably faster and allows for ARMA effects of order
higher than 1 but is only available for gaussian models and some of its gener-
alizations.

Value

An object of class cor_arma, representing an autoregression-moving-average correlation structure.

See Also

cor_ar, cor_ma

Examples

cor_arma(~ visit | patient, p = 2, q = 2)

cor_brms (Deprecated) Correlation structure classes for the brms package

Description

Classes of correlation structures available in the brms package. cor_brms is not a correlation
structure itself, but the class common to all correlation structures implemented in brms.

cor_car 67

Available correlation structures

cor_arma autoregressive-moving average (ARMA) structure, with arbitrary orders for the autore-
gressive and moving average components

cor_ar autoregressive (AR) structure of arbitrary order

cor_ma moving average (MA) structure of arbitrary order

cor_car Spatial conditional autoregressive (CAR) structure

cor_sar Spatial simultaneous autoregressive (SAR) structure

cor_fixed fixed user-defined covariance structure

See Also

cor_arma,cor_ar,cor_ma,cor_car,cor_sar,cor_fixed

cor_car (Deprecated) Spatial conditional autoregressive (CAR) structures

Description

These function are deprecated. Please see car for the new syntax. These functions are constructors
for the cor_car class implementing spatial conditional autoregressive structures.

Usage

cor_car(W, formula = ~1, type = "escar")

cor_icar(W, formula = ~1)

Arguments

W Adjacency matrix of locations. All non-zero entries are treated as if the two
locations are adjacent. If formula contains a grouping factor, the row names of
W have to match the levels of the grouping factor.

formula An optional one-sided formula of the form ~ 1 | g, where g is a grouping factor
mapping observations to spatial locations. If not specified, each observation is
treated as a separate location. It is recommended to always specify a grouping
factor to allow for handling of new data in post-processing methods.

type Type of the CAR structure. Currently implemented are "escar" (exact sparse
CAR), "esicar" (exact sparse intrinsic CAR), "icar" (intrinsic CAR), and
"bym2". More information is provided in the ’Details’ section.

Details

The escar and esicar types are implemented based on the case study of Max Joseph (https://
github.com/mbjoseph/CARstan). The icar and bym2 type is implemented based on the case study
of Mitzi Morris (https://mc-stan.org/users/documentation/case-studies/icar_stan.html).

https://github.com/mbjoseph/CARstan
https://github.com/mbjoseph/CARstan
https://mc-stan.org/users/documentation/case-studies/icar_stan.html

68 cor_cosy

Examples

Not run:
generate some spatial data
east <- north <- 1:10
Grid <- expand.grid(east, north)
K <- nrow(Grid)

set up distance and neighbourhood matrices
distance <- as.matrix(dist(Grid))
W <- array(0, c(K, K))
W[distance == 1] <- 1

generate the covariates and response data
x1 <- rnorm(K)
x2 <- rnorm(K)
theta <- rnorm(K, sd = 0.05)
phi <- rmulti_normal(

1, mu = rep(0, K), Sigma = 0.4 * exp(-0.1 * distance)
)
eta <- x1 + x2 + phi
prob <- exp(eta) / (1 + exp(eta))
size <- rep(50, K)
y <- rbinom(n = K, size = size, prob = prob)
dat <- data.frame(y, size, x1, x2)

fit a CAR model
fit <- brm(y | trials(size) ~ x1 + x2, data = dat,

family = binomial(), autocor = cor_car(W))
summary(fit)

End(Not run)

cor_cosy (Deprecated) Compound Symmetry (COSY) Correlation Structure

Description

This function is deprecated. Please see cosy for the new syntax. This functions is a constructor
for the cor_cosy class, representing a compound symmetry structure corresponding to uniform
correlation.

Usage

cor_cosy(formula = ~1)

cor_fixed 69

Arguments

formula A one sided formula of the form ~ t, or ~ t | g, specifying a time covariate
t and, optionally, a grouping factor g. A covariate for this correlation struc-
ture must be integer valued. When a grouping factor is present in formula, the
correlation structure is assumed to apply only to observations within the same
grouping level; observations with different grouping levels are assumed to be
uncorrelated. Defaults to ~ 1, which corresponds to using the order of the obser-
vations in the data as a covariate, and no groups.

Value

An object of class cor_cosy, representing a compound symmetry correlation structure.

Examples

cor_cosy(~ visit | patient)

cor_fixed (Deprecated) Fixed user-defined covariance matrices

Description

This function is deprecated. Please see fcor for the new syntax. Define a fixed covariance matrix
of the response variable for instance to model multivariate effect sizes in meta-analysis.

Usage

cor_fixed(V)

Arguments

V Known covariance matrix of the response variable. If a vector is passed, it will
be used as diagonal entries (variances) and covariances will be set to zero.

Value

An object of class cor_fixed.

Examples

Not run:
dat <- data.frame(y = rnorm(3))
V <- cbind(c(0.5, 0.3, 0.2), c(0.3, 1, 0.1), c(0.2, 0.1, 0.2))
fit <- brm(y~1, data = dat, autocor = cor_fixed(V))

End(Not run)

70 cor_ma

cor_ma (Deprecated) MA(q) correlation structure

Description

This function is deprecated. Please see ma for the new syntax. This function is a constructor for the
cor_arma class, allowing for moving average terms only.

Usage

cor_ma(formula = ~1, q = 1, cov = FALSE)

Arguments

formula A one sided formula of the form ~ t, or ~ t | g, specifying a time covariate
t and, optionally, a grouping factor g. A covariate for this correlation struc-
ture must be integer valued. When a grouping factor is present in formula, the
correlation structure is assumed to apply only to observations within the same
grouping level; observations with different grouping levels are assumed to be
uncorrelated. Defaults to ~ 1, which corresponds to using the order of the obser-
vations in the data as a covariate, and no groups.

q A non-negative integer specifying the moving average (MA) order of the ARMA
structure. Default is 1.

cov A flag indicating whether ARMA effects should be estimated by means of resid-
ual covariance matrices. This is currently only possible for stationary ARMA
effects of order 1. If the model family does not have natural residuals, latent
residuals are added automatically. If FALSE (the default) a regression formula-
tion is used that is considerably faster and allows for ARMA effects of order
higher than 1 but is only available for gaussian models and some of its gener-
alizations.

Value

An object of class cor_arma containing solely moving average terms.

See Also

cor_arma

Examples

cor_ma(~visit|patient, q = 2)

cor_sar 71

cor_sar (Deprecated) Spatial simultaneous autoregressive (SAR) structures

Description

Thse functions are deprecated. Please see sar for the new syntax. These functions are constructors
for the cor_sar class implementing spatial simultaneous autoregressive structures. The lagsar
structure implements SAR of the response values:

y = ρWy + η + e

The errorsar structure implements SAR of the residuals:

y = η + u, u = ρWu+ e

In the above equations, η is the predictor term and e are independent normally or t-distributed
residuals.

Usage

cor_sar(W, type = c("lag", "error"))

cor_lagsar(W)

cor_errorsar(W)

Arguments

W An object specifying the spatial weighting matrix. Can be either the spatial
weight matrix itself or an object of class listw or nb, from which the spatial
weighting matrix can be computed.

type Type of the SAR structure. Either "lag" (for SAR of the response values) or
"error" (for SAR of the residuals).

Details

Currently, only families gaussian and student support SAR structures.

Value

An object of class cor_sar to be used in calls to brm.

Examples

Not run:
data(oldcol, package = "spdep")
fit1 <- brm(CRIME ~ INC + HOVAL, data = COL.OLD,

autocor = cor_lagsar(COL.nb),
chains = 2, cores = 2)

72 cosy

summary(fit1)
plot(fit1)

fit2 <- brm(CRIME ~ INC + HOVAL, data = COL.OLD,
autocor = cor_errorsar(COL.nb),
chains = 2, cores = 2)

summary(fit2)
plot(fit2)

End(Not run)

cosy Set up COSY correlation structures

Description

Set up a compounds symmetry (COSY) term in brms. The function does not evaluate its arguments
– it exists purely to help set up a model with COSY terms.

Usage

cosy(time = NA, gr = NA)

Arguments

time An optional time variable specifying the time ordering of the observations. By
default, the existing order of the observations in the data is used.

gr An optional grouping variable. If specified, the correlation structure is assumed
to apply only to observations within the same grouping level.

Value

An object of class 'cosy_term', which is a list of arguments to be interpreted by the formula
parsing functions of brms.

See Also

autocor-terms

Examples

Not run:
data("lh")
lh <- as.data.frame(lh)
fit <- brm(x ~ cosy(), data = lh)
summary(fit)

End(Not run)

cs 73

cs Category Specific Predictors in brms Models

Description

Category Specific Predictors in brms Models

Usage

cs(expr)

Arguments

expr Expression containing predictors, for which category specific effects should be
estimated. For evaluation, R formula syntax is applied.

Details

For detailed documentation see help(brmsformula) as well as vignette("brms_overview").

This function is almost solely useful when called in formulas passed to the brms package.

See Also

brmsformula

Examples

Not run:
fit <- brm(rating ~ period + carry + cs(treat),

data = inhaler, family = sratio("cloglog"),
prior = set_prior("normal(0,5)"), chains = 2)

summary(fit)
plot(fit, ask = FALSE)

End(Not run)

74 custom_family

custom_family Custom Families in brms Models

Description

Define custom families (i.e. response distribution) for use in brms models. It allows users to benefit
from the modeling flexibility of brms, while applying their self-defined likelihood functions. All
of the post-processing methods for brmsfit objects can be made compatible with custom fami-
lies. See vignette("brms_customfamilies") for more details. For a list of built-in families see
brmsfamily.

Usage

custom_family(
name,
dpars = "mu",
links = "identity",
type = c("real", "int"),
lb = NA,
ub = NA,
vars = NULL,
specials = NULL,
threshold = "flexible",
log_lik = NULL,
posterior_predict = NULL,
posterior_epred = NULL,
predict = NULL,
fitted = NULL,
env = parent.frame()

)

Arguments

name Name of the custom family.

dpars Names of the distributional parameters of the family. One parameter must be
named "mu" and the main formula of the model will correspond to that parame-
ter.

links Names of the link functions of the distributional parameters.

type Indicates if the response distribution is continuous ("real") or discrete ("int").

lb Vector of lower bounds of the distributional parameters. Defaults to NA that is
no lower bound.

ub Vector of upper bounds of the distributional parameters. Defaults to NA that is
no upper bound.

custom_family 75

vars Names of variables, which are part of the likelihood function without being dis-
tributional parameters. That is, vars can be used to pass data to the likelihood.
See stanvar for details about adding self-defined data to the generated Stan
model.

specials A character vector of special options to enable for this custom family. Currently
for internal use only.

threshold Optional threshold type for custom ordinal families. Ignored for non-ordinal
families.

log_lik Optional function to compute log-likelihood values of the model in R. This is
only relevant if one wants to ensure compatibility with method log_lik.

posterior_predict

Optional function to compute posterior prediction of the model in R. This is only
relevant if one wants to ensure compatibility with method posterior_predict.

posterior_epred

Optional function to compute expected values of the posterior predictive distri-
bution of the model in R. This is only relevant if one wants to ensure compati-
bility with method posterior_epred.

predict Deprecated alias of ‘posterior_predict‘.

fitted Deprecated alias of ‘posterior_epred‘.

env An environment in which certain post-processing functions related to the cus-
tom family can be found, if there were not directly passed to custom_family.
This is only relevant if one wants to ensure compatibility with the methods
log_lik, posterior_predict, or posterior_epred. By default, env is the
environment from which custom_family is called.

Details

The corresponding probability density or mass Stan functions need to have the same name as the
custom family. That is if a family is called myfamily, then the Stan functions should be called
myfamily_lpdf or myfamily_lpmf depending on whether it defines a continuous or discrete distri-
bution.

Value

An object of class customfamily inheriting from class brmsfamily.

See Also

brmsfamily, stanvar

Examples

Not run:
demonstrate how to fit a beta-binomial model
generate some fake data
phi <- 0.7
n <- 300
z <- rnorm(n, sd = 0.2)

76 density_ratio

ntrials <- sample(1:10, n, replace = TRUE)
eta <- 1 + z
mu <- exp(eta) / (1 + exp(eta))
a <- mu * phi
b <- (1 - mu) * phi
p <- rbeta(n, a, b)
y <- rbinom(n, ntrials, p)
dat <- data.frame(y, z, ntrials)

define a custom family
beta_binomial2 <- custom_family(

"beta_binomial2", dpars = c("mu", "phi"),
links = c("logit", "log"), lb = c(NA, 0),
type = "int", vars = "trials[n]"

)

define the corresponding Stan density function
stan_funs <- "

real beta_binomial2_lpmf(int y, real mu, real phi, int N) {
return beta_binomial_lpmf(y | N, mu * phi, (1 - mu) * phi);

}
"

fit the model
fit <- brm(y | trials(ntrials) ~ z, data = dat,

family = beta_binomial2, stan_funs = stan_funs)
summary(fit)

End(Not run)

density_ratio Compute Density Ratios

Description

Compute the ratio of two densities at given points based on samples of the corresponding distribu-
tions.

Usage

density_ratio(x, y = NULL, point = 0, n = 4096, ...)

Arguments

x Vector of samples from the first distribution, usually the posterior distribution of
the quantity of interest.

y Optional vector of samples from the second distribution, usually the prior distri-
bution of the quantity of interest. If NULL (the default), only the density of x will
be evaluated.

diagnostic-quantities 77

point Numeric values at which to evaluate and compare the densities. Defaults to 0.

n Single numeric value. Influences the accuracy of the density estimation. See
density for details.

... Further arguments passed to density.

Details

In order to achieve sufficient accuracy in the density estimation, more samples than usual are re-
quired. That is you may need an effective sample size of 10,000 or more to reliably estimate the
densities.

Value

A vector of length equal to length(point). If y is provided, the density ratio of x against y is
returned. Else, only the density of x is returned.

Examples

x <- rnorm(10000)
y <- rnorm(10000, mean = 1)
density_ratio(x, y, point = c(0, 1))

diagnostic-quantities Extract Diagnostic Quantities of brms Models

Description

Extract quantities that can be used to diagnose sampling behavior of the algorithms applied by Stan
at the back-end of brms.

Usage

S3 method for class 'brmsfit'
log_posterior(object, ...)

S3 method for class 'brmsfit'
nuts_params(object, pars = NULL, ...)

S3 method for class 'brmsfit'
rhat(object, pars = NULL, ...)

S3 method for class 'brmsfit'
neff_ratio(object, pars = NULL, ...)

78 Dirichlet

Arguments

object A brmsfit object.

... Arguments passed to individual methods.

pars An optional character vector of parameter names. For nuts_params these will
be NUTS sampler parameter names rather than model parameters. If pars is
omitted all parameters are included.

Details

For more details see bayesplot-extractors.

Value

The exact form of the output depends on the method.

Examples

Not run:
fit <- brm(time ~ age * sex, data = kidney)

lp <- log_posterior(fit)
head(lp)

np <- nuts_params(fit)
str(np)
extract the number of divergence transitions
sum(subset(np, Parameter == "divergent__")$Value)

head(rhat(fit))
head(neff_ratio(fit))

End(Not run)

Dirichlet The Dirichlet Distribution

Description

Density function and random number generation for the dirichlet distribution with shape parameter
vector alpha.

Usage

ddirichlet(x, alpha, log = FALSE)

rdirichlet(n, alpha)

emmeans-brms-helpers 79

Arguments

x Matrix of quantiles. Each row corresponds to one probability vector.

alpha Matrix of positive shape parameters. Each row corresponds to one probability
vector.

log Logical; If TRUE, values are returned on the log scale.

n Number of samples to draw from the distribution.

Details

See vignette("brms_families") for details on the parameterization.

emmeans-brms-helpers Support Functions for emmeans

Description

Functions required for compatibility of brms with emmeans. Users are not required to call these
functions themselves. Instead, they will be called automatically by the emmeans function of the
emmeans package.

Usage

recover_data.brmsfit(object, data, resp = NULL, dpar = NULL, nlpar = NULL, ...)

emm_basis.brmsfit(
object,
trms,
xlev,
grid,
vcov.,
resp = NULL,
dpar = NULL,
nlpar = NULL,
...

)

Arguments

object An object of class brmsfit.
data, trms, xlev, grid, vcov.

Arguments required by emmeans.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

dpar Optional name of a predicted distributional parameter. If specified, expected
predictions of this parameters are returned.

80 epilepsy

nlpar Optional name of a predicted non-linear parameter. If specified, expected pre-
dictions of this parameters are returned.

... Additional arguments passed to emmeans.

Details

In addition to the usual choices for dpar, the special value dpar = "mean" requests that we use the
expected values of the posterior predictive distribution, obtained via posterior_epred.brmsfit.

Examples

Not run:
fit <- brm(time | cens(censored) ~ age * sex + disease + (1|patient),

data = kidney, family = lognormal())
summary(fit)

summarize via 'emmeans'
library(emmeans)
rg <- ref_grid(fit)
em <- emmeans(rg, "disease")
summary(em, point.est = mean)

epred <- emmeans(fit, "disease", dpar = "mean")
summary(epred, point.est = mean)

End(Not run)

epilepsy Epileptic seizure counts

Description

Breslow and Clayton (1993) analyze data initially provided by Thall and Vail (1990) concerning
seizure counts in a randomized trial of anti-convulsant therapy in epilepsy. Covariates are treatment,
8-week baseline seizure counts, and age of the patients in years.

Usage

epilepsy

Format

A data frame of 236 observations containing information on the following 9 variables.

Age The age of the patients in years

Base The seizure count at 8-weeks baseline

Trt Either 0 or 1 indicating if the patient received anti-convulsant therapy

patient The patient number

ExGaussian 81

visit The session number from 1 (first visit) to 4 (last visit)

count The seizure count between two visits

obs The observation number, that is a unique identifier for each observation

zAge Standardized Age

zBase Standardized Base

Source

Thall, P. F., & Vail, S. C. (1990). Some covariance models for longitudinal count data with overdis-
persion. Biometrics, 46(2), 657-671.

Breslow, N. E., & Clayton, D. G. (1993). Approximate inference in generalized linear mixed mod-
els. Journal of the American Statistical Association, 88(421), 9-25.

Examples

Not run:
poisson regression without random effects.
fit1 <- brm(count ~ zAge + zBase * Trt,

data = epilepsy, family = poisson())
summary(fit1)
plot(fit1)

poisson regression with varying intercepts of patients
as well as normal priors for overall effects parameters.
fit2 <- brm(count ~ zAge + zBase * Trt + (1|patient),

data = epilepsy, family = poisson(),
prior = set_prior("normal(0,5)"))

summary(fit2)
plot(fit2)

End(Not run)

ExGaussian The Exponentially Modified Gaussian Distribution

Description

Density, distribution function, and random generation for the exponentially modified Gaussian dis-
tribution with mean mu and standard deviation sigma of the gaussian component, as well as scale
beta of the exponential component.

82 expose_functions.brmsfit

Usage

dexgaussian(x, mu, sigma, beta, log = FALSE)

pexgaussian(q, mu, sigma, beta, lower.tail = TRUE, log.p = FALSE)

rexgaussian(n, mu, sigma, beta)

Arguments

x, q Vector of quantiles.
mu Vector of means of the combined distribution.
sigma Vector of standard deviations of the gaussian component.
beta Vector of scales of the exponential component.
log Logical; If TRUE, values are returned on the log scale.
lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .
log.p Logical; If TRUE, values are returned on the log scale.
n Number of samples to draw from the distribution.

Details

See vignette("brms_families") for details on the parameterization.

expose_functions.brmsfit

Expose user-defined Stan functions

Description

Export user-defined Stan function and optionally vectorize them. For more details see expose_stan_functions.

Usage

S3 method for class 'brmsfit'
expose_functions(x, vectorize = FALSE, env = globalenv(), ...)

expose_functions(x, ...)

Arguments

x An object of class brmsfit.
vectorize Logical; Indicates if the exposed functions should be vectorized via Vectorize.

Defaults to FALSE.
env Environment where the functions should be made available. Defaults to the

global environment.
... Further arguments passed to expose_stan_functions.

expp1 83

expp1 Exponential function plus one.

Description

Computes exp(x) + 1.

Usage

expp1(x)

Arguments

x A numeric or complex vector.

family.brmsfit Extract Model Family Objects

Description

Extract Model Family Objects

Usage

S3 method for class 'brmsfit'
family(object, resp = NULL, ...)

Arguments

object An object of class brmsfit.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

... Currently unused.

Value

A brmsfamily object or a list of such objects for multivariate models.

84 fcor

fcor Fixed residual correlation (FCOR) structures

Description

Set up a fixed residual correlation (FCOR) term in brms. The function does not evaluate its argu-
ments – it exists purely to help set up a model with FCOR terms.

Usage

fcor(M)

Arguments

M Known correlation/covariance matrix of the response variable. If a vector is
passed, it will be used as diagonal entries (variances) and correlations/covariances
will be set to zero. The actual covariance matrix used in the likelihood is ob-
tained by multiplying M by the square of the residual standard deviation param-
eter sigma estimated as part of the model.

Value

An object of class 'fcor_term', which is a list of arguments to be interpreted by the formula
parsing functions of brms.

See Also

autocor-terms

Examples

Not run:
dat <- data.frame(y = rnorm(3))
V <- cbind(c(0.5, 0.3, 0.2), c(0.3, 1, 0.1), c(0.2, 0.1, 0.2))
fit <- brm(y ~ 1 + fcor(V), data = dat, data2 = list(V = V))

End(Not run)

fitted.brmsfit 85

fitted.brmsfit Expected Values of the Posterior Predictive Distribution

Description

This method is an alias of posterior_epred.brmsfit with additional arguments for obtaining
summaries of the computed samples.

Usage

S3 method for class 'brmsfit'
fitted(
object,
newdata = NULL,
re_formula = NULL,
scale = c("response", "linear"),
resp = NULL,
dpar = NULL,
nlpar = NULL,
nsamples = NULL,
subset = NULL,
sort = FALSE,
summary = TRUE,
robust = FALSE,
probs = c(0.025, 0.975),
...

)

Arguments

object An object of class brmsfit.

newdata An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors are interpreted as if
all dummy variables of this factor are zero. This allows, for instance, to make
predictions of the grand mean when using sum coding.

re_formula formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA, include no group-level ef-
fects.

scale Either "response" or "linear". If "response", results are returned on the
scale of the response variable. If "linear", results are returned on the scale of
the linear predictor term, that is without applying the inverse link function or
other transformations.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

dpar Optional name of a predicted distributional parameter. If specified, expected
predictions of this parameters are returned.

86 fitted.brmsfit

nlpar Optional name of a predicted non-linear parameter. If specified, expected pre-
dictions of this parameters are returned.

nsamples Positive integer indicating how many posterior samples should be used. If NULL
(the default) all samples are used. Ignored if subset is not NULL.

subset A numeric vector specifying the posterior samples to be used. If NULL (the
default), all samples are used.

sort Logical. Only relevant for time series models. Indicating whether to return
predicted values in the original order (FALSE; default) or in the order of the time
series (TRUE).

summary Should summary statistics be returned instead of the raw values? Default is
TRUE..

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

... Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

Value

An array of predicted mean response values. If summary = FALSE the output resembles those of
posterior_epred.brmsfit.

If summary = TRUE the output depends on the family: For categorical and ordinal families, the output
is an N x E x C array, where N is the number of observations, E is the number of summary statistics,
and C is the number of categories. For all other families, the output is an N x E matrix. The num-
ber of summary statistics E is equal to 2 + length(probs): The Estimate column contains point
estimates (either mean or median depending on argument robust), while the Est.Error column
contains uncertainty estimates (either standard deviation or median absolute deviation depending on
argument robust). The remaining columns starting with Q contain quantile estimates as specified
via argument probs.

In multivariate models, an additional dimension is added to the output which indexes along the
different response variables.

See Also

posterior_epred.brmsfit

Examples

Not run:
fit a model
fit <- brm(rating ~ treat + period + carry + (1|subject),

data = inhaler)

compute expected predictions

fixef.brmsfit 87

fitted_values <- fitted(fit)
head(fitted_values)

plot expected predictions against actual response
dat <- as.data.frame(cbind(Y = standata(fit)$Y, fitted_values))
ggplot(dat) + geom_point(aes(x = Estimate, y = Y))

End(Not run)

fixef.brmsfit Extract Population-Level Estimates

Description

Extract the population-level (’fixed’) effects from a brmsfit object.

Usage

S3 method for class 'brmsfit'
fixef(
object,
summary = TRUE,
robust = FALSE,
probs = c(0.025, 0.975),
pars = NULL,
...

)

Arguments

object An object of class brmsfit.

summary Should summary statistics be returned instead of the raw values? Default is
TRUE.

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

pars Optional names of coefficients to extract. By default, all coefficients are ex-
tracted.

... Currently ignored.

88 Frechet

Value

If summary is TRUE, a matrix returned by posterior_summary for the population-level effects. If
summary is FALSE, a matrix with one row per posterior draw and one column per population-level
effect.

Examples

Not run:
fit <- brm(time | cens(censored) ~ age + sex + disease,

data = kidney, family = "exponential")
fixef(fit)
extract only some coefficients
fixef(fit, pars = c("age", "sex"))

End(Not run)

Frechet The Frechet Distribution

Description

Density, distribution function, quantile function and random generation for the Frechet distribution
with location loc, scale scale, and shape shape.

Usage

dfrechet(x, loc = 0, scale = 1, shape = 1, log = FALSE)

pfrechet(q, loc = 0, scale = 1, shape = 1, lower.tail = TRUE, log.p = FALSE)

qfrechet(p, loc = 0, scale = 1, shape = 1, lower.tail = TRUE, log.p = FALSE)

rfrechet(n, loc = 0, scale = 1, shape = 1)

Arguments

x, q Vector of quantiles.

loc Vector of locations.

scale Vector of scales.

shape Vector of shapes.

log Logical; If TRUE, values are returned on the log scale.

lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .

log.p Logical; If TRUE, values are returned on the log scale.

p Vector of probabilities.

n Number of samples to draw from the distribution.

GenExtremeValue 89

Details

See vignette("brms_families") for details on the parameterization.

GenExtremeValue The Generalized Extreme Value Distribution

Description

Density, distribution function, and random generation for the generalized extreme value distribution
with location mu, scale sigma and shape xi.

Usage

dgen_extreme_value(x, mu = 0, sigma = 1, xi = 0, log = FALSE)

pgen_extreme_value(
q,
mu = 0,
sigma = 1,
xi = 0,
lower.tail = TRUE,
log.p = FALSE

)

rgen_extreme_value(n, mu = 0, sigma = 1, xi = 0)

Arguments

x, q Vector of quantiles.

mu Vector of locations.

sigma Vector of scales.

xi Vector of shapes.

log Logical; If TRUE, values are returned on the log scale.

lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .

log.p Logical; If TRUE, values are returned on the log scale.

n Number of samples to draw from the distribution.

Details

See vignette("brms_families") for details on the parameterization.

90 get_prior

get_prior Overview on Priors for brms Models

Description

Get information on all parameters (and parameter classes) for which priors may be specified includ-
ing default priors.

Usage

get_prior(
formula,
data,
family = gaussian(),
autocor = NULL,
data2 = NULL,
knots = NULL,
sparse = NULL,
...

