Package ‘brms’

January 19, 2020

Encoding UTF-8

Type Package

Title Bayesian Regression Models using ‘Stan’

Version 2.11.1

Date 2020-01-16

Depends R (>= 3.5.0), Rcpp (>= 0.12.0), methods

Imports rstan (>= 2.19.2), ggplot2 (>= 2.0.0), loo (>= 2.2.0), Matrix (>= 1.1.1), mgcv (>= 1.8-13), rstantools (>= 1.5.1), bayesplot (>= 1.5.0), shinystan (>= 2.4.0), bridgesampling (>= 0.3-0), glue (>= 1.3.0), matrixStats, nleqslv, nlme, coda, abind, future, stats, utils, parallel, grDevices, backports

Suggests testthat (>= 0.9.1), RWiener, mice, spdep, mnormt, lme4, MCMCglmm, splines2, ape, arm, statmod, digest, R.rsp, knitr, markdown

Description Fit Bayesian generalized (non-)linear multivariate multilevel models using ‘Stan’ for full Bayesian inference. A wide range of distributions and link functions are supported, allowing users to fit -- among others -- linear, robust linear, count data, survival, response times, ordinal, zero-inflated, hurdle, and even self-defined mixture models all in a multilevel context. Further modeling options include non-linear and smooth terms, auto-correlation structures, censored data, meta-analytic standard errors, and quite a few more. In addition, all parameters of the response distribution can be predicted in order to perform distributional regression. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their beliefs. Model fit can easily be assessed and compared with posterior predictive checks and leave-one-out cross-validation. References: Bürkner (2017) <doi:10.18637/jss.v080.i01>; Bürkner (2018) <doi:10.32614/RJ-2018-017>; Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>.

LazyData true

NeedsCompilation no

License GPL-2

BugReports https://github.com/paul-buerkner/brms/issues

VignetteBuilder knitr, R.rsp

RoxygenNote 7.0.2

Author Paul-Christian Bürkner [aut, cre]

Maintainer Paul-Christian Bürkner <paul.buerkner@gmail.com>

Repository CRAN

Date/Publication 2020-01-19 20:00:21 UTC

R topics documented:

<table>
<thead>
<tr>
<th>R topics documented:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>brms-package</td>
<td>5</td>
</tr>
<tr>
<td>addition-terms</td>
<td>6</td>
</tr>
<tr>
<td>add_criterion</td>
<td>8</td>
</tr>
<tr>
<td>add_loo</td>
<td>10</td>
</tr>
<tr>
<td>as.mcmc.brmsfit</td>
<td>11</td>
</tr>
<tr>
<td>AsymLaplace</td>
<td>12</td>
</tr>
<tr>
<td>autocor.brmsfit</td>
<td>13</td>
</tr>
<tr>
<td>bayes_factor.brmsfit</td>
<td>13</td>
</tr>
<tr>
<td>bayes_R2.brmsfit</td>
<td>14</td>
</tr>
<tr>
<td>bridge_sampler.brmsfit</td>
<td>16</td>
</tr>
<tr>
<td>brm</td>
<td>17</td>
</tr>
<tr>
<td>brmsfamily</td>
<td>24</td>
</tr>
<tr>
<td>brmsfit-class</td>
<td>29</td>
</tr>
<tr>
<td>brmsformula</td>
<td>30</td>
</tr>
<tr>
<td>brmsformula-helpers</td>
<td>39</td>
</tr>
<tr>
<td>brms_hypothesis</td>
<td>41</td>
</tr>
<tr>
<td>brm_multiple</td>
<td>43</td>
</tr>
<tr>
<td>coef.brmsfit</td>
<td>46</td>
</tr>
<tr>
<td>combine_models</td>
<td>47</td>
</tr>
<tr>
<td>compare_ic</td>
<td>47</td>
</tr>
<tr>
<td>conditional_effects.brmsfit</td>
<td>48</td>
</tr>
<tr>
<td>conditional_smooths.brmsfit</td>
<td>53</td>
</tr>
<tr>
<td>control_params</td>
<td>55</td>
</tr>
<tr>
<td>cor_ar</td>
<td>56</td>
</tr>
<tr>
<td>cor_arma</td>
<td>57</td>
</tr>
<tr>
<td>cor_brms</td>
<td>58</td>
</tr>
<tr>
<td>cor_car</td>
<td>58</td>
</tr>
<tr>
<td>cor_cosy</td>
<td>60</td>
</tr>
<tr>
<td>cor_fixed</td>
<td>60</td>
</tr>
<tr>
<td>cor_ma</td>
<td>61</td>
</tr>
<tr>
<td>cor_sar</td>
<td>62</td>
</tr>
<tr>
<td>cs</td>
<td>63</td>
</tr>
<tr>
<td>custom_family</td>
<td>64</td>
</tr>
<tr>
<td>R topics documented</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
</tr>
<tr>
<td>density_ratio</td>
<td>66</td>
</tr>
<tr>
<td>diagnostic-quantities</td>
<td>67</td>
</tr>
<tr>
<td>Dirichlet</td>
<td>68</td>
</tr>
<tr>
<td>epilepsy</td>
<td>69</td>
</tr>
<tr>
<td>ExGaussian</td>
<td>70</td>
</tr>
<tr>
<td>expose_functions.brmsfit</td>
<td>71</td>
</tr>
<tr>
<td>expp1</td>
<td>71</td>
</tr>
<tr>
<td>extract_draws.brmsfit</td>
<td>72</td>
</tr>
<tr>
<td>family.brmsfit</td>
<td>74</td>
</tr>
<tr>
<td>fitted.brmsfit</td>
<td>74</td>
</tr>
<tr>
<td>fixef.brmsfit</td>
<td>76</td>
</tr>
<tr>
<td>Frechet</td>
<td>78</td>
</tr>
<tr>
<td>GenExtremeValue</td>
<td>78</td>
</tr>
<tr>
<td>get_prior</td>
<td>79</td>
</tr>
<tr>
<td>gp</td>
<td>81</td>
</tr>
<tr>
<td>gr</td>
<td>83</td>
</tr>
<tr>
<td>horseshoe</td>
<td>84</td>
</tr>
<tr>
<td>Hurdle</td>
<td>86</td>
</tr>
<tr>
<td>hypothesis.brmsfit</td>
<td>87</td>
</tr>
<tr>
<td>inhaler</td>
<td>90</td>
</tr>
<tr>
<td>InvGaussian</td>
<td>91</td>
</tr>
<tr>
<td>inv_logit_scaled</td>
<td>92</td>
</tr>
<tr>
<td>is.brmsfit</td>
<td>92</td>
</tr>
<tr>
<td>is.brmsfit_multiple</td>
<td>93</td>
</tr>
<tr>
<td>is.brmsformula</td>
<td>93</td>
</tr>
<tr>
<td>is.brmsprior</td>
<td>93</td>
</tr>
<tr>
<td>is.brmsterms</td>
<td>94</td>
</tr>
<tr>
<td>is.cor_brms</td>
<td>94</td>
</tr>
<tr>
<td>is.mvbrmsformula</td>
<td>95</td>
</tr>
<tr>
<td>is.mvbrmsterms</td>
<td>95</td>
</tr>
<tr>
<td>kfold.brmsfit</td>
<td>96</td>
</tr>
<tr>
<td>kfold_predict</td>
<td>98</td>
</tr>
<tr>
<td>kidney</td>
<td>99</td>
</tr>
<tr>
<td>lasso</td>
<td>100</td>
</tr>
<tr>
<td>launch_shinystan.brmsfit</td>
<td>101</td>
</tr>
<tr>
<td>logit_scaled</td>
<td>102</td>
</tr>
<tr>
<td>logm1</td>
<td>103</td>
</tr>
<tr>
<td>log_lik.brmsfit</td>
<td>103</td>
</tr>
<tr>
<td>loo.brmsfit</td>
<td>104</td>
</tr>
<tr>
<td>loo_compare.brmsfit</td>
<td>106</td>
</tr>
<tr>
<td>loo_model_weights.brmsfit</td>
<td>107</td>
</tr>
<tr>
<td>loo_predict.brmsfit</td>
<td>108</td>
</tr>
<tr>
<td>loo_R2.brmsfit</td>
<td>110</td>
</tr>
<tr>
<td>loo_subsample.brmsfit</td>
<td>110</td>
</tr>
<tr>
<td>make_conditions</td>
<td>111</td>
</tr>
<tr>
<td>make_stancode</td>
<td>112</td>
</tr>
<tr>
<td>make_standata</td>
<td>114</td>
</tr>
<tr>
<td>mcmc_plot.brmsfit</td>
<td>116</td>
</tr>
</tbody>
</table>
R topics documented:

- `me` .. 118
- `mi` .. 119
- `mixture` .. 120
- `mm` .. 122
- `mmc` ... 123
- `mo` .. 124
- `model_weights.brmsfit` 125
- `MultiNormal` 126
- `MultiStudentT` 127
- `mvbind` ... 127
- `mvbrmsformula` 128
- `ngps.brmsfit` 129
- `nsamples.brmsfit` 129
- `pairs.brmsfit` 130
- `parnames` ... 131
- `parse_bf` .. 131
- `plot.brmsfit` 133
- `posterior_average.brmsfit` 134
- `posterior_interval.brmsfit` 136
- `posterior_linpred.brmsfit` 137
- `posterior_predict.brmsfit` 138
- `posterior_samples.brmsfit` 139
- `posterior_summary` 141
- `posterior_table` 142
- `post_prob.brmsfit` 144
- `pp_average.brmsfit` 146
- `pp_check.brmsfit` 148
- `pp_expect.brmsfit` 149
- `pp_mixture.brmsfit` 151
- `predict.brmsfit` 153
- `predictive_error.brmsfit` 156
- `predictive_interval.brmsfit` 157
- `print.brmsfit` 158
- `print.brmsprior` 158
- `prior_samples.brmsfit` 159
- `prior_summary.brmsfit` 160
- `ranef.brmsfit` 161
- `reloo.brmsfit` 162
- `residuals.brmsfit` 164
- `restructure` 166
- `rows2labels` 166
- `s` .. 167
- `set_prior` .. 168
- `Shifted_Lognormal` 173
- `SkewNormal` 174
- `stancode.brmsfit` 176
- `standata.brmsfit` 177
- `stanvar` .. 178
Detected languages: en

The **brms** package provides an interface to fit Bayesian generalized multivariate (non-)linear multilevel models using **Stan**, which is a C++ package for obtaining full Bayesian inference (see http://mc-stan.org/). The formula syntax is an extended version of the syntax applied in the **lme4** package to provide a familiar and simple interface for performing regression analyses.

Details

The main function of **brms** is **brm**, which uses formula syntax to specify a wide range of complex Bayesian models (see **brmsformula** for details). Based on the supplied formulas, data, and additional information, it writes the Stan code on the fly via **make_stancode**, prepares the data via **make_standata**, and fits the model using **Stan**.

Subsequently, a large number of post-processing methods can be applied: To get an overview on the estimated parameters, **summary** or **conditional_effects** are perfectly suited. Detailed visual analyses can be performed by applying the **pp_check** and **stanplot** methods, which both rely on the **bayesplot** package. Model comparisons can be done via **loo** and **waic**, which make use of the **loo** package as well as via **bayes_factor** which relies on the **bridgesampling** package. For a full list of methods to apply, type methods(class = "brmsfit").

Because **brms** is based on **Stan**, a C++ compiler is required. The program Rtools (available on https://cran.r-project.org/bin/windows/Rtools/) comes with a C++ compiler for Windows. On Mac, you should use Xcode. For further instructions on how to get the compilers running, see the prerequisites section at the RStan-Getting-Started page.

When comparing other packages fitting multilevel models to **brms**, keep in mind that the latter needs to compile models before actually fitting them, which will require between 20 and 40 seconds depending on your machine, operating system and overall model complexity.
Thus, fitting smaller models may be relatively slow as compilation time makes up the majority of the whole running time. For larger / more complex models however, fitting may take several minutes or even hours, so that the compilation time won’t make much of a difference for these models.

See vignette("brms_overview") and vignette("brms_multilevel") for a general introduction and overview of brms. For a full list of available vignettes, type vignette(package = "brms").

References

See Also

brm, brmsformula, brmsfamily, brmsfit

addition-terms Additional Response Information

Description

Provide additional information on the response variable in brms models, such as censoring, truncation, or known measurement error.

Usage

```r
resp_se(x, sigma = FALSE)
resp_weights(x, scale = FALSE)
resp_trials(x)
resp_thres(x, gr = NA)
resp_cat(x)
resp_dec(x)
resp_cens(x, y2 = NA)
resp_trunc(lb = -Inf, ub = Inf)
```
resp_mi(sdy = NA)
resp_rate(denom)
resp_subset(x)
resp_vreal(...)
resp_vint(...)