)

Arguments

formula An object of class formula, brmsformula, or mvbrmsformula (or one that can
be coerced to that classes): A symbolic description of the model to be fitted.
The details of model specification are explained in brmsformula.

data An object of class data.frame (or one that can be coerced to that class) con-
taining data of all variables used in the model.

family A description of the response distribution and link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a link argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details of supported families see brmsfamily. By
default, a linear gaussian model is applied. In multivariate models, family
might also be a list of families.

autocor (Deprecated) An optional cor_brms object describing the correlation structure
within the response variable (i.e., the ’autocorrelation’). See the documentation
of cor_brms for a description of the available correlation structures. Defaults to
NULL, corresponding to no correlations. In multivariate models, autocor might
also be a list of autocorrelation structures. It is now recommend to specify auto-
correlation terms directly within formula. See brmsformula for more details.

data2 A named list of objects containing data, which cannot be passed via argument
data. Required for some objects used in autocorrelation structures to specify
dependency structures as well as for within-group covariance matrices.

knots Optional list containing user specified knot values to be used for basis construc-
tion of smoothing terms. See gamm for more details.

get_refmodel.brmsfit 91

sparse (Deprecated) Logical; indicates whether the population-level design matrices
should be treated as sparse (defaults to FALSE). For design matrices with many
zeros, this can considerably reduce required memory. Sampling speed is cur-
rently not improved or even slightly decreased. It is now recommended to use
the sparse argument of brmsformula and related functions.

... Other arguments for internal usage only.

Value

A data.frame with columns prior, class, coef, and group and several rows, each providing infor-
mation on a parameter (or parameter class) on which priors can be specified. The prior column is
empty except for internal default priors.

See Also

set_prior

Examples

get all parameters and parameters classes to define priors on
(prior <- get_prior(count ~ zAge + zBase * Trt + (1|patient) + (1|obs),

data = epilepsy, family = poisson()))

define a prior on all population-level effects a once
prior$prior[1] <- "normal(0,10)"

define a specific prior on the population-level effect of Trt
prior$prior[5] <- "student_t(10, 0, 5)"

verify that the priors indeed found their way into Stan's model code
make_stancode(count ~ zAge + zBase * Trt + (1|patient) + (1|obs),

data = epilepsy, family = poisson(),
prior = prior)

get_refmodel.brmsfit Get Reference Models

Description

Get reference model structure from brmsfit objects for use in varsel and related variable se-
lection methods. This method is called automatically when performing variable selection via
varsel.brmsfit and so you will rarely need to call it manually yourself.

Usage

S3 method for class 'brmsfit'
get_refmodel(object, newdata = NULL, resp = NULL, folds = NULL, ...)

92 gp

Arguments

object An object of class brmsfit.

newdata An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors are interpreted as if
all dummy variables of this factor are zero. This allows, for instance, to make
predictions of the grand mean when using sum coding.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

folds Only used for k-fold variable selection. A vector of fold indices for each data
point in data.

... Further arguments currently ignored.

Value

A refmodel object to be used in varsel and related variable selection methods.

gp Set up Gaussian process terms in brms

Description

Set up a Gaussian process (GP) term in brms. The function does not evaluate its arguments – it
exists purely to help set up a model with GP terms.

Usage

gp(
...,
by = NA,
k = NA,
cov = "exp_quad",
iso = TRUE,
gr = TRUE,
cmc = TRUE,
scale = TRUE,
c = NULL

)

Arguments

... One or more predictors for the GP.

by A numeric or factor variable of the same length as each predictor. In the numeric
vector case, the elements multiply the values returned by the GP. In the factor
variable case, a separate GP is fitted for each factor level.

gp 93

k Optional number of basis functions for computing approximate GPs. If NA (the
default), exact GPs are computed.

cov Name of the covariance kernel. By default, the exponentiated-quadratic kernel
"exp_quad" is used.

iso A flag to indicate whether an isotropic (TRUE; the default) of a non-isotropic GP
should be used. In the former case, the same amount of smoothing is applied
to all predictors. In the latter case, predictors may have different smoothing.
Ignored if only a single predictors is supplied.

gr Logical; Indicates if auto-grouping should be used (defaults to TRUE). If enabled,
observations sharing the same predictor values will be represented by the same
latent variable in the GP. This will improve sampling efficiency drastically if
the number of unique predictor combinations is small relative to the number of
observations.

cmc Logical; Only relevant if by is a factor. If TRUE (the default), cell-mean coding
is used for the by-factor, that is one GP per level is estimated. If FALSE, contrast
GPs are estimated according to the contrasts set for the by-factor.

scale Logical; If TRUE (the default), predictors are scaled so that the maximum Eu-
clidean distance between two points is 1. This often improves sampling speed
and convergence. Scaling also affects the estimated length-scale parameters in
that they resemble those of scaled predictors (not of the original predictors) if
scale is TRUE.

c Numeric value only used in approximate GPs. Defines the multiplicative con-
stant of the predictors’ range over which predictions should be computed. A
good default could be c = 5/4 but we are still working on providing better rec-
ommendations.

Details

A GP is a stochastic process, which describes the relation between one or more predictors x =
(x1, ..., xd) and a response f(x), where d is the number of predictors. A GP is the generalization
of the multivariate normal distribution to an infinite number of dimensions. Thus, it can be inter-
preted as a prior over functions. Any finite sample realized from this stochastic process is jointly
multivariate normal, with a covariance matrix defined by the covariance kernel kp(x), where p is
the vector of parameters of the GP:

f(x)MVN(0, kp(x))

The smoothness and general behavior of the function f depends only on the choice of covariance
kernel. For a more detailed introduction to Gaussian processes, see https://en.wikipedia.org/
wiki/Gaussian_process.

Below, we describe the currently supported covariance kernels:

• "exp_quad": The exponentiated-quadratic kernel is defined as k(xi, xj) = sdgp2exp(−||xi−
xj ||2/(2lscale2)), where ||.|| is the Euclidean norm, sdgp is a standard deviation parameter,
and lscale is characteristic length-scale parameter. The latter practically measures how close
two points xi and xj have to be to influence each other substantially.

In the current implementation, "exp_quad" is the only supported covariance kernel. More options
will follow in the future.

https://en.wikipedia.org/wiki/Gaussian_process
https://en.wikipedia.org/wiki/Gaussian_process

94 gr

Value

An object of class 'gp_term', which is a list of arguments to be interpreted by the formula parsing
functions of brms.

See Also

brmsformula

Examples

Not run:
simulate data using the mgcv package
dat <- mgcv::gamSim(1, n = 30, scale = 2)

fit a simple GP model
fit1 <- brm(y ~ gp(x2), dat, chains = 2)
summary(fit1)
me1 <- conditional_effects(fit1, nsamples = 200, spaghetti = TRUE)
plot(me1, ask = FALSE, points = TRUE)

fit a more complicated GP model
fit2 <- brm(y ~ gp(x0) + x1 + gp(x2) + x3, dat, chains = 2)
summary(fit2)
me2 <- conditional_effects(fit2, nsamples = 200, spaghetti = TRUE)
plot(me2, ask = FALSE, points = TRUE)

fit a multivariate GP model
fit3 <- brm(y ~ gp(x1, x2), dat, chains = 2)
summary(fit3)
me3 <- conditional_effects(fit3, nsamples = 200, spaghetti = TRUE)
plot(me3, ask = FALSE, points = TRUE)

compare model fit
LOO(fit1, fit2, fit3)

simulate data with a factor covariate
dat2 <- mgcv::gamSim(4, n = 90, scale = 2)

fit separate gaussian processes for different levels of 'fac'
fit4 <- brm(y ~ gp(x2, by = fac), dat2, chains = 2)
summary(fit4)
plot(conditional_effects(fit4), points = TRUE)

End(Not run)

gr Set up basic grouping terms in brms

gr 95

Description

Function used to set up a basic grouping term in brms. The function does not evaluate its arguments
– it exists purely to help set up a model with grouping terms. gr is called implicitly inside the
package and there is usually no need to call it directly.

Usage

gr(..., by = NULL, cor = TRUE, id = NA, cov = NULL, dist = "gaussian")

Arguments

... One or more terms containing grouping factors.
by An optional factor variable, specifying sub-populations of the groups. For each

level of the by variable, a separate variance-covariance matrix will be fitted.
Levels of the grouping factor must be nested in levels of the by variable.

cor Logical. If TRUE (the default), group-level terms will be modelled as correlated.
id Optional character string. All group-level terms across the model with the same

id will be modeled as correlated (if cor is TRUE). See brmsformula for more
details.

cov An optional matrix which is proportional to the withon-group covariance matrix
of the group-level effects. All levels of the grouping factor should appear as row-
names of the corresponding matrix. This argument can be used, among others, to
model pedigrees and phylogenetic effects. See vignette("brms_phylogenetics")
for more details. By default, levels of the same grouping factor are modeled as
independent of each other.

dist Name of the distribution of the group-level effects. Currently "gaussian" is the
only option.

See Also

brmsformula

Examples

Not run:
model using basic lme4-style formula
fit1 <- brm(count ~ Trt + (1|patient), data = epilepsy)
summary(fit1)

equivalent model using 'gr' which is called anyway internally
fit2 <- brm(count ~ Trt + (1|gr(patient)), data = epilepsy)
summary(fit2)

include Trt as a by variable
fit3 <- brm(count ~ Trt + (1|gr(patient, by = Trt)), data = epilepsy)
summary(fit3)

End(Not run)

96 horseshoe

horseshoe Regularized horseshoe priors in brms

Description

Function used to set up regularized horseshoe priors and related hierarchical shrinkage priors for
population-level effects in brms. The function does not evaluate its arguments – it exists purely to
help set up the model.

Usage

horseshoe(
df = 1,
scale_global = 1,
df_global = 1,
scale_slab = 2,
df_slab = 4,
par_ratio = NULL,
autoscale = TRUE

)

Arguments

df Degrees of freedom of student-t prior of the local shrinkage parameters. Defaults
to 1.

scale_global Scale of the student-t prior of the global shrinkage parameter. Defaults to 1.
In linear models, scale_global will internally be multiplied by the residual
standard deviation parameter sigma.

df_global Degrees of freedom of student-t prior of the global shrinkage parameter. De-
faults to 1. If df_global is greater 1, the shape of the prior will no longer
resemble a horseshoe and it may be more appropriately called an hierarchical
shrinkage prior in this case.

scale_slab Scale of the student-t prior of the regularization parameter. Defaults to 2. The
original unregularized horseshoe prior is obtained by setting scale_slab to in-
finite, which we can approximate in practice by setting it to a very large real
value.

df_slab Degrees of freedom of the student-t prior of the regularization parameter. De-
faults to 4.

par_ratio Ratio of the expected number of non-zero coefficients to the expected number of
zero coefficients. If specified, scale_global is ignored and internally computed
as par_ratio / sqrt(N), where N is the total number of observations in the
data.

autoscale Logical; indicating whether the horseshoe prior should be scaled using the resid-
ual standard deviation sigma if possible and sensible (defaults to TRUE). Au-
toscaling is not applied for distributional parameters or when the model does
not contain the parameter sigma.

horseshoe 97

Details

The horseshoe prior is a special shrinkage prior initially proposed by Carvalho et al. (2009). It is
symmetric around zero with fat tails and an infinitely large spike at zero. This makes it ideal for
sparse models that have many regression coefficients, although only a minority of them is non-zero.
The horseshoe prior can be applied on all population-level effects at once (excluding the inter-
cept) by using set_prior("horseshoe(1)"). The 1 implies that the student-t prior of the local
shrinkage parameters has 1 degrees of freedom. This may, however, lead to an increased number
of divergent transition in Stan. Accordingly, increasing the degrees of freedom to slightly higher
values (e.g., 3) may often be a better option, although the prior no longer resembles a horseshoe in
this case. Further, the scale of the global shrinkage parameter plays an important role in amount
of shrinkage applied. It defaults to 1, but this may result in too few shrinkage (Piironen & Vehtari,
2016). It is thus possible to change the scale using argument scale_global of the horseshoe prior,
for instance horseshoe(1,scale_global = 0.5). In linear models, scale_global will internally
be multiplied by the residual standard deviation parameter sigma. See Piironen and Vehtari (2016)
for recommendations how to properly set the global scale. The degrees of freedom of the global
shrinkage prior may also be adjusted via argument df_global. Piironen and Vehtari (2017) recom-
mend to specifying the ratio of the expected number of non-zero coefficients to the expected number
of zero coefficients par_ratio rather than scale_global directly. As proposed by Piironen and
Vehtari (2017), an additional regularization is applied that only affects non-zero coefficients. The
amount of regularization can be controlled via scale_slab and df_slab. To make sure that shrink-
age can equally affect all coefficients, predictors should be one the same scale. Generally, models
with horseshoe priors a more likely than other models to have divergent transitions so that increas-
ing adapt_delta from 0.8 to values closer to 1 will often be necessary. See the documentation of
brm for instructions on how to increase adapt_delta.

Value

A character string obtained by match.call() with additional arguments.

References

Carvalho, C. M., Polson, N. G., & Scott, J. G. (2009). Handling sparsity via the horseshoe. In
International Conference on Artificial Intelligence and Statistics (pp. 73-80).

Piironen J. & Vehtari A. (2016). On the Hyperprior Choice for the Global Shrinkage Parameter in
the Horseshoe Prior. https://arxiv.org/pdf/1610.05559v1.pdf

Piironen, J., and Vehtari, A. (2017). Sparsity information and regularization in the horseshoe and
other shrinkage priors. https://arxiv.org/abs/1707.01694

See Also

set_prior

Examples

set_prior(horseshoe(df = 3, par_ratio = 0.1))

https://arxiv.org/pdf/1610.05559v1.pdf
https://arxiv.org/abs/1707.01694

98 Hurdle

Hurdle Hurdle Distributions

Description

Density and distribution functions for hurdle distributions.

Usage

dhurdle_poisson(x, lambda, hu, log = FALSE)

phurdle_poisson(q, lambda, hu, lower.tail = TRUE, log.p = FALSE)

dhurdle_negbinomial(x, mu, shape, hu, log = FALSE)

phurdle_negbinomial(q, mu, shape, hu, lower.tail = TRUE, log.p = FALSE)

dhurdle_gamma(x, shape, scale, hu, log = FALSE)

phurdle_gamma(q, shape, scale, hu, lower.tail = TRUE, log.p = FALSE)

dhurdle_lognormal(x, mu, sigma, hu, log = FALSE)

phurdle_lognormal(q, mu, sigma, hu, lower.tail = TRUE, log.p = FALSE)

Arguments

x Vector of quantiles.

hu hurdle probability

log Logical; If TRUE, values are returned on the log scale.

q Vector of quantiles.

lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .

log.p Logical; If TRUE, values are returned on the log scale.

mu, lambda location parameter

shape shape parameter

sigma, scale scale parameter

Details

The density of a hurdle distribution can be specified as follows. If x = 0 set f(x) = θ. Else set
f(x) = (1 − θ) ∗ g(x)/(1 −G(0)) where g(x) and G(x) are the density and distribution function
of the non-hurdle part, respectively.

hypothesis.brmsfit 99

hypothesis.brmsfit Non-Linear Hypothesis Testing

Description

Perform non-linear hypothesis testing for all model parameters.

Usage

S3 method for class 'brmsfit'
hypothesis(
x,
hypothesis,
class = "b",
group = "",
scope = c("standard", "ranef", "coef"),
alpha = 0.05,
seed = NULL,
...

)

hypothesis(x, ...)

Default S3 method:
hypothesis(x, hypothesis, alpha = 0.05, ...)

Arguments

x An R object. If it is no brmsfit object, it must be coercible to a data.frame.
In the latter case, the variables used in the hypothesis argument need to corre-
spond to column names of x, while the rows are treated as representing posterior
draws of the variables.

hypothesis A character vector specifying one or more non-linear hypothesis concerning
parameters of the model.

class A string specifying the class of parameters being tested. Default is "b" for
population-level effects. Other typical options are "sd" or "cor". If class =
NULL, all parameters can be tested against each other, but have to be specified
with their full name (see also parnames)

group Name of a grouping factor to evaluate only group-level effects parameters re-
lated to this grouping factor.

scope Indicates where to look for the variables specified in hypothesis. If "standard",
use the full parameter names (subject to the restriction given by class and
group). If "coef" or "ranef", compute the hypothesis for all levels of the
grouping factor given in "group", based on the output of coef.brmsfit and
ranef.brmsfit, respectively.

100 hypothesis.brmsfit

alpha The alpha-level of the tests (default is 0.05; see ’Details’ for more information).

seed A single numeric value passed to set.seed to make results reproducible.

... Currently ignored.

Details

Among others, hypothesis computes an evidence ratio (Evid.Ratio) for each hypothesis. For a
one-sided hypothesis, this is just the posterior probability (Post.Prob) under the hypothesis against
its alternative. That is, when the hypothesis is of the form a > b, the evidence ratio is the ratio of the
posterior probability of a > b and the posterior probability of a < b. In this example, values greater
than one indicate that the evidence in favor of a > b is larger than evidence in favor of a < b. For
an two-sided (point) hypothesis, the evidence ratio is a Bayes factor between the hypothesis and its
alternative computed via the Savage-Dickey density ratio method. That is the posterior density at
the point of interest divided by the prior density at that point. Values greater than one indicate that
evidence in favor of the point hypothesis has increased after seeing the data. In order to calculate
this Bayes factor, all parameters related to the hypothesis must have proper priors and argument
sample_prior of function brm must be set to "yes". Otherwise Evid.Ratio (and Post.Prob) will
be NA. Please note that, for technical reasons, we cannot sample from priors of certain parameters
classes. Most notably, these include overall intercept parameters (prior class "Intercept") as
well as group-level coefficients. When interpreting Bayes factors, make sure that your priors are
reasonable and carefully chosen, as the result will depend heavily on the priors. In particular, avoid
using default priors.

The Evid.Ratio may sometimes be 0 or Inf implying very small or large evidence, respectively, in
favor of the tested hypothesis. For one-sided hypotheses pairs, this basically means that all posterior
samples are on the same side of the value dividing the two hypotheses. In that sense, instead of 0 or
Inf, you may rather read it as Evid.Ratio smaller 1 / S or greater S, respectively, where S denotes
the number of posterior samples used in the computations.

The argument alpha specifies the size of the credible interval (i.e., Bayesian confidence interval).
For instance, if we tested a two-sided hypothesis and set alpha = 0.05 (5%) an, the credible interval
will contain 1 -alpha = 0.95 (95%) of the posterior values. Hence, alpha * 100% of the posterior
values will lie outside of the credible interval. Although this allows testing of hypotheses in a
similar manner as in the frequentist null-hypothesis testing framework, we strongly argue against
using arbitrary cutoffs (e.g., p < .05) to determine the ’existence’ of an effect.

Value

A brmshypothesis object.

Author(s)

Paul-Christian Buerkner <paul.buerkner@gmail.com>

See Also

brmshypothesis

inhaler 101

Examples

Not run:
define priors
prior <- c(set_prior("normal(0,2)", class = "b"),

set_prior("student_t(10,0,1)", class = "sigma"),
set_prior("student_t(10,0,1)", class = "sd"))

fit a linear mixed effects models
fit <- brm(time ~ age + sex + disease + (1 + age|patient),

data = kidney, family = lognormal(),
prior = prior, sample_prior = "yes",
control = list(adapt_delta = 0.95))

perform two-sided hypothesis testing
(hyp1 <- hypothesis(fit, "sexfemale = age + diseasePKD"))
plot(hyp1)
hypothesis(fit, "exp(age) - 3 = 0", alpha = 0.01)

perform one-sided hypothesis testing
hypothesis(fit, "diseasePKD + diseaseGN - 3 < 0")

hypothesis(fit, "age < Intercept",
class = "sd", group = "patient")

test the amount of random intercept variance on all variance
h <- paste("sd_patient__Intercept^2 / (sd_patient__Intercept^2 +",

"sd_patient__age^2 + sigma^2) = 0")
(hyp2 <- hypothesis(fit, h, class = NULL))
plot(hyp2)

test more than one hypothesis at once
h <- c("diseaseGN = diseaseAN", "2 * diseaseGN - diseasePKD = 0")
(hyp3 <- hypothesis(fit, h))
plot(hyp3, ignore_prior = TRUE)

compute hypotheses for all levels of a grouping factor
hypothesis(fit, "age = 0", scope = "coef", group = "patient")

use the default method
dat <- as.data.frame(fit)
str(dat)
hypothesis(dat, "b_age > 0")

End(Not run)

inhaler Clarity of inhaler instructions

102 inhaler

Description

Ezzet and Whitehead (1991) analyze data from a two-treatment, two-period crossover trial to com-
pare 2 inhalation devices for delivering the drug salbutamol in 286 asthma patients. Patients were
asked to rate the clarity of leaflet instructions accompanying each device, using a 4-point ordinal
scale.

Usage

inhaler

Format

A data frame of 572 observations containing information on the following 5 variables.

subject The subject number

rating The rating of the inhaler instructions on a scale ranging from 1 to 4

treat A contrast to indicate which of the two inhaler devices was used

period A contrast to indicate the time of administration

carry A contrast to indicate possible carry over effects

Source

Ezzet, F., & Whitehead, J. (1991). A random effects model for ordinal responses from a crossover
trial. Statistics in Medicine, 10(6), 901-907.

Examples

Not run:
ordinal regression with family "sratio"
fit1 <- brm(rating ~ treat + period + carry,

data = inhaler, family = sratio(),
prior = set_prior("normal(0,5)"))

summary(fit1)
plot(fit1)

ordinal regression with family "cumulative"
and random intercept over subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),

data = inhaler, family = cumulative(),
prior = set_prior("normal(0,5)"))

summary(fit2)
plot(fit2)

End(Not run)

InvGaussian 103

InvGaussian The Inverse Gaussian Distribution

Description

Density, distribution function, and random generation for the inverse Gaussian distribution with
location mu, and shape shape.

Usage

dinv_gaussian(x, mu = 1, shape = 1, log = FALSE)

pinv_gaussian(q, mu = 1, shape = 1, lower.tail = TRUE, log.p = FALSE)

rinv_gaussian(n, mu = 1, shape = 1)

Arguments

x, q Vector of quantiles.

mu Vector of locations.

shape Vector of shapes.

log Logical; If TRUE, values are returned on the log scale.

lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .

log.p Logical; If TRUE, values are returned on the log scale.

n Number of samples to draw from the distribution.

Details

See vignette("brms_families") for details on the parameterization.

inv_logit_scaled Scaled inverse logit-link

Description

Computes inv_logit(x) * (ub -lb) + lb

Usage

inv_logit_scaled(x, lb = 0, ub = 1)

104 is.brmsfit_multiple

Arguments

x A numeric or complex vector.

lb Lower bound defaulting to 0.

ub Upper bound defaulting to 1.

Value

A numeric or complex vector between lb and ub.

is.brmsfit Checks if argument is a brmsfit object

Description

Checks if argument is a brmsfit object

Usage

is.brmsfit(x)

Arguments

x An R object

is.brmsfit_multiple Checks if argument is a brmsfit_multiple object

Description

Checks if argument is a brmsfit_multiple object

Usage

is.brmsfit_multiple(x)

Arguments

x An R object

is.brmsformula 105

is.brmsformula Checks if argument is a brmsformula object

Description

Checks if argument is a brmsformula object

Usage

is.brmsformula(x)

Arguments

x An R object

is.brmsprior Checks if argument is a brmsprior object

Description

Checks if argument is a brmsprior object

Usage

is.brmsprior(x)

Arguments

x An R object

is.brmsterms Checks if argument is a brmsterms object

Description

Checks if argument is a brmsterms object

Usage

is.brmsterms(x)

Arguments

x An R object

See Also

brmsterms

106 is.mvbrmsformula

is.cor_brms Check if argument is a correlation structure

Description

Check if argument is one of the correlation structures used in brms.

Usage

is.cor_brms(x)

is.cor_arma(x)

is.cor_cosy(x)

is.cor_sar(x)

is.cor_car(x)

is.cor_fixed(x)

Arguments

x An R object.

is.mvbrmsformula Checks if argument is a mvbrmsformula object

Description

Checks if argument is a mvbrmsformula object

Usage

is.mvbrmsformula(x)

Arguments

x An R object

is.mvbrmsterms 107

is.mvbrmsterms Checks if argument is a mvbrmsterms object

Description

Checks if argument is a mvbrmsterms object

Usage

is.mvbrmsterms(x)

Arguments

x An R object

See Also

brmsterms

kfold.brmsfit K-Fold Cross-Validation

Description

Perform exact K-fold cross-validation by refitting the model K times each leaving out one-Kth of
the original data. Folds can be run in parallel using the future package.

Usage

S3 method for class 'brmsfit'
kfold(
x,
...,
K = 10,
Ksub = NULL,
folds = NULL,
group = NULL,
exact_loo = NULL,
compare = TRUE,
resp = NULL,
model_names = NULL,
save_fits = FALSE

)

108 kfold.brmsfit

Arguments

x A brmsfit object.

... More brmsfit objects or further arguments passed to the underlying post-processing
functions. In particular, see prepare_predictions for further supported argu-
ments.

K The number of subsets of equal (if possible) size into which the data will be
partitioned for performing K-fold cross-validation. The model is refit K times,
each time leaving out one of the K subsets. If K is equal to the total number
of observations in the data then K-fold cross-validation is equivalent to exact
leave-one-out cross-validation.

Ksub Optional number of subsets (of those subsets defined by K) to be evaluated. If
NULL (the default), K-fold cross-validation will be performed on all subsets.
If Ksub is a single integer, Ksub subsets (out of all K) subsets will be randomly
chosen. If Ksub consists of multiple integers or a one-dimensional array (created
via as.array) potentially of length one, the corresponding subsets will be used.
This argument is primarily useful, if evaluation of all subsets is infeasible for
some reason.

folds Determines how the subsets are being constructed. Possible values are NULL
(the default), "stratified", "grouped", or "loo". May also be a vector of
length equal to the number of observations in the data. Alters the way group is
handled. More information is provided in the ’Details’ section.

group Optional name of a grouping variable or factor in the model. What exactly
is done with this variable depends on argument folds. More information is
provided in the ’Details’ section.

exact_loo Deprecated! Please use folds = "loo" instead.

compare A flag indicating if the information criteria of the models should be compared
to each other via loo_compare.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

model_names If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.

save_fits If TRUE, a component fits is added to the returned object to store the cross-
validated brmsfit objects and the indices of the omitted observations for each
fold. Defaults to FALSE.

Details

The kfold function performs exact K-fold cross-validation. First the data are partitioned into K
folds (i.e. subsets) of equal (or as close to equal as possible) size by default. Then the model is refit
K times, each time leaving out one of the K subsets. IfK is equal to the total number of observations
in the data then K-fold cross-validation is equivalent to exact leave-one-out cross-validation (to
which loo is an efficient approximation). The compare_ic function is also compatible with the
objects returned by kfold.

The subsets can be constructed in multiple different ways:

kfold.brmsfit 109

• If both folds and group are NULL, the subsets are randomly chosen so that they have equal
(or as close to equal as possible) size.