Arguments

x A vector; usually a variable defined in the data. Allowed values depend on the function: resp_se and resp_weights require positive numeric values. resp_trials, resp_thres, and resp_cat require positive integers. resp_dec requires 0 and 1, or alternatively 'lower' and 'upper'. resp_subset requires 0 and 1, or alternatively FALSE and TRUE. resp_cens requires 'left', 'none', 'right', and 'interval' (or equivalently -1, 0, 1, and 2) to indicate left, no, right, or interval censoring.
sigma Logical; Indicates whether the residual standard deviation parameter sigma should be included in addition to the known measurement error. Defaults to FALSE for backwards compatibility, but setting it to TRUE is usually the better choice.
scale Logical; Indicates whether weights should be scaled so that the average weight equals one. Defaults to FALSE.
gr A vector of grouping indicators.
y2 A vector specifying the upper bounds in interval censoring.
lb A numeric vector or single numeric value specifying the lower truncation bound.
ub A numeric vector or single numeric value specifying the upper truncation bound.
sdy Optional known measurement error of the response treated as standard deviation. If specified, handles measurement error and (completely) missing values at the same time using the plausible-values-technique.
denom A vector of positive numeric values specifying the denominator values from which the response rates are computed.
... For resp_vreal, vectors of real values. For resp_vint, vectors of integer values.

Details

These functions are almost solely useful when called in formulas passed to the brms package. Within formulas, the resp_ prefix may be omitted. More information is given in the 'Details' section of brmsformula.

Value

A list of additional response information to be processed further by brms.
add_criterion

See Also

brm, brmsformula

Examples

```r
## Not run:
## Random effects meta-analysis
nstudies <- 20
ture_effects <- rnorm(nstudies, 0.5, 0.2)
sei <- runif(nstudies, 0.05, 0.3)
outcomes <- rnorm(nstudies, true_effects, sei)
data1 <- data.frame(outcomes, sei)
fit1 <- brm(outcomes | se(sei, sigma = TRUE) ~ 1,
data = data1)
summary(fit1)

## Probit regression using the binomial family
n <- sample(1:10, 100, TRUE) # number of trials
success <- rbinom(100, size = n, prob = 0.4)
x <- rnorm(100)
data2 <- data.frame(n, success, x)
fit2 <- brm(success | trials(n) ~ x, data = data2,
family = binomial("probit"))
summary(fit2)

## Survival regression modeling the time between the first
## and second recurrence of an infection in kidney patients.
fitt3 <- brm(time | cens(censored) ~ age * sex + disease + (1|patient),
data = kidney, family = lognormal())
summary(fit3)

## Poisson model with truncated counts
fit4 <- brm(count | trunc(ub = 104) ~ zBase * Trt,
data = epilepsy, family = poisson())
summary(fit4)

## End(Not run)
```

add_criterion

Add model fit criteria to model objects

Description

Add model fit criteria to model objects
Usage

add_criterion(x, ...)

S3 method for class 'brmsfit'
add_criterion(
 x, criterion,
 model_name = NULL,
 overwrite = FALSE,
 file = NULL,
 force_save = FALSE,
 ...
)

Arguments

x An R object typically of class brmsfit.
...
Further arguments passed to the underlying functions computing the model fit
criteria.
criterion Names of model fit criteria to compute. Currently supported are "loo", "waic", "kfold", "loo_subsample", "bayes_R2" (Bayesian R-squared), "loo_R2" (LOO-adjusted R-squared), and "marglik" (log marginal likelihood).
model_name Optional name of the model. If NULL (the default) the name is taken from the
call to x.
overwrite Logical; Indicates if already stored fit indices should be overwritten. Defaults to
FALSE.
file Either NULL or a character string. In the latter case, the fitted model object
including the newly added criterion values is saved via saveRDS in a file named
after the string supplied in file. The .rds extension is added automatically. If
x was already stored in a file before, the file name will be reused automatically
(with a message) unless overwritten by file. In any case, file only applies if
new criteria were actually added via add_criterion or if force_save was set
to TRUE.
force_save Logical; only relevant if file is specified and ignored otherwise. If TRUE, the
fitted model object will be saved regardless of whether new criteria were added
via add_criterion.

Details

Functions add_loo and add_waic are aliases of add_criterion with fixed values for the criterion
argument.

Value

An object of the same class as x, but with model fit criteria added for later usage.
Examples

```r
## Not run:
fit <- brm(count ~ Trt, data = epilepsy)
# add both LOO and WAIC at once
fit <- add_criterion(fit, c("loo", "waic"))
print(fit$criteria$loo)
print(fit$criteria$waic)

## End(Not run)
```

add_loo

Add model fit criteria to model objects

Description

Deprecated aliases of `add_criterion`.

Usage

```r
add_loo(x, model_name = NULL, ...)
add_waic(x, model_name = NULL, ...)
add_ic(x, ...)
```

```r
## S3 method for class 'brmsfit'
add_ic(x, ic = "loo", model_name = NULL, ...)
```

```r
add_ic(x, ...) <- value
```

Arguments

- **x**
 - An R object typically of class `brmsfit`.

- **model_name**
 - Optional name of the model. If NULL (the default) the name is taken from the call to `x`.

- **...**
 - Further arguments passed to the underlying functions computing the model fit criteria.

- **ic, value**
 - Names of model fit criteria to compute. Currently supported are "loo", "waic", "kfold", "R2" (R-squared), and "marglik" (log marginal likelihood).

Value

An object of the same class as `x`, but with model fit criteria added for later usage. Previously computed criterion objects will be overwritten.
as.mcmc.brmsfit

Extract posterior samples for use with the coda package

Description

Extract posterior samples for use with the coda package

Usage

S3 method for class 'brmsfit'
as.mcmc(
 x,
 pars = NA,
 fixed = FALSE,
 combine_chains = FALSE,
 inc_warmup = FALSE,
 ...
)

Arguments

<table>
<thead>
<tr>
<th>x</th>
<th>An R object typically of class brmsfit</th>
</tr>
</thead>
<tbody>
<tr>
<td>pars</td>
<td>Names of parameters for which posterior samples should be returned, as given by a character vector or regular expressions. By default, all posterior samples of all parameters are extracted.</td>
</tr>
<tr>
<td>fixed</td>
<td>Indicates whether parameter names should be matched exactly (TRUE) or treated as regular expressions (FALSE). Default is FALSE.</td>
</tr>
<tr>
<td>combine_chains</td>
<td>Indicates whether chains should be combined.</td>
</tr>
<tr>
<td>inc_warmup</td>
<td>Indicates if the warmup samples should be included. Default is FALSE. Warmup samples are used to tune the parameters of the sampling algorithm and should not be analyzed.</td>
</tr>
<tr>
<td>...</td>
<td>currently unused</td>
</tr>
</tbody>
</table>

Value

If combine_chains = TRUE an mcmc object is returned. If combine_chains = FALSE an mcmc.list object is returned.
The Asymmetric Laplace Distribution

Description
Density, distribution function, quantile function and random generation for the asymmetric Laplace distribution with location mu, scale sigma and asymmetry parameter quantile.

Usage

dasym_laplace(x, mu = 0, sigma = 1, quantile = 0.5, log = FALSE)

pasym_laplace(q,
 mu = 0,
 sigma = 1,
 quantile = 0.5,
 lower.tail = TRUE,
 log.p = FALSE
)

qasym_laplace(p,
 mu = 0,
 sigma = 1,
 quantile = 0.5,
 lower.tail = TRUE,
 log.p = FALSE
)

rasym_laplace(n, mu = 0, sigma = 1, quantile = 0.5)

Arguments
x, q Vector of quantiles.
mu Vector of locations.
sigma Vector of scales.
quantile Asymmetry parameter corresponding to quantiles in quantile regression (hence the name).
log Logical; If TRUE, values are returned on the log scale.
lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .
log.p Logical; If TRUE, values are returned on the log scale.
p Vector of probabilities.
n Number of samples to draw from the distribution.
autocor.brmsfit

Details
See vignette("brms_families") for details on the parameterization.

autocor.brmsfit Extract Autocorrelation Objects

Description
Extract Autocorrelation Objects

Usage
S3 method for class 'brmsfit'
autocor(object, resp = NULL, ...)

autocor(object, ...)

Arguments
 object An object of class brmsfit.
 resp Optional names of response variables. If specified, predictions are performed only for the specified response variables.
 ... Currently unused.

Value
A cor_brms object or a list of such objects for multivariate models.

bayes_factor.brmsfit Bayes Factors from Marginal Likelihoods

Description
Compute Bayes factors from marginal likelihoods.

Usage
S3 method for class 'brmsfit'
bayes_factor(x1, x2, log = FALSE, ...)

Arguments
 x1 A brmsfit object
 x2 Another brmsfit object based on the same responses.
 log Report Bayes factors on the log-scale?
 ... Additional arguments passed to bridge_sampler.
Details

Computing the marginal likelihood requires samples of all variables defined in Stan’s parameters block to be saved. Otherwise bayes_factor cannot be computed. Thus, please set save_all_pars = TRUE in the call to brm, if you are planning to apply bayes_factor to your models.

The computation of Bayes factors based on bridge sampling requires a lot more posterior samples than usual. A good conservative rule of thumb is perhaps 10-fold more samples (read: the default of 4000 samples may not be enough in many cases). If not enough posterior samples are provided, the bridge sampling algorithm tends to be unstable, leading to considerably different results each time it is run. We thus recommend running bayes_factor multiple times to check the stability of the results.

More details are provided under bridgesampling:bayes_factor.

See Also

bridge_sampler,post_prob

Examples

```r
## Not run:
# model with the treatment effect
fit1 <- brm(
  count ~ zAge + zBase + Trt,
  data = epilepsy, family = negbinomial(),
  prior = prior(normal(0, 1), class = b),
  save_all_pars = TRUE
)
summary(fit1)

# model without the treatment effect
fit2 <- brm(
  count ~ zAge + zBase,
  data = epilepsy, family = negbinomial(),
  prior = prior(normal(0, 1), class = b),
  save_all_pars = TRUE
)
summary(fit2)

# compute the bayes factor
bayes_factor(fit1, fit2)

## End(Not run)
```

bayes_R2.brmsfit

Compute a Bayesian version of R-squared for regression models

Description

Compute a Bayesian version of R-squared for regression models
Usage

```r
## S3 method for class 'brmsfit'
bayes_R2(  
oBJECT,  
  resp = NULL,  
  summary = TRUE,  
  robust = FALSE,  
  probs = c(0.025, 0.975),  
  ...  
)
```

Arguments

- **object**: An object of class `brmsfit`.
- **resp**: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- **summary**: Should summary statistics be returned instead of the raw values? Default is `TRUE`.
- **robust**: If `FALSE` (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If `TRUE`, the median and the median absolute deviation (MAD) are applied instead. Only used if `summary` is `TRUE`.
- **probs**: The percentiles to be computed by the quantile function. Only used if `summary` is `TRUE`.
- **...**: Further arguments passed to `pp_expect`, which is used in the computation of the R-squared values.

Details

For an introduction to the approach, see Gelman et al. (2018) and https://github.com/jgabry/bayes_R2/.

Value

If `summary = TRUE` a 1 x C matrix is returned (C = length(probs) + 2) containing summary statistics of Bayesian R-squared values. If `summary = FALSE` the posterior samples of the R-squared values are returned in a S x 1 matrix (S is the number of samples).

References

Examples

```r
## Not run:
fit <- brm(mpg ~ wt + cyl, data = mtcars)
summary(fit)
bayes_R2(fit)

# compute R2 with new data
nd <- data.frame(mpg = c(10, 20, 30), wt = c(4, 3, 2), cyl = c(8, 6, 4))
bayes_R2(fit, newdata = nd)

## End(Not run)
```

bridge_sampler.brmsfit

Log Marginal Likelihood via Bridge Sampling

Description

Computes log marginal likelihood via bridge sampling, which can be used in the computation of bayes factors and posterior model probabilities. The \texttt{brmsfit} method is just a thin wrapper around the corresponding method for \texttt{stanfit} objects.

Usage

```r
## S3 method for class 'brmsfit'
bridge_sampler(samples, ...)
```

Arguments

- `samples`: A \texttt{brmsfit} object.
- `...`: Additional arguments passed to \texttt{bridge_sampler.stanfit}.

Details

Computing the marginal likelihood requires samples of all variables defined in Stan's parameters block to be saved. Otherwise \texttt{bridge_sampler} cannot be computed. Thus, please set `save_all_pars = TRUE` in the call to \texttt{brm}, if you are planning to apply \texttt{bridge_sampler} to your models.

The computation of marginal likelihoods based on bridge sampling requires a lot more posterior samples than usual. A good conservative rule of thumb is perhaps 10-fold more samples (read: the default of 4000 samples may not be enough in many cases). If not enough posterior samples are provided, the bridge sampling algorithm tends to be unstable leading to considerably different results each time it is run. We thus recommend running \texttt{bridge_sampler} multiple times to check the stability of the results.

More details are provided under \texttt{bridgesampling:bridge_sampler}.
See Also

bayes_factor, post_prob

Examples

Not run:

model with the treatment effect
fit1 <- brm(
 count ~ zAge + zBase + Trt,
 data = epilepsy, family = negbinomial(),
 prior = prior(normal(0, 1), class = b),
 save_all_pars = TRUE
)
summary(fit1)
bridge_sampler(fit1)

model without the treatment effect
fit2 <- brm(
 count ~ zAge + zBase,
 data = epilepsy, family = negbinomial(),
 prior = prior(normal(0, 1), class = b),
 save_all_pars = TRUE
)
summary(fit2)
bridge_sampler(fit2)

End(Not run)
Usage

```r
brm(
  formula,
  data,
  family = gaussian(),
  prior = NULL,
  autocor = NULL,
  cov_ranef = NULL,
  sample_prior = c("no", "yes", "only"),
  sparse = NULL,
  knots = NULL,
  stanvars = NULL,
  stan_funs = NULL,
  fit = NA,
  save_ranef = TRUE,
  save_mevars = FALSE,
  save_all_pars = FALSE,
  inits = "random",
  chains = 4,
  iter = 2000,
  warmup = floor(iter/2),
  thin = 1,
  cores =getOption("mc.cores", 1L),
  control = NULL,
  algorithm = c("sampling", "meanfield", "fullrank"),
  future =getOption("future", FALSE),
  silent = TRUE,
  seed = NA,
  save_model = NULL,
  stan_model_args = list(),
  save_dso = TRUE,
  file = NULL,
  ...
)
```

Arguments

- `formula`: An object of class `formula`, `brmsformula`, or `mvbrmsformula` (or one that can be coerced to that classes): A symbolic description of the model to be fitted. The details of model specification are explained in `brmsformula`.

- `data`: An object of class `data.frame` (or one that can be coerced to that class) containing data of all variables used in the model.

- `family`: A description of the response distribution and link function to be used in the model. This can be a family function, a call to a family function or a character string naming the family. Every family function has a link argument allowing to specify the link function to be applied on the response variable. If not specified, default links are used. For details of supported families see `brmsfamily`. By
default, a linear gaussian model is applied. In multivariate models, family might also be a list of families.

prior
One or more brmsprior objects created by set_prior or related functions and combined using the c method or the + operator. See also get_prior for more help.

autocor
An optional cor_brms object describing the correlation structure within the response variable (i.e., the 'autocorrelation'). See the documentation of cor_brms for a description of the available correlation structures. Defaults to NULL, corresponding to no correlations. In multivariate models, autocor might also be a list of autocorrelation structures.

cov_ranef
A list of matrices that are proportional to the (within) covariance structure of the group-level effects. The names of the matrices should correspond to columns in data that are used as grouping factors. All levels of the grouping factor should appear as rownames of the corresponding matrix. This argument can be used, among others to model pedigrees and phylogenetic effects. See vignette("brms_phylogenetics") for more details.

sample_prior
Indicate if samples from priors should be drawn additionally to the posterior samples (defaults to "no"). Among others, these samples can be used to calculate Bayes factors for point hypotheses via hypothesis. Please note that improper priors are not sampled, including the default improper priors used by brm. See set_prior on how to set (proper) priors. Please also note that prior samples for the overall intercept are not obtained by default for technical reasons. See brmsformula how to obtain prior samples for the intercept. If sample_prior is set to "only", samples are drawn solely from the priors ignoring the likelihood, which allows among others to generate samples from the prior predictive distribution. In this case, all parameters must have proper priors.

sparse
(Deprecated) Logical; indicates whether the population-level design matrices should be treated as sparse (defaults to FALSE). For design matrices with many zeros, this can considerably reduce required memory. Sampling speed is currently not improved or even slightly decreased. It is now recommended to use the sparse argument of brmsformula and related functions.

knots
Optional list containing user specified knot values to be used for basis construction of smoothing terms. See gamm for more details.

stanvars
An optional stanvars object generated by function stanvar to define additional variables for use in Stan's program blocks.

stan_funs
(Deprecated) An optional character string containing self-defined Stan functions, which will be included in the functions block of the generated Stan code. It is now recommended to use the stanvars argument for this purpose, instead.

fit
An instance of S3 class brmsfit derived from a previous fit; defaults to NA. If fit is of class brmsfit, the compiled model associated with the fitted result is re-used and all arguments modifying the model code or data are ignored. It is not recommended to use this argument directly, but to call the update method, instead.

save_ranef
A flag to indicate if group-level effects for each level of the grouping factor(s) should be saved (default is TRUE). Set to FALSE to save memory. The argument has no impact on the model fitting itself.
save_mevars: A flag to indicate if samples of latent noise-free variables obtained by using me and mi terms should be saved (default is FALSE). Saving these samples allows to better use methods such as predict with the latent variables but leads to very large R objects even for models of moderate size and complexity.

save_all_pars: A flag to indicate if samples from all variables defined in Stan's parameters block should be saved (default is FALSE). Saving these samples is required in order to apply the methods bridge_sampler, bayes_factor, and post_prob.

inits: Either "random" or "0". If inits is "random" (the default), Stan will randomly generate initial values for parameters. If it is "0", all parameters are initialized to zero. This option is sometimes useful for certain families, as it happens that default ("random") inits cause samples to be essentially constant. Generally, setting inits = "0" is worth a try, if chains do not behave well. Alternatively, inits can be a list of lists containing the initial values, or a function (or function name) generating initial values. The latter options are mainly implemented for internal testing.

chains: Number of Markov chains (defaults to 4).

iter: Number of total iterations per chain (including warmup; defaults to 2000).

warmup: A positive integer specifying number of warmup (aka burnin) iterations. This also specifies the number of iterations used for stepsize adaptation, so warmup samples should not be used for inference. The number of warmup should not be larger than iter and the default is iter/2.

thin: Thinning rate. Must be a positive integer. Set thin > 1 to save memory and computation time if iter is large.

cores: Number of cores to use when executing the chains in parallel, which defaults to 1 but we recommend setting the mc.cores option to be as many processors as the hardware and RAM allow (up to the number of chains). For non-Windows OS in non-interactive R sessions, forking is used instead of PSOCK clusters.

control: A named list of parameters to control the sampler's behavior. It defaults to NULL so all the default values are used. The most important control parameters are discussed in the 'Details' section below. For a comprehensive overview see stan.

algorithm: Character string indicating the estimation approach to use. Can be "sampling" for MCMC (the default), "meanfield" for variational inference with independent normal distributions, or "fullrank" for variational inference with a multivariate normal distribution.

future: Logical; If TRUE, the future package is used for parallel execution of the chains and argument cores will be ignored. Can be set globally for the current R session via the future option. The execution type is controlled via plan (see the examples section below).

silent: logical; If TRUE (the default), most of the informational messages of compiler and sampler are suppressed. The actual sampling progress is still printed. Set refresh = 0 to turn this off as well. To stop Stan from opening additional progress bars, set open_progress = FALSE.

seed: The seed for random number generation to make results reproducible. If NA (the default), Stan will set the seed randomly.
save_model Either NULL or a character string. In the latter case, the model's Stan code is saved via `cat` in a text file named after the string supplied in `save_model`.

`stan_model_args` A list of further arguments passed to `stan_model`.

`save_dso` Logical, defaulting to `TRUE`, indicating whether the dynamic shared object (DSO) compiled from the C++ code for the model will be saved or not. If `TRUE`, we can draw samples from the same model in another R session using the saved DSO (i.e., without compiling the C++ code again).

`file` Either NULL or a character string. In the latter case, the fitted model object is saved via `saveRDS` in a file named after the string supplied in `file`. The `.rds` extension is added automatically. If the file already exists, `brm` will load and return the saved model object instead of refitting the model. As existing files won't be overwritten, you have to manually remove the file in order to refit and save the model under an existing file name. The file name is stored in the `brmsfit` object for later usage.

... Further arguments passed to Stan that is to `sampling` or `vb`.

Details

Fit a generalized (non-)linear multivariate multilevel model via full Bayesian inference using Stan. A general overview is provided in the vignettes `vignette("brms_overview")` and `vignette("brms_multilevel")`. For a full list of available vignettes see `vignette(package = "brms")`.

Formula syntax of brms models

Details of the formula syntax applied in `brms` can be found in `brmsformula`.

Families and link functions

Details of families supported by `brms` can be found in `brmsfamily`.

Prior distributions

Priors should be specified using the `set_prior` function. Its documentation contains detailed information on how to correctly specify priors. To find out on which parameters or parameter classes priors can be defined, use `get_prior`. Default priors are chosen to be non or very weakly informative so that their influence on the results will be negligible and you usually don't have to worry about them. However, after getting more familiar with Bayesian statistics, I recommend you to start thinking about reasonable informative priors for your model parameters: Nearly always, there is at least some prior information available that can be used to improve your inference.

Adjusting the sampling behavior of Stan

In addition to choosing the number of iterations, warmup samples, and chains, users can control the behavior of the NUTS sampler, by using the `control` argument. The most important reason to use `control` is to decrease (or eliminate at best) the number of divergent transitions that cause a bias in the obtained posterior samples. Whenever you see the warning "There were x divergent transitions after warmup." you should really think about increasing `adapt_delta`. To do this, write `control = list(adapt_delta = <x>)`, where `<x>` should usually be value between 0.8 (current default) and 1. Increasing `adapt_delta` will slow down the sampler but will decrease the number of divergent transitions threatening the validity of your posterior samples.

Another problem arises when the depth of the tree being evaluated in each iteration is exceeded. This is less common than having divergent transitions, but may also bias the posterior samples.
When it happens, **Stan** will throw out a warning suggesting to increase `max_treedepth`, which can be accomplished by writing `control = list(max_treedepth = <x>)` with a positive integer `<x>` that should usually be larger than the current default of 10. For more details on the control argument see **stan**.

Value

An object of class `brmsfit`, which contains the posterior samples along with many other useful information about the model. Use `methods(class = "brmsfit")` for an overview on available methods.

Author(s)

Paul-Christian Buerkner <paul.buerkner@gmail.com>

References

See Also

`brms, brmsformula, brmsfamily, brmsfit`

Examples

```r
## Not run:
# Poisson regression for the number of seizures in epileptic patients
# using student_t priors for population-level effects
# and half cauchy priors for standard deviations of group-level effects
bprior1 <- prior(student_t(5,0,10), class = b) +
  prior(cauchy(0,2), class = sd)
fit1 <- brm(count ~ zAge + zBase * Trt + (1|patient),
  data = epilepsy, family = poisson(), prior = bprior1)

# generate a summary of the results
summary(fit1)

# plot the MCMC chains as well as the posterior distributions
plot(fit1, ask = FALSE)

# predict responses based on the fitted model
head(predict(fit1))

# plot conditional effects for each predictor
plot(conditional_effects(fit1), ask = FALSE)

# investigate model fit
loo(fit1)
```
pp_check(fit1)

Ordinal regression modeling patient's rating of inhaler instructions
category specific effects are estimated for variable 'treat'
fit2 <- brm(rating ~ period + carry + cs(treat),
 data = inhaler, family = sratio("logit"),
 prior = set_prior("normal(0,5)"), chains = 2)
summary(fit2)
plot(fit2, ask = FALSE)
WAIC(fit2)

Survival regression modeling the time between the first
and second recurrence of an infection in kidney patients.
fit3 <- brm(time | cens(censored) ~ age * sex + disease + (1|patient),
 data = kidney, family = lognormal())
summary(fit3)
plot(fit3, ask = FALSE)
plot(conditional_effects(fit3), ask = FALSE)

Probit regression using the binomial family
ntrials <- sample(1:10, 100, TRUE)
success <- rbinom(100, size = ntrials, prob = 0.4)
x <- rnorm(100)
data4 <- data.frame(ntrials, success, x)
fit4 <- brm(success | trials(ntrials) ~ x, data = data4,
 family = binomial("probit"))
summary(fit4)

Simple non-linear gaussian model
x <- rnorm(100)
y <- rnorm(100, mean = 2 - 1.5^x, sd = 1)
data5 <- data.frame(x, y)
bprior5 <- prior(normal(0, 2), nlpar = a1) +
 prior(normal(0, 2), nlpar = a2)
fit5 <- brm(bf(y ~ a1 - a2^x, a1 + a2 ~ 1, nl = TRUE),
 data = data5, prior = bprior5)
summary(fit5)
plot(conditional_effects(fit5), ask = FALSE)

Normal model with heterogeneous variances
data_het <- data.frame(
 y = c(rnorm(50), rnorm(50, 1, 2)),
 x = factor(rep(c("a", "b"), each = 50))
)
fit6 <- brm(bf(y ~ x, sigma ~ 0 + x), data = data_het)
summary(fit6)
plot(fit6)
conditional_effects(fit6)
extract estimated residual SDs of both groups
sigmas <- exp(posterior_samples(fit6, "b_sigma_"))
ggplot(stack(sigmas), aes(values)) +
 geom_density(aes(fill = ind))

Quantile regression predicting the 25%-quantile
fit7 <- brm(bf(y ~ x, quantile = 0.25), data = data_het,
 family = asym_laplace())
summary(fit7)
conditional_effects(fit7)

use the future package for more flexible parallelization
library(future)
plan(multiprocess)
fit7 <- update(fit7, future = TRUE)

End(Not run)

brmsfamily

Special Family Functions for brms Models

Description

Family objects provide a convenient way to specify the details of the models used by many model fitting functions. The family functions presented here are for use with brms only and will **not** work with other model fitting functions such as glm or glmer. However, the standard family functions as described in family will work with brms. You can also specify custom families for use in brms with the custom_family function.