• If folds is NULL but group is specified, the data is split up into subsets, each time omitting all
observations of one of the factor levels, while ignoring argument K.

• If folds = "stratified" the subsets are stratified after group using loo::kfold_split_stratified.

• If folds = "grouped" the subsets are split by group using loo::kfold_split_grouped.

• If folds = "loo" exact leave-one-out cross-validation will be performed and K will be ignored.
Further, if group is specified, all observations corresponding to the factor level of the currently
predicted single value are omitted. Thus, in this case, the predicted values are only a subset of
the omitted ones.

• If folds is a numeric vector, it must contain one element per observation in the data. Each
element of the vector is an integer in 1:K indicating to which of the K folds the corresponding
observation belongs. There are some convenience functions available in the loo package that
create integer vectors to use for this purpose (see the Examples section below and also the
kfold-helpers page).

Value

kfold returns an object that has a similar structure as the objects returned by the loo and waic
methods and can be used with the same post-processing functions.

See Also

loo, reloo

Examples

Not run:
fit1 <- brm(count ~ zAge + zBase * Trt + (1|patient) + (1|obs),

data = epilepsy, family = poisson())
throws warning about some pareto k estimates being too high
(loo1 <- loo(fit1))
perform 10-fold cross validation
(kfold1 <- kfold(fit1, chains = 1))

use the future package for parallelization
library(future)
plan(multiprocess)
kfold(fit1, chains = 1)

End(Not run)

110 kfold_predict

kfold_predict Predictions from K-Fold Cross-Validation

Description

Compute and evaluate predictions after performing K-fold cross-validation via kfold.

Usage

kfold_predict(x, method = c("predict", "fitted"), resp = NULL, ...)

Arguments

x Object of class 'kfold' computed by kfold. For kfold_predict to work, the
fitted model objects need to have been stored via argument save_fits of kfold.

method The method used to make predictions. Either "predict" or "fitted". See
predict.brmsfit for details.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

... Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

Value

A list with two slots named 'y' and 'yrep'. Slot y contains the vector of observed responses.
Slot yrep contains the matrix of predicted responses, with rows being posterior draws and columns
being observations.

See Also

kfold

Examples

Not run:
fit <- brm(count ~ zBase * Trt + (1|patient),

data = epilepsy, family = poisson())

perform k-fold cross validation
(kf <- kfold(fit, save_fits = TRUE, chains = 1))

define a loss function
rmse <- function(y, yrep) {

yrep_mean <- colMeans(yrep)
sqrt(mean((yrep_mean - y)^2))

}

predict responses and evaluate the loss

kidney 111

kfp <- kfold_predict(kf)
rmse(y = kfp$y, yrep = kfp$yrep)

End(Not run)

kidney Infections in kidney patients

Description

This dataset, originally discussed in McGilchrist and Aisbett (1991), describes the first and second
(possibly right censored) recurrence time of infection in kidney patients using portable dialysis
equipment. In addition, information on the risk variables age, sex and disease type is provided.

Usage

kidney

Format

A data frame of 76 observations containing information on the following 7 variables.

time The time to first or second recurrence of the infection, or the time of censoring

recur A factor of levels 1 or 2 indicating if the infection recurred for the first or second time for
this patient

censored Either 0 or 1, where 0 indicates no censoring of recurrence time and 1 indicates right
censoring

patient The patient number

age The age of the patient

sex The sex of the patient

disease A factor of levels other,GN,AN, and PKD specifying the type of disease

Source

McGilchrist, C. A., & Aisbett, C. W. (1991). Regression with frailty in survival analysis. Biomet-
rics, 47(2), 461-466.

Examples

Not run:
performing surivival analysis using the "weibull" family
fit1 <- brm(time | cens(censored) ~ age + sex + disease,

data = kidney, family = weibull, inits = "0")
summary(fit1)
plot(fit1)

112 lasso

adding random intercepts over patients
fit2 <- brm(time | cens(censored) ~ age + sex + disease + (1|patient),

data = kidney, family = weibull(), inits = "0",
prior = set_prior("cauchy(0,2)", class = "sd"))

summary(fit2)
plot(fit2)

End(Not run)

lasso Set up a lasso prior in brms

Description

Function used to set up a lasso prior for population-level effects in brms. The function does not
evaluate its arguments – it exists purely to help set up the model.

Usage

lasso(df = 1, scale = 1)

Arguments

df Degrees of freedom of the chi-square prior of the inverse tuning parameter. De-
faults to 1.

scale Scale of the lasso prior. Defaults to 1.

Details

The lasso prior is the Bayesian equivalent to the LASSO method for performing variable selection
(Park & Casella, 2008). With this prior, independent Laplace (i.e. double exponential) priors are
placed on the population-level effects. The scale of the Laplace priors depends on a tuning param-
eter that controls the amount of shrinkage. In brms, the inverse of the tuning parameter is used
so that smaller values imply more shrinkage. The inverse tuning parameter has a chi-square dis-
tribution and with degrees of freedom controlled via argument df of function lasso (defaults to
1). For instance, one can specify a lasso prior using set_prior("lasso(1)"). To make sure that
shrinkage can equally affect all coefficients, predictors should be one the same scale. If you do not
want to standardized all variables, you can adjust the general scale of the lasso prior via argument
scale, for instance, lasso(1,scale = 10).

Value

A character string obtained by match.call() with additional arguments.

References

Park, T., & Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical Associa-
tion, 103(482), 681-686.

launch_shinystan.brmsfit 113

See Also

set_prior

Examples

set_prior(lasso(df = 1, scale = 10))

launch_shinystan.brmsfit

Interface to shinystan

Description

Provide an interface to shinystan for models fitted with brms

Usage

S3 method for class 'brmsfit'
launch_shinystan(object, rstudio = getOption("shinystan.rstudio"), ...)

Arguments

object A fitted model object typically of class brmsfit.

rstudio Only relevant for RStudio users. The default (rstudio=FALSE) is to launch the
app in the default web browser rather than RStudio’s pop-up Viewer. Users can
change the default to TRUE by setting the global option
options(shinystan.rstudio = TRUE).

... Optional arguments to pass to runApp

Value

An S4 shinystan object

See Also

launch_shinystan

Examples

Not run:
fit <- brm(rating ~ treat + period + carry + (1|subject),

data = inhaler, family = "gaussian")
launch_shinystan(fit)

End(Not run)

114 logm1

logit_scaled Scaled logit-link

Description

Computes logit((x -lb) / (ub -lb))

Usage

logit_scaled(x, lb = 0, ub = 1)

Arguments

x A numeric or complex vector.

lb Lower bound defaulting to 0.

ub Upper bound defaulting to 1.

Value

A numeric or complex vector.

logm1 Logarithm with a minus one offset.

Description

Computes log(x -1).

Usage

logm1(x, base = exp(1))

Arguments

x A numeric or complex vector.

base A positive or complex number: the base with respect to which logarithms are
computed. Defaults to e = exp(1).

log_lik.brmsfit 115

log_lik.brmsfit Compute the Pointwise Log-Likelihood

Description

Compute the Pointwise Log-Likelihood

Usage

S3 method for class 'brmsfit'
log_lik(
object,
newdata = NULL,
re_formula = NULL,
resp = NULL,
nsamples = NULL,
subset = NULL,
pointwise = FALSE,
combine = TRUE,
add_point_estimate = FALSE,
cores = getOption("mc.cores", 1),
...

)

Arguments

object A fitted model object of class brmsfit.

newdata An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors are interpreted as if
all dummy variables of this factor are zero. This allows, for instance, to make
predictions of the grand mean when using sum coding.

re_formula formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA, include no group-level ef-
fects.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

nsamples Positive integer indicating how many posterior samples should be used. If NULL
(the default) all samples are used. Ignored if subset is not NULL.

subset A numeric vector specifying the posterior samples to be used. If NULL (the
default), all samples are used.

pointwise A flag indicating whether to compute the full log-likelihood matrix at once (the
default), or just return the likelihood function along with all data and samples
required to compute the log-likelihood separately for each observation. The
latter option is rarely useful when calling log_lik directly, but rather when
computing waic or loo.

116 loo.brmsfit

combine Only relevant in multivariate models. Indicates if the log-likelihoods of the sub-
models should be combined per observation (i.e. added together; the default) or
if the log-likelihoods should be returned separately.

add_point_estimate

For internal use only. Ensures compatibility with the loo_subsample method.

cores Number of cores (defaults to 1). Can be set globally via the mc.cores option.

... Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

Details

NA values within factors in newdata, are interpreted as if all dummy variables of this factor are zero.
This allows, for instance, to make predictions of the grand mean when using sum coding.

In multilevel models, it is possible to allow new levels of grouping factors to be used in the pre-
dictions. This can be controlled via argument allow_new_levels. New levels can be sampled
in multiple ways, which can be controlled via argument sample_new_levels. Both of these ar-
guments are documented in prepare_predictions along with several other useful arguments to
control specific aspects of the predictions.

Value

Usually, an S x N matrix containing the pointwise log-likelihood samples, where S is the number of
samples and N is the number of observations in the data. For multivariate models and if combine is
FALSE, an S x N x R array is returned, where R is the number of response variables. If pointwise
= TRUE, the output is a function with a draws attribute containing all relevant data and posterior
samples.

loo.brmsfit Efficient approximate leave-one-out cross-validation (LOO)

Description

Perform approximate leave-one-out cross-validation based on the posterior likelihood using the loo
package. For more details see loo.

Usage

S3 method for class 'brmsfit'
loo(
x,
...,
compare = TRUE,
resp = NULL,
pointwise = FALSE,
moment_match = FALSE,
reloo = FALSE,

loo.brmsfit 117

k_threshold = 0.7,
save_psis = FALSE,
moment_match_args = list(),
reloo_args = list(),
model_names = NULL

)

Arguments

x A brmsfit object.

... More brmsfit objects or further arguments passed to the underlying post-processing
functions. In particular, see prepare_predictions for further supported argu-
ments.

compare A flag indicating if the information criteria of the models should be compared
to each other via loo_compare.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

pointwise A flag indicating whether to compute the full log-likelihood matrix at once or
separately for each observation. The latter approach is usually considerably
slower but requires much less working memory. Accordingly, if one runs into
memory issues, pointwise = TRUE is the way to go.

moment_match Logical; Indicate whether loo_moment_match should be applied on problematic
observations. Defaults to FALSE.

reloo Logical; Indicate whether reloo should be applied on problematic observations.
Defaults to FALSE.

k_threshold The threshold at which pareto k estimates are treated as problematic. Defaults to
0.7. Only used if argument reloo is TRUE. See pareto_k_ids for more details.

save_psis Should the "psis" object created internally be saved in the returned object? For
more details see loo.

moment_match_args

Optional list of additional arguments passed to loo_moment_match.

reloo_args Optional list of additional arguments passed to reloo.

model_names If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.

Details

See loo_compare for details on model comparisons. For brmsfit objects, LOO is an alias of loo.
Use method add_criterion to store information criteria in the fitted model object for later usage.

Value

If just one object is provided, an object of class loo. If multiple objects are provided, an object of
class loolist.

118 loo_compare.brmsfit

References

Vehtari, A., Gelman, A., & Gabry J. (2016). Practical Bayesian model evaluation using leave-
one-out cross-validation and WAIC. In Statistics and Computing, doi:10.1007/s11222-016-9696-4.
arXiv preprint arXiv:1507.04544.

Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding predictive information criteria for
Bayesian models. Statistics and Computing, 24, 997-1016.

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable
information criterion in singular learning theory. The Journal of Machine Learning Research, 11,
3571-3594.

Examples

Not run:
model with population-level effects only
fit1 <- brm(rating ~ treat + period + carry,

data = inhaler)
(loo1 <- loo(fit1))

model with an additional varying intercept for subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),

data = inhaler)
(loo2 <- loo(fit2))

compare both models
loo_compare(loo1, loo2)

End(Not run)

loo_compare.brmsfit Model comparison with the loo package

Description

For more details see loo_compare.

Usage

S3 method for class 'brmsfit'
loo_compare(x, ..., criterion = c("loo", "waic", "kfold"), model_names = NULL)

Arguments

x A brmsfit object.
... More brmsfit objects.
criterion The name of the criterion to be extracted from brmsfit objects.
model_names If NULL (the default) will use model names derived from deparsing the call. Oth-

erwise will use the passed values as model names.

loo_model_weights.brmsfit 119

Details

All brmsfit objects should contain precomputed criterion objects. See add_criterion for more
help.

Value

An object of class "compare.loo".

Examples

Not run:
model with population-level effects only
fit1 <- brm(rating ~ treat + period + carry,

data = inhaler)
fit1 <- add_criterion(fit1, "waic")

model with an additional varying intercept for subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),

data = inhaler)
fit2 <- add_criterion(fit2, "waic")

compare both models
loo_compare(fit1, fit2, criterion = "waic")

End(Not run)

loo_model_weights.brmsfit

Model averaging via stacking or pseudo-BMA weighting.

Description

Compute model weights for brmsfit objects via stacking or pseudo-BMA weighting. For more
details, see loo::loo_model_weights.

Usage

S3 method for class 'brmsfit'
loo_model_weights(x, ..., model_names = NULL)

Arguments

x A brmsfit object.
... More brmsfit objects or further arguments passed to the underlying post-processing

functions. In particular, see prepare_predictions for further supported argu-
ments.

model_names If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.

120 loo_moment_match.brmsfit

Value

A named vector of model weights.

Examples

Not run:
model with population-level effects only
fit1 <- brm(rating ~ treat + period + carry,

data = inhaler, family = "gaussian")
model with an additional varying intercept for subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),

data = inhaler, family = "gaussian")
loo_model_weights(fit1, fit2)

End(Not run)

loo_moment_match.brmsfit

Moment matching for efficient approximate leave-one-out cross-
validation

Description

Moment matching for efficient approximate leave-one-out cross-validation (LOO-CV). See loo_moment_match
for more details.

Usage

S3 method for class 'brmsfit'
loo_moment_match(
x,
loo,
k_threshold = 0.7,
newdata = NULL,
resp = NULL,
check = TRUE,
...

)

Arguments

x An object of class brmsfit.

loo An object of class loo originally created from x.

k_threshold The threshold at which Pareto k estimates are treated as problematic. Defaults
to 0.7. See pareto_k_ids for more details.

loo_moment_match.brmsfit 121

newdata An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors are interpreted as if
all dummy variables of this factor are zero. This allows, for instance, to make
predictions of the grand mean when using sum coding.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

check Logical; If TRUE (the default), some checks check are performed if the loo object
was generated from the brmsfit object passed to argument fit.

... Further arguments passed to the underlying methods. Additional arguments ini-
tially passed to loo, for example, newdata or resp need to be passed again to
loo_moment_match in order for the latter to work correctly.

Details

The moment matching algorithm requires samples of all variables defined in Stan’s parameters
block to be saved. Otherwise loo_moment_match cannot be computed. Thus, please set save_pars
= save_pars(all = TRUE) in the call to brm, if you are planning to apply loo_moment_match to
your models.

Value

An updated object of class loo.

References

Paananen, T., Piironen, J., Buerkner, P.-C., Vehtari, A. (2021). Implicitly Adaptive Importance
Sampling. Statistics and Computing.

Examples

Not run:
fit1 <- brm(count ~ zAge + zBase * Trt + (1|patient),

data = epilepsy, family = poisson(),
save_pars = save_pars(all = TRUE))

throws warning about some pareto k estimates being too high
(loo1 <- loo(fit1))
(mmloo1 <- loo_moment_match(fit1, loo = loo1))

End(Not run)

122 loo_predict.brmsfit

loo_predict.brmsfit Compute Weighted Expectations Using LOO

Description

These functions are wrappers around the E_loo function of the loo package.

Usage

S3 method for class 'brmsfit'
loo_predict(
object,
type = c("mean", "var", "quantile"),
probs = 0.5,
psis_object = NULL,
resp = NULL,
...

)

S3 method for class 'brmsfit'
loo_linpred(
object,
type = c("mean", "var", "quantile"),
probs = 0.5,
psis_object = NULL,
resp = NULL,
...

)

S3 method for class 'brmsfit'
loo_predictive_interval(object, prob = 0.9, psis_object = NULL, ...)

Arguments

object An object of class brmsfit.
type The statistic to be computed on the results. Can by either "mean" (default),

"var", or "quantile".
probs A vector of quantiles to compute. Only used if type = quantile.
psis_object An optional object returned by psis. If psis_object is missing then psis is

executed internally, which may be time consuming for models fit to very large
datasets.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

... Optional arguments passed to the underlying methods that is log_lik, as well
as posterior_predict or posterior_linpred.

prob For loo_predictive_interval, a scalar in (0, 1) indicating the desired proba-
bility mass to include in the intervals. The default is prob = 0.9 (90% intervals).

loo_R2.brmsfit 123

Value

loo_predict and loo_linpred return a vector with one element per observation. The only excep-
tion is if type = "quantile" and length(probs) >= 2, in which case a separate vector for each
element of probs is computed and they are returned in a matrix with length(probs) rows and one
column per observation.

loo_predictive_interval returns a matrix with one row per observation and two columns. loo_predictive_interval(...,prob
= p) is equivalent to loo_predict(...,type = "quantile",probs = c(a,1-a)) with a = (1 -p)/2,
except it transposes the result and adds informative column names.

Examples

Not run:
data from help("lm")
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
d <- data.frame(

weight = c(ctl, trt),
group = gl(2, 10, 20, labels = c("Ctl", "Trt"))

)
fit <- brm(weight ~ group, data = d)
loo_predictive_interval(fit, prob = 0.8)

optionally log-weights can be pre-computed and reused
psis <- loo::psis(-log_lik(fit), cores = 2)
loo_predictive_interval(fit, prob = 0.8, psis_object = psis)
loo_predict(fit, type = "var", psis_object = psis)

End(Not run)

loo_R2.brmsfit Compute a LOO-adjusted R-squared for regression models

Description

Compute a LOO-adjusted R-squared for regression models

Usage

S3 method for class 'brmsfit'
loo_R2(
object,
resp = NULL,
summary = TRUE,
robust = FALSE,
probs = c(0.025, 0.975),
...

)

124 loo_subsample.brmsfit

Arguments

object An object of class brmsfit.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

summary Should summary statistics be returned instead of the raw values? Default is
TRUE.

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

... Further arguments passed to posterior_epred and log_lik, which are used in
the computation of the R-squared values.

Value

If summary = TRUE, an M x C matrix is returned (M = number of response variables and c =
length(probs) + 2) containing summary statistics of the LOO-adjusted R-squared values. If summary
= FALSE, the posterior samples of the LOO-adjusted R-squared values are returned in an S x M ma-
trix (S is the number of samples).

Examples

Not run:
fit <- brm(mpg ~ wt + cyl, data = mtcars)
summary(fit)
loo_R2(fit)

compute R2 with new data
nd <- data.frame(mpg = c(10, 20, 30), wt = c(4, 3, 2), cyl = c(8, 6, 4))
loo_R2(fit, newdata = nd)

End(Not run)

loo_subsample.brmsfit Efficient approximate leave-one-out cross-validation (LOO) using
subsampling

Description

Efficient approximate leave-one-out cross-validation (LOO) using subsampling

loss 125

Usage

S3 method for class 'brmsfit'
loo_subsample(x, ..., compare = TRUE, resp = NULL, model_names = NULL)

Arguments

x A brmsfit object.

... More brmsfit objects or further arguments passed to the underlying post-processing
functions. In particular, see prepare_predictions for further supported argu-
ments.

compare A flag indicating if the information criteria of the models should be compared
to each other via loo_compare.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

model_names If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.

Details

More details can be found on loo_subsample.

Examples

Not run:
model with population-level effects only
fit1 <- brm(rating ~ treat + period + carry,

data = inhaler)
(loo1 <- loo_subsample(fit1))

model with an additional varying intercept for subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),

data = inhaler)
(loo2 <- loo_subsample(fit2))

compare both models
loo_compare(loo1, loo2)

End(Not run)

loss Cumulative Insurance Loss Payments

Description

This dataset, discussed in Gesmann & Morris (2020), contains cumulative insurance loss payments
over the course of ten years.

126 loss

Usage

loss

Format

A data frame of 55 observations containing information on the following 4 variables.

AY Origin year of the insurance (1991 to 2000)

dev Deviation from the origin year in months

cum Cumulative loss payments

premium Achieved premiums for the given origin year

Source

Gesmann M. & Morris J. (2020). Hierarchical Compartmental Reserving Models. CAS Research
Papers.

Examples

Not run:
non-linear model to predict cumulative loss payments
fit_loss <- brm(

bf(cum ~ ult * (1 - exp(-(dev/theta)^omega)),
ult ~ 1 + (1|AY), omega ~ 1, theta ~ 1,
nl = TRUE),

data = loss, family = gaussian(),
prior = c(
prior(normal(5000, 1000), nlpar = "ult"),
prior(normal(1, 2), nlpar = "omega"),
prior(normal(45, 10), nlpar = "theta")

),
control = list(adapt_delta = 0.9)

)

basic summaries
summary(fit_loss)
conditional_effects(fit_loss)

plot predictions per origin year
conditions <- data.frame(AY = unique(loss$AY))
rownames(conditions) <- unique(loss$AY)
me_loss <- conditional_effects(

fit_loss, conditions = conditions,
re_formula = NULL, method = "predict"

)
plot(me_loss, ncol = 5, points = TRUE)

End(Not run)

ma 127

ma Set up MA(q) correlation structures

Description

Set up a moving average (MA) term of order q in brms. The function does not evaluate its argu-
ments – it exists purely to help set up a model with MA terms.

Usage

ma(time = NA, gr = NA, q = 1, cov = FALSE)

Arguments

time An optional time variable specifying the time ordering of the observations. By
default, the existing order of the observations in the data is used.

gr An optional grouping variable. If specified, the correlation structure is assumed
to apply only to observations within the same grouping level.

q A non-negative integer specifying the moving average (MA) order of the ARMA
structure. Default is 1.

cov A flag indicating whether ARMA effects should be estimated by means of resid-
ual covariance matrices. This is currently only possible for stationary ARMA
effects of order 1. If the model family does not have natural residuals, latent
residuals are added automatically. If FALSE (the default), a regression formu-
lation is used that is considerably faster and allows for ARMA effects of order
higher than 1 but is only available for gaussian models and some of its gener-
alizations.

Value

An object of class 'arma_term', which is a list of arguments to be interpreted by the formula
parsing functions of brms.

See Also

autocor-terms, arma, ar

Examples

Not run:
data("LakeHuron")
LakeHuron <- as.data.frame(LakeHuron)
fit <- brm(x ~ ma(p = 2), data = LakeHuron)
summary(fit)

End(Not run)

128 make_conditions

make_conditions Prepare Fully Crossed Conditions

Description

This is a helper function to prepare fully crossed conditions primarily for use with the conditions
argument of conditional_effects. Automatically creates labels for each row in the cond__ col-
umn.

Usage

make_conditions(x, vars, ...)

Arguments

x An R object from which to extract the variables that should be part of the con-
ditions.

vars Names of the variables that should be part of the conditions.

... Arguments passed to rows2labels.

Details

For factor like variables, all levels are used as conditions. For numeric variables, mean + (-1:1) *
SD are used as conditions.

Value

A data.frame where each row indicates a condition.

See Also

conditional_effects, rows2labels

Examples

df <- data.frame(x = c("a", "b"), y = rnorm(10))
make_conditions(df, vars = c("x", "y"))

make_stancode 129

make_stancode Stan Code for brms Models

Description

Generate Stan code for brms models

Usage

make_stancode(
formula,
data,
family = gaussian(),
prior = NULL,
autocor = NULL,
data2 = NULL,
cov_ranef = NULL,
sparse = NULL,
sample_prior = "no",
stanvars = NULL,
stan_funs = NULL,
knots = NULL,
threads = NULL,
normalize = getOption("brms.normalize", TRUE),
save_model = NULL,
...

)

Arguments

formula An object of class formula, brmsformula, or mvbrmsformula (or one that can
be coerced to that classes): A symbolic description of the model to be fitted.
The details of model specification are explained in brmsformula.

data An object of class data.frame (or one that can be coerced to that class) con-
taining data of all variables used in the model.

family A description of the response distribution and link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a link argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details of supported families see brmsfamily. By
default, a linear gaussian model is applied. In multivariate models, family
might also be a list of families.

prior One or more brmsprior objects created by set_prior or related functions and
combined using the c method or the + operator. See also get_prior for more
help.

130 make_stancode

autocor (Deprecated) An optional cor_brms object describing the correlation structure
within the response variable (i.e., the ’autocorrelation’). See the documentation
of cor_brms for a description of the available correlation structures. Defaults to
NULL, corresponding to no correlations. In multivariate models, autocor might
also be a list of autocorrelation structures. It is now recommend to specify auto-
correlation terms directly within formula. See brmsformula for more details.

data2 A named list of objects containing data, which cannot be passed via argument
data. Required for some objects used in autocorrelation structures to specify
dependency structures as well as for within-group covariance matrices.

cov_ranef (Deprecated) A list of matrices that are proportional to the (within) covariance
structure of the group-level effects. The names of the matrices should corre-
spond to columns in data that are used as grouping factors. All levels of the
grouping factor should appear as rownames of the corresponding matrix. This
argument can be used, among others to model pedigrees and phylogenetic ef-
fects. It is now recommended to specify those matrices in the formula interface
using the gr and related functions. See vignette("brms_phylogenetics")
for more details.

sparse (Deprecated) Logical; indicates whether the population-level design matrices
should be treated as sparse (defaults to FALSE). For design matrices with many
zeros, this can considerably reduce required memory. Sampling speed is cur-
rently not improved or even slightly decreased. It is now recommended to use
the sparse argument of brmsformula and related functions.

sample_prior Indicate if samples from priors should be drawn additionally to the posterior
samples. Options are "no" (the default), "yes", and "only". Among others,
these samples can be used to calculate Bayes factors for point hypotheses via
hypothesis. Please note that improper priors are not sampled, including the
default improper priors used by brm. See set_prior on how to set (proper) pri-
ors. Please also note that prior samples for the overall intercept are not obtained
by default for technical reasons. See brmsformula how to obtain prior samples
for the intercept. If sample_prior is set to "only", samples are drawn solely
from the priors ignoring the likelihood, which allows among others to generate
samples from the prior predictive distribution. In this case, all parameters must
have proper priors.

stanvars An optional stanvars object generated by function stanvar to define additional
variables for use in Stan’s program blocks.

stan_funs (Deprecated) An optional character string containing self-defined Stan func-
tions, which will be included in the functions block of the generated Stan code.
It is now recommended to use the stanvars argument for this purpose instead.

knots Optional list containing user specified knot values to be used for basis construc-
tion of smoothing terms. See gamm for more details.

threads Number of threads to use in within-chain parallelization. For more control over
the threading process, threads may also be a brmsthreads object created by
threading. Within-chain parallelization is experimental! We recommend its
use only if you are experienced with Stan’s reduce_sum function and have a
slow running model that cannot be sped up by any other means.

make_standata 131

normalize Logical. Indicates whether normalization constants should be included in the
Stan code (defaults to TRUE). Setting it to FALSE requires Stan version >= 2.25 to
work. If FALSE, sampling efficiency may be increased but some post processing
functions such as bridge_sampler will not be available. Can be controlled
globally for the current R session via the ‘brms.normalize‘ option.

save_model Either NULL or a character string. In the latter case, the model’s Stan code is
saved via cat in a text file named after the string supplied in save_model.