Usage

brmsfamily(
 family,
 link = NULL,
 link_sigma = "log",
 link_shape = "log",
 link_nu = "logm1",
 link_phi = "log",
 link_kappa = "log",
 link_beta = "log",
 link_zi = "logit",
 link_hu = "logit",
 link_zoi = "logit",
 link_coi = "logit",
 link_disc = "log",

)
brmsfamily

```
link_bs = "log",
link_ndt = "log",
link_bias = "logit",
link_xi = "log1p",
link_alpha = "identity",
link_quantile = "logit",
threshold = c("flexible", "equidistant"),
refcat = NULL,
bhaz = NULL
```

student(link = "identity", link_sigma = "log", link_nu = "logm1")

bernoulli(link = "logit")

negbinomial(link = "log", link_shape = "log")

geometric(link = "log")

lognormal(link = "identity", link_sigma = "log")

shifted_lognormal(link = "identity", link_sigma = "log", link_ndt = "log")

skew_normal(link = "identity", link_sigma = "log", link_alpha = "identity")

exponential(link = "log")

weibull(link = "log", link_shape = "log")

frechet(link = "log", link_nu = "logm1")

gen_extreme_value(link = "identity", link_sigma = "log", link_xi = "log1p")

exgaussian(link = "identity", link_sigma = "log", link_beta = "log")

wiener(
 link = "identity",
 link_bs = "log",
 link_ndt = "log",
 link_bias = "logit"
)

Beta(link = "logit", link_phi = "log")

dirichlet(link = "logit", link_phi = "log", refcat = NULL)

von_mises(link = "tan_half", link_kappa = "log")
asym_laplace(link = "identity", link_sigma = "log", link_quantile = "logit")

hurdle_poisson(link = "log")

hurdle_negbinomial(link = "log", link_shape = "log", link_hu = "logit")

hurdle_gamma(link = "log", link_shape = "log", link_hu = "logit")

hurdle_lognormal(link = "identity", link_sigma = "log", link_hu = "logit")

zero_inflated_beta(link = "logit", link_phi = "log", link_zi = "logit")

zero_one_inflated_beta(
 link = "logit",
 link_phi = "log",
 link_zoi = "logit",
 link_coi = "logit"
)

zero_inflated_poisson(link = "log", link_zi = "logit")

zero_inflated_negbinomial(link = "log", link_shape = "log", link_zi = "logit")

zero_inflated_binomial(link = "logit", link_zi = "logit")

categorical(link = "logit", refcat = NULL)

multinomial(link = "logit", refcat = NULL)

cumulative(
 link = "logit",
 link_disc = "log",
 threshold = c("flexible", "equidistant")
)

sratio(
 link = "logit",
 link_disc = "log",
 threshold = c("flexible", "equidistant")
)

cratio(
 link = "logit",
 link_disc = "log",
 threshold = c("flexible", "equidistant")
)

cacat(}
link = "logit",
link_disc = "log",
threshold = c("flexible", "equidistant")
)

Arguments

family A character string naming the distribution of the response variable be used in
the model. Currently, the following families are supported: gaussian, student,
binomial, bernoulli, poisson, negbinomial, geometric, Gamma, skew_normal,
lognormal, shifted_lognormal, exgaussian, wiener, inverse.gaussian,
exponential, weibull, frechet, Beta, dirichlet, von_mises, asym_laplace,
gen_extreme_value, categorical, multinomial, cumulative, cratio, sratio,
acat, hurdle_poisson, hurdle_negbinomial, hurdle_gamma, hurdle_lognormal,
zero_inflated_binomial, zero_inflated_beta, zero_inflated_negbinomial,
zero_inflated_poisson, and zero_one_inflated_beta.

link A specification for the model link function. This can be a name/expression or
character string. See the 'Details' section for more information on link functions
supported by each family.

link_sigma Link of auxiliary parameter sigma if being predicted.
link_shape Link of auxiliary parameter shape if being predicted.
link_nu Link of auxiliary parameter nu if being predicted.
link_phi Link of auxiliary parameter phi if being predicted.
link_kappa Link of auxiliary parameter kappa if being predicted.
link_beta Link of auxiliary parameter beta if being predicted.
link_zi Link of auxiliary parameter zi if being predicted.
link_hu Link of auxiliary parameter hu if being predicted.
link_zoi Link of auxiliary parameter zoi if being predicted.
link_coi Link of auxiliary parameter coi if being predicted.
link_disc Link of auxiliary parameter disc if being predicted.
link_bs Link of auxiliary parameter bs if being predicted.
link_ndt Link of auxiliary parameter ndt if being predicted.
link_bias Link of auxiliary parameter bias if being predicted.
link_xi Link of auxiliary parameter xi if being predicted.
link_alpha Link of auxiliary parameter alpha if being predicted.
link_quantile Link of auxiliary parameter quantile if being predicted.
threshold A character string indicating the type of thresholds (i.e. intercepts) used in
an ordinal model. "flexible" provides the standard unstructured thresholds
and "equidistant" restricts the distance between consecutive thresholds to the
same value.

refcat Optional name of the reference response category used in categorical, multinomial,
and dirichlet models. If NULL (the default), the first category is used as the
reference. If NA, all categories will be predicted, which requires strong priors or
carefully specified predictor terms in order to lead to an identified model.

bhaz Currently for experimental purposes only.
Details

Below, we list common use cases for the different families. This list is not meant to be exhaustive.

- Family `gaussian` can be used for linear regression.
- Family `student` can be used for robust linear regression that is less influenced by outliers.
- Family `skew_normal` can handle skewed responses in linear regression.
- Families `poisson`, `negbinomial`, and `geometric` can be used for regression of unbounded count data.
- Families `bernoulli` and `binomial` can be used for binary regression (i.e., most commonly logistic regression).
- Families `categorical` and `multinomial` can be used for multi-logistic regression when there are more than two possible outcomes.
- Families `cumulative`, `cratio` (continuation ratio’), `sratio` (stopping ratio’), and `acat` (adjacent category’) leads to ordinal regression.
- Families `Gamma`, `weibull`, `exponential`, `lognormal`, `frechet`, and `inverse.gaussian` can be used (among others) for survival regression.
- Families `weibull`, `frechet`, and `gen_extreme_value` (generalized extreme value’) allow for modeling extremes.
- Families `beta` and `dirichlet` can be used to model responses representing rates or probabilities.
- Family `asym_laplace` allows for quantile regression when fixing the auxiliary quantile parameter to the quantile of interest.
- Family `exgaussian` (‘exponentially modified Gaussian’) and `shifted_lognormal` are especially suited to model reaction times.
- Family `wiener` provides an implementation of the Wiener diffusion model. For this family, the main formula predicts the drift parameter ‘delta’ and all other parameters are modeled as auxiliary parameters (see `brmsformula` for details).
- Families `hurdle_poisson`, `hurdle_negbinomial`, `hurdle_gamma`, `hurdle_lognormal`, `zero_inflated_poisson`, `zero_inflated_negbinomial`, `zero_inflated_lognormal`, `zero_inflated_binomial`, and `zero_one_inflated_bet` allow to estimate zero-inflated and hurdle models. These models can be very helpful when there are many zeros in the data (or ones in case of one-inflated models) that cannot be explained by the primary distribution of the response.

Below, we list all possible links for each family. The first link mentioned for each family is the default.

- Families `gaussian`, `student`, `skew_normal`, `exgaussian`, `asym_laplace`, and `gen_extreme_value` support the links (as names) identity, log, inverse, and softplus.
- Families `poisson`, `negbinomial`, `geometric`, `zero_inflated_poisson`, `zero_inflated_negbinomial`, `hurdle_poisson`, and `hurdle_negbinomial` support log, identity, sqrt, and softplus.
- Families `binomial`, `bernoulli`, `Beta`, `zero_inflated_binomial`, `zero_inflated_beta`, and `zero_one_inflated_beta` support logit, probit, probit_approx, cloglog, cauchit, and identity.
- Families `cumulative`, `cratio`, `sratio`, and `acat` support logit, probit, probit_approx, cloglog, and cauchit.
Families categorical, multinomial, and dirichlet support logit.

Families Gamma, weibull, exponential, frechet, and hurdle_gamma support log, identity, inverse, and softplus.

Families lognormal and hurdle_lognormal support identity and inverse.

Family inverse.gaussian supports 1/mu^2, inverse, identity, log, and softplus.

Family von.mises supports tan_half and identity.

Family wiener supports identity, log, and softplus for the main parameter which represents the drift rate.

Please note that when calling the Gamma family function of the stats package, the default link will be inverse instead of log although the latter is the default in brms. Also, when using the family functions gaussian, binomial, poisson, and Gamma of the stats package (see family), special link functions such as softplus or cauchit won't work. In this case, you have to use brmsfamily to specify the family with corresponding link function.

See Also

brm, family, customfamily

Examples

```r
# create a family object
(fam1 <- student("log"))
# alternatively use the brmsfamily function
(fam2 <- brmsfamily("student", "log"))
# both leads to the same object
identical(fam1, fam2)
```
Slots

formula A \texttt{brmsformula} object
family A \texttt{brmsfamily} object
data A \texttt{data.frame} containing all variables used in the model
data.name The name of data as specified by the user
model The model code in \texttt{Stan} language
prior A \texttt{brmsprior} object containing information on the priors used in the model
autocor An \texttt{cor_brms} object containing the autocorrelation structure if specified
ranef A \texttt{data.frame} containing the group-level structure
cov_ranef A list of customized group-level covariance matrices
stanvars A \texttt{stanvars} object or \texttt{NULL}
stan_funs A character string of length one or \texttt{NULL}
criteria An empty list for adding model fit criteria after estimation of the model.
fit An object of class \texttt{stanfit} among others containing the posterior samples
exclude The names of the parameters for which samples are not saved
algorithm The name of the algorithm used to fit the model
version The versions of \texttt{brms} and \texttt{rstan} with which the model was fitted
file Optional name of a file in which the model object was stored in or loaded from

See Also

\texttt{brms}, \texttt{brm}, \texttt{brmsformula}, \texttt{brmsfamily}

\begin{verbatim}
brmsformula \hspace{1cm} \textit{Set up a model formula for use in \texttt{brms}}
\end{verbatim}

Description

Set up a model formula for use in the \texttt{brms} package allowing to define (potentially non-linear) additive multilevel models for all parameters of the assumed response distribution.

Usage

\begin{verbatim}
brmsformula(
 formula, ...
 flist = \texttt{NULL},
 family = \texttt{NULL},
 autocor = \texttt{NULL},
 nl = \texttt{NULL},
 loop = \texttt{NULL},
 center = \texttt{NULL},
\end{verbatim}
Arguments

formula

An object of class formula (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given in 'Details'.

... Additional formula objects to specify predictors of non-linear and distributional parameters. Formulas can either be named directly or contain names on their left-hand side. The following are distributional parameters of specific families (all other parameters are treated as non-linear parameters): sigma (residual standard deviation or scale of the gaussian, student, skew_normal, lognormal exgaussian, and asym_laplace families); shape (shape parameter of the Gamma, weibull, negbinomial, and related zero-inflated / hurdle families); nu (degrees of freedom parameter of the student and frechet families); phi (precision parameter of the beta and zero_inflated_beta families); kappa (precision parameter of the von_mises family); beta (mean parameter of the exponential component of the exgaussian family); quantile (quantile parameter of the asym_laplace family); zi (zero-inflation probability); hu (hurdle probability); zoi (zero-one-inflation probability); coi (conditional one-inflation probability); disc (discrimination) for ordinal models; bs, ntd, and bias (boundary separation, non-decision time, and initial bias of the wiener diffusion model). By default, distributional parameters are modeled on the log scale if they can be positive only or on the logit scale if the can only be within the unit interval. See 'Details' for more explanation.

flist

Optional list of formulas, which are treated in the same way as formulas passed via the ... argument.

family

Same argument as in brm. If family is specified in brmsformula, it will overwrite the value specified in brm.

autocor

Same argument as in brm. If autocor is specified in brmsformula, it will overwrite the value specified in brm.

nl

Logical; Indicates whether formula should be treated as specifying a non-linear model. By default, formula is treated as an ordinary linear model formula.

loop

Logical; Only used in non-linear models. Indicates if the computation of the non-linear formula should be done inside (TRUE) or outside (FALSE) a loop over observations. Defaults to TRUE.

center

Logical; Indicates if the population-level design matrix should be centered, which usually increases sampling efficiency. See the 'Details' section for more information. Defaults to TRUE for distributional parameters and to FALSE for non-linear parameters.

cmc

Logical; Indicates whether automatic cell-mean coding should be enabled when removing the intercept by adding 0 to the right-hand of model formulas. Defaults to TRUE to mirror the behavior of standard R formula parsing.
brmsformula

- **sparse**: Logical; indicates whether the population-level design matrices should be treated as sparse (defaults to `FALSE`). For design matrices with many zeros, this can considerably reduce required memory. Sampling speed is currently not improved or even slightly decreased.

- **decomp**: Optional name of the decomposition used for the population-level design matrix. Defaults to `NULL` that is no decomposition. Other options currently available are “QR” for the QR decomposition that helps in fitting models with highly correlated predictors.

Details

General formula structure

The `formula` argument accepts formulas of the following syntax:

```r
response | pterms + (gterms | group)
```

The `pterm`s part contains effects that are assumed to be the same across observations. We call them 'population-level' effects or (adopting frequentist vocabulary) 'fixed' effects. The optional `gterm`s part may contain effects that are assumed to vary across grouping variables specified in `group`. We call them 'group-level' effects or (adopting frequentist vocabulary) 'random' effects, although the latter name is misleading in a Bayesian context. For more details type `vignette("brms_overview")` and `vignette("brms_multilevel")`.

Group-level terms

Multiple grouping factors each with multiple group-level effects are possible. (Of course we can also run models without any group-level effects.) Instead of `|` you may use `||` in grouping terms to prevent correlations from being modeled. Alternatively, it is possible to model different group-level terms of the same grouping factor as correlated (even across different formulas, e.g., in non-linear models) by using `<ID>` instead of `|`. All group-level terms sharing the same ID will be modeled as correlated. If, for instance, one specifies the terms `(1+x|2|g)` and `(1+z|2|g)` somewhere in the formulas passed to `brmsformula`, correlations between the corresponding group-level effects will be estimated.

If levels of the grouping factor belong to different sub-populations, it may be reasonable to assume a different covariance matrix for each of the sub-populations. For instance, the variation within the treatment group and within the control group in a randomized control trial might differ. Suppose that `y` is the outcome, and `x` is the factor indicating the treatment and control group. Then, we could estimate different hyper-parameters of the varying effects (in this case a varying intercept) for treatment and control group via `y ~ x + (1 | gr(subject,by = x))`.

You can specify multi-membership terms using the `mm` function. For instance, a multi-membership term with two members could be `(1 | mm(g1,g2))`, where `g1` and `g2` specify the first and second member, respectively. Moreover, if a covariate `x` varies across the levels of the grouping-factors `g1` and `g2`, we can save the respective covariate values in the variables `x1` and `x2` and then model the varying effect as `(1 + mmc(x1,x2) | mm(g1,g2))`.

Special predictor terms

Smoothing terms can modeled using the `s` and `t2` functions in the `pterm`s part of the model formula. This allows to fit generalized additive mixed models (GAMMs) with `brms`. The implementation is similar to that used in the `gamm4` package. For more details on this model class see `gam` and `gamm`.

Gaussian process terms can be fitted using the `gp` function in the `pterm`s part of the model formula. Similar to smooth terms, Gaussian processes can be used to model complex non-linear relationships,
for instance temporal or spatial autocorrelation. However, they are computationally demanding and are thus not recommended for very large datasets.

The pterms and gterms parts may contain four non-standard effect types namely monotonic, measurement error, missing value, and category specific effects, which can be specified using terms of the form \(\text{mo}(\text{predictor})\), \(\text{me}(\text{predictor, sd_predictor})\), \(\text{mi}(\text{predictor})\), and \(\text{cs(<predictors>)}\), respectively. Category specific effects can only be estimated in ordinal models and are explained in more detail in the package’s main vignette (type \text{vignette("brms_overview")}). The other three effect types are explained in the following.

A monotonic predictor must either be integer valued or an ordered factor, which is the first difference to an ordinary continuous predictor. More importantly, predictor categories (or integers) are not assumed to be equidistant with respect to their effect on the response variable. Instead, the distance between adjacent predictor categories (or integers) is estimated from the data and may vary across categories. This is realized by parameterizing as follows: One parameter takes care of the direction and size of the effect similar to an ordinary regression parameter, while an additional parameter vector estimates the normalized distances between consecutive predictor categories. A main application of monotonic effects are ordinal predictors that can this way be modeled without (falsely) treating them as continuous or as unordered categorical predictors. For more details and examples see \text{vignette("brms_monotonic")}.

Quite often, predictors are measured and as such naturally contain measurement error. Although most researchers are well aware of this problem, measurement error in predictors is ignored in most regression analyses, possibly because only few packages allow for modeling it. Notably, measurement error can be handled in structural equation models, but many more general regression models (such as those featured by \text{brms}) cannot be transferred to the SEM framework. In \text{brms}, effects of noise-free predictors can be modeled using the \text{me} (for ‘measurement error’) function. If, say, \(y\) is the response variable and \(x\) is a measured predictor with known measurement error \(sdx\), we can simply include it on the right-hand side of the model formula via \(y \sim \text{me}(x, sdx)\). This can easily be extended to more general formulas. If \(x2\) is another measured predictor with corresponding error \(sdx2\) and \(z\) is a predictor without error (e.g., an experimental setting), we can model all main effects and interactions of the three predictors in the well known manner: \(y \sim \text{me}(x, sdx) \ast \text{me}(x2, sdx2) \ast z\). In future version of \text{brms}, a vignette will be added to explain more details about these so called ‘error-in-variables’ models and provide real world examples.

When a variable contains missing values, the corresponding rows will be excluded from the data by default (row-wise exclusion). However, quite often we want to keep these rows and instead estimate the missing values. There are two approaches for this: (a) Impute missing values before the model fitting for instance via multiple imputation (see \text{brm_multiple} for a way to handle multiple imputed datasets). (b) Impute missing values on the fly during model fitting. The latter approach is explained in the following. Using a variable with missing values as predictors requires two things. First, we need to specify that the predictor contains missings that should to be imputed. If, say, \(y\) is the primary response, \(x\) is a predictor with missings and \(z\) is a predictor without missings, we go for \(y \sim \text{mi}(x) + z\). Second, we need to model \(x\) as an additional response with corresponding predictors and the addition term \text{mi}(). In our example, we could write \(x | \text{mi}() \sim z\). See \text{mi} for examples with real data.

Additional response information

Another special of the \text{brms} formula syntax is the optional aterms part, which may contain multiple terms of the form fun(<variable>) separated by + each providing special information on the response variable. fun can be replaced with either \text{se}, \text{weights}, \text{subset}, \text{cens}, \text{trunc}, \text{trials}, \text{cat}, \text{dec}, \text{rate}, \text{vreal}, or \text{vint}. Their meanings are explained below. (see also \text{addition-terms}).
For families **gaussian**, **student** and **skew_normal**, it is possible to specify standard errors of the observations, thus allowing to perform meta-analysis. Suppose that the variable y_i contains the effect sizes from the studies and sei the corresponding standard errors. Then, fixed and random effects meta-analyses can be conducted using the formulas $y_i \mid se(sei) \sim 1$ and $y_i \mid se(sei) \sim 1 + (1|study)$, respectively, where study is a variable uniquely identifying every study. If desired, meta-regression can be performed via $y_i \mid se(sei) \sim 1 + mod1 + mod2 + (1|study)$ or $y_i \mid se(sei) \sim 1 + mod1 + mod2 + (1 + mod1 + mod2|study)$, where mod1 and mod2 represent moderator variables. By default, the standard errors replace the parameter sigma. To model sigma in addition to the known standard errors, set argument sigma in function se to TRUE, for instance, $y_i \mid se(sei,\sigma = \text{TRUE}) \sim 1$.

For all families, weighted regression may be performed using weights in the aterms part. Internally, this is implemented by multiplying the log-posterior values of each observation by their corresponding weights. Suppose that variable wei contains the weights and that y_i is the response variable. Then, formula $y_i \mid \text{weights}(wei) \sim \text{predictors}$ implements a weighted regression.

For multivariate models, subset may be used in the aterms part, to use different subsets of the data in different univariate models. For instance, if sub is a logical variable and y is the response of one of the univariate models, we may write $y \mid \text{subset}(\text{sub}) \sim \text{predictors}$ so that y is predicted only for those observations for which sub evaluates to TRUE.

For log-linear models such as poisson models, rate may be used in the aterms part to specify the denominator of a response that is expressed as a rate. The numerator is given by the actual response variable and has a distribution according to the family as usual. Using \text{rate}(\text{denom}) is equivalent to adding \text{offset}(\log(\text{denom})) to the linear predictor of the main parameter but the former is arguably more convenient and explicit.

With the exception of categorical, ordinal, and mixture families, left, right, and interval censoring can be modeled through $y \mid \text{cens}(\text{censored}) \sim \text{predictors}$. The censoring variable (named censored in this example) should contain the values 'left', 'none', 'right', and 'interval' (or equivalently -1, 0, 1, and 2) to indicate that the corresponding observation is left censored, not censored, right censored, or interval censored. For interval censored data, a second variable (let's call it y_2) has to be passed to cens. In this case, the formula has the structure $y \mid \text{cens}(\text{censored},\text{y2}) \sim \text{predictors}$. While the lower bounds are given in y, the upper bounds are given in y_2 for interval censored data. Intervals are assumed to be open on the left and closed on the right: $(y,y_2]$.

With the exception of categorical, ordinal, and mixture families, the response distribution can be truncated using the \text{trunc} function in the addition part. If the response variable is truncated between, say, 0 and 100, we can specify this via $y \mid \text{trunc}(1b = 0, ub = 100) \sim \text{predictors}$. Instead of numbers, variables in the data set can also be passed allowing for varying truncation points across observations. Defining only one of the two arguments in trunc leads to one-sided truncation.

For all continuous families, missing values in the responses can be imputed within Stan by using the addition term \text{mi}. This is mostly useful in combination with \text{mi} predictor terms as explained above under 'Special predictor terms'.

For families **binomial** and **zero_inflated_binomial**, addition should contain a variable indicating the number of trials underlying each observation. In lme4 syntax, we may write for instance cbind(success,n -success), which is equivalent to success | trials(n) in brms syntax. If the number of trials is constant across all observations, say 10, we may also write success | trials(10). **Please note that the cbind() syntax will not work in brms in the expected way because this syntax is reserved for other purposes.**
For all ordinal families, a terms may contain a term `thres(number)` to specify the number thresholds (e.g., `thres(6)`), which should be equal to the total number of response categories - 1. If not given, the number of thresholds is calculated from the data. If different threshold vectors should be used for different subsets of the data, the gr argument can be used to provide the grouping variable (e.g., `thres(6, gr = item)`, if `item` is the grouping variable). In this case, the number of thresholds can also be a variable in the data with different values per group.

A deprecated quasi alias of `thres()` is `cat()` with which the total number of response categories (i.e., number of thresholds + 1) can be specified.

In Wiener diffusion models (family wiener) the addition term `dec` is mandatory to specify the (vector of) binary decisions corresponding to the reaction times. Non-zero values will be treated as a response on the upper boundary of the diffusion process and zeros will be treated as a response on the lower boundary. Alternatively, the variable passed to `dec` might also be a character vector consisting of 'lower' and 'upper'.

For custom families, it is possible to pass an arbitrary number of real and integer vectors via the addition terms `vreal` and `vint`, respectively. An example is provided in vignette('brms_customfamilies').

Multiple addition terms may be specified at the same time using the `+` operator. For example, the formula `formula = yi | se(sei) + cens(censored) ~ 1` implies a censored meta-analytic model.