... Other arguments for internal usage only.

Value

A character string containing the fully commented Stan code to fit a brms model.

Examples

make_stancode(rating ~ treat + period + carry + (1|subject),
data = inhaler, family = "cumulative")

make_stancode(count ~ zAge + zBase * Trt + (1|patient),
data = epilepsy, family = "poisson")

make_standata Data for brms Models

Description

Generate data for brms models to be passed to Stan

Usage

make_standata(
formula,
data,
family = gaussian(),
prior = NULL,
autocor = NULL,
data2 = NULL,
cov_ranef = NULL,
sample_prior = "no",
stanvars = NULL,
threads = NULL,
knots = NULL,
...

)

132 make_standata

Arguments

formula An object of class formula, brmsformula, or mvbrmsformula (or one that can
be coerced to that classes): A symbolic description of the model to be fitted.
The details of model specification are explained in brmsformula.

data An object of class data.frame (or one that can be coerced to that class) con-
taining data of all variables used in the model.

family A description of the response distribution and link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a link argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details of supported families see brmsfamily. By
default, a linear gaussian model is applied. In multivariate models, family
might also be a list of families.

prior One or more brmsprior objects created by set_prior or related functions and
combined using the c method or the + operator. See also get_prior for more
help.

autocor (Deprecated) An optional cor_brms object describing the correlation structure
within the response variable (i.e., the ’autocorrelation’). See the documentation
of cor_brms for a description of the available correlation structures. Defaults to
NULL, corresponding to no correlations. In multivariate models, autocor might
also be a list of autocorrelation structures. It is now recommend to specify auto-
correlation terms directly within formula. See brmsformula for more details.

data2 A named list of objects containing data, which cannot be passed via argument
data. Required for some objects used in autocorrelation structures to specify
dependency structures as well as for within-group covariance matrices.

cov_ranef (Deprecated) A list of matrices that are proportional to the (within) covariance
structure of the group-level effects. The names of the matrices should corre-
spond to columns in data that are used as grouping factors. All levels of the
grouping factor should appear as rownames of the corresponding matrix. This
argument can be used, among others to model pedigrees and phylogenetic ef-
fects. It is now recommended to specify those matrices in the formula interface
using the gr and related functions. See vignette("brms_phylogenetics")
for more details.

sample_prior Indicate if samples from priors should be drawn additionally to the posterior
samples. Options are "no" (the default), "yes", and "only". Among others,
these samples can be used to calculate Bayes factors for point hypotheses via
hypothesis. Please note that improper priors are not sampled, including the
default improper priors used by brm. See set_prior on how to set (proper) pri-
ors. Please also note that prior samples for the overall intercept are not obtained
by default for technical reasons. See brmsformula how to obtain prior samples
for the intercept. If sample_prior is set to "only", samples are drawn solely
from the priors ignoring the likelihood, which allows among others to generate
samples from the prior predictive distribution. In this case, all parameters must
have proper priors.

stanvars An optional stanvars object generated by function stanvar to define additional
variables for use in Stan’s program blocks.

mcmc_plot.brmsfit 133

threads Number of threads to use in within-chain parallelization. For more control over
the threading process, threads may also be a brmsthreads object created by
threading. Within-chain parallelization is experimental! We recommend its
use only if you are experienced with Stan’s reduce_sum function and have a
slow running model that cannot be sped up by any other means.

knots Optional list containing user specified knot values to be used for basis construc-
tion of smoothing terms. See gamm for more details.

... Other arguments for internal use.

Value

A named list of objects containing the required data to fit a brms model with Stan.

Author(s)

Paul-Christian Buerkner <paul.buerkner@gmail.com>

Examples

sdata1 <- make_standata(rating ~ treat + period + carry + (1|subject),
data = inhaler, family = "cumulative")

str(sdata1)

sdata2 <- make_standata(count ~ zAge + zBase * Trt + (1|patient),
data = epilepsy, family = "poisson")

str(sdata2)

mcmc_plot.brmsfit MCMC Plots Implemented in bayesplot

Description

Convenient way to call MCMC plotting functions implemented in the bayesplot package.

Usage

S3 method for class 'brmsfit'
mcmc_plot(
object,
pars = NA,
type = "intervals",
fixed = FALSE,
exact_match = FALSE,
...

)

mcmc_plot(object, ...)

134 mcmc_plot.brmsfit

Arguments

object An R object typically of class brmsfit
pars Names of parameters to be plotted, as given by a character vector or regular ex-

pressions. By default, all parameters except for group-level and smooth effects
are plotted. May be ignored for some plots.

type The type of the plot. Supported types are (as names) hist, dens, hist_by_chain,
dens_overlay, violin, intervals, areas, acf, acf_bar,trace, trace_highlight,
scatter, rhat, rhat_hist, neff, neff_hist nuts_acceptance, nuts_divergence,
nuts_stepsize, nuts_treedepth, and nuts_energy. For an overview on the
various plot types see MCMC-overview.

fixed Indicates whether parameter names should be matched exactly (TRUE) or treated
as regular expressions (FALSE). Default is FALSE.

exact_match Deprecated alias of argument fixed.
... Additional arguments passed to the plotting functions. See MCMC-overview for

more details.

Details

Also consider using the shinystan package available via method launch_shinystan in brms for
flexible and interactive visual analysis.

Value

A ggplot object that can be further customized using the ggplot2 package.

Examples

Not run:
model <- brm(count ~ zAge + zBase * Trt + (1|patient),

data = epilepsy, family = "poisson")

plot posterior intervals
mcmc_plot(model)

only show population-level effects in the plots
mcmc_plot(model, pars = "^b_")

show histograms of the posterior distributions
mcmc_plot(model, type = "hist")

plot some diagnostics of the sampler
mcmc_plot(model, type = "neff")
mcmc_plot(model, type = "rhat")

plot some diagnostics specific to the NUTS sampler
mcmc_plot(model, type = "nuts_acceptance")
mcmc_plot(model, type = "nuts_divergence")

End(Not run)

me 135

me Predictors with Measurement Error in brms Models

Description

Specify predictors with measurement error. The function does not evaluate its arguments – it exists
purely to help set up a model.

Usage

me(x, sdx, gr = NULL)

Arguments

x The variable measured with error.

sdx Known measurement error of x treated as standard deviation.

gr Optional grouping factor to specify which values of x correspond to the same
value of the latent variable. If NULL (the default) each observation will have its
own value of the latent variable.

Details

For detailed documentation see help(brmsformula).

By default, latent noise-free variables are assumed to be correlated. To change that, add set_mecor(FALSE)
to your model formula object (see examples).

See Also

brmsformula, brmsformula-helpers

Examples

Not run:
sample some data
N <- 100
dat <- data.frame(

y = rnorm(N), x1 = rnorm(N),
x2 = rnorm(N), sdx = abs(rnorm(N, 1))
)

fit a simple error-in-variables model
fit1 <- brm(y ~ me(x1, sdx) + me(x2, sdx), data = dat,

save_mevars = TRUE)
summary(fit1)

turn off modeling of correlations
bform <- bf(y ~ me(x1, sdx) + me(x2, sdx)) + set_mecor(FALSE)
fit2 <- brm(bform, data = dat, save_mevars = TRUE)
summary(fit2)

136 mi

End(Not run)

mi Predictors with Missing Values in brms Models

Description

Specify predictor term with missing values in brms. The function does not evaluate its arguments
– it exists purely to help set up a model.

Usage

mi(x)

Arguments

x The variable containing missings.

Details

For detailed documentation see help(brmsformula).

See Also

brmsformula

Examples

Not run:
data("nhanes", package = "mice")
bform <- bf(bmi | mi() ~ age * mi(chl)) +

bf(chl | mi() ~ age) + set_rescor(FALSE)
fit <- brm(bform, data = nhanes)
summary(fit)
plot(conditional_effects(fit, resp = "bmi"), ask = FALSE)
LOO(fit, newdata = na.omit(fit$data))

End(Not run)

mixture 137

mixture Finite Mixture Families in brms

Description

Set up a finite mixture family for use in brms.

Usage

mixture(..., flist = NULL, nmix = 1, order = NULL)

Arguments

... One or more objects providing a description of the response distributions to be
combined in the mixture model. These can be family functions, calls to fam-
ily functions or character strings naming the families. For details of supported
families see brmsfamily.

flist Optional list of objects, which are treated in the same way as objects passed via
the ... argument.

nmix Optional numeric vector specifying the number of times each family is repeated.
If specified, it must have the same length as the number of families passed via
... and flist.

order Ordering constraint to identify mixture components. If 'mu' or TRUE, population-
level intercepts of the mean parameters are ordered in non-ordinal models and
fixed to the same value in ordinal models (see details). If 'none' or FALSE, no
ordering constraint is applied. If NULL (the default), order is set to 'mu' if all
families are the same and 'none' otherwise. Other ordering constraints may be
implemented in the future.

Details

Most families supported by brms can be used to form mixtures. The response variable has to be
valid for all components of the mixture family. Currently, the number of mixture components has to
be specified by the user. It is not yet possible to estimate the number of mixture components from
the data.

Ordering intercepts in mixtures of ordinal families is not possible as each family has itself a set of
vector of intercepts (i.e. ordinal thresholds). Instead, brms will fix the vector of intercepts across
components in ordinal mixtures, if desired, so that users can try to identify the mixture model via
selective inclusion of predictors.

For most mixture models, you may want to specify priors on the population-level intercepts via
set_prior to improve convergence. In addition, it is sometimes necessary to set inits = 0 in the
call to brm to allow chains to initialize properly.

For more details on the specification of mixture models, see brmsformula.

138 mixture

Value

An object of class mixfamily.

Examples

Not run:
simulate some data
set.seed(1234)
dat <- data.frame(

y = c(rnorm(200), rnorm(100, 6)),
x = rnorm(300),
z = sample(0:1, 300, TRUE)

)

fit a simple normal mixture model
mix <- mixture(gaussian, gaussian)
prior <- c(

prior(normal(0, 7), Intercept, dpar = mu1),
prior(normal(5, 7), Intercept, dpar = mu2)

)
fit1 <- brm(bf(y ~ x + z), dat, family = mix,

prior = prior, chains = 2)
summary(fit1)
pp_check(fit1)

use different predictors for the components
fit2 <- brm(bf(y ~ 1, mu1 ~ x, mu2 ~ z), dat, family = mix,

prior = prior, chains = 2)
summary(fit2)

fix the mixing proportions
fit3 <- brm(bf(y ~ x + z, theta1 = 1, theta2 = 2),

dat, family = mix, prior = prior,
inits = 0, chains = 2)

summary(fit3)
pp_check(fit3)

predict the mixing proportions
fit4 <- brm(bf(y ~ x + z, theta2 ~ x),

dat, family = mix, prior = prior,
inits = 0, chains = 2)

summary(fit4)
pp_check(fit4)

compare model fit
LOO(fit1, fit2, fit3, fit4)

End(Not run)

mm 139

mm Set up multi-membership grouping terms in brms

Description

Function to set up a multi-membership grouping term in brms. The function does not evaluate its
arguments – it exists purely to help set up a model with grouping terms.

Usage

mm(
...,
weights = NULL,
scale = TRUE,
by = NULL,
cor = TRUE,
id = NA,
cov = NULL,
dist = "gaussian"

)

Arguments

... One or more terms containing grouping factors.

weights A matrix specifying the weights of each member. It should have as many
columns as grouping terms specified in If NULL (the default), equally
weights are used.

scale Logical; if TRUE (the default), weights are standardized in order to sum to one
per row. If negative weights are specified, scale needs to be set to FALSE.

by An optional factor matrix, specifying sub-populations of the groups. It should
have as many columns as grouping terms specified in For each level of the
by variable, a separate variance-covariance matrix will be fitted. Levels of the
grouping factor must be nested in levels of the by variable matrix.

cor Logical. If TRUE (the default), group-level terms will be modelled as correlated.

id Optional character string. All group-level terms across the model with the same
id will be modeled as correlated (if cor is TRUE). See brmsformula for more
details.

cov An optional matrix which is proportional to the withon-group covariance matrix
of the group-level effects. All levels of the grouping factor should appear as row-
names of the corresponding matrix. This argument can be used, among others, to
model pedigrees and phylogenetic effects. See vignette("brms_phylogenetics")
for more details. By default, levels of the same grouping factor are modeled as
independent of each other.

dist Name of the distribution of the group-level effects. Currently "gaussian" is the
only option.

140 mmc

See Also

brmsformula, mmc

Examples

Not run:
simulate some data
dat <- data.frame(
y = rnorm(100), x1 = rnorm(100), x2 = rnorm(100),
g1 = sample(1:10, 100, TRUE), g2 = sample(1:10, 100, TRUE)

)

multi-membership model with two members per group and equal weights
fit1 <- brm(y ~ x1 + (1|mm(g1, g2)), data = dat)
summary(fit1)

weight the first member two times for than the second member
dat$w1 <- rep(2, 100)
dat$w2 <- rep(1, 100)
fit2 <- brm(y ~ x1 + (1|mm(g1, g2, weights = cbind(w1, w2))), data = dat)
summary(fit2)

multi-membership model with level specific covariate values
dat$xc <- (dat$x1 + dat$x2) / 2
fit3 <- brm(y ~ xc + (1 + mmc(x1, x2) | mm(g1, g2)), data = dat)
summary(fit3)

End(Not run)

mmc Multi-Membership Covariates

Description

Specify covariates that vary over different levels of multi-membership grouping factors thus requir-
ing special treatment. This function is almost solely useful, when called in combination with mm.
Outside of multi-membership terms it will behave very much like cbind.

Usage

mmc(...)

Arguments

... One or more terms containing covariates corresponding to the grouping levels
specified in mm.

mo 141

Value

A matrix with covariates as columns.

See Also

mm

Examples

Not run:
simulate some data
dat <- data.frame(

y = rnorm(100), x1 = rnorm(100), x2 = rnorm(100),
g1 = sample(1:10, 100, TRUE), g2 = sample(1:10, 100, TRUE)

)

multi-membership model with level specific covariate values
dat$xc <- (dat$x1 + dat$x2) / 2
fit <- brm(y ~ xc + (1 + mmc(x1, x2) | mm(g1, g2)), data = dat)
summary(fit)

End(Not run)

mo Monotonic Predictors in brms Models

Description

Specify a monotonic predictor term in brms. The function does not evaluate its arguments – it
exists purely to help set up a model.

Usage

mo(x, id = NA)

Arguments

x An integer variable or an ordered factor to be modeled as monotonic.

id Optional character string. All monotonic terms with the same id within one
formula will be modeled as having the same simplex (shape) parameter vector.
If all monotonic terms of the same predictor have the same id, the resulting pre-
dictions will be conditionally monotonic for all values of interacting covariates
(Bürkner & Charpentier, 2020).

Details

See Bürkner and Charpentier (2020) for the underlying theory. For detailed documentation of the
formula syntax used for monotonic terms, see help(brmsformula) as well as vignette("brms_monotonic").

142 model_weights.brmsfit

References

Bürkner P. C. & Charpentier E. (2020). Modeling Monotonic Effects of Ordinal Predictors in Re-
gression Models. British Journal of Mathematical and Statistical Psychology. doi:10.1111/bmsp.12195

See Also

brmsformula

Examples

Not run:
generate some data
income_options <- c("below_20", "20_to_40", "40_to_100", "greater_100")
income <- factor(sample(income_options, 100, TRUE),

levels = income_options, ordered = TRUE)
mean_ls <- c(30, 60, 70, 75)
ls <- mean_ls[income] + rnorm(100, sd = 7)
dat <- data.frame(income, ls)

fit a simple monotonic model
fit1 <- brm(ls ~ mo(income), data = dat)
summary(fit1)
plot(fit1, N = 6)
plot(conditional_effects(fit1), points = TRUE)

model interaction with other variables
dat$x <- sample(c("a", "b", "c"), 100, TRUE)
fit2 <- brm(ls ~ mo(income)*x, data = dat)
summary(fit2)
plot(conditional_effects(fit2), points = TRUE)

ensure conditional monotonicity
fit3 <- brm(ls ~ mo(income, id = "i")*x, data = dat)
summary(fit3)
plot(conditional_effects(fit3), points = TRUE)

End(Not run)

model_weights.brmsfit Model Weighting Methods

Description

Compute model weights in various ways, for instance, via stacking of posterior predictive distribu-
tions, Akaike weights, or marginal likelihoods.

model_weights.brmsfit 143

Usage

S3 method for class 'brmsfit'
model_weights(x, ..., weights = "stacking", model_names = NULL)

model_weights(x, ...)

Arguments

x A brmsfit object.

... More brmsfit objects or further arguments passed to the underlying post-processing
functions. In particular, see prepare_predictions for further supported argu-
ments.

weights Name of the criterion to compute weights from. Should be one of "loo",
"waic", "kfold", "stacking" (current default), or "bma", "pseudobma", For
the former three options, Akaike weights will be computed based on the infor-
mation criterion values returned by the respective methods. For "stacking" and
"pseudobma", method loo_model_weights will be used to obtain weights. For
"bma", method post_prob will be used to compute Bayesian model averaging
weights based on log marginal likelihood values (make sure to specify reason-
able priors in this case). For some methods, weights may also be a numeric
vector of pre-specified weights.

model_names If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.

Value

A numeric vector of weights for the models.

Examples

Not run:
model with 'treat' as predictor
fit1 <- brm(rating ~ treat + period + carry, data = inhaler)
summary(fit1)

model without 'treat' as predictor
fit2 <- brm(rating ~ period + carry, data = inhaler)
summary(fit2)

obtain Akaike weights based on the WAIC
model_weights(fit1, fit2, weights = "waic")

End(Not run)

144 MultiStudentT

MultiNormal The Multivariate Normal Distribution

Description

Density function and random generation for the multivariate normal distribution with mean vector
mu and covariance matrix Sigma.

Usage

dmulti_normal(x, mu, Sigma, log = FALSE, check = FALSE)

rmulti_normal(n, mu, Sigma, check = FALSE)

Arguments

x Vector or matrix of quantiles. If x is a matrix, each row is taken to be a quantile.

mu Mean vector with length equal to the number of dimensions.

Sigma Covariance matrix.

log Logical; If TRUE, values are returned on the log scale.

check Logical; Indicates whether several input checks should be performed. Defaults
to FALSE to improve efficiency.

n Number of samples to draw from the distribution.

Details

See the Stan user’s manual https://mc-stan.org/documentation/ for details on the parameter-
ization

MultiStudentT The Multivariate Student-t Distribution

Description

Density function and random generation for the multivariate Student-t distribution with location
vector mu, covariance matrix Sigma, and degrees of freedom df.

Usage

dmulti_student_t(x, df, mu, Sigma, log = FALSE, check = FALSE)

rmulti_student_t(n, df, mu, Sigma, check = FALSE)

https://mc-stan.org/documentation/

mvbind 145

Arguments

x Vector or matrix of quantiles. If x is a matrix, each row is taken to be a quantile.

df Vector of degrees of freedom.

mu Location vector with length equal to the number of dimensions.

Sigma Covariance matrix.

log Logical; If TRUE, values are returned on the log scale.

check Logical; Indicates whether several input checks should be performed. Defaults
to FALSE to improve efficiency.

n Number of samples to draw from the distribution.

Details

See the Stan user’s manual https://mc-stan.org/documentation/ for details on the parameter-
ization

mvbind Bind response variables in multivariate models

Description

Can be used to specify a multivariate brms model within a single formula. Outside of brmsformula,
it just behaves like cbind.

Usage

mvbind(...)

Arguments

... Same as in cbind

See Also

brmsformula, mvbrmsformula

Examples

bf(mvbind(y1, y2) ~ x)

https://mc-stan.org/documentation/

146 mvbrmsformula

mvbrmsformula Set up a multivariate model formula for use in brms

Description

Set up a multivariate model formula for use in the brms package allowing to define (potentially
non-linear) additive multilevel models for all parameters of the assumed response distributions.

Usage

mvbrmsformula(..., flist = NULL, rescor = NULL)

Arguments

... Objects of class formula or brmsformula, each specifying a univariate model.
See brmsformula for details on how to specify univariate models.

flist Optional list of formulas, which are treated in the same way as formulas passed
via the ... argument.

rescor Logical; Indicates if residual correlation between the response variables should
be modeled. Currently, this is only possible in multivariate gaussian and student
models. If NULL (the default), rescor is internally set to TRUE when possible.

Details

See vignette("brms_multivariate") for a case study.

Value

An object of class mvbrmsformula, which is essentially a list containing all model formulas as
well as some additional information for multivariate models.

See Also

brmsformula, brmsformula-helpers

Examples

bf1 <- bf(y1 ~ x + (1|g))
bf2 <- bf(y2 ~ s(z))
mvbf(bf1, bf2)

ngrps.brmsfit 147

ngrps.brmsfit Number of Grouping Factor Levels

Description

Extract the number of levels of one or more grouping factors.

Usage

S3 method for class 'brmsfit'
ngrps(object, ...)

ngrps(object, ...)

Arguments

object An R object.

... Currently ignored.

Value

A named list containing the number of levels per grouping factor.

nsamples.brmsfit Number of Posterior Samples

Description

Extract the number of posterior samples stored in a fitted Bayesian model.

Usage

S3 method for class 'brmsfit'
nsamples(object, subset = NULL, incl_warmup = FALSE, ...)

Arguments

object An object of class brmsfit.

subset An optional integer vector defining a subset of samples to be considered.

incl_warmup A flag indicating whether to also count warmup / burn-in samples.

... Currently ignored.

148 pairs.brmsfit

pairs.brmsfit Create a matrix of output plots from a brmsfit object

Description

A pairs method that is customized for MCMC output.

Usage

S3 method for class 'brmsfit'
pairs(x, pars = NA, fixed = FALSE, exact_match = FALSE, ...)

Arguments

x An object of class brmsfit

pars Names of the parameters to plot, as given by a character vector or a regular
expression. By default, all parameters except for group-level and smooth effects
are plotted.

fixed Indicates whether parameter names should be matched exactly (TRUE) or treated
as regular expressions (FALSE). Default is FALSE.

exact_match Deprecated alias of argument fixed.

... Further arguments to be passed to mcmc_pairs.

Details

For a detailed description see mcmc_pairs.

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt

+ (1|patient) + (1|visit),
data = epilepsy, family = "poisson")

pairs(fit, pars = parnames(fit)[1:3], fixed = TRUE)
pairs(fit, pars = "^sd_")

End(Not run)

parnames 149

parnames Extract Parameter Names

Description

Extract all parameter names of a given model.

Usage

parnames(x, ...)

Arguments

x An R object

... Further arguments passed to or from other methods.

Value

A character vector containing the parameter names of the model.

plot.brmsfit Trace and Density Plots for MCMC Samples

Description

Trace and Density Plots for MCMC Samples

Usage

S3 method for class 'brmsfit'
plot(
x,
pars = NA,
combo = c("dens", "trace"),
N = 5,
fixed = FALSE,
exact_match = FALSE,
theme = NULL,
plot = TRUE,
ask = TRUE,
newpage = TRUE,
...

)

150 plot.brmsfit

Arguments

x An object of class brmsfit.

pars Names of the parameters to plot, as given by a character vector or a regular
expression. By default, all parameters except for group-level and smooth effects
are plotted.

combo A character vector with at least two elements. Each element of combo corre-
sponds to a column in the resulting graphic and should be the name of one of
the available MCMC functions (omitting the mcmc_ prefix).

N The number of parameters plotted per page.

fixed Indicates whether parameter names should be matched exactly (TRUE) or treated
as regular expressions (FALSE). Default is FALSE.

exact_match Deprecated alias of argument fixed.

theme A theme object modifying the appearance of the plots. For some basic themes
see ggtheme and theme_default.

plot Logical; indicates if plots should be plotted directly in the active graphic device.
Defaults to TRUE.

ask Logical; indicates if the user is prompted before a new page is plotted. Only
used if plot is TRUE.

newpage Logical; indicates if the first set of plots should be plotted to a new page. Only
used if plot is TRUE.

... Further arguments passed to mcmc_combo.

Value

An invisible list of gtable objects.

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt

+ (1|patient) + (1|visit),
data = epilepsy, family = "poisson")

plot(fit)
plot population-level effects only
plot(fit, pars = "^b_")

End(Not run)

posterior_average.brmsfit 151

posterior_average.brmsfit

Posterior samples of parameters averaged across models

Description

Extract posterior samples of parameters averaged across models. Weighting can be done in various
ways, for instance using Akaike weights based on information criteria or marginal likelihoods.

Usage

S3 method for class 'brmsfit'
posterior_average(
x,
...,
pars = NULL,
weights = "stacking",
nsamples = NULL,
missing = NULL,
model_names = NULL,
control = list(),
seed = NULL

)

posterior_average(x, ...)

Arguments

x A brmsfit object.

... More brmsfit objects or further arguments passed to the underlying post-processing
functions. In particular, see prepare_predictions for further supported argu-
ments.

pars Names of parameters for which to average across models. Only those param-
eters can be averaged that appear in every model. Defaults to all overlapping
parameters.

weights Name of the criterion to compute weights from. Should be one of "loo",
"waic", "kfold", "stacking" (current default), or "bma", "pseudobma", For
the former three options, Akaike weights will be computed based on the infor-
mation criterion values returned by the respective methods. For "stacking" and
"pseudobma", method loo_model_weights will be used to obtain weights. For
"bma", method post_prob will be used to compute Bayesian model averaging
weights based on log marginal likelihood values (make sure to specify reason-
able priors in this case). For some methods, weights may also be a numeric
vector of pre-specified weights.

nsamples Total number of posterior samples to use.

152 posterior_epred.brmsfit

missing An optional numeric value or a named list of numeric values to use if a model
does not contain a parameter for which posterior samples should be averaged.
Defaults to NULL, in which case only those parameters can be averaged that are
present in all of the models.

model_names If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.

control Optional list of further arguments passed to the function specified in weights.
seed A single numeric value passed to set.seed to make results reproducible.

Details

Weights are computed with the model_weights method.

Value

A data.frame of posterior samples. Samples are rows and parameters are columns.

See Also

model_weights, pp_average

Examples

Not run:
model with 'treat' as predictor
fit1 <- brm(rating ~ treat + period + carry, data = inhaler)
summary(fit1)

model without 'treat' as predictor
fit2 <- brm(rating ~ period + carry, data = inhaler)
summary(fit2)

compute model-averaged posteriors of overlapping parameters
posterior_average(fit1, fit2, weights = "waic")

End(Not run)

posterior_epred.brmsfit

Expected Values of the Posterior Predictive Distribution

Description

Compute posterior samples of the expected value/mean of the posterior predictive distribution. Can
be performed for the data used to fit the model (posterior predictive checks) or for new data. By
definition, these predictions have smaller variance than the posterior predictions performed by the
posterior_predict.brmsfit method. This is because only the uncertainty in the mean is incorpo-
rated in the samples computed by posterior_epred while any residual error is ignored. However,
the estimated means of both methods averaged across samples should be very similar.

posterior_epred.brmsfit 153

Usage

S3 method for class 'brmsfit'
posterior_epred(
object,
newdata = NULL,
re_formula = NULL,
re.form = NULL,
resp = NULL,
dpar = NULL,
nlpar = NULL,
nsamples = NULL,
subset = NULL,
sort = FALSE,
...