Parameterization of the population-level intercept

By default, the population-level intercept (if incorporated) is estimated separately and not as part of population-level parameter vector `b`. As a result, priors on the intercept also have to be specified separately. Furthermore, to increase sampling efficiency, the population-level design matrix `X` is centered around its column means `X_means` if the intercept is incorporated. This leads to a temporary bias in the intercept equal to `<X_means, b>`, where `<,>` is the scalar product. The bias is corrected after fitting the model, but be aware that you are effectively defining a prior on the intercept of the centered design matrix not on the real intercept. You can turn off this special handling of the intercept by setting argument `center` to `FALSE`. For more details on setting priors on population-level intercepts, see `set_prior`.

This behavior can be avoided by using the reserved (and internally generated) variable `Intercept`. Instead of `y ~ x`, you may write `y ~ 0 + Intercept + x`. This way, priors can be defined on the real intercept, directly. In addition, the intercept is just treated as an ordinary population-level effect and thus priors defined on `b` will also apply to it. Note that this parameterization may be less efficient than the default parameterization discussed above.

Formula syntax for non-linear models

In brms, it is possible to specify non-linear models of arbitrary complexity. The non-linear model can just be specified within the formula argument. Suppose, that we want to predict the response `y` through the predictor `x`, where `x` is linked to `y` through `y = alpha - beta * lambda^x`, with parameters `alpha`, `beta`, and `lambda`. This is certainly a non-linear model being defined via formula `= y ~ alpha - beta * lambda^x` (addition arguments can be added in the same way as for ordinary formulas). To tell brms that this is a non-linear model, we set argument `nl` to `TRUE`. Now we have to specify a model for each of the non-linear parameters. Let’s say we just want to estimate those three parameters with no further covariates or random effects. Then we can pass `alpha + beta + lambda ~ 1` or equivalently (and more flexible) `alpha ~ 1, beta ~ 1, lambda ~ 1` to the `...` argument. This can, of course, be extended. If we have another predictor `z` and observations nested
within the grouping factor g, we may write for instance $\alpha \sim 1, \beta \sim 1 + z + (1|g), \lambda \sim 1$. The formula syntax described above applies here as well. In this example, we are using z and g only for the prediction of β, but we might also use them for the other non-linear parameters (provided that the resulting model is still scientifically reasonable).

Non-linear models may not be uniquely identified and / or show bad convergence. For this reason it is mandatory to specify priors on the non-linear parameters. For instructions on how to do that, see `set_prior`. For some examples of non-linear models, see vignette("brms_nonlinear").

Formula syntax for predicting distributional parameters

It is also possible to predict parameters of the response distribution such as the residual standard deviation σ in gaussian models or the hurdle probability h in hurdle models. The syntax closely resembles that of a non-linear parameter, for instance $\sigma \sim x + s(z) + (1+x|g)$. For some examples of distributional models, see vignette("brms_distreg"). Alternatively, one may fix distributional parameters to certain values. However, this is mainly useful when models become too complicated and otherwise have convergence issues. We thus suggest to be generally careful when making use of this option. The quantile parameter of the `asym_laplace` distribution is a good example where it is useful. By fixing quantile, one can perform quantile regression for the specified quantile. For instance, `quantile = 0.25` allows predicting the 25%-quantile. Furthermore, the bias parameter in drift-diffusion models, is assumed to be 0.5 (i.e. no bias) in many applications. To achieve this, simply write `bias = 0.5`. Other possible applications are the Cauchy distribution as a special case of the Student-t distribution with $\nu = 1$, or the geometric distribution as a special case of the negative binomial distribution with $shape = 1$. Furthermore, the parameter `disc` (‘discrimination’) in ordinal models is fixed to 1 by default and not estimated, but may be modeled as any other distributional parameter if desired (see examples). For reasons of identification, 'disc' can only be positive, which is achieved by applying the log-link.

In categorical models, distributional parameters do not have fixed names. Instead, they are named after the response categories (excluding the first one, which serves as the reference category), with the prefix 'mu'. If, for instance, categories are named `cat1`, `cat2`, and `cat3`, the distributional parameters will be named `mucat2` and `mucat3`.

Some distributional parameters currently supported by `brmsformula` have to be positive (a negative standard deviation or precision parameter does not make any sense) or are bounded between 0 and 1 (for zero-inflated / hurdle probabilities, quantiles, or the initial bias parameter of drift-diffusion models). However, linear predictors can be positive or negative, and thus the log link (for positive parameters) or logit link (for probability parameters) are used by default to ensure that distributional parameters are within their valid intervals. This implies that, by default, effects for such distributional parameters are estimated on the log / logit scale and one has to apply the inverse link function to get to the effects on the original scale. Alternatively, it is possible to use the identity link to predict parameters on their original scale, directly. However, this is much more likely to lead to problems in the model fitting, if the parameter actually has a restricted range.

See also `brmsfamily` for an overview of valid link functions.

Formula syntax for mixture models

The specification of mixture models closely resembles that of non-mixture models. If not specified otherwise (see below), all mean parameters of the mixture components are predicted using the right-hand side of `formula`. All types of predictor terms allowed in non-mixture models are allowed in mixture models as well.

Distributional parameters of mixture distributions have the same name as those of the corresponding ordinary distributions, but with a number at the end to indicate the mixture component. For instance,
if you use family `mixture(gaussian, gaussian)`, the distributional parameters are \(\sigma_1 \) and \(\sigma_2 \). Distributional parameters of the same class can be fixed to the same value. For the above example, we could write \(\sigma_2 = \text{"\sigma_1"} \) to make sure that both components have the same residual standard deviation, which is in turn estimated from the data.

In addition, there are two types of special distributional parameters. The first are named \(\mu<\text{ID}> \), that allow for modeling different predictors for the mean parameters of different mixture components. For instance, if you want to predict the mean of the first component using predictor \(x \) and the mean of the second component using predictor \(z \), you can write \(\mu_1 \sim x \) as well as \(\mu_2 \sim z \). The second are named \(\theta<\text{ID}> \), which constitute the mixing proportions. If the mixing proportions are fixed to certain values, they are internally normalized to form a probability vector. If one seeks to predict the mixing proportions, all but one of the them has to be predicted, while the remaining one is used as the reference category to identify the model. The softmax function is applied on the linear predictor terms to form a probability vector.

For more information on mixture models, see the documentation of `mixture`.

Formula syntax for multivariate models

Multivariate models may be specified using `mvbind` notation or with help of the `mvbf` function. Suppose that \(y_1 \) and \(y_2 \) are response variables and \(x \) is a predictor. Then `mvbind(y_1, y_2) \sim x` specifies a multivariate model. The effects of all terms specified at the RHS of the formula are assumed to vary across response variables. For instance, two parameters will be estimated for \(x \), one for the effect on \(y_1 \) and another for the effect on \(y_2 \). This is also true for group-level effects. When writing, for instance, `mvbind(y_1, y_2) \sim x + (1+x|g)`, group-level effects will be estimated separately for each response. To model these effects as correlated across responses, use the ID syntax (see above). For the present example, this would look as follows: `mvbind(y_1, y_2) \sim x + (1+x|2|g)`. Of course, you could also use any value other than 2 as ID.

It is also possible to specify different formulas for different responses. If, for instance, \(y_1 \) should be predicted by \(x \) and \(y_2 \) should be predicted by \(z \), we could write `mvbf(y_1 \sim x, y_2 \sim z)` . Alternatively, multiple `brmsformula` objects can be added to specify a joint multivariate model (see `Examples`).

Value

An object of class `brmsformula`, which is essentially a list containing all model formulas as well as some additional information.

See Also

`mvbrmsformula`, `brmsformula_helpers`

Examples

```r
# multilevel model with smoothing terms
brmsformula(y ~ x1*x2 + s(z) + (1+x1|1) + (1|g2))

# additionally predict 'sigma'
brmsformula(y ~ x1*x2 + s(z) + (1+x1|1) + (1|g2),
            sigma ~ x1 + (1|g2))

# use the shorter alias 'bf'
(formula1 <- brmsformula(y ~ x + (x|g)))
```
(formula2 <- bf(y ~ x + (x|g)))
will be TRUE
identical(formula1, formula2)

incorporate censoring
bf(y | cens(censor_variable) ~ predictors)

define a simple non-linear model
bf(y ~ a1 - a2^x, a1 + a2 ~ 1, nl = TRUE)

predict a1 and a2 differently
bf(y ~ a1 - a2^x, a1 ~ 1, a2 ~ x + (x|g), nl = TRUE)

correlated group-level effects across parameters
bf(y ~ a1 - a2^x, a1 ~ 1 + (1|2|g), a2 ~ x + (x|2|g), nl = TRUE)

define a multivariate model
bf(mvbind(y1, y2) ~ x * z + (1|g))

define a zero-inflated model
also predicting the zero-inflation part
bf(y ~ x * z + (1+x|ID1|g), zi ~ x + (1|ID1|g))

specify a predictor as monotonic
bf(y ~ mo(x) + more_predictors)

for ordinal models only
specify a predictor as category specific
bf(y ~ cs(x) + more_predictors)
add a category specific group-level intercept
bf(y ~ cs(x) + (cs(1)|g))
specify parameter 'disc'
bf(y ~ person + item, disc ~ item)

specify variables containing measurement error
bf(y ~ me(x, sdx))

specify predictors on all parameters of the wiener diffusion model
the main formula models the drift rate 'delta'
bf(rt | dec(decision) ~ x, bs ~ x, ndt ~ x, bias ~ x)

fix the bias parameter to 0.5
bf(rt | dec(decision) ~ x, bias = 0.5)

specify different predictors for different mixture components
mix <- mixture(gaussian, gaussian)
bf(y ~ 1, mu1 ~ x, mu2 ~ z, family = mix)

fix both residual standard deviations to the same value
bf(y ~ x, sigma2 = "sigma1", family = mix)

use the '+' operator to specify models
bf(y ~ 1) +

\begin{verbatim}
 nlf(sigma ~ a * exp(b * x), a ~ x) +
 lf(b ~ z + (1|g), dpar = "sigma") +
 gaussian()

 # specify a multivariate model using the '+’ operator
 bf(y1 ~ x + (1|g)) +
 gaussian() + cor_ar(~1|g) +
 bf(y2 ~ z) + poisson()

 # model missing values in predictors
 bf(bmi ~ age * mi(chl)) +
 bf(chl | mi() ~ age) +
 set_rescor(FALSE)

 # model sigma as a function of the mean
 bf(y ~ eta, nl = TRUE) +
 lf(eta ~ 1 + x) +
 nlf(sigma ~ tau * sqrt(eta)) +
 lf(tau ~ 1)
\end{verbatim}

brmsformula-helpers
Linear and Non-linear formulas in **brms**

Description

Helper functions to specify linear and non-linear formulas for use with **brmsformula**.

Usage

\[
\text{nlf}(\text{formula}, \ldots, \text{flist} = \text{NULL}, \text{dpar} = \text{NULL}, \text{resp} = \text{NULL}, \text{loop} = \text{NULL})
\]

\[
\text{lf}(\ldots,
 \text{flist} = \text{NULL},
 \text{dpar} = \text{NULL},
 \text{resp} = \text{NULL},
 \text{center} = \text{NULL},
 \text{cmc} = \text{NULL},
 \text{sparse} = \text{NULL},
 \text{decomp} = \text{NULL}
)
\]

\[
\text{set_nl}(\text{nl} = \text{TRUE}, \text{dpar} = \text{NULL}, \text{resp} = \text{NULL})
\]

\[
\text{set_rescor}(\text{rescor} = \text{TRUE})
\]

\[
\text{set_mecor}(\text{mecor} = \text{TRUE})
\]

Arguments

formula
Non-linear formula for a distributional parameter. The name of the distributional parameter can either be specified on the left-hand side of `formula` or via argument `dpar`.