)

Arguments

object An object of class brmsfit.

newdata An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors are interpreted as if
all dummy variables of this factor are zero. This allows, for instance, to make
predictions of the grand mean when using sum coding.

re_formula formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA, include no group-level ef-
fects.

re.form Alias of re_formula.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

dpar Optional name of a predicted distributional parameter. If specified, expected
predictions of this parameters are returned.

nlpar Optional name of a predicted non-linear parameter. If specified, expected pre-
dictions of this parameters are returned.

nsamples Positive integer indicating how many posterior samples should be used. If NULL
(the default) all samples are used. Ignored if subset is not NULL.

subset A numeric vector specifying the posterior samples to be used. If NULL (the
default), all samples are used.

sort Logical. Only relevant for time series models. Indicating whether to return
predicted values in the original order (FALSE; default) or in the order of the time
series (TRUE).

... Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

154 posterior_interval.brmsfit

Details

NA values within factors in newdata, are interpreted as if all dummy variables of this factor are zero.
This allows, for instance, to make predictions of the grand mean when using sum coding.

In multilevel models, it is possible to allow new levels of grouping factors to be used in the pre-
dictions. This can be controlled via argument allow_new_levels. New levels can be sampled
in multiple ways, which can be controlled via argument sample_new_levels. Both of these ar-
guments are documented in prepare_predictions along with several other useful arguments to
control specific aspects of the predictions.

Value

An array of predicted mean response values. For categorical and ordinal models, the output is
an S x N x C array. Otherwise, the output is an S x N matrix, where S is the number of posterior
samples, N is the number of observations, and C is the number of categories. In multivariate models,
an additional dimension is added to the output which indexes along the different response variables.

Examples

Not run:
fit a model
fit <- brm(rating ~ treat + period + carry + (1|subject),

data = inhaler)

compute expected predictions
ppe <- posterior_epred(fit)
str(ppe)

End(Not run)

posterior_interval.brmsfit

Compute posterior uncertainty intervals

Description

Compute posterior uncertainty intervals for brmsfit objects.

Usage

S3 method for class 'brmsfit'
posterior_interval(object, pars = NA, prob = 0.95, ...)

posterior_linpred.brmsfit 155

Arguments

object An object of class brmsfit.

pars Names of parameters for which posterior samples should be returned, as given
by a character vector or regular expressions. By default, all posterior samples of
all parameters are extracted.

prob A value between 0 and 1 indicating the desired probability to be covered by the
uncertainty intervals. The default is 0.95.

... More arguments passed to as.matrix.brmsfit.

Value

A matrix with lower and upper interval bounds as columns and as many rows as selected parame-
ters.

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt,

data = epilepsy, family = negbinomial())
posterior_interval(fit)

End(Not run)

posterior_linpred.brmsfit

Posterior Samples of the Linear Predictor

Description

Compute posterior samples of the linear predictor, that is samples before applying any link functions
or other transformations. Can be performed for the data used to fit the model (posterior predictive
checks) or for new data.

Usage

S3 method for class 'brmsfit'
posterior_linpred(
object,
transform = FALSE,
newdata = NULL,
re_formula = NULL,
re.form = NULL,
resp = NULL,
dpar = NULL,
nlpar = NULL,

156 posterior_linpred.brmsfit

nsamples = NULL,
subset = NULL,
sort = FALSE,
...

)

Arguments

object An object of class brmsfit.

transform (Deprecated) Logical; if FALSE (the default), samples of the linear predictor are
returned. If TRUE, samples of transformed linear predictor, that is, the mean of
the posterior predictive distribution are returned instead (see posterior_epred
for details). Only implemented for compatibility with the posterior_linpred
generic.

newdata An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors are interpreted as if
all dummy variables of this factor are zero. This allows, for instance, to make
predictions of the grand mean when using sum coding.

re_formula formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA, include no group-level ef-
fects.

re.form Alias of re_formula.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

dpar Optional name of a predicted distributional parameter. If specified, expected
predictions of this parameters are returned.

nlpar Optional name of a predicted non-linear parameter. If specified, expected pre-
dictions of this parameters are returned.

nsamples Positive integer indicating how many posterior samples should be used. If NULL
(the default) all samples are used. Ignored if subset is not NULL.

subset A numeric vector specifying the posterior samples to be used. If NULL (the
default), all samples are used.

sort Logical. Only relevant for time series models. Indicating whether to return
predicted values in the original order (FALSE; default) or in the order of the time
series (TRUE).

... Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

See Also

posterior_epred.brmsfit

Examples

Not run:
fit a model

posterior_predict.brmsfit 157

fit <- brm(rating ~ treat + period + carry + (1|subject),
data = inhaler)

extract linear predictor values
pl <- posterior_linpred(fit)
str(pl)

End(Not run)

posterior_predict.brmsfit

Samples from the Posterior Predictive Distribution

Description

Compute posterior samples of the posterior predictive distribution. Can be performed for the
data used to fit the model (posterior predictive checks) or for new data. By definition, these
samples have higher variance than samples of the means of the posterior predictive distribution
computed by posterior_epred.brmsfit. This is because the residual error is incorporated in
posterior_predict. However, the estimated means of both methods averaged across samples
should be very similar.

Usage

S3 method for class 'brmsfit'
posterior_predict(
object,
newdata = NULL,
re_formula = NULL,
re.form = NULL,
transform = NULL,
resp = NULL,
negative_rt = FALSE,
nsamples = NULL,
subset = NULL,
sort = FALSE,
ntrys = 5,
cores = getOption("mc.cores", 1),
...

)

Arguments

object An object of class brmsfit.
newdata An optional data.frame for which to evaluate predictions. If NULL (default), the

original data of the model is used. NA values within factors are interpreted as if
all dummy variables of this factor are zero. This allows, for instance, to make
predictions of the grand mean when using sum coding.

158 posterior_predict.brmsfit

re_formula formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA, include no group-level ef-
fects.

re.form Alias of re_formula.

transform (Deprecated) A function or a character string naming a function to be applied
on the predicted responses before summary statistics are computed.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

negative_rt Only relevant for Wiener diffusion models. A flag indicating whether response
times of responses on the lower boundary should be returned as negative values.
This allows to distinguish responses on the upper and lower boundary. Defaults
to FALSE.

nsamples Positive integer indicating how many posterior samples should be used. If NULL
(the default) all samples are used. Ignored if subset is not NULL.

subset A numeric vector specifying the posterior samples to be used. If NULL (the
default), all samples are used.

sort Logical. Only relevant for time series models. Indicating whether to return
predicted values in the original order (FALSE; default) or in the order of the time
series (TRUE).

ntrys Parameter used in rejection sampling for truncated discrete models only (de-
faults to 5). See Details for more information.

cores Number of cores (defaults to 1). Can be set globally via the mc.cores option.

... Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

Details

NA values within factors in newdata, are interpreted as if all dummy variables of this factor are zero.
This allows, for instance, to make predictions of the grand mean when using sum coding.

In multilevel models, it is possible to allow new levels of grouping factors to be used in the pre-
dictions. This can be controlled via argument allow_new_levels. New levels can be sampled
in multiple ways, which can be controlled via argument sample_new_levels. Both of these ar-
guments are documented in prepare_predictions along with several other useful arguments to
control specific aspects of the predictions.

For truncated discrete models only: In the absence of any general algorithm to sample from trun-
cated discrete distributions, rejection sampling is applied in this special case. This means that values
are sampled until a value lies within the defined truncation boundaries. In practice, this procedure
may be rather slow (especially in R). Thus, we try to do approximate rejection sampling by sam-
pling each value ntrys times and then select a valid value. If all values are invalid, the closest
boundary is used, instead. If there are more than a few of these pathological cases, a warning will
occur suggesting to increase argument ntrys.

Value

An array of predicted response values. In univariate models, the output is as an S x N matrix,
where S is the number of posterior samples and N is the number of observations. In multivariate

posterior_samples.brmsfit 159

models, an additional dimension is added to the output which indexes along the different response
variables.

Examples

Not run:
fit a model
fit <- brm(time | cens(censored) ~ age + sex + (1 + age || patient),

data = kidney, family = "exponential", inits = "0")

predicted responses
pp <- posterior_predict(fit)
str(pp)

predicted responses excluding the group-level effect of age
pp <- posterior_predict(fit, re_formula = ~ (1 | patient))
str(pp)

predicted responses of patient 1 for new data
newdata <- data.frame(

sex = factor(c("male", "female")),
age = c(20, 50),
patient = c(1, 1)

)
pp <- posterior_predict(fit, newdata = newdata)
str(pp)

End(Not run)

posterior_samples.brmsfit

Extract Posterior Samples

Description

Extract posterior samples of specified parameters.

Usage

S3 method for class 'brmsfit'
posterior_samples(
x,
pars = NA,
fixed = FALSE,
add_chain = FALSE,
subset = NULL,
as.matrix = FALSE,
as.array = FALSE,

160 posterior_samples.brmsfit

...
)

posterior_samples(x, pars = NA, ...)

S3 method for class 'brmsfit'
as.data.frame(x, row.names = NULL, optional = TRUE, ...)

S3 method for class 'brmsfit'
as.matrix(x, ...)

S3 method for class 'brmsfit'
as.array(x, ...)

Arguments

x An R object typically of class brmsfit

pars Names of parameters for which posterior samples should be returned, as given
by a character vector or regular expressions. By default, all posterior samples of
all parameters are extracted.

fixed Indicates whether parameter names should be matched exactly (TRUE) or treated
as regular expressions (FALSE). Default is FALSE.

add_chain A flag indicating if the returned data.frame should contain two additional
columns. The chain column indicates the chain in which each sample was
generated, the iter column indicates the iteration number within each chain.

subset A numeric vector indicating the rows (i.e., posterior samples) to be returned. If
NULL (the default), all posterior samples are returned.

as.matrix Should the output be a matrix instead of a data.frame? Defaults to FALSE.

as.array Should the output be an array instead of a data.frame? Defaults to FALSE.

... For as.data.frame, as.matrix, and as.array: Further arguments to be passed
to posterior_samples.

row.names, optional

See as.data.frame.

Details

Currently there are methods for brmsfit objects. as.data.frame.brmsfit, as.matrix.brmsfit,
and as.array.brmsfit are basically aliases of posterior_samples.brmsfit and differ from
each other only in type of the returned object.

Value

A data.frame (matrix or array) containing the posterior samples, with one column per parameter. In
case an array is returned, it contains one additional dimension for the chains.

posterior_smooths.brmsfit 161

Examples

Not run:
fit <- brm(rating ~ treat + period + carry + (1|subject),

data = inhaler, family = "cumulative")

extract posterior samples of population-level effects
samples1 <- posterior_samples(fit, "^b")
head(samples1)

extract posterior samples of group-level standard deviations
samples2 <- posterior_samples(fit, "^sd_")
head(samples2)

End(Not run)

posterior_smooths.brmsfit

Posterior Predictions of Smooth Terms

Description

Compute posterior predictions of smooth s and t2 terms of models fitted with brms.

Usage

S3 method for class 'brmsfit'
posterior_smooths(
object,
smooth,
newdata = NULL,
resp = NULL,
dpar = NULL,
nlpar = NULL,
nsamples = NULL,
subset = NULL,
...

)

posterior_smooths(object, ...)

Arguments

object An object of class brmsfit.

smooth Name of a single smooth term for which predictions should be computed.

newdata An optional data.frame for which to evaluate predictions. If NULL (default),
the original data of the model is used. Only those variables appearing in the
chosen smooth term are required.

162 posterior_summary

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

dpar Optional name of a predicted distributional parameter. If specified, expected
predictions of this parameters are returned.

nlpar Optional name of a predicted non-linear parameter. If specified, expected pre-
dictions of this parameters are returned.

nsamples Positive integer indicating how many posterior samples should be used. If NULL
(the default) all samples are used. Ignored if subset is not NULL.

subset A numeric vector specifying the posterior samples to be used. If NULL (the
default), all samples are used.

... Currently ignored.

Value

An S x N matrix, where S is the number of posterior samples and N is the number of observations.

Examples

Not run:
set.seed(0)
dat <- mgcv::gamSim(1, n = 200, scale = 2)
fit <- brm(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat)
summary(fit)

newdata <- data.frame(x2 = seq(0, 1, 10))
str(posterior_smooths(fit, smooth = "s(x2)", newdata = newdata))

End(Not run)

posterior_summary Summarize Posterior Samples

Description

Summarizes posterior samples based on point estimates (mean or median), estimation errors (SD or
MAD) and quantiles.

Usage

posterior_summary(x, ...)

Default S3 method:
posterior_summary(x, probs = c(0.025, 0.975), robust = FALSE, ...)

S3 method for class 'brmsfit'
posterior_summary(x, pars = NA, probs = c(0.025, 0.975), robust = FALSE, ...)

posterior_table 163

Arguments

x An R object.

... More arguments passed to or from other methods.

probs The percentiles to be computed by the quantile function.

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead.

pars Names of parameters for which posterior samples should be returned, as given
by a character vector or regular expressions. By default, all posterior samples of
all parameters are extracted.

Value

A matrix where rows indicate parameters and columns indicate the summary estimates.

Examples

Not run:
fit <- brm(time ~ age * sex, data = kidney)
posterior_summary(fit)

End(Not run)

posterior_table Table Creation for Posterior Samples

Description

Create a table for unique values of posterior samples. This is usually only useful when summarizing
predictions of ordinal models.

Usage

posterior_table(x, levels = NULL)

Arguments

x A matrix of posterior samples where rows indicate samples and columns indicate
parameters.

levels Optional values of possible posterior values. Defaults to all unique values in x.

Value

A matrix where rows indicate parameters and columns indicate the unique values of posterior sam-
ples.

164 post_prob.brmsfit

Examples

Not run:
fit <- brm(rating ~ period + carry + treat,

data = inhaler, family = cumulative())
pr <- predict(fit, summary = FALSE)
posterior_table(pr)

End(Not run)

post_prob.brmsfit Posterior Model Probabilities from Marginal Likelihoods

Description

Compute posterior model probabilities from marginal likelihoods. The brmsfit method is just a
thin wrapper around the corresponding method for bridge objects.

Usage

S3 method for class 'brmsfit'
post_prob(x, ..., prior_prob = NULL, model_names = NULL)

Arguments

x A brmsfit object.

... More brmsfit objects or further arguments passed to the underlying post-processing
functions. In particular, see prepare_predictions for further supported argu-
ments.

prior_prob Numeric vector with prior model probabilities. If omitted, a uniform prior is
used (i.e., all models are equally likely a priori). The default NULL corresponds
to equal prior model weights.

model_names If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.

Details

Computing the marginal likelihood requires samples of all variables defined in Stan’s parameters
block to be saved. Otherwise post_prob cannot be computed. Thus, please set save_all_pars =
TRUE in the call to brm, if you are planning to apply post_prob to your models.

The computation of model probabilities based on bridge sampling requires a lot more posterior
samples than usual. A good conservative rule of thump is perhaps 10-fold more samples (read:
the default of 4000 samples may not be enough in many cases). If not enough posterior samples
are provided, the bridge sampling algorithm tends to be unstable leading to considerably different
results each time it is run. We thus recommend running post_prob multiple times to check the
stability of the results.

More details are provided under bridgesampling::post_prob.

pp_average.brmsfit 165

See Also

bridge_sampler,bayes_factor

Examples

Not run:
model with the treatment effect
fit1 <- brm(

count ~ zAge + zBase + Trt,
data = epilepsy, family = negbinomial(),
prior = prior(normal(0, 1), class = b),
save_all_pars = TRUE

)
summary(fit1)

model without the treatent effect
fit2 <- brm(

count ~ zAge + zBase,
data = epilepsy, family = negbinomial(),
prior = prior(normal(0, 1), class = b),
save_all_pars = TRUE

)
summary(fit2)

compute the posterior model probabilities
post_prob(fit1, fit2)

specify prior model probabilities
post_prob(fit1, fit2, prior_prob = c(0.8, 0.2))

End(Not run)

pp_average.brmsfit Posterior predictive samples averaged across models

Description

Compute posterior predictive samples averaged across models. Weighting can be done in various
ways, for instance using Akaike weights based on information criteria or marginal likelihoods.

Usage

S3 method for class 'brmsfit'
pp_average(
x,
...,
weights = "stacking",
method = "posterior_predict",

166 pp_average.brmsfit

nsamples = NULL,
summary = TRUE,
probs = c(0.025, 0.975),
robust = FALSE,
model_names = NULL,
control = list(),
seed = NULL

)

pp_average(x, ...)

Arguments

x A brmsfit object.

... More brmsfit objects or further arguments passed to the underlying post-processing
functions. In particular, see prepare_predictions for further supported argu-
ments.

weights Name of the criterion to compute weights from. Should be one of "loo",
"waic", "kfold", "stacking" (current default), or "bma", "pseudobma", For
the former three options, Akaike weights will be computed based on the infor-
mation criterion values returned by the respective methods. For "stacking" and
"pseudobma", method loo_model_weights will be used to obtain weights. For
"bma", method post_prob will be used to compute Bayesian model averaging
weights based on log marginal likelihood values (make sure to specify reason-
able priors in this case). For some methods, weights may also be a numeric
vector of pre-specified weights.

method Method used to obtain predictions to average over. Should be one of "posterior_predict"
(default), "pp_expect", or "predictive_error".

nsamples Total number of posterior samples to use.

summary Should summary statistics (i.e. means, sds, and 95% intervals) be returned in-
stead of the raw values? Default is TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

model_names If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.

control Optional list of further arguments passed to the function specified in weights.

seed A single numeric value passed to set.seed to make results reproducible.

Details

Weights are computed with the model_weights method.

pp_check.brmsfit 167

Value

Same as the output of the method specified in argument method.

See Also

model_weights, posterior_average

Examples

Not run:
model with 'treat' as predictor
fit1 <- brm(rating ~ treat + period + carry, data = inhaler)
summary(fit1)

model without 'treat' as predictor
fit2 <- brm(rating ~ period + carry, data = inhaler)
summary(fit2)

compute model-averaged predicted values
(df <- unique(inhaler[, c("treat", "period", "carry")]))
pp_average(fit1, fit2, newdata = df)

compute model-averaged fitted values
pp_average(fit1, fit2, method = "fitted", newdata = df)

End(Not run)

pp_check.brmsfit Posterior Predictive Checks for brmsfit Objects

Description

Perform posterior predictive checks with the help of the bayesplot package.

Usage

S3 method for class 'brmsfit'
pp_check(
object,
type,
nsamples,
group = NULL,
x = NULL,
newdata = NULL,
resp = NULL,
subset = NULL,
...

)

168 pp_check.brmsfit

Arguments

object An object of class brmsfit.

type Type of the ppc plot as given by a character string. See PPC for an overview of
currently supported types. You may also use an invalid type (e.g. type = "xyz")
to get a list of supported types in the resulting error message.

nsamples Positive integer indicating how many posterior samples should be used. If NULL
all samples are used. If not specified, the number of posterior samples is chosen
automatically. Ignored if subset is not NULL.

group Optional name of a factor variable in the model by which to stratify the ppc plot.
This argument is required for ppc *_grouped types and ignored otherwise.

x Optional name of a variable in the model. Only used for ppc types having an x
argument and ignored otherwise.

newdata An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors are interpreted as if
all dummy variables of this factor are zero. This allows, for instance, to make
predictions of the grand mean when using sum coding.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

subset A numeric vector specifying the posterior samples to be used. If NULL (the
default), all samples are used.

... Further arguments passed to predict.brmsfit as well as to the PPC function
specified in type.

Details

For a detailed explanation of each of the ppc functions, see the PPC documentation of the bayesplot
package.

Value

A ggplot object that can be further customized using the ggplot2 package.

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt

+ (1|patient) + (1|obs),
data = epilepsy, family = poisson())

pp_check(fit) # shows dens_overlay plot by default
pp_check(fit, type = "error_hist", nsamples = 11)
pp_check(fit, type = "scatter_avg", nsamples = 100)
pp_check(fit, type = "stat_2d")
pp_check(fit, type = "rootogram")
pp_check(fit, type = "loo_pit")

get an overview of all valid types

pp_mixture.brmsfit 169

pp_check(fit, type = "xyz")

End(Not run)

pp_mixture.brmsfit Posterior Probabilities of Mixture Component Memberships

Description

Compute the posterior probabilities of mixture component memberships for each observation in-
cluding uncertainty estimates.

Usage

S3 method for class 'brmsfit'
pp_mixture(
x,
newdata = NULL,
re_formula = NULL,
resp = NULL,
nsamples = NULL,
subset = NULL,
log = FALSE,
summary = TRUE,
robust = FALSE,
probs = c(0.025, 0.975),
...

)

pp_mixture(x, ...)

Arguments

x An R object usually of class brmsfit.

newdata An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors are interpreted as if
all dummy variables of this factor are zero. This allows, for instance, to make
predictions of the grand mean when using sum coding.

re_formula formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA, include no group-level ef-
fects.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

nsamples Positive integer indicating how many posterior samples should be used. If NULL
(the default) all samples are used. Ignored if subset is not NULL.

170 pp_mixture.brmsfit

subset A numeric vector specifying the posterior samples to be used. If NULL (the
default), all samples are used.

log Logical; Indicates whether to return probabilities on the log-scale.

summary Should summary statistics be returned instead of the raw values? Default is
TRUE.

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

... Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

Details

The returned probabilities can be written as P (Kn = k|Y n), that is the posterior probability that
observation n originates from component k. They are computed using Bayes’ Theorem

P (Kn = k|Y n) = P (Y n|Kn = k)P (Kn = k)/P (Y n),

where P (Y n|Kn = k) is the (posterior) likelihood of observation n for component k, P (Kn = k)
is the (posterior) mixing probability of component k (i.e. parameter theta<k>), and

P (Y n) =
∑

(k = 1, ...,K)P (Y n|Kn = k)P (Kn = k)

is a normalizing constant.

Value

If summary = TRUE, an N x E x K array, where N is the number of observations, K is the number
of mixture components, and E is equal to length(probs) + 2. If summary = FALSE, an S x N x K
array, where S is the number of posterior samples.

Examples

Not run:
simulate some data
set.seed(1234)
dat <- data.frame(

y = c(rnorm(100), rnorm(50, 2)),
x = rnorm(150)

)
fit a simple normal mixture model
mix <- mixture(gaussian, nmix = 2)
prior <- c(

prior(normal(0, 5), Intercept, nlpar = mu1),
prior(normal(0, 5), Intercept, nlpar = mu2),
prior(dirichlet(2, 2), theta)

predict.brmsfit 171

)
fit1 <- brm(bf(y ~ x), dat, family = mix,

prior = prior, chains = 2, inits = 0)
summary(fit1)

compute the membership probabilities
ppm <- pp_mixture(fit1)
str(ppm)

extract point estimates for each observation
head(ppm[, 1,])

classify every observation according to
the most likely component
apply(ppm[, 1,], 1, which.max)

End(Not run)

predict.brmsfit Samples from the Posterior Predictive Distribution

Description

This method is an alias of posterior_predict.brmsfit with additional arguments for obtaining
summaries of the computed samples.

Usage

S3 method for class 'brmsfit'
predict(
object,
newdata = NULL,
re_formula = NULL,
transform = NULL,
resp = NULL,
negative_rt = FALSE,
nsamples = NULL,
subset = NULL,
sort = FALSE,
ntrys = 5,
cores = getOption("mc.cores", 1),
summary = TRUE,
robust = FALSE,
probs = c(0.025, 0.975),
...

)

172 predict.brmsfit

Arguments

object An object of class brmsfit.

newdata An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors are interpreted as if
all dummy variables of this factor are zero. This allows, for instance, to make
predictions of the grand mean when using sum coding.

re_formula formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA, include no group-level ef-
fects.

transform (Deprecated) A function or a character string naming a function to be applied
on the predicted responses before summary statistics are computed.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

negative_rt Only relevant for Wiener diffusion models. A flag indicating whether response
times of responses on the lower boundary should be returned as negative values.
This allows to distinguish responses on the upper and lower boundary. Defaults
to FALSE.

nsamples Positive integer indicating how many posterior samples should be used. If NULL
(the default) all samples are used. Ignored if subset is not NULL.

subset A numeric vector specifying the posterior samples to be used. If NULL (the
default), all samples are used.

sort Logical. Only relevant for time series models. Indicating whether to return
predicted values in the original order (FALSE; default) or in the order of the time
series (TRUE).

ntrys Parameter used in rejection sampling for truncated discrete models only (de-
faults to 5). See Details for more information.

cores Number of cores (defaults to 1). Can be set globally via the mc.cores option.

summary Should summary statistics be returned instead of the raw values? Default is
TRUE.

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

... Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

Value

An array of predicted response values. If summary = FALSE the output resembles those of posterior_predict.brmsfit.

If summary = TRUE the output depends on the family: For categorical and ordinal families, the output
is an N x C matrix, where N is the number of observations, C is the number of categories, and the

predictive_error.brmsfit 173

values are predicted category probabilities. For all other families, the output is a N x E matrix where
E = 2 + length(probs) is the number of summary statistics: The Estimate column contains point
estimates (either mean or median depending on argument robust), while the Est.Error column
contains uncertainty estimates (either standard deviation or median absolute deviation depending on
argument robust). The remaining columns starting with Q contain quantile estimates as specified
via argument probs.

See Also

posterior_predict.brmsfit

Examples

Not run:
fit a model
fit <- brm(time | cens(censored) ~ age + sex + (1 + age || patient),

data = kidney, family = "exponential", inits = "0")

predicted responses
pp <- predict(fit)
head(pp)

predicted responses excluding the group-level effect of age
pp <- predict(fit, re_formula = ~ (1 | patient))
head(pp)

predicted responses of patient 1 for new data
newdata <- data.frame(

sex = factor(c("male", "female")),
age = c(20, 50),
patient = c(1, 1)

)
predict(fit, newdata = newdata)

End(Not run)

predictive_error.brmsfit

Posterior Samples of Predictive Errors

Description

Compute posterior samples of predictive errors, that is, observed minus predicted responses. Can
be performed for the data used to fit the model (posterior predictive checks) or for new data.

174 predictive_error.brmsfit

Usage

S3 method for class 'brmsfit'
predictive_error(
object,
newdata = NULL,
re_formula = NULL,
re.form = NULL,
resp = NULL,
nsamples = NULL,
subset = NULL,
sort = FALSE,
...

)

Arguments

object An object of class brmsfit.

newdata An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors are interpreted as if
all dummy variables of this factor are zero. This allows, for instance, to make
predictions of the grand mean when using sum coding.

re_formula formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA, include no group-level ef-
fects.

re.form Alias of re_formula.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

nsamples Positive integer indicating how many posterior samples should be used. If NULL
(the default) all samples are used. Ignored if subset is not NULL.

subset A numeric vector specifying the posterior samples to be used. If NULL (the
default), all samples are used.

sort Logical. Only relevant for time series models. Indicating whether to return
predicted values in the original order (FALSE; default) or in the order of the time
series (TRUE).

... Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

Value

An S x N array of predictive error samples, where S is the number of posterior samples and N is
the number of observations.