... Additional formula objects to specify predictors of non-linear and distributional parameters. Formulas can either be named directly or contain names on their left-hand side. The following are distributional parameters of specific families (all other parameters are treated as non-linear parameters): `sigma` (residual standard deviation or scale of the gaussian, student, skew_normal, lognormal exgaussian, and asym_laplace families); `shape` (shape parameter of the Gamma, weibull, negbinomial, and related zero-inflated / hurdle families); `nu` (degrees of freedom parameter of the student and frechet families); `phi` (precision parameter of the beta and zero_inflated_beta families); `kappa` (precision parameter of the von_mises family); `beta` (mean parameter of the exponential component of the exgaussian family); `quantile` (quantile parameter of the asym_laplace family); `zi` (zero-inflation probability); `hu` (hurdle probability); `zoi` (zero-one-inflation probability); `coi` (conditional one-inflation probability); `disc` (discrimination) for ordinal models; `bs`, `ndt`, and `bias` (boundary separation, non-decision time, and initial bias of the wiener diffusion model). By default, distributional parameters are modeled on the log scale if they can be positive only or on the logit scale if the can only be within the unit interval. See 'Details' for more explanation.

flist
Optional list of formulas, which are treated in the same way as formulas passed via the ... argument.

dpar
Optional character string specifying the distributional parameter to which the formulas passed via ... and flist belong.

resp
Optional character string specifying the response variable to which the formulas passed via ... and flist belong. Only relevant in multivariate models.

loop
Logical; Only used in non-linear models. Indicates if the computation of the non-linear formula should be done inside (TRUE) or outside (FALSE) a loop over observations. Defaults to TRUE.

center
Logical; Indicates if the population-level design matrix should be centered, which usually increases sampling efficiency. See the 'Details' section for more information. Defaults to TRUE for distributional parameters and to FALSE for non-linear parameters.

cmc
Logical; Indicates whether automatic cell-mean coding should be enabled when removing the intercept by adding 0 to the right-hand of model formulas. Defaults to TRUE to mirror the behavior of standard R formula parsing.

sparse
Logical; indicates whether the population-level design matrices should be treated as sparse (defaults to FALSE). For design matrices with many zeros, this can considerably reduce required memory. Sampling speed is currently not improved or even slightly decreased.

decomp
Optional name of the decomposition used for the population-level design matrix. Defaults to NULL that is no decomposition. Other options currently available are "QR" for the QR decomposition that helps in fitting models with highly correlated predictors.
nl
Logical; Indicates whether formula should be treated as specifying a non-linear model. By default, formula is treated as an ordinary linear model formula.

rescor
Logical; Indicates if residual correlation between the response variables should be modeled. Currently this is only possible in multivariate gaussian and student models. Only relevant in multivariate models.

mecor
Logical; Indicates if correlations between latent variables defined by `me` terms should be modeled. Defaults to `TRUE`.

Value
For `lf` and `nlf` a list that can be passed to `brmsformula` or added to an existing `brmsformula` or `mvbrmsformula` object. For `set_nl` and `set_rescor` a logical value that can be added to an existing `brmsformula` or `mvbrmsformula` object.

See Also
`brmsformula`, `mvbrmsformula`

Examples

```r
# add more formulas to the model
bf(y ~ 1) +
   nlf(sigma ~ a * exp(b * x)) +
   lf(a ~ x, b ~ z + (1|g)) +
   gaussian()

# specify 'nl' later on
bf(y ~ a * inv_logit(x * b)) +
   lf(a ~ b ~ z) +
   set_nl(TRUE)

# specify a multivariate model
bf(y1 ~ x + (1|g)) +
   bf(y2 ~ z) +
   set_rescor(TRUE)
```

Description

A `brmshypothesis` object contains posterior samples as well as summary statistics of non-linear hypotheses as returned by `hypothesis`.
Usage

```r
## S3 method for class 'brmshypothesis'
print(x, digits = 2, chars = 20, ...)

## S3 method for class 'brmshypothesis'
plot(
x,
N = 5,
ignore_prior = FALSE,
chars = 40,
colors = NULL,
theme = NULL,
ask = TRUE,
plot = TRUE,
...
)
```

Arguments

- `x`: An object of class `brmsfit`.
- `digits`: Minimal number of significant digits, see `print.default`.
- `chars`: Maximum number of characters of each hypothesis to print or plot. If `NULL`, print the full hypotheses. Defaults to 20.
- `...`: Currently ignored.
- `N`: The number of parameters plotted per page.
- `ignore_prior`: A flag indicating if prior distributions should also be plotted. Only used if priors were specified on the relevant parameters.
- `colors`: Two values specifying the colors of the posterior and prior density respectively. If `NULL` (the default) colors are taken from the current color scheme of the `bayesplot` package.
- `theme`: A `theme` object modifying the appearance of the plots. For some basic themes see `ggtheme` and `theme_default`.
- `ask`: Logical; indicates if the user is prompted before a new page is plotted. Only used if `plot` is `TRUE`.
- `plot`: Logical; indicates if plots should be plotted directly in the active graphic device. Defaults to `TRUE`.

Details

The two most important elements of a `brmshypothesis` object are `hypothesis`, which is a data.frame containing the summary estimates of the hypotheses, and `samples`, which is a data.frame containing the corresponding posterior samples.

See Also

- `hypothesis`
Run the same \texttt{brms} model on multiple datasets

Description

Run the same \texttt{brms} model on multiple datasets and then combine the results into one fitted model object. This is useful in particular for multiple missing value imputation, where the same model is fitted on multiple imputed data sets. Models can be run in parallel using the \texttt{future} package.

Usage

\begin{verbatim}
brm_multiple(
 formula,
data,
 family = gaussian(),
prior = NULL,
 autocor = NULL,
cov_ranef = NULL,
sample_prior = c("no", "yes", "only"),
sparse = NULL,
knots = NULL,
stanvars = NULL,
stan_funs = NULL,
combine = TRUE,
 fit = NA,
 seed = NA,
 file = NULL,
 ...
)
\end{verbatim}

Arguments

- **formula**: An object of class \texttt{formula}, \texttt{brmsformula}, or \texttt{mvbrmsformula} (or one that can be coerced to those classes): A symbolic description of the model to be fitted. The details of model specification are explained in \texttt{brmsformula}.

- **data**: A list of data.frames each of which will be used to fit a separate model. Alternatively, a \texttt{mids} object from the \texttt{mice} package.

- **family**: A description of the response distribution and link function to be used in the model. This can be a family function, a call to a family function or a character string naming the family. Every family function has a link argument allowing to specify the link function to be applied on the response variable. If not specified, default links are used. For details of supported families see \texttt{brmsfamily}. By default, a linear gaussian model is applied. In multivariate models, family might also be a list of families.

- **prior**: One or more \texttt{brmsprior} objects created by \texttt{set_prior} or related functions and combined using the \texttt{c} method or the \texttt{+} operator. See also \texttt{get_prior} for more help.
autocor An optional cor_brms object describing the correlation structure within the response variable (i.e., the 'autocorrelation'). See the documentation of cor_brms for a description of the available correlation structures. Defaults to NULL, corresponding to no correlations. In multivariate models, autocor might also be a list of autocorrelation structures.

cov_ranef A list of matrices that are proportional to the (within) covariance structure of the group-level effects. The names of the matrices should correspond to columns in data that are used as grouping factors. All levels of the grouping factor should appear as rownames of the corresponding matrix. This argument can be used, among others to model pedigrees and phylogenetic effects. See vignette("brms_phylogenetics") for more details.

sample_prior Indicate if samples from priors should be drawn additionally to the posterior samples (defaults to "no"). Among others, these samples can be used to calculate Bayes factors for point hypotheses via hypothesis. Please note that improper priors are not sampled, including the default improper priors used by brm. See set_prior on how to set (proper) priors. Please also note that prior samples for the overall intercept are not obtained by default for technical reasons. See brmsformula how to obtain prior samples for the intercept. If sample_prior is set to "only", samples are drawn solely from the priors ignoring the likelihood, which allows among others to generate samples from the prior predictive distribution. In this case, all parameters must have proper priors.

sparse (Deprecated) Logical; indicates whether the population-level design matrices should be treated as sparse (defaults to FALSE). For design matrices with many zeros, this can considerably reduce required memory. Sampling speed is currently not improved or even slightly decreased. It is now recommended to use the sparse argument of brmsformula and related functions.

knots Optional list containing user specified knot values to be used for basis construction of smoothing terms. See gamm for more details.

stanvars An optional stanvars object generated by function stanvar to define additional variables for use in Stan’s program blocks.

stan_funs (Deprecated) An optional character string containing self-defined Stan functions, which will be included in the functions block of the generated Stan code. It is now recommended to use the stanvars argument for this purpose, instead.

combine Logical; Indicates if the fitted models should be combined into a single fitted model object via combine_models. Defaults to TRUE.

fit An instance of S3 class brmsfit_multiple derived from a previous fit; defaults to NA. If fit is of class brmsfit_multiple, the compiled model associated with the fitted result is re-used and all arguments modifying the model code or data are ignored. It is not recommended to use this argument directly, but to call the update method, instead.

seed The seed for random number generation to make results reproducible. If NA (the default), Stan will set the seed randomly.

file Either NULL or a character string. In the latter case, the fitted model object is saved via saveRDS in a file named after the string supplied in file. The .rds extension is added automatically. If the file already exists, brm will load and return the saved model object instead of refitting the model. As existing files
won’t be overwritten, you have to manually remove the file in order to refit and save the model under an existing file name. The file name is stored in the \texttt{brmsfit} object for later usage.

Further arguments passed to \texttt{brm}.

Details

The combined model may issue false positive convergence warnings, as the MCMC chains corresponding to different datasets may not necessarily overlap, even if each of the original models did converge. To find out whether each of the original models converged, investigate \texttt{fit$rhats}, where \texttt{fit} denotes the output of \texttt{brm_multiple}.

Value

If \texttt{combine = TRUE} a \texttt{brmsfit_multiple} object, which inherits from class \texttt{brmsfit} and behaves essentially the same. If \texttt{combine = FALSE} a list of \texttt{brmsfit} objects.

Author(s)

Paul-Christian Buerkner <paul.buerkner@gmail.com>

Examples

```r
## Not run:
library(mice)
imp <- mice(nhanes2)

# fit the model using mice and lm
fit_imp1 <- with(lm(bmi ~ age + hyp + chl), data = imp)
summary(pool(fit_imp1))

# fit the model using brms
fit_imp2 <- brm_multiple(bmi ~ age + hyp + chl, data = imp, chains = 1)
summary(fit_imp2)
plot(fit_imp2, pars = "^b_")
# investigate convergence of the original models
fit_imp2$rhats

# use the future package for parallelization
library(future)
plan(multiprocess)
fit_imp3 <- brm_multiple(bmi~age+hyp+chl, data = imp, chains = 1)
summary(fit_imp3)

## End(Not run)
```
coef.brmsfit

Extract Model Coefficients

Description

Extract model coefficients, which are the sum of population-level effects and corresponding group-level effects

Usage

S3 method for class 'brmsfit'
coef(object, summary = TRUE, robust = FALSE, probs = c(0.025, 0.975), ...)

Arguments

object
An object of class brmsfit.

summary
Should summary statistics be returned instead of the raw values? Default is TRUE.

robust
If FALSE (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If TRUE, the median and the median absolute deviation (MAD) are applied instead. Only used if summary is TRUE.

probs
The percentiles to be computed by the quantile function. Only used if summary is TRUE.

...
Further arguments passed to fixef.brmsfit and ranef.brmsfit.

Value

A list of 3D arrays (one per grouping factor). If summary is TRUE, the 1st dimension contains the factor levels, the 2nd dimension contains the summary statistics (see posterior_summary), and the 3rd dimension contains the group-level effects. If summary is FALSE, the 1st dimension contains the posterior draws, the 2nd dimension contains the factor levels, and the 3rd dimension contains the group-level effects.

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1+Trt|visit),
 data = epilepsy, family = gaussian(), chains = 2)
extract population and group-level coefficients separately
fixef(fit)
ranef(fit)
extract combined coefficients
coef(fit)

End(Not run)
combine_models

Combine Models fitted with brms

Description

Combine multiple `brmsfit` objects, which fitted the same model. This is usefuly for instance when having manually run models in parallel.

Usage

```r
combine_models(..., mlist = NULL, check_data = TRUE)
```

Arguments

- `...` One or more `brmsfit` objects.
- `mlist` Optional list of one or more `brmsfit` objects.
- `check_data` Logical; indicates if the data should be checked for being the same across models (defaults to `TRUE`). Setting it to `FALSE` may be useful for instance when combining models fitted on multiple imputed data sets.

Details

This function just takes the first model and replaces its `stanfit` object (slot fit) by the combined `stanfit` objects of all models.

Value

A `brmsfit` object.

compare_ic

Compare Information Criteria of Different Models

Description

Compare information criteria of different models fitted with `waic` or `loo`. Deprecated and will be removed in the future. Please use `loo_compare` instead.

Usage

```r
compare_ic(..., x = NULL, ic = c("loo", "waic", "kfold"))
```
conditional_effects.brmsfit

Display Conditional Effects of Predictors

Description

Display conditional effects of one or more numeric and/or categorical predictors including two-way interaction effects.

Arguments

... At least two objects returned by waic or loo. Alternatively, brmsfit objects with information criteria precomputed via add_ic may be passed, as well.

x A list containing the same types of objects as can be passed via

ic The name of the information criterion to be extracted from brmsfit objects. Ignored if information criterion objects are only passed directly.

Details

See loo_compare for the recommended way of comparing models with the loo package.

Value

An object of class iclist.