Examples

Not run:
fit a model

predictive_interval.brmsfit 175

fit <- brm(rating ~ treat + period + carry + (1|subject),
data = inhaler, cores = 2)

extract predictive errors
pe <- predictive_error(fit)
str(pe)

End(Not run)

predictive_interval.brmsfit

Predictive Intervals

Description

Compute intervals from the posterior predictive distribution.

Usage

S3 method for class 'brmsfit'
predictive_interval(object, prob = 0.9, ...)

Arguments

object An R object of class brmsfit.

prob A number p (0 < p < 1) indicating the desired probability mass to include in the
intervals. Defaults to 0.9.

... Further arguments passed to posterior_predict.

Value

A matrix with 2 columns for the lower and upper bounds of the intervals, respectively, and as many
rows as observations being predicted.

Examples

Not run:
fit <- brm(count ~ zBase, data = epilepsy, family = poisson())
predictive_interval(fit)

End(Not run)

176 prepare_predictions.brmsfit

prepare_predictions.brmsfit

Prepare Predictions

Description

This method helps in preparing brms models for certin post-processing tasks most notably various
forms of predictions. Unless you are a package developer, you will rarely need to call prepare_predictions
directly.

Usage

S3 method for class 'brmsfit'
prepare_predictions(
x,
newdata = NULL,
re_formula = NULL,
allow_new_levels = FALSE,
sample_new_levels = "uncertainty",
incl_autocor = TRUE,
oos = NULL,
resp = NULL,
nsamples = NULL,
subset = NULL,
nug = NULL,
smooths_only = FALSE,
offset = TRUE,
newdata2 = NULL,
new_objects = NULL,
point_estimate = NULL,
...

)

prepare_predictions(x, ...)

Arguments

x An R object typically of class 'brmsfit'.

newdata An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors are interpreted as if
all dummy variables of this factor are zero. This allows, for instance, to make
predictions of the grand mean when using sum coding.

re_formula formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA, include no group-level ef-
fects.

prepare_predictions.brmsfit 177

allow_new_levels

A flag indicating if new levels of group-level effects are allowed (defaults to
FALSE). Only relevant if newdata is provided.

sample_new_levels

Indicates how to sample new levels for grouping factors specified in re_formula.
This argument is only relevant if newdata is provided and allow_new_levels
is set to TRUE. If "uncertainty" (default), each posterior sample for a new
level is drawn from the posterior samples of a randomly chosen existing level.
Each posterior sample for a new level may be drawn from a different existing
level such that the resulting set of new posterior samples represents the variation
across existing levels. If "gaussian", sample new levels from the (multivariate)
normal distribution implied by the group-level standard deviations and correla-
tions. This options may be useful for conducting Bayesian power analysis or
predicting new levels in situations where relatively few levels where observed
in the old_data. If "old_levels", directly sample new levels from the existing
levels, where a new level is assigned all of the posterior samples of the same
(randomly chosen) existing level.

incl_autocor A flag indicating if correlation structures originally specified via autocor should
be included in the predictions. Defaults to TRUE.

oos Optional indices of observations for which to compute out-of-sample rather than
in-sample predictions. Only required in models that make use of response values
to make predictions, that is currently only ARMA models.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

nsamples Positive integer indicating how many posterior samples should be used. If NULL
(the default) all samples are used. Ignored if subset is not NULL.

subset A numeric vector specifying the posterior samples to be used. If NULL (the
default), all samples are used.

nug Small positive number for Gaussian process terms only. For numerical rea-
sons, the covariance matrix of a Gaussian process might not be positive definite.
Adding a very small number to the matrix’s diagonal often solves this problem.
If NULL (the default), nug is chosen internally.

smooths_only Logical; If TRUE only predictions related to the computation of smooth terms
will be prepared.

offset Logical; Indicates if offsets should be included in the predictions. Defaults to
TRUE.

newdata2 A named list of objects containing new data, which cannot be passed via ar-
gument newdata. Required for some objects used in autocorrelation structures,
or stanvars.

new_objects Deprecated alias of newdata2.
point_estimate Shall the returned object contain only point estimates of the parameters instead

of their posterior samples? Defaults to NULL in which case no point estimate
is computed. Alternatively, may be set to "mean" or "median". This argu-
ment is primarily implemented to ensure compatibility with the loo_subsample
method.

... Further arguments passed to validate_newdata.

178 print.brmsprior

Value

An object of class 'brmsprep' or 'mvbrmsprep', depending on whether a univariate or multivariate
model is passed.

print.brmsfit Print a summary for a fitted model represented by a brmsfit object

Description

Print a summary for a fitted model represented by a brmsfit object

Usage

S3 method for class 'brmsfit'
print(x, digits = 2, ...)

Arguments

x An object of class brmsfit

digits The number of significant digits for printing out the summary; defaults to 2. The
effective sample size is always rounded to integers.

... Additional arguments that would be passed to method summary of brmsfit.

See Also

summary.brmsfit

print.brmsprior Print method for brmsprior objects

Description

Print method for brmsprior objects

Usage

S3 method for class 'brmsprior'
print(x, show_df = NULL, ...)

Arguments

x An object of class brmsprior.

show_df Logical; Print priors as a single data.frame (TRUE) or as a sequence of sampling
statements (FALSE)?

... Currently ignored.

prior_samples.brmsfit 179

prior_samples.brmsfit Extract prior samples

Description

Extract prior samples of specified parameters

Usage

S3 method for class 'brmsfit'
prior_samples(x, pars = NA, ...)

prior_samples(x, pars = NA, ...)

Arguments

x An R object typically of class brmsfit

pars Names of parameters for which prior samples should be returned, as given by
a character vector or regular expressions. By default, all prior samples are ex-
tracted

... Currently ignored

Details

To make use of this function, the model must contain samples of prior distributions. This can be
ensured by setting sample_prior = TRUE in function brm. Priors of certain parameters cannot be
saved for technical reasons. For instance, this is the case for the population-level intercept, which
is only computed after fitting the model by default. If you want to treat the intercept as part of all
the other regression coefficients, so that sampling from its prior becomes possible, use ... ~ 0 +
Intercept + ... in the formulas.

Value

A data frame containing the prior samples.

Examples

Not run:
fit <- brm(rating ~ treat + period + carry + (1|subject),

data = inhaler, family = "cumulative",
prior = set_prior("normal(0,2)", class = "b"),
sample_prior = TRUE)

extract all prior samples
samples1 <- prior_samples(fit)
head(samples1)

extract prior samples for the population-level effects of 'treat'

180 prior_summary.brmsfit

samples2 <- prior_samples(fit, "b_treat")
head(samples2)

End(Not run)

prior_summary.brmsfit Extract Priors of a Bayesian Model Fitted with brms

Description

Extract Priors of a Bayesian Model Fitted with brms

Usage

S3 method for class 'brmsfit'
prior_summary(object, all = TRUE, ...)

Arguments

object A brmsfit object

all Logical; Show all parameters in the model which may have priors (TRUE) or only
those with proper priors (FALSE)?

... Further arguments passed to or from other methods.

Value

For brmsfit objects, an object of class brmsprior.

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt

+ (1|patient) + (1|obs),
data = epilepsy, family = poisson(),
prior = c(prior(student_t(5,0,10), class = b),

prior(cauchy(0,2), class = sd)))

prior_summary(fit)
prior_summary(fit, all = FALSE)
print(prior_summary(fit, all = FALSE), show_df = FALSE)

End(Not run)

R2D2 181

R2D2 R2-D2 Priors in brms

Description

Function used to set up R2D2 priors for population-level effects in brms. The function does not
evaluate its arguments – it exists purely to help set up the model.

Usage

R2D2(mean_R2 = 0.5, prec_R2 = 2, cons_D2 = 1, autoscale = TRUE)

Arguments

mean_R2 mean of the Beta prior on the coefficient of determination R^2.

prec_R2 precision of the Beta prior on the coefficient of determination R^2.

cons_D2 concentration vector of the Dirichlet prior on the variance decomposition pa-
rameters.

autoscale Logical; indicating whether the horseshoe prior should be scaled using the resid-
ual standard deviation sigma if possible and sensible (defaults to TRUE). Au-
toscaling is not applied for distributional parameters or when the model does
not contain the parameter sigma.

References

Zhang, Y. D., Naughton, B. P., Bondell, H. D., & Reich, B. J. (2020). Bayesian regression using a
prior on the model fit: The R2-D2 shrinkage prior. Journal of the American Statistical Association.
https://arxiv.org/pdf/1609.00046.pdf

See Also

set_prior

Examples

set_prior(R2D2(mean_R2 = 0.8, prec_R2 = 10))

https://arxiv.org/pdf/1609.00046.pdf

182 ranef.brmsfit

ranef.brmsfit Extract Group-Level Estimates

Description

Extract the group-level (’random’) effects of each level from a brmsfit object.

Usage

S3 method for class 'brmsfit'
ranef(
object,
summary = TRUE,
robust = FALSE,
probs = c(0.025, 0.975),
pars = NULL,
groups = NULL,
...

)

Arguments

object An object of class brmsfit.

summary Should summary statistics be returned instead of the raw values? Default is
TRUE.

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

pars Optional names of coefficients to extract. By default, all coefficients are ex-
tracted.

groups Optional names of grouping variables for which to extract effects.

... Currently ignored.

Value

A list of 3D arrays (one per grouping factor). If summary is TRUE, the 1st dimension contains the
factor levels, the 2nd dimension contains the summary statistics (see posterior_summary), and the
3rd dimension contains the group-level effects. If summary is FALSE, the 1st dimension contains the
posterior draws, the 2nd dimension contains the factor levels, and the 3rd dimension contains the
group-level effects.

reloo.brmsfit 183

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1+Trt|visit),

data = epilepsy, family = gaussian(), chains = 2)
ranef(fit)

End(Not run)

reloo.brmsfit Compute exact cross-validation for problematic observations

Description

Compute exact cross-validation for problematic observations for which approximate leave-one-out
cross-validation may return incorrect results. Models for problematic observations can be run in
parallel using the future package.

Usage

S3 method for class 'brmsfit'
reloo(
x,
loo,
k_threshold = 0.7,
newdata = NULL,
resp = NULL,
check = TRUE,
...

)

S3 method for class 'loo'
reloo(x, fit, ...)

reloo(x, ...)

Arguments

x An R object of class brmsfit or loo depending on the method.

loo An R object of class loo.

k_threshold The threshold at which Pareto k estimates are treated as problematic. Defaults
to 0.7. See pareto_k_ids for more details.

newdata An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors are interpreted as if
all dummy variables of this factor are zero. This allows, for instance, to make
predictions of the grand mean when using sum coding.

184 rename_pars

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

check Logical; If TRUE (the default), some checks check are performed if the loo object
was generated from the brmsfit object passed to argument fit.

... Further arguments passed to update.brmsfit and log_lik.brmsfit.

fit An R object of class brmsfit.

Details

Warnings about Pareto k estimates indicate observations for which the approximation to LOO is
problematic (this is described in detail in Vehtari, Gelman, and Gabry (2017) and the loo package
documentation). If there are J observations with k estimates above k_threshold, then reloo will
refit the original model J times, each time leaving out one of the J problematic observations. The
pointwise contributions of these observations to the total ELPD are then computed directly and
substituted for the previous estimates from these J observations that are stored in the original loo
object.

Value

An object of the class loo.

See Also

loo, kfold

Examples

Not run:
fit1 <- brm(count ~ zAge + zBase * Trt + (1|patient),

data = epilepsy, family = poisson())
throws warning about some pareto k estimates being too high
(loo1 <- loo(fit1))
(reloo1 <- reloo(fit1, loo = loo1, chains = 1))

End(Not run)

rename_pars Rename Parameters

Description

Rename parameters within the stanfit object after model fitting to ensure reasonable parameter
names. This function is usually called automatically by brm and users will rarely be required to call
it themselves.

residuals.brmsfit 185

Usage

rename_pars(x)

Arguments

x A brmsfit object.

Value

A brmfit object with adjusted parameter names.

Examples

Not run:
fit a model manually via rstan
scode <- make_stancode(count ~ Trt, data = epilepsy)
sdata <- make_standata(count ~ Trt, data = epilepsy)
stanfit <- rstan::stan(model_code = scode, data = sdata)

feed the Stan model back into brms
fit <- brm(count ~ Trt, data = epilepsy, empty = TRUE)
fit$fit <- stanfit
fit <- rename_pars(fit)
summary(fit)

End(Not run)

residuals.brmsfit Posterior Samples of Residuals/Predictive Errors

Description

This method is an alias of predictive_error.brmsfit with additional arguments for obtaining
summaries of the computed samples.

Usage

S3 method for class 'brmsfit'
residuals(
object,
newdata = NULL,
re_formula = NULL,
method = "pp_expect",
type = c("ordinary", "pearson"),
resp = NULL,
nsamples = NULL,
subset = NULL,

186 residuals.brmsfit

sort = FALSE,
summary = TRUE,
robust = FALSE,
probs = c(0.025, 0.975),
...

)

Arguments

object An object of class brmsfit.
newdata An optional data.frame for which to evaluate predictions. If NULL (default), the

original data of the model is used. NA values within factors are interpreted as if
all dummy variables of this factor are zero. This allows, for instance, to make
predictions of the grand mean when using sum coding.

re_formula formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA, include no group-level ef-
fects.

method Method use to obtain predictions. Either "pp_expect" (the default) or "posterior_predict".
Using "posterior_predict" is recommended but "pp_expect" is the current
default for reasons of backwards compatibility.

type The type of the residuals, either "ordinary" or "pearson". More information
is provided under ’Details’.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

nsamples Positive integer indicating how many posterior samples should be used. If NULL
(the default) all samples are used. Ignored if subset is not NULL.

subset A numeric vector specifying the posterior samples to be used. If NULL (the
default), all samples are used.

sort Logical. Only relevant for time series models. Indicating whether to return
predicted values in the original order (FALSE; default) or in the order of the time
series (TRUE).

summary Should summary statistics be returned instead of the raw values? Default is
TRUE..

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

... Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

Details

Residuals of type 'ordinary' are of the form R = Y − Y rep, where Y is the observed and Y rep
is the predicted response. Residuals of type pearson are of the form R = (Y − Y rep)/SD(Y),
where SD(Y) is an estimation of the standard deviation of Y .

restructure 187

Value

An array of predictive error/residual samples. If summary = FALSE the output resembles those of
predictive_error.brmsfit. If summary = TRUE the output is an N x E matrix, where N is the
number of observations and E denotes the summary statistics computed from the samples.

Examples

Not run:
fit a model
fit <- brm(rating ~ treat + period + carry + (1|subject),

data = inhaler, cores = 2)

extract residuals/predictive errors
res <- residuals(fit)
head(res)

End(Not run)

restructure Restructure Old brmsfit Objects

Description

Restructure old brmsfit objects to work with the latest brms version. This function is called
internally when applying post-processing methods. However, in order to avoid unnecessary run
time caused by the restructuring, I recommend explicitly calling restructure once per model after
updating brms.

Usage

restructure(x, rstr_summary = FALSE)

Arguments

x An object of class brmsfit.

rstr_summary Logical; If TRUE, the cached summary stored by rstan is restructured as well.

Value

A brmsfit object compatible with the latest version of brms.

188 s

rows2labels Convert Rows to Labels

Description

Convert information in rows to labels for each row.

Usage

rows2labels(x, digits = 2, sep = " & ", incl_vars = TRUE, ...)

Arguments

x A data.frame for which to extract labels.

digits Minimal number of decimal places shown in the labels of numeric variables.

sep A single character string defining the separator between variables used in the
labels.

incl_vars Indicates if variable names should be part of the labels. Defaults to TRUE.

... Currently unused.

Value

A character vector of the same length as the number of rows of x.

See Also

make_conditions, conditional_effects

s Defining smooths in brms formulas

Description

Functions used in definition of smooth terms within a model formulas. The function does not
evaluate a (spline) smooth - it exists purely to help set up a model using spline based smooths.

Usage

s(...)

t2(...)

Arguments

... Arguments passed to mgcv::s or mgcv::t2.

sar 189

Details

The function defined here are just simple wrappers of the respective functions of the mgcv package.

See Also

brmsformula, mgcv::s, mgcv::t2

Examples

Not run:
simulate some data
dat <- mgcv::gamSim(1, n = 200, scale = 2)

fit univariate smooths for all predictors
fit1 <- brm(y ~ s(x0) + s(x1) + s(x2) + s(x3),

data = dat, chains = 2)
summary(fit1)
plot(conditional_smooths(fit1), ask = FALSE)

fit a more complicated smooth model
fit2 <- brm(y ~ t2(x0, x1) + s(x2, by = x3),

data = dat, chains = 2)
summary(fit2)
plot(conditional_smooths(fit2), ask = FALSE)

End(Not run)

sar Spatial simultaneous autoregressive (SAR) structures

Description

Set up an spatial simultaneous autoregressive (SAR) term in brms. The function does not evaluate
its arguments – it exists purely to help set up a model with SAR terms.

Usage

sar(M, type = "lag")

Arguments

M An object specifying the spatial weighting matrix. Can be either the spatial
weight matrix itself or an object of class listw or nb, from which the spatial
weighting matrix can be computed.

type Type of the SAR structure. Either "lag" (for SAR of the response values) or
"error" (for SAR of the residuals). More information is provided in the ’De-
tails’ section.

190 save_pars

Details

The lagsar structure implements SAR of the response values:

y = ρWy + η + e

The errorsar structure implements SAR of the residuals:

y = η + u, u = ρWu+ e

In the above equations, η is the predictor term and e are independent normally or t-distributed
residuals. Currently, only families gaussian and student support SAR structures.

Value

An object of class 'sar_term', which is a list of arguments to be interpreted by the formula parsing
functions of brms.

See Also

autocor-terms

Examples

Not run:
data(oldcol, package = "spdep")
fit1 <- brm(CRIME ~ INC + HOVAL + sar(COL.nb, type = "lag"),

data = COL.OLD, data2 = list(COL.nb = COL.nb),
chains = 2, cores = 2)

summary(fit1)
plot(fit1)

fit2 <- brm(CRIME ~ INC + HOVAL + sar(COL.nb, type = "error"),
data = COL.OLD, data2 = list(COL.nb = COL.nb),
chains = 2, cores = 2)

summary(fit2)
plot(fit2)

End(Not run)

save_pars Control Saving of Parameter Draws

Description

Control which (draws of) parameters should be saved in a brms model. The output of this function
is ment for usage in the save_pars argument of brm.

set_prior 191

Usage

save_pars(group = TRUE, latent = FALSE, all = FALSE, manual = NULL)

Arguments

group A flag to indicate if group-level coefficients for each level of the grouping factors
should be saved (default is TRUE). Set to FALSE to save memory. Alternatively,
group may also be a character vector naming the grouping factors for which to
save draws of coefficients.

latent A flag to indicate if samples of latent variables obtained by using me and mi terms
should be saved (default is FALSE). Saving these samples allows to better use
methods such as posterior_predict with the latent variables but leads to very
large R objects even for models of moderate size and complexity. Alternatively,
latent may also be a character vector naming the latent variables for which to
save draws.

all A flag to indicate if draws of all variables defined in Stan’s parameters block
should be saved (default is FALSE). Saving these draws is required in order to
apply the certain methods such as bridge_sampler and bayes_factor.

manual A character vector naming Stan variable names which should be saved. These
names should match the variable names inside the Stan code before renaming.
This feature is meant for power users only and will rarely be useful outside of
very special cases.

Value

A list of class "save_pars".

Examples

Not run:
don't store group-level coefficients
fit <- brm(count ~ zAge + zBase * Trt + (1|patient),

data = epilepsy, family = poisson(),
save_pars = save_pars(group = FALSE))

parnames(fit)

End(Not run)

set_prior Prior Definitions for brms Models

Description

Define priors for specific parameters or classes of parameters.

192 set_prior

Usage

set_prior(
prior,
class = "b",
coef = "",
group = "",
resp = "",
dpar = "",
nlpar = "",
lb = NA,
ub = NA,
check = TRUE

)

prior(prior, ...)

prior_(prior, ...)

prior_string(prior, ...)

empty_prior()

Arguments

prior A character string defining a distribution in Stan language

class The parameter class. Defaults to "b" (i.e. population-level effects). See ’De-
tails’ for other valid parameter classes.

coef Name of the coefficient within the parameter class.

group Grouping factor for group-level parameters.

resp Name of the response variable. Only used in multivariate models.

dpar Name of a distributional parameter. Only used in distributional models.

nlpar Name of a non-linear parameter. Only used in non-linear models.

lb Lower bound for parameter restriction. Currently only allowed for classes "b".
Defaults to NULL, that is no restriction.

ub Upper bound for parameter restriction. Currently only allowed for classes "b".
Defaults to NULL, that is no restriction.

check Logical; Indicates whether priors should be checked for validity (as far as pos-
sible). Defaults to TRUE. If FALSE, prior is passed to the Stan code as is, and all
other arguments are ignored.

... Arguments passed to set_prior.

Details

set_prior is used to define prior distributions for parameters in brms models. The functions
prior, prior_, and prior_string are aliases of set_prior each allowing for a different kind

set_prior 193

of argument specification. prior allows specifying arguments as expression without quotation
marks using non-standard evaluation. prior_ allows specifying arguments as one-sided formulas
or wrapped in quote. prior_string allows specifying arguments as strings just as set_prior
itself.

Below, we explain its usage and list some common prior distributions for parameters. A complete
overview on possible prior distributions is given in the Stan Reference Manual available at https:
//mc-stan.org/.

To combine multiple priors, use c(...) or the + operator (see ’Examples’). brms does not check if
the priors are written in correct Stan language. Instead, Stan will check their syntactical correctness
when the model is parsed to C++ and returns an error if they are not. This, however, does not imply
that priors are always meaningful if they are accepted by Stan. Although brms trys to find common
problems (e.g., setting bounded priors on unbounded parameters), there is no guarantee that the
defined priors are reasonable for the model. Below, we list the types of parameters in brms models,
for which the user can specify prior distributions.

1. Population-level (’fixed’) effects

Every Population-level effect has its own regression parameter represents the name of the corre-
sponding population-level effect. Suppose, for instance, that y is predicted by x1 and x2 (i.e., y ~
x1 + x2 in formula syntax). Then, x1 and x2 have regression parameters b_x1 and b_x2 respectively.
The default prior for population-level effects (including monotonic and category specific effects) is
an improper flat prior over the reals. Other common options are normal priors or student-t priors.
If we want to have a normal prior with mean 0 and standard deviation 5 for x1, and a unit student-t
prior with 10 degrees of freedom for x2, we can specify this via set_prior("normal(0,5)",class
= "b",coef = "x1") and
set_prior("student_t(10,0,1)",class = "b",coef = "x2"). To put the same prior on all population-
level effects at once, we may write as a shortcut set_prior("<prior>",class = "b"). This also
leads to faster sampling, because priors can be vectorized in this case. Both ways of defining priors
can be combined using for instance set_prior("normal(0,2)",class = "b") and
set_prior("normal(0,10)",class = "b",coef = "x1") at the same time. This will set a normal(0,10)
prior on the effect of x1 and a normal(0,2) prior on all other population-level effects. However,
this will break vectorization and may slow down the sampling procedure a bit.

In case of the default intercept parameterization (discussed in the ’Details’ section of brmsformula),
general priors on class "b" will not affect the intercept. Instead, the intercept has its own parameter
class named "Intercept" and priors can thus be specified via set_prior("<prior>",class =
"Intercept"). Setting a prior on the intercept will not break vectorization of the other population-
level effects. Note that technically, this prior is set on an intercept that results when internally
centering all population-level predictors around zero to improve sampling efficiency. On this cen-
tered intercept, specifying a prior is actually much easier and intuitive than on the original intercept,
since the former represents the expected response value when all predictors are at their means. To
treat the intercept as an ordinary population-level effect and avoid the centering parameterization,
use 0 + Intercept on the right-hand side of the model formula.

A special shrinkage prior to be applied on population-level effects is the (regularized) horseshoe
prior and related priors. See horseshoe for details. Another shrinkage prior is the so-called lasso
prior. See lasso for details.

In non-linear models, population-level effects are defined separately for each non-linear parameter.
Accordingly, it is necessary to specify the non-linear parameter in set_prior so that priors we
can be assigned correctly. If, for instance, alpha is the parameter and x the predictor for which

https://mc-stan.org/
https://mc-stan.org/

194 set_prior

we want to define the prior, we can write set_prior("<prior>",coef = "x",nlpar = "alpha").
As a shortcut we can use set_prior("<prior>",nlpar = "alpha") to set the same prior on all
population-level effects of alpha at once.

If desired, population-level effects can be restricted to fall only within a certain interval using the
lb and ub arguments of set_prior. This is often required when defining priors that are not defined
everywhere on the real line, such as uniform or gamma priors. When defining a uniform(2,4)
prior, you should write set_prior("uniform(2,4)",lb = 2,ub = 4). When using a prior that is
defined on the positive reals only (such as a gamma prior) set lb = 0. In most situations, it is not
useful to restrict population-level parameters through bounded priors (non-linear models are an
important exception), but if you really want to this is the way to go.

2. Standard deviations of group-level (’random’) effects

Each group-level effect of each grouping factor has a standard deviation named sd_<group>_<coef>.
Consider, for instance, the formula y ~ x1 + x2 + (1 + x1 | g). We see that the intercept as well as
x1 are group-level effects nested in the grouping factor g. The corresponding standard deviation pa-
rameters are named as sd_g_Intercept and sd_g_x1 respectively. These parameters are restricted
to be non-negative and, by default, have a half student-t prior with 3 degrees of freedom and a scale
parameter that depends on the standard deviation of the response after applying the link function.
Minimally, the scale parameter is 2.5. This prior is used (a) to be only weakly informative in order
to influence results as few as possible, while (b) providing at least some regularization to consider-
ably improve convergence and sampling efficiency. To define a prior distribution only for standard
deviations of a specific grouping factor, use
set_prior("<prior>",class = "sd",group = "<group>"). To define a prior distribution only
for a specific standard deviation of a specific grouping factor, you may write
set_prior("<prior>",class = "sd",group = "<group>",coef = "<coef>"). Recommendations
on useful prior distributions for standard deviations are given in Gelman (2006), but note that he is
no longer recommending uniform priors, anymore.

When defining priors on group-level parameters in non-linear models, please make sure to spec-
ify the corresponding non-linear parameter through the nlpar argument in the same way as for
population-level effects.

3. Correlations of group-level (’random’) effects

If there is more than one group-level effect per grouping factor, the correlations between those ef-
fects have to be estimated. The prior lkj_corr_cholesky(eta) or in short lkj(eta) with eta >
0 is essentially the only prior for (Cholesky factors) of correlation matrices. If eta = 1 (the default)
all correlations matrices are equally likely a priori. If eta > 1, extreme correlations become less
likely, whereas 0 < eta < 1 results in higher probabilities for extreme correlations. Correlation ma-
trix parameters in brms models are named as cor_<group>, (e.g., cor_g if g is the grouping factor).
To set the same prior on every correlation matrix, use for instance set_prior("lkj(2)",class =
"cor"). Internally, the priors are transformed to be put on the Cholesky factors of the correlation
matrices to improve efficiency and numerical stability. The corresponding parameter class of the
Cholesky factors is L, but it is not recommended to specify priors for this parameter class directly.

4. Splines

Splines are implemented in brms using the ’random effects’ formulation as explained in gamm).
Thus, each spline has its corresponding standard deviations modeling the variability within this
term. In brms, this parameter class is called sds and priors can be specified via set_prior("<prior>",class

set_prior 195

= "sds",coef = "<term label>"). The default prior is the same as for standard deviations of
group-level effects.

5. Gaussian processes

Gaussian processes as currently implemented in brms have two parameters, the standard deviation
parameter sdgp, and characteristic length-scale parameter lscale (see gp for more details). The
default prior of sdgp is the same as for standard deviations of group-level effects. The default prior
of lscale is an informative inverse-gamma prior specifically tuned to the covariates of the Gaus-
sian process (for more details see https://betanalpha.github.io/assets/case_studies/gp_
part3/part3.html). This tuned prior may be overly informative in some cases, so please consider
other priors as well to make sure inference is robust to the prior specification. If tuning fails, a
half-normal prior is used instead.

6. Autocorrelation parameters

The autocorrelation parameters currently implemented are named ar (autoregression), ma (moving
average), arr (autoregression of the response), car (spatial conditional autoregression), as well as
lagsar and errorsar (Spatial simultaneous autoregression).

Priors can be defined by set_prior("<prior>",class = "ar") for ar and similar for other auto-
correlation parameters. By default, ar and ma are bounded between -1 and 1, car, lagsar, and
errorsar are bounded between 0, and 1, and arr is unbounded (you may change this by using the
arguments lb and ub). The default prior is flat over the definition area.

7. Distance parameters of monotonic effects

As explained in the details section of brm, monotonic effects make use of a special parameter vector
to estimate the ’normalized distances’ between consecutive predictor categories. This is realized in
Stan using the simplex parameter type. This class is named "simo" (short for simplex monotonic)
in brms. The only valid prior for simplex parameters is the dirichlet prior, which accepts a vector
of length K -1 (K = number of predictor categories) as input defining the ’concentration’ of the
distribution. Explaining the dirichlet prior is beyond the scope of this documentation, but we want
to describe how to define this prior syntactically correct. If a predictor x with K categories is modeled
as monotonic, we can define a prior on its corresponding simplex via
prior(dirichlet(<vector>),class = simo,coef = mox1). The 1 in the end of coef indicates
that this is the first simplex in this term. If interactions between multiple monotonic variables are
modeled, multiple simplexes per term are required. For <vector>, we can put in any R expression
defining a vector of length K -1. The default is a uniform prior (i.e. <vector> = rep(1,K-1)) over
all simplexes of the respective dimension.

8. Parameters for specific families

Some families need additional parameters to be estimated. Families gaussian, student, skew_normal,
lognormal, and gen_extreme_value need the parameter sigma to account for the residual standard
deviation. By default, sigma has a half student-t prior that scales in the same way as the group-level
standard deviations. Further, family student needs the parameter nu representing the degrees of
freedom of students-t distribution. By default, nu has prior gamma(2,0.1) and a fixed lower bound
of 1. Families gamma, weibull, inverse.gaussian, and negbinomial need a shape parameter
that has a gamma(0.01,0.01) prior by default. For families cumulative, cratio, sratio, and
acat, and only if threshold = "equidistant", the parameter delta is used to model the distance
between two adjacent thresholds. By default, delta has an improper flat prior over the reals. The
von_mises family needs the parameter kappa, representing the concentration parameter. By de-
fault, kappa has prior gamma(2,0.01).
Every family specific parameter has its own prior class, so that set_prior("<prior>",class =

https://betanalpha.github.io/assets/case_studies/gp_part3/part3.html
https://betanalpha.github.io/assets/case_studies/gp_part3/part3.html

196 set_prior

"<parameter>") is the right way to go. All of these priors are chosen to be weakly informative,
having only minimal influence on the estimations, while improving convergence and sampling effi-
ciency.

Fixing parameters to constants is possible by using the constant function, for example, constant(1)
to fix a parameter to 1. Broadcasting to vectors and matrices is done automatically.

Often, it may not be immediately clear, which parameters are present in the model. To get a full list
of parameters and parameter classes for which priors can be specified (depending on the model) use
function get_prior.

Value

An object of class brmsprior to be used in the prior argument of brm.

Functions

• prior: Alias of set_prior allowing to specify arguments as expressions without quotation
marks.

• prior_: Alias of set_prior allowing to specify arguments as as one-sided formulas or
wrapped in quote.

• prior_string: Alias of set_prior allowing to specify arguments as strings.

• empty_prior: Create an empty brmsprior object.

References

Gelman A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian
analysis, 1(3), 515 – 534.

See Also

get_prior

Examples

use alias functions
(prior1 <- prior(cauchy(0, 1), class = sd))
(prior2 <- prior_(~cauchy(0, 1), class = ~sd))
(prior3 <- prior_string("cauchy(0, 1)", class = "sd"))
identical(prior1, prior2)
identical(prior1, prior3)

check which parameters can have priors
get_prior(rating ~ treat + period + carry + (1|subject),

data = inhaler, family = cumulative())

define some priors
bprior <- c(prior_string("normal(0,10)", class = "b"),

prior(normal(1,2), class = b, coef = treat),
prior_(~cauchy(0,2), class = ~sd,

group = ~subject, coef = ~Intercept))

Shifted_Lognormal 197

verify that the priors indeed found their way into Stan's model code
make_stancode(rating ~ treat + period + carry + (1|subject),

data = inhaler, family = cumulative(),
prior = bprior)

use the horseshoe prior to model sparsity in regression coefficients
make_stancode(count ~ zAge + zBase * Trt,

data = epilepsy, family = poisson(),
prior = set_prior("horseshoe(3)"))

fix certain priors to constants
bprior <- prior(constant(1), class = "b") +

prior(constant(2), class = "b", coef = "zBase") +
prior(constant(0.5), class = "sd")

make_stancode(count ~ zAge + zBase + (1 | patient),
data = epilepsy, prior = bprior)

pass priors to Stan without checking
prior <- prior_string("target += normal_lpdf(b[1] | 0, 1)", check = FALSE)
make_stancode(count ~ Trt, data = epilepsy, prior = prior)

Shifted_Lognormal The Shifted Log Normal Distribution

Description

Density, distribution function, quantile function and random generation for the shifted log normal
distribution with mean meanlog, standard deviation sdlog, and shift parameter shift.

Usage

dshifted_lnorm(x, meanlog = 0, sdlog = 1, shift = 0, log = FALSE)

pshifted_lnorm(
q,
meanlog = 0,
sdlog = 1,
shift = 0,
lower.tail = TRUE,
log.p = FALSE

)

qshifted_lnorm(
p,
meanlog = 0,
sdlog = 1,
shift = 0,

198 SkewNormal

lower.tail = TRUE,
log.p = FALSE

)

rshifted_lnorm(n, meanlog = 0, sdlog = 1, shift = 0)

Arguments

x, q Vector of quantiles.

meanlog Vector of means.

sdlog Vector of standard deviations.

shift Vector of shifts.

log Logical; If TRUE, values are returned on the log scale.

lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .

log.p Logical; If TRUE, values are returned on the log scale.

p Vector of probabilities.

n Number of samples to draw from the distribution.

Details

See vignette("brms_families") for details on the parameterization.

SkewNormal The Skew-Normal Distribution

Description

Density, distribution function, and random generation for the skew-normal distribution with mean
mu, standard deviation sigma, and skewness alpha.

Usage

dskew_normal(
x,
mu = 0,
sigma = 1,
alpha = 0,
xi = NULL,
omega = NULL,
log = FALSE

)

pskew_normal(
q,
mu = 0,

SkewNormal 199

sigma = 1,
alpha = 0,
xi = NULL,
omega = NULL,
lower.tail = TRUE,
log.p = FALSE

)

qskew_normal(
p,
mu = 0,
sigma = 1,
alpha = 0,
xi = NULL,
omega = NULL,
lower.tail = TRUE,
log.p = FALSE,
tol = 1e-08

)

rskew_normal(n, mu = 0, sigma = 1, alpha = 0, xi = NULL, omega = NULL)

Arguments

x, q Vector of quantiles.

mu Vector of mean values.

sigma Vector of standard deviation values.

alpha Vector of skewness values.

xi Optional vector of location values. If NULL (the default), will be computed inter-
nally.

omega Optional vector of scale values. If NULL (the default), will be computed inter-
nally.

log Logical; If TRUE, values are returned on the log scale.

lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .

log.p Logical; If TRUE, values are returned on the log scale.

p Vector of probabilities.

tol Tolerance of the approximation used in the computation of quantiles.

n Number of samples to draw from the distribution.

Details

See vignette("brms_families") for details on the parameterization.

200 standata.brmsfit

stancode.brmsfit Extract Stan model code

Description

Extract Stan code that was used to specify the model.

Usage

S3 method for class 'brmsfit'
stancode(object, version = TRUE, ...)

stancode(object, ...)

Arguments

object An object of class brmsfit.

version Logical; indicates if the first line containing the brms version number should be
included. Defaults to TRUE.

... Currently ignored.

Value

Stan model code for further processing.

standata.brmsfit Extract data passed to Stan

Description

Extract all data that was used by Stan to fit the model.

Usage

S3 method for class 'brmsfit'
standata(
object,
newdata = NULL,
re_formula = NULL,
newdata2 = NULL,
new_objects = NULL,
incl_autocor = TRUE,
...

)

standata(object, ...)

stanvar 201

Arguments

object An object of class brmsfit.

newdata An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors are interpreted as if
all dummy variables of this factor are zero. This allows, for instance, to make
predictions of the grand mean when using sum coding.

re_formula formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA, include no group-level ef-
fects.

newdata2 A named list of objects containing new data, which cannot be passed via ar-
gument newdata. Required for some objects used in autocorrelation structures,
or stanvars.

new_objects Deprecated alias of newdata2.

incl_autocor A flag indicating if correlation structures originally specified via autocor should
be included in the predictions. Defaults to TRUE.

... More arguments passed to make_standata and validate_newdata.

Value

A named list containing the data originally passed to Stan.

stanvar User-defined variables passed to Stan

Description

Prepare user-defined variables to be passed to one of Stan’s program blocks. This is primarily use-
ful for defining more complex priors, for refitting models without recompilation despite changing
priors, or for defining custom Stan functions.

Usage

stanvar(
x = NULL,
name = NULL,
scode = NULL,
block = "data",
position = "start",
pll_args = NULL

)

202 stanvar

Arguments

x An R object containing data to be passed to Stan. Only required if block =
'data' and ignored otherwise.

name Optional character string providing the desired variable name of the object in x.
If NULL (the default) the variable name is directly inferred from x.

scode Line of Stan code to define the variable in Stan language. If block = 'data',
the Stan code is inferred based on the class of x by default.

block Name of one of Stan’s program blocks in which the variable should be defined.
Can be 'data', 'tdata' (transformed data), 'parameters', 'tparameters'
(transformed parameters), 'model', 'likelihood' (part of the model block
where the likelihood is given), 'genquant' (generated quantities) or 'functions'.

position Name of the position within the block where the Stan code should be placed.
Currently allowed are 'start' (the default) and 'end' of the block.

pll_args Optional Stan code to be put into the header of partial_log_lik functions.
This ensures that the variables specified in scode can be used in the likelihood
even when within-chain parallelization is activated via threading.

Value

An object of class stanvars.

Examples

bprior <- prior(normal(mean_intercept, 10), class = "Intercept")
stanvars <- stanvar(5, name = "mean_intercept")
make_stancode(count ~ Trt, epilepsy, prior = bprior,

stanvars = stanvars)

define a multi-normal prior with known covariance matrix
bprior <- prior(multi_normal(M, V), class = "b")
stanvars <- stanvar(rep(0, 2), "M", scode = " vector[K] M;") +
stanvar(diag(2), "V", scode = " matrix[K, K] V;")

make_stancode(count ~ Trt + zBase, epilepsy,
prior = bprior, stanvars = stanvars)

define a hierachical prior on the regression coefficients
bprior <- set_prior("normal(0, tau)", class = "b") +
set_prior("target += normal_lpdf(tau | 0, 10)", check = FALSE)

stanvars <- stanvar(scode = "real<lower=0> tau;",
block = "parameters")

make_stancode(count ~ Trt + zBase, epilepsy,
prior = bprior, stanvars = stanvars)

ensure that 'tau' is passed to the likelihood of a threaded model
not necessary for this example but may be necessary in other cases
stanvars <- stanvar(scode = "real<lower=0> tau;",

block = "parameters", pll_args = "real tau")
make_stancode(count ~ Trt + zBase, epilepsy,

stanvars = stanvars, threads = threading(2))

StudentT 203

StudentT The Student-t Distribution

Description

Density, distribution function, quantile function and random generation for the Student-t distribution
with location mu, scale sigma, and degrees of freedom df.

Usage

dstudent_t(x, df, mu = 0, sigma = 1, log = FALSE)

pstudent_t(q, df, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)

qstudent_t(p, df, mu = 0, sigma = 1)

rstudent_t(n, df, mu = 0, sigma = 1)

Arguments

x, q Vector of quantiles.

df Vector of degrees of freedom.

mu Vector of location values.

sigma Vector of scale values.

log, log.p Logical; If TRUE, values are returned on the log scale.

lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .

p Vector of probabilities.

n Number of samples to draw from the distribution.

Details

See vignette("brms_families") for details on the parameterization.

See Also

TDist

204 summary.brmsfit

summary.brmsfit Create a summary of a fitted model represented by a brmsfit object

Description

Create a summary of a fitted model represented by a brmsfit object

Usage

S3 method for class 'brmsfit'
summary(
object,
priors = FALSE,
prob = 0.95,
robust = FALSE,
mc_se = FALSE,
...

)

Arguments

object An object of class brmsfit.

priors Logical; Indicating if priors should be included in the summary. Default is
FALSE.

prob A value between 0 and 1 indicating the desired probability to be covered by the
uncertainty intervals. The default is 0.95.

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead.

mc_se Logical; Indicating if the uncertainty caused by the MCMC sampling should be
shown in the summary. Defaults to FALSE.

... Other potential arguments

Details

The convergence diagnostics Rhat, Bulk_ESS, and Tail_ESS are described in detail in Vehtari et
al. (2020).

References

Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Bürkner (2020).
Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of
MCMC. *Bayesian Analysis*. 1–28. dpi:10.1214/20-BA1221

theme_black 205

theme_black (Deprecated) Black Theme for ggplot2 Graphics

Description

A black theme for ggplot graphics inspired by a blog post of Jon Lefcheck (https://jonlefcheck.
net/2013/03/11/black-theme-for-ggplot2-2/).

Usage

theme_black(base_size = 12, base_family = "")

Arguments

base_size base font size

base_family base font family

Details

When using theme_black in plots powered by the bayesplot package such as pp_check or stanplot,
I recommend using the "viridisC" color scheme (see examples).

Value

A theme object used in ggplot2 graphics.

Examples

Not run:
change default ggplot theme
ggplot2::theme_set(theme_black())

change default bayesplot color scheme
bayesplot::color_scheme_set("viridisC")

fit a simple model
fit <- brm(count ~ zAge + zBase * Trt + (1|patient),

data = epilepsy, family = poisson(), chains = 2)
summary(fit)

create various plots
plot(marginal_effects(fit), ask = FALSE)
pp_check(fit)
stanplot(fit, type = "hex", pars = c("b_Intercept", "b_Trt1"))

End(Not run)

https://jonlefcheck.net/2013/03/11/black-theme-for-ggplot2-2/
https://jonlefcheck.net/2013/03/11/black-theme-for-ggplot2-2/

206 threading

theme_default Default bayesplot Theme for ggplot2 Graphics

Description

This theme is imported from the bayesplot package. See theme_default for a complete documen-
tation.

Arguments

base_size base font size

base_family base font family

Value

A theme object used in ggplot2 graphics.

threading Threading in Stan

Description

Use threads for within-chain parallelization in Stan via the brms interface. Within-chain paral-
lelization is experimental! We recommend its use only if you are experienced with Stan’s reduce_sum
function and have a slow running model that cannot be sped up by any other means.

Usage

threading(threads = NULL, grainsize = NULL, static = FALSE)

Arguments

threads Number of threads to use in within-chain parallelization.

grainsize Number of observations evaluated together in one chunk on one of the CPUs
used for threading. If NULL (the default), grainsize is currently chosen as
max(100,N / (2 * threads)), where N is the number of observations in the
data. This default is experimental and may change in the future without prior
notice.

static Logical. Apply the static (non-adaptive) version of reduce_sum? Defaults to
FALSE. Setting it to TRUE is required to achieve exact reproducibility of the model
results (if the random seed is set as well).

update.brmsfit 207

Details

The adaptive scheduling procedure used by reduce_sum will prevent the results to be exactly repro-
ducible even if you set the random seed. If you need exact reproducibility, you have to set argument
static = TRUE which may reduce efficiency a bit.

To ensure that chunks (whose size is defined by grainsize) require roughly the same amount of
computing time, we recommend storing observations in random order in the data. At least, please
avoid sorting observations after the response values. This is because the latter often cause variations
in the computing time of the pointwise log-likelihood, which makes up a big part of the parallelized
code.

Value

A brmsthreads object which can be passed to the threads argument of brm and related functions.

Examples

Not run:
this model just serves as an illustration
threading may not actually speed things up here
fit <- brm(count ~ zAge + zBase * Trt + (1|patient),

data = epilepsy, family = negbinomial(),
chains = 1, threads = threading(2, grainsize = 100),
backend = "cmdstanr")

summary(fit)

End(Not run)

update.brmsfit Update brms models

Description

This method allows to update an existing brmsfit object.

Usage

S3 method for class 'brmsfit'
update(object, formula., newdata = NULL, recompile = NULL, ...)

Arguments

object An object of class brmsfit.

formula. Changes to the formula; for details see update.formula and brmsformula.

newdata Optional data.frame to update the model with new data. Data-dependent de-
fault priors will not be updated automatically.

208 update.brmsfit_multiple

recompile Logical, indicating whether the Stan model should be recompiled. If NULL (the
default), update tries to figure out internally, if recompilation is necessary. Set-
ting it to FALSE will cause all Stan code changing arguments to be ignored.

... Other arguments passed to brm.

Examples

Not run:
fit1 <- brm(time | cens(censored) ~ age * sex + disease + (1|patient),

data = kidney, family = gaussian("log"))
summary(fit1)

remove effects of 'disease'
fit2 <- update(fit1, formula. = ~ . - disease)
summary(fit2)

remove the group specific term of 'patient' and
change the data (just take a subset in this example)
fit3 <- update(fit1, formula. = ~ . - (1|patient),

newdata = kidney[1:38,])
summary(fit3)

use another family and add population-level priors
fit4 <- update(fit1, family = weibull(), inits = "0",

prior = set_prior("normal(0,5)"))
summary(fit4)

End(Not run)

update.brmsfit_multiple

Update brms models based on multiple data sets

Description

This method allows to update an existing brmsfit_multiple object.

Usage

S3 method for class 'brmsfit_multiple'
update(object, formula., newdata = NULL, ...)

Arguments

object An object of class brmsfit_multiple.
formula. Changes to the formula; for details see update.formula and brmsformula.
newdata List of data.frames to update the model with new data. Currently required

even if the original data should be used.
... Other arguments passed to update.brmsfit and brm_multiple.

update_adterms 209

Examples

Not run:
library(mice)
imp <- mice(nhanes2)

initially fit the model
fit_imp1 <- brm_multiple(bmi ~ age + hyp + chl, data = imp, chains = 1)
summary(fit_imp1)

update the model using fewer predictors
fit_imp2 <- update(fit_imp1, formula. = . ~ hyp + chl, newdata = imp)
summary(fit_imp2)

End(Not run)

update_adterms Update Formula Addition Terms

Description

Update additions terms used in formulas of brms. See addition-terms for details.

Usage

update_adterms(formula, adform, action = c("update", "replace"))

Arguments

formula Two-sided formula to be updated.

adform One-sided formula containing addition terms to update formula with.

action Indicates what should happen to the existing addition terms in formula. If
"update" (the default), old addition terms that have no corresponding term in
adform will be kept. If "replace", all old addition terms will be removed.

Value

An object of class formula.

Examples

form <- y | trials(size) ~ x
update_adterms(form, ~ trials(10))
update_adterms(form, ~ weights(w))
update_adterms(form, ~ weights(w), action = "replace")
update_adterms(y ~ x, ~ trials(10))

210 validate_newdata

validate_newdata Validate New Data

Description

Validate new data passed to post-processing methods of brms. Unless you are a package developer,
you will rarely need to call validate_newdata directly.

Usage

validate_newdata(
newdata,
object,
re_formula = NULL,
allow_new_levels = FALSE,
newdata2 = NULL,
resp = NULL,
check_response = TRUE,
incl_autocor = TRUE,
all_group_vars = NULL,
req_vars = NULL,
...

)

Arguments

newdata A data.frame containing new data to be validated.

object A brmsfit object.

re_formula formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA, include no group-level ef-
fects.

allow_new_levels

A flag indicating if new levels of group-level effects are allowed (defaults to
FALSE). Only relevant if newdata is provided.

newdata2 A named list of objects containing new data, which cannot be passed via ar-
gument newdata. Required for some objects used in autocorrelation structures,
or stanvars.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

check_response Logical; Indicates if response variables should be checked as well. Defaults to
TRUE.

incl_autocor A flag indicating if correlation structures originally specified via autocor should
be included in the predictions. Defaults to TRUE.

all_group_vars Optional names of grouping variables to be validated. Defaults to all grouping
variables in the model.

validate_prior 211

req_vars Optional names of variables required in newdata. If NULL (the default), all vari-
ables in the original data are required (unless ignored for some other reason).

... Currently ignored.

Value

A validated 'data.frame' based on newdata.

validate_prior Validate Prior for brms Models

Description

Validate priors supplied by the user. Return a complete set of priors for the given model, including
default priors.

Usage

validate_prior(
prior,
formula,
data,
family = gaussian(),
sample_prior = "no",
data2 = NULL,
knots = NULL,
...

)

Arguments

prior One or more brmsprior objects created by set_prior or related functions and
combined using the c method or the + operator. See also get_prior for more
help.

formula An object of class formula, brmsformula, or mvbrmsformula (or one that can
be coerced to that classes): A symbolic description of the model to be fitted.
The details of model specification are explained in brmsformula.

data An object of class data.frame (or one that can be coerced to that class) con-
taining data of all variables used in the model.

family A description of the response distribution and link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a link argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details of supported families see brmsfamily. By
default, a linear gaussian model is applied. In multivariate models, family
might also be a list of families.

212 VarCorr.brmsfit

sample_prior Indicate if samples from priors should be drawn additionally to the posterior
samples. Options are "no" (the default), "yes", and "only". Among others,
these samples can be used to calculate Bayes factors for point hypotheses via
hypothesis. Please note that improper priors are not sampled, including the
default improper priors used by brm. See set_prior on how to set (proper) pri-
ors. Please also note that prior samples for the overall intercept are not obtained
by default for technical reasons. See brmsformula how to obtain prior samples
for the intercept. If sample_prior is set to "only", samples are drawn solely
from the priors ignoring the likelihood, which allows among others to generate
samples from the prior predictive distribution. In this case, all parameters must
have proper priors.

data2 A named list of objects containing data, which cannot be passed via argument
data. Required for some objects used in autocorrelation structures to specify
dependency structures as well as for within-group covariance matrices.

knots Optional list containing user specified knot values to be used for basis construc-
tion of smoothing terms. See gamm for more details.

... Other arguments for internal usage only.

Value

An object of class brmsprior.

See Also

get_prior, set_prior.

Examples

prior1 <- prior(normal(0,10), class = b) +
prior(cauchy(0,2), class = sd)

validate_prior(prior1, count ~ zAge + zBase * Trt + (1|patient),
data = epilepsy, family = poisson())

VarCorr.brmsfit Extract Variance and Correlation Components

Description

This function calculates the estimated standard deviations, correlations and covariances of the
group-level terms in a multilevel model of class brmsfit. For linear models, the residual stan-
dard deviations, correlations and covariances are also returned.

VarCorr.brmsfit 213

Usage

S3 method for class 'brmsfit'
VarCorr(
x,
sigma = 1,
summary = TRUE,
robust = FALSE,
probs = c(0.025, 0.975),
...

)

Arguments

x An object of class brmsfit.

sigma Ignored (included for compatibility with VarCorr).

summary Should summary statistics be returned instead of the raw values? Default is
TRUE.

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

... Currently ignored.

Value

A list of lists (one per grouping factor), each with three elements: a matrix containing the standard
deviations, an array containing the correlation matrix, and an array containing the covariance matrix
with variances on the diagonal.

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1+Trt|visit),

data = epilepsy, family = gaussian(), chains = 2)
VarCorr(fit)

End(Not run)

214 varsel.brmsfit

varsel.brmsfit Projection Predictive Variable Selection

Description

Perform projection predictive variable selection with the projpred package. See varsel and
cv_varsel for more details.

Usage

S3 method for class 'brmsfit'
varsel(object, ...)

S3 method for class 'brmsfit'
cv_varsel(object, ...)

Arguments

object A brmsfit object.

... Further arguments passed to get_refmodel.brmsfit as well as varsel.refmodel
or cv_varsel.refmodel.

Value

A vsel object for which several methods are available in the projpred package.

Examples

Not run:
fit a simple model
fit <- brm(count ~ zAge + zBase * Trt,

data = epilepsy, family = poisson())
summary(fit)

perform variable selection without cross-validation
vs <- varsel(fit)
summary(vs)
plot(vs)

perform variable selection with cross-validation
cv_vs <- cv_varsel(fit)
summary(cv_vs)
plot(cv_vs)

End(Not run)

vcov.brmsfit 215

vcov.brmsfit Covariance and Correlation Matrix of Population-Level Effects

Description

Get a point estimate of the covariance or correlation matrix of population-level parameters

Usage

S3 method for class 'brmsfit'
vcov(object, correlation = FALSE, pars = NULL, ...)

Arguments

object An object of class brmsfit.

correlation Logical; if FALSE (the default), compute the covariance matrix, if TRUE, compute
the correlation matrix.

pars Optional names of coefficients to extract. By default, all coefficients are ex-
tracted.

... Currently ignored.

Details

Estimates are obtained by calculating the maximum likelihood covariances (correlations) of the
posterior samples.

Value

covariance or correlation matrix of population-level parameters

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1+Trt|visit),

data = epilepsy, family = gaussian(), chains = 2)
vcov(fit)

End(Not run)

216 waic.brmsfit

VonMises The von Mises Distribution

Description

Density, distribution function, and random generation for the von Mises distribution with location
mu, and precision kappa.

Usage

dvon_mises(x, mu, kappa, log = FALSE)

pvon_mises(q, mu, kappa, lower.tail = TRUE, log.p = FALSE, acc = 1e-20)

rvon_mises(n, mu, kappa)

Arguments

x, q Vector of quantiles.

mu Vector of location values.

kappa Vector of precision values.

log Logical; If TRUE, values are returned on the log scale.

lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .

log.p Logical; If TRUE, values are returned on the log scale.

acc Accuracy of numerical approximations.

n Number of samples to draw from the distribution.

Details

See vignette("brms_families") for details on the parameterization.

waic.brmsfit Widely Applicable Information Criterion (WAIC)

Description

Compute the widely applicable information criterion (WAIC) based on the posterior likelihood
using the loo package. For more details see waic.

waic.brmsfit 217

Usage

S3 method for class 'brmsfit'
waic(
x,
...,
compare = TRUE,
resp = NULL,
pointwise = FALSE,
model_names = NULL

)

Arguments

x A brmsfit object.
... More brmsfit objects or further arguments passed to the underlying post-processing

functions. In particular, see prepare_predictions for further supported argu-
ments.

compare A flag indicating if the information criteria of the models should be compared
to each other via loo_compare.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

pointwise A flag indicating whether to compute the full log-likelihood matrix at once or
separately for each observation. The latter approach is usually considerably
slower but requires much less working memory. Accordingly, if one runs into
memory issues, pointwise = TRUE is the way to go.

model_names If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.

Details

See loo_compare for details on model comparisons. For brmsfit objects, WAIC is an alias of waic.
Use method add_criterion to store information criteria in the fitted model object for later usage.

Value

If just one object is provided, an object of class loo. If multiple objects are provided, an object of
class loolist.

References

Vehtari, A., Gelman, A., & Gabry J. (2016). Practical Bayesian model evaluation using leave-
one-out cross-validation and WAIC. In Statistics and Computing, doi:10.1007/s11222-016-9696-4.
arXiv preprint arXiv:1507.04544.

Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding predictive information criteria for
Bayesian models. Statistics and Computing, 24, 997-1016.

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable
information criterion in singular learning theory. The Journal of Machine Learning Research, 11,
3571-3594.

218 Wiener

Examples

Not run:
model with population-level effects only
fit1 <- brm(rating ~ treat + period + carry,

data = inhaler)
(waic1 <- waic(fit1))

model with an additional varying intercept for subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),

data = inhaler)
(waic2 <- waic(fit2))

compare both models
loo_compare(waic1, waic2)

End(Not run)

Wiener The Wiener Diffusion Model Distribution

Description

Density function and random generation for the Wiener diffusion model distribution with boundary
separation alpha, non-decision time tau, bias beta and drift rate delta.

Usage

dwiener(
x,
alpha,
tau,
beta,
delta,
resp = 1,
log = FALSE,
backend = getOption("wiener_backend", "Rwiener")

)

rwiener(
n,
alpha,
tau,
beta,
delta,
types = c("q", "resp"),
backend = getOption("wiener_backend", "Rwiener")

)

ZeroInflated 219

Arguments

x Vector of quantiles.

alpha Boundary separation parameter.

tau Non-decision time parameter.

beta Bias parameter.

delta Drift rate parameter.

resp Response: "upper" or "lower". If no character vector, it is coerced to logical
where TRUE indicates "upper" and FALSE indicates "lower".

log Logical; If TRUE, values are returned on the log scale.

backend Name of the package to use as backend for the computations. Either "Rwiener"
(the default) or "rtdists". Can be set globally for the current R session via the
"wiener_backend" option (see options).

n Number of samples to draw from the distribution.

types Which types of responses to return? By default, return both the response times
"q" and the dichotomous responses "resp". If either "q" or "resp", return only
one of the two types.

Details

These are wrappers around functions of the RWiener or rtdists package (depending on the chosen
backend). See vignette("brms_families") for details on the parameterization.

See Also

wienerdist, Diffusion

ZeroInflated Zero-Inflated Distributions

Description

Density and distribution functions for zero-inflated distributions.

Usage

dzero_inflated_poisson(x, lambda, zi, log = FALSE)

pzero_inflated_poisson(q, lambda, zi, lower.tail = TRUE, log.p = FALSE)

dzero_inflated_negbinomial(x, mu, shape, zi, log = FALSE)

pzero_inflated_negbinomial(q, mu, shape, zi, lower.tail = TRUE, log.p = FALSE)

dzero_inflated_binomial(x, size, prob, zi, log = FALSE)

220 ZeroInflated

pzero_inflated_binomial(q, size, prob, zi, lower.tail = TRUE, log.p = FALSE)

dzero_inflated_beta(x, shape1, shape2, zi, log = FALSE)

pzero_inflated_beta(q, shape1, shape2, zi, lower.tail = TRUE, log.p = FALSE)

Arguments

x Vector of quantiles.

zi zero-inflation probability

log Logical; If TRUE, values are returned on the log scale.

q Vector of quantiles.

lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .

log.p Logical; If TRUE, values are returned on the log scale.

mu, lambda location parameter
shape, shape1, shape2

shape parameter

size number of trials

prob probability of success on each trial

Details

The density of a zero-inflated distribution can be specified as follows. If x = 0 set f(x) = θ+(1−
θ) ∗ g(0). Else set f(x) = (1− θ) ∗ g(x), where g(x) is the density of the non-zero-inflated part.

Index

∗ datasets
epilepsy, 80
inhaler, 101
kidney, 111
loss, 125

acat (brmsfamily), 29
acformula, 15
acformula (brmsformula-helpers), 44
add_criterion, 9, 10, 56, 117, 119, 217
add_ic, 56
add_ic (add_loo), 10
add_ic<- (add_loo), 10
add_loo, 10
add_waic (add_loo), 10
addition-terms, 7
ar, 11, 13, 15, 64, 127
arma, 12, 12, 15, 65, 127
as.array.brmsfit

(posterior_samples.brmsfit),
159

as.data.frame, 160
as.data.frame.brmsfit

(posterior_samples.brmsfit),
159

as.matrix.brmsfit, 155
as.matrix.brmsfit

(posterior_samples.brmsfit),
159

as.mcmc (as.mcmc.brmsfit), 13
as.mcmc.brmsfit, 13
asym_laplace (brmsfamily), 29
AsymLaplace, 14
autocor (autocor.brmsfit), 16
autocor-terms, 15
autocor.brmsfit, 16

bayes_factor, 6, 20, 165
bayes_factor (bayes_factor.brmsfit), 17
bayes_factor.brmsfit, 17

bayes_R2 (bayes_R2.brmsfit), 18
bayes_R2.brmsfit, 18
bayesplot, 6, 168
bernoulli (brmsfamily), 29
Beta (brmsfamily), 29
bf (brmsformula), 35
bf-helpers (brmsformula-helpers), 44
bridge_sampler, 17, 24, 131, 165
bridge_sampler

(bridge_sampler.brmsfit), 19
bridge_sampler.brmsfit, 19
bridge_sampler.stanfit, 20
bridgesampling::bayes_factor, 17
bridgesampling::bridge_sampler, 20
bridgesampling::post_prob, 164
brm, 6–8, 21, 33, 35, 49–51, 71, 97, 137, 184,

190, 195, 196, 208
brm_multiple, 38, 49, 208
brms, 26, 34, 35
brms (brms-package), 6
brms-package, 6
brmsfamily, 7, 22, 26, 29, 34, 35, 41, 50, 74,

75, 90, 129, 132, 137, 211
brmsfit, 7, 26
brmsfit (brmsfit-class), 34
brmsfit-class, 34
brmsfit_needs_refit, 25, 51
brmsformula, 6–8, 15, 22, 23, 25, 26, 33–35,

35, 44, 46, 48–50, 73, 90, 91, 94, 95,
129, 130, 132, 135–137, 139, 140,
142, 145, 146, 189, 193, 207, 208,
211, 212

brmsformula-helpers, 44
brmshypothesis, 46, 100
brmsprior, 34
brmsprior (set_prior), 191
brmsprior-class (set_prior), 191
brmsterms, 48, 105, 107

car, 15, 52, 67

221

222 INDEX

cat, 25, 131
categorical (brmsfamily), 29
cbind, 140, 145
coef.brmsfit, 54, 99
combine_models, 51, 55
compare_ic, 56
conditional_effects, 6, 63, 128, 188
conditional_effects

(conditional_effects.brmsfit),
57

conditional_effects.brmsfit, 57
conditional_smooths

(conditional_smooths.brmsfit),
62

conditional_smooths.brmsfit, 62
control_params, 64
cor_ar, 64, 66, 67
cor_arma, 65, 65, 67, 70
cor_arma-class (cor_arma), 65
cor_brms, 15, 22, 34, 35, 50, 66, 90, 130, 132
cor_brms-class (cor_brms), 66
cor_car, 67, 67
cor_cosy, 68
cor_cosy-class (cor_cosy), 68
cor_errorsar (cor_sar), 71
cor_fixed, 67, 69
cor_icar (cor_car), 67
cor_lagsar (cor_sar), 71
cor_ma, 66, 67, 70
cor_sar, 67, 71
cosy, 15, 68, 72
cov_fixed (cor_fixed), 69
cox (brmsfamily), 29
cratio (brmsfamily), 29
cs, 73
cse (cs), 73
cumulative (brmsfamily), 29
custom_family, 29, 74
customfamily, 33
customfamily (custom_family), 74
cv_varsel, 214
cv_varsel (varsel.brmsfit), 214
cv_varsel.refmodel, 214

dasym_laplace (AsymLaplace), 14
ddirichlet (Dirichlet), 78
density, 77
density_ratio, 76
dexgaussian (ExGaussian), 81

dfrechet (Frechet), 88
dgen_extreme_value (GenExtremeValue), 89
dhurdle_gamma (Hurdle), 98
dhurdle_lognormal (Hurdle), 98
dhurdle_negbinomial (Hurdle), 98
dhurdle_poisson (Hurdle), 98
diagnostic-quantities, 77
Diffusion, 219
dinv_gaussian (InvGaussian), 103
Dirichlet, 78
dirichlet (brmsfamily), 29
dmulti_normal (MultiNormal), 144
dmulti_student_t (MultiStudentT), 144
dshifted_lnorm (Shifted_Lognormal), 197
dskew_normal (SkewNormal), 198
dstudent_t (StudentT), 203
dvon_mises (VonMises), 216
dwiener (Wiener), 218
dzero_inflated_beta (ZeroInflated), 219
dzero_inflated_binomial (ZeroInflated),

219
dzero_inflated_negbinomial

(ZeroInflated), 219
dzero_inflated_poisson (ZeroInflated),

219

E_loo, 122
emm_basis.brmsfit

(emmeans-brms-helpers), 79
emmeans-brms-helpers, 79
empty_prior (set_prior), 191
environment, 75
epilepsy, 80
ExGaussian, 81
exgaussian (brmsfamily), 29
exponential (brmsfamily), 29
expose_functions

(expose_functions.brmsfit), 82
expose_functions.brmsfit, 82
expose_stan_functions, 82
expp1, 83
extract_draws

(prepare_predictions.brmsfit),
176

facet_wrap, 60
family, 29, 33
family.brmsfit, 83
fcor, 15, 69, 84

INDEX 223

fitted.brmsfit, 85
fixef (fixef.brmsfit), 87
fixef.brmsfit, 54, 87
formula, 22, 48, 49, 90, 129, 132, 211
Frechet, 88
frechet (brmsfamily), 29
future, 24

gam, 37
gamm, 23, 37, 50, 90, 130, 133, 194, 212
Gamma, 33
gen_extreme_value (brmsfamily), 29
GenExtremeValue, 89
geom_contour, 60
geom_errorbar, 60
geom_jitter, 59, 60
geom_point, 60
geom_raster, 60
geom_rug, 60
geom_smooth, 60
geometric (brmsfamily), 29
get_prior, 22, 26, 50, 90, 129, 132, 196, 211,

212
get_refmodel (get_refmodel.brmsfit), 91
get_refmodel.brmsfit, 91, 214
ggplot, 61, 134
ggtheme, 47, 60, 150
gp, 37, 92, 195
gr, 22, 36, 37, 50, 94, 130, 132
gtable, 150

horseshoe, 96, 193
Hurdle, 98
hurdle_gamma (brmsfamily), 29
hurdle_lognormal (brmsfamily), 29
hurdle_negbinomial (brmsfamily), 29
hurdle_poisson (brmsfamily), 29
hypothesis, 23, 46, 47, 50, 130, 132, 212
hypothesis (hypothesis.brmsfit), 99
hypothesis.brmsfit, 99

inhaler, 101
inv_logit_scaled, 103
InvGaussian, 103
is.brmsfit, 104
is.brmsfit_multiple, 104
is.brmsformula, 105
is.brmsprior, 105
is.brmsterms, 105

is.cor_arma (is.cor_brms), 106
is.cor_brms, 106
is.cor_car (is.cor_brms), 106
is.cor_cosy (is.cor_brms), 106
is.cor_fixed (is.cor_brms), 106
is.cor_sar (is.cor_brms), 106
is.mvbrmsformula, 106
is.mvbrmsterms, 107

kfold, 110, 184
kfold (kfold.brmsfit), 107
kfold-helpers, 109
kfold.brmsfit, 107
kfold_predict, 110
kidney, 111

lasso, 112, 193
launch_shinystan, 113, 134
launch_shinystan

(launch_shinystan.brmsfit), 113
launch_shinystan.brmsfit, 113
lf (brmsformula-helpers), 44
log_lik, 75, 122, 124
log_lik (log_lik.brmsfit), 115
log_lik.brmsfit, 115, 184
log_posterior (diagnostic-quantities),

77
logit_scaled, 114
logLik.brmsfit (log_lik.brmsfit), 115
logm1, 114
lognormal (brmsfamily), 29
LOO (loo.brmsfit), 116
loo, 6, 56, 109, 115–117, 121, 184
loo (loo.brmsfit), 116
LOO.brmsfit (loo.brmsfit), 116
loo.brmsfit, 116
loo::kfold_split_grouped, 109
loo::kfold_split_stratified, 109
loo::loo_model_weights, 119
loo_compare, 56, 108, 117, 118, 125, 217
loo_compare (loo_compare.brmsfit), 118
loo_compare.brmsfit, 118
loo_linpred (loo_predict.brmsfit), 122
loo_model_weights, 143, 151, 166
loo_model_weights

(loo_model_weights.brmsfit),
119

loo_model_weights.brmsfit, 119
loo_moment_match, 117, 120

224 INDEX

loo_moment_match
(loo_moment_match.brmsfit), 120

loo_moment_match.brmsfit, 120
loo_predict (loo_predict.brmsfit), 122
loo_predict.brmsfit, 122
loo_predictive_interval

(loo_predict.brmsfit), 122
loo_R2 (loo_R2.brmsfit), 123
loo_R2.brmsfit, 123
loo_subsample, 116, 125, 177
loo_subsample (loo_subsample.brmsfit),

124
loo_subsample.brmsfit, 124
loss, 125

ma, 12, 13, 15, 70, 127
make_conditions, 58, 128, 188
make_stancode, 6, 129
make_standata, 6, 131, 201
marginal_effects

(conditional_effects.brmsfit),
57

marginal_smooths
(conditional_smooths.brmsfit),
62

MCMC, 150
mcmc_combo, 150
mcmc_pairs, 148
mcmc_plot (mcmc_plot.brmsfit), 133
mcmc_plot.brmsfit, 133
me, 46, 135
mgcv::s, 188, 189
mgcv::t2, 188, 189
mi, 38, 136
mixture, 42, 137
mm, 37, 139, 140, 141
mmc, 140, 140
mo, 141
model_weights, 152, 166, 167
model_weights (model_weights.brmsfit),

142
model_weights.brmsfit, 142
multinomial (brmsfamily), 29
MultiNormal, 144
MultiStudentT, 144
mvbf, 42
mvbf (mvbrmsformula), 146
mvbind, 145

mvbrmsformula, 22, 42, 46, 48, 49, 90, 129,
132, 145, 146, 211

neff_ratio (diagnostic-quantities), 77
negbinomial (brmsfamily), 29
ngrps (ngrps.brmsfit), 147
ngrps.brmsfit, 147
nlf (brmsformula-helpers), 44
nsamples (nsamples.brmsfit), 147
nsamples.brmsfit, 147
nuts_params (diagnostic-quantities), 77

options, 24, 219

pairs, 148
pairs.brmsfit, 148
pareto_k_ids, 117, 120, 183
parnames, 99, 149
parse_bf (brmsterms), 48
pasym_laplace (AsymLaplace), 14
pexgaussian (ExGaussian), 81
pfrechet (Frechet), 88
pgen_extreme_value (GenExtremeValue), 89
phurdle_gamma (Hurdle), 98
phurdle_lognormal (Hurdle), 98
phurdle_negbinomial (Hurdle), 98
phurdle_poisson (Hurdle), 98
pinv_gaussian (InvGaussian), 103
plan, 25
plot.brms_conditional_effects

(conditional_effects.brmsfit),
57

plot.brmsfit, 149
plot.brmshypothesis (brmshypothesis), 46
post_prob, 17, 20, 143, 151, 166
post_prob (post_prob.brmsfit), 164
post_prob.brmsfit, 164
posterior_average, 167
posterior_average

(posterior_average.brmsfit),
151

posterior_average.brmsfit, 151
posterior_epred, 19, 59, 75, 124, 156
posterior_epred

(posterior_epred.brmsfit), 152
posterior_epred.brmsfit, 80, 85, 86, 152,

156, 157
posterior_interval

(posterior_interval.brmsfit),
154

INDEX 225

posterior_interval.brmsfit, 154
posterior_linpred, 122, 156
posterior_linpred

(posterior_linpred.brmsfit),
155

posterior_linpred.brmsfit, 155
posterior_predict, 59, 75, 122, 175
posterior_predict

(posterior_predict.brmsfit),
157

posterior_predict.brmsfit, 152, 157,
171–173

posterior_samples
(posterior_samples.brmsfit),
159

posterior_samples.brmsfit, 159
posterior_smooths

(posterior_smooths.brmsfit),
161

posterior_smooths.brmsfit, 161
posterior_summary, 54, 88, 162, 182
posterior_table, 163
pp_average, 152
pp_average (pp_average.brmsfit), 165
pp_average.brmsfit, 165
pp_check, 6
pp_check (pp_check.brmsfit), 167
pp_check.brmsfit, 167
pp_expect (posterior_epred.brmsfit), 152
pp_mixture (pp_mixture.brmsfit), 169
pp_mixture.brmsfit, 169
PPC, 168
predict.brmsfit, 110, 168, 171
predictive_error

(predictive_error.brmsfit), 173
predictive_error.brmsfit, 173, 185, 187
predictive_interval

(predictive_interval.brmsfit),
175

predictive_interval.brmsfit, 175
prepare_predictions, 86, 108, 110, 116,

117, 119, 125, 143, 151, 153, 154,
156, 158, 164, 166, 170, 172, 174,
186, 217

prepare_predictions
(prepare_predictions.brmsfit),
176

prepare_predictions.brmsfit, 176

print.brmsfit, 178
print.brmshypothesis (brmshypothesis),

46
print.brmsprior, 178
print.brmssummary (print.brmsfit), 178
print.default, 47
prior (set_prior), 191
prior_ (set_prior), 191
prior_samples (prior_samples.brmsfit),

179
prior_samples.brmsfit, 179
prior_string (set_prior), 191
prior_summary (prior_summary.brmsfit),

180
prior_summary.brmsfit, 180
pshifted_lnorm (Shifted_Lognormal), 197
psis, 122
pskew_normal (SkewNormal), 198
pstudent_t (StudentT), 203
pvon_mises (VonMises), 216
pzero_inflated_beta (ZeroInflated), 219
pzero_inflated_binomial (ZeroInflated),

219
pzero_inflated_negbinomial

(ZeroInflated), 219
pzero_inflated_poisson (ZeroInflated),

219

qasym_laplace (AsymLaplace), 14
qfrechet (Frechet), 88
qshifted_lnorm (Shifted_Lognormal), 197
qskew_normal (SkewNormal), 198
qstudent_t (StudentT), 203

R2D2, 181
ranef (ranef.brmsfit), 182
ranef.brmsfit, 54, 99, 182
rasym_laplace (AsymLaplace), 14
rdirichlet (Dirichlet), 78
recover_data.brmsfit

(emmeans-brms-helpers), 79
reloo, 109, 117
reloo (reloo.brmsfit), 183
reloo.brmsfit, 183
rename_pars, 184
residuals.brmsfit, 185
resp_cat (addition-terms), 7
resp_cens (addition-terms), 7
resp_dec (addition-terms), 7

226 INDEX

resp_mi (addition-terms), 7
resp_rate (addition-terms), 7
resp_se (addition-terms), 7
resp_subset (addition-terms), 7
resp_thres (addition-terms), 7
resp_trials (addition-terms), 7
resp_trunc (addition-terms), 7
resp_vint (addition-terms), 7
resp_vreal (addition-terms), 7
resp_weights (addition-terms), 7
restructure, 187
rexgaussian (ExGaussian), 81
rfrechet (Frechet), 88
rgen_extreme_value (GenExtremeValue), 89
rhat (diagnostic-quantities), 77
rinv_gaussian (InvGaussian), 103
rmulti_normal (MultiNormal), 144
rmulti_student_t (MultiStudentT), 144
rows2labels, 128, 188
rshifted_lnorm (Shifted_Lognormal), 197
rskew_normal (SkewNormal), 198
rstudent_t (StudentT), 203
runApp, 113
rvon_mises (VonMises), 216
rwiener (Wiener), 218

s, 37, 188
sampling, 25
sar, 15, 71, 189
save_pars, 23, 190
saveRDS, 10, 25, 51
scale_colour_gradient, 60
scale_colour_grey, 60
set.seed, 100, 152, 166
set_mecor (brmsformula-helpers), 44
set_nl (brmsformula-helpers), 44
set_prior, 22, 23, 26, 40, 50, 91, 97, 113,

129, 130, 132, 137, 181, 191, 211,
212

set_rescor (brmsformula-helpers), 44
Shifted_Lognormal, 197
shifted_lognormal (brmsfamily), 29
skew_normal (brmsfamily), 29
SkewNormal, 198
sratio (brmsfamily), 29
Stan, 6
stan, 24, 26, 64
stan_model, 25
stancode (stancode.brmsfit), 200

stancode.brmsfit, 200
standata (standata.brmsfit), 200
standata.brmsfit, 200
stanfit, 34
stanplot, 6
stanplot (mcmc_plot.brmsfit), 133
stanvar, 23, 51, 75, 130, 132, 201
stanvars, 34, 177, 201, 210
stanvars (stanvar), 201
student (brmsfamily), 29
StudentT, 203
summary, 6
summary.brmsfit, 178, 204

t2, 37
t2 (s), 188
TDist, 203
theme, 47, 60, 150
theme_black, 205
theme_default, 47, 60, 150, 206, 206
threading, 24, 130, 133, 202, 206

update, 23, 51
update.brmsfit, 184, 207, 208
update.brmsfit_multiple, 208
update.formula, 207, 208
update_adterms, 209

validate_newdata, 177, 201, 210
validate_prior, 211
VarCorr, 213
VarCorr (VarCorr.brmsfit), 212
VarCorr.brmsfit, 212
varsel, 91, 92, 214
varsel (varsel.brmsfit), 214
varsel.brmsfit, 91, 214
varsel.refmodel, 214
vb, 25
vcov.brmsfit, 215
Vectorize, 82
von_mises (brmsfamily), 29
VonMises, 216

WAIC (waic.brmsfit), 216
waic, 6, 56, 115, 216
waic (waic.brmsfit), 216
WAIC.brmsfit (waic.brmsfit), 216
waic.brmsfit, 216
weibull (brmsfamily), 29

INDEX 227

Wiener, 218
wiener (brmsfamily), 29
wienerdist, 219

zero_inflated_beta (brmsfamily), 29
zero_inflated_binomial (brmsfamily), 29
zero_inflated_negbinomial (brmsfamily),

29
zero_inflated_poisson (brmsfamily), 29
zero_one_inflated_beta (brmsfamily), 29
ZeroInflated, 219

	brms-package
	addition-terms
	add_criterion
	add_loo
	ar
	arma
	as.mcmc.brmsfit
	AsymLaplace
	autocor-terms
	autocor.brmsfit
	bayes_factor.brmsfit
	bayes_R2.brmsfit
	bridge_sampler.brmsfit
	brm
	brmsfamily
	brmsfit-class
	brmsformula
	brmsformula-helpers
	brmshypothesis
	brmsterms
	brm_multiple
	car
	coef.brmsfit
	combine_models
	compare_ic
	conditional_effects.brmsfit
	conditional_smooths.brmsfit
	control_params
	cor_ar
	cor_arma
	cor_brms
	cor_car
	cor_cosy
	cor_fixed
	cor_ma
	cor_sar
	cosy
	cs
	custom_family
	density_ratio
	diagnostic-quantities
	Dirichlet
	emmeans-brms-helpers
	epilepsy
	ExGaussian
	expose_functions.brmsfit
	expp1
	family.brmsfit
	fcor
	fitted.brmsfit
	fixef.brmsfit
	Frechet
	GenExtremeValue
	get_prior
	get_refmodel.brmsfit
	gp
	gr
	horseshoe
	Hurdle
	hypothesis.brmsfit
	inhaler
	InvGaussian
	inv_logit_scaled
	is.brmsfit
	is.brmsfit_multiple
	is.brmsformula
	is.brmsprior
	is.brmsterms
	is.cor_brms
	is.mvbrmsformula
	is.mvbrmsterms
	kfold.brmsfit
	kfold_predict
	kidney
	lasso
	launch_shinystan.brmsfit
	logit_scaled
	logm1
	log_lik.brmsfit
	loo.brmsfit
	loo_compare.brmsfit
	loo_model_weights.brmsfit
	loo_moment_match.brmsfit
	loo_predict.brmsfit
	loo_R2.brmsfit
	loo_subsample.brmsfit
	loss
	ma
	make_conditions
	make_stancode
	make_standata
	mcmc_plot.brmsfit
	me
	mi
	mixture
	mm
	mmc
	mo
	model_weights.brmsfit
	MultiNormal
	MultiStudentT
	mvbind
	mvbrmsformula
	ngrps.brmsfit
	nsamples.brmsfit
	pairs.brmsfit
	parnames
	plot.brmsfit
	posterior_average.brmsfit
	posterior_epred.brmsfit
	posterior_interval.brmsfit
	posterior_linpred.brmsfit
	posterior_predict.brmsfit
	posterior_samples.brmsfit
	posterior_smooths.brmsfit
	posterior_summary
	posterior_table
	post_prob.brmsfit
	pp_average.brmsfit
	pp_check.brmsfit
	pp_mixture.brmsfit
	predict.brmsfit
	predictive_error.brmsfit
	predictive_interval.brmsfit
	prepare_predictions.brmsfit
	print.brmsfit
	print.brmsprior
	prior_samples.brmsfit
	prior_summary.brmsfit
	R2D2
	ranef.brmsfit
	reloo.brmsfit
	rename_pars
	residuals.brmsfit
	restructure
	rows2labels
	s
	sar
	save_pars
	set_prior
	Shifted_Lognormal
	SkewNormal
	stancode.brmsfit
	standata.brmsfit
	stanvar
	StudentT
	summary.brmsfit
	theme_black
	theme_default
	threading
	update.brmsfit
	update.brmsfit_multiple
	update_adterms
	validate_newdata
	validate_prior
	VarCorr.brmsfit
	varsel.brmsfit
	vcov.brmsfit
	VonMises
	waic.brmsfit
	Wiener
	ZeroInflated
	Index