See Also

loo, loo_compare, add_criterion

Examples

Not run:
model with population-level effects only
fit1 <- brm(rating ~ treat + period + carry,
data = inhaler)
waic1 <- waic(fit1)

model with an additional varying intercept for subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),
data = inhaler)
waic2 <- waic(fit2)

compare both models
compare_ic(waic1, waic2)

End(Not run)
conditional_effects.brmsfit

Usage

```r
## S3 method for class 'brmsfit'
conditional_effects(
x, 
effects = NULL,
conditions = NULL,
int_conditions = NULL,
re_formula = NA,
robust = TRUE,
probs = c(0.025, 0.975),
method = "pp_expect",
spaghetti = FALSE,
surface = FALSE,
categorical = FALSE,
ondinal = FALSE,
transform = NULL,
resolution = 100,
select_points = 0,
too_far = 0,
...)

conditional_effects(x, ...)
```

```r
## S3 method for class 'brms_conditional_effects'
plot(
x, 
ncol = NULL,
points = FALSE,
rug = FALSE,
mean = TRUE,
jitter_width = 0,
stype = c("contour", "raster"),
line_args = list(),
cat_args = list(),
errorbar_args = list(),
surface_args = list(),
spaghetti_args = list(),
point_args = list(),
rug_args = list(),
facet_args = list(),
theme = NULL,
ask = TRUE,
plot = TRUE,
...)
```
conditional_effects.brmsfit

Arguments

- `x`: An object of class `brmsfit`.
- `effects`: An optional character vector naming effects (main effects or interactions) for which to compute conditional plots. Interactions are specified by a `:` between variable names. If `NULL` (the default), plots are generated for all main effects and two-way interactions estimated in the model. When specifying `effects` manually, *all* two-way interactions may be plotted even if not originally modeled.

- `conditions`: An optional `data.frame` containing variable values to condition on. Each effect defined in `effects` will be plotted separately for each row of `conditions`. Values in the `cond__` column will be used as titles of the subplots. If `cond__` is not given, the row names will be used for this purpose instead. It is recommended to only define a few rows in order to keep the plots clear. See `make_conditions` for an easy way to define conditions. If `NULL` (the default), numeric variables will be conditionalized by using their means and factors will get their reference level assigned. `NA` values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.

- `int_conditions`: An optional named list whose elements are numeric vectors of values of the second variables in two-way interactions. At these values, predictions are evaluated. The names of `int_conditions` have to match the variable names exactly. Additionally, the elements of the numeric vectors may be named themselves, in which case their names appear as labels for the conditions in the plots. Instead of vectors, functions returning vectors may be passed and are applied on the original values of the corresponding variable. If `NULL` (the default), predictions are evaluated at the mean and at mean + − sd.

- `re_formula`: A formula containing random effects to be considered in the conditional predictions. If `NULL`, include all random effects; if `NA` (default), include no random effects.

- `robust`: If `TRUE` (the default) the median is used as the measure of central tendency. If `FALSE` the mean is used instead.

- `probs`: The quantiles to be used in the computation of credible intervals (defaults to 2.5 and 97.5 percent quantiles)

- `method`: Method use to obtain predictions. Either "pp_expect" (the default) or "posterior_predict".

- `spaghetti`: Logical. Indicates if predictions should be visualized via spaghetti plots. Only applied for numeric predictors. If `TRUE`, it is recommended to set argument `nsamples` to a relatively small value (e.g. 100) in order to reduce computation time.

- `surface`: Logical. Indicates if interactions or two-dimensional smooths should be visualized as a surface. Defaults to `FALSE`. The surface type can be controlled via argument `stype` of the related plotting method.

- `categorical`: Logical. Indicates if effects of categorical or ordinal models should be shown in terms of probabilities of response categories. Defaults to `FALSE`.

- `ordinal`: Deprecated! Please use argument `categorical`. Logical. Indicates if effects in ordinal models should be visualized as a raster with the response categories on the y-axis. Defaults to `FALSE`.
transform A function or a character string naming a function to be applied on the predicted responses before summary statistics are computed. Only allowed if method = "posterior_predict".

resolution Number of support points used to generate the plots. Higher resolution leads to smoother plots. Defaults to 100. If surface is TRUE, this implies 10000 support points for interaction terms, so it might be necessary to reduce resolution when only few RAM is available.

select_points Positive number. Only relevant if points or rug are set to TRUE: Actual data points of numeric variables that are too far away from the values specified in conditions can be excluded from the plot. Values are scaled into the unit interval and then points more than select_points from the values in conditions are excluded. By default, all points are used.

too_far Positive number. For surface plots only: Grid points that are too far away from the actual data points can be excluded from the plot. too_far determines what is too far. The grid is scaled into the unit square and then grid points more than too_far from the predictor variables are excluded. By default, all grid points are used. Ignored for non-surface plots.

... Further arguments such as subset or nsamples passed to posterior_predict or pp_expect.

ncol Number of plots to display per column for each effect. If NULL (default), ncol is computed internally based on the number of rows of conditions.

points Logical; indicating whether the original data points should be added via geom_jitter. Default is FALSE. Note that only those data points will be added that match the specified conditions defined in conditions. For categorical predictors, the conditions have to match exactly. For numeric predictors, argument select_points is used to determine, which points do match a condition.

rug Logical; indicating whether a rug representation of predictor values should be added via geom_rug. Default is FALSE. Depends on select_points in the same way as points does.

mean Logical; only relevant for spaghetti plots. If TRUE (the default), display the mean regression line on top of the regression lines for each sample.

jitter_width Only used if points = TRUE: Amount of horizontal jittering of the data points. Mainly useful for ordinal models. Defaults to 0 that is no jittering.

stype Indicates how surface plots should be displayed. Either "contour" or "raster".

line_args Only used in plots of continuous predictors: A named list of arguments passed to geom_smooth.

cat_args Only used in plots of categorical predictors: A named list of arguments passed to geom_point.

errorbar_args Only used in plots of categorical predictors: A named list of arguments passed to geom_errorbar.

surface_args Only used in surface plots: A named list of arguments passed to geom_contour or geom_raster (depending on argument stype).

spaghetti_args Only used in spaghetti plots: A named list of arguments passed to geom_smooth.

point_args Only used if points = TRUE: A named list of arguments passed to geom_jitter.
conditional_effects.brmsfit

rug_args
Only used if rug = TRUE: A named list of arguments passed to geom_rug.

facet_args
Only used if if multiple conditions are provided: A named list of arguments passed to facet_wrap.

theme
A theme object modifying the appearance of the plots. For some basic themes see ggtheme and theme_default.

ask
Logical: indicates if the user is prompted before a new page is plotted. Only used if plot is TRUE.

plot
Logical: indicates if plots should be plotted directly in the active graphic device. Defaults to TRUE.

Details

When creating conditional_effects for a particular predictor (or interaction of two predictors), one has to choose the values of all other predictors to condition on. By default, the mean is used for continuous variables and the reference category is used for factors, but you may change these values via argument conditions. This also has an implication for the points argument: In the created plots, only those points will be shown that correspond to the factor levels actually used in the conditioning, in order not to create the false impression of bad model fit, where it is just due to conditioning on certain factor levels.

To fully change colors of the created plots, one has to amend both scale_colour and scale_fill. See scale_colour_grey or scale_colour_gradient for more details.

Value

An object of class 'brms_conditional_effects', which is a named list with one data.frame per effect containing all information required to generate conditional effects plots. Among others, these data.frames contain some special variables, namely estimate__ (predicted values of the response), se__ (standard error of the predicted response), lower__ and upper__ (lower and upper bounds of the uncertainty interval of the response), as well as cond__ (used in faceting when conditions contains multiple rows).

The corresponding plot method returns a named list of ggplot objects, which can be further customized using the ggplot2 package.

Examples

```r
## Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1 | patient),
  data = epilepsy, family = poisson())

## plot all conditional effects
plot(conditional_effects(fit), ask = FALSE)

## change colours to grey scale
library(ggplot2)
me <- conditional_effects(fit, "zBase:Trt")
plot(me, plot = FALSE)[[1]] +
  scale_color_grey() +
  scale_fill_grey()
```
Display Smooth Terms

Display smooth s and t2 terms of models fitted with \texttt{brms}.

Usage

```r
## S3 method for class 'brmsfit'
conditional_smooths(
x, 
smooths = NULL,
```

Description

Display smooth s and t2 terms of models fitted with \texttt{brms}.

End(Not run)
int_conditions = NULL,
probs = c(0.025, 0.975),
spaghetti = FALSE,
resolution = 100,
too_far = 0,
subset = NULL,
nsamples = NULL,
...)

conditional_smooths(x, ...)

Arguments

x An object of class brmsfit.

smooths Optional character vector of smooth terms to display. If NULL (the default) all smooth terms are shown.

int_conditions An optional named list whose elements are numeric vectors of values of the second variables in two-way interactions. At these values, predictions are evaluated. The names of int_conditions have to match the variable names exactly. Additionally, the elements of the numeric vectors may be named themselves, in which case their names appear as labels for the conditions in the plots. Instead of vectors, functions returning vectors may be passed and are applied on the original values of the corresponding variable. If NULL (the default), predictions are evaluated at the mean and at mean + / - sd.

probs The quantiles to be used in the computation of credible intervals (defaults to 2.5 and 97.5 percent quantiles)

spaghetti Logical. Indicates if predictions should be visualized via spaghetti plots. Only applied for numeric predictors. If TRUE, it is recommended to set argument nsamples to a relatively small value (e.g. 100) in order to reduce computation time.

resolution Number of support points used to generate the plots. Higher resolution leads to smoother plots. Defaults to 100. If surface is TRUE, this implies 10000 support points for interaction terms, so it might be necessary to reduce resolution when only few RAM is available.

too_far Positive number. For surface plots only: Grid points that are too far away from the actual data points can be excluded from the plot. too_far determines what is too far. The grid is scaled into the unit square and then grid points more than too_far from the predictor variables are excluded. By default, all grid points are used. Ignored for non-surface plots.

subset A numeric vector specifying the posterior samples to be used. If NULL (the default), all samples are used.

nsamples Positive integer indicating how many posterior samples should be used. If NULL (the default) all samples are used. Ignored if subset is not NULL.

... Currently ignored.
Two-dimensional smooth terms will be visualized using either contour or raster plots.

For the `brmsfit` method, an object of class `brms_conditional_effects`. See `conditional_effects` for more details and documentation of the related plotting function.

```r
## Not run:
set.seed(0)
dat <- mgcv::gamSim(1, n = 200, scale = 2)
fit <- brm(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat)
# show all smooth terms
plot(conditional_smooths(fit), rug = TRUE, ask = FALSE)
# show only the smooth term s(x2)
plot(conditional_smooths(fit, smooths = "s(x2)", ask = FALSE)

# fit and plot a two-dimensional smooth term
fit2 <- brm(y ~ t2(x0, x2), data = dat)
ms <- conditional_smooths(fit2)
plot(ms, stype = "contour")
plot(ms, stype = "raster")
## End(Not run)
```

control_params

Extract Control Parameters of the NUTS Sampler

Description

Extract control parameters of the NUTS sampler such as `adapt_delta` or `max_treedepth`.

Usage

```r
control_params(x, ...)
```

```r
## S3 method for class 'brmsfit'
control_params(x, pars = NULL, ...)
```

Arguments

- `x` An R object
- `...` Currently ignored.
- `pars` Optional names of the control parameters to be returned. If `NULL` (the default) all control parameters are returned. See `stan` for more details.
Value
A named list with control parameter values.

Description
This function is a constructor for the cor_arma class, allowing for autoregression terms only.

Usage
cor_ar(formula = ~1, p = 1, cov = FALSE)

Arguments
formula A one sided formula of the form ~ t, or ~ t | g, specifying a time covariate t and, optionally, a grouping factor g. A covariate for this correlation structure must be integer valued. When a grouping factor is present in formula, the correlation structure is assumed to apply only to observations within the same grouping level; observations with different grouping levels are assumed to be uncorrelated. Defaults to ~ 1, which corresponds to using the order of the observations in the data as a covariate, and no groups.
p A non-negative integer specifying the autoregressive (AR) order of the ARMA structure. Default is 1.
cov A flag indicating whether ARMA effects should be estimated by means of residual covariance matrices. This is currently only possible for stationary ARMA effects of order 1. If the model family does not have natural residuals, latent residuals are added automatically. If FALSE (the default) a regression formulation is used that is considerably faster and allows for ARMA effects of order higher than 1 but is only available for gaussian models and some of its generalizations.

Details
AR refers to autoregressive effects of residuals, which is what is typically understood as autoregressive effects. However, one may also model autoregressive effects of the response variable, which is called ARR in brms.

Value
An object of class cor_arma containing solely autoregression terms.

See Also
cor_arma
Examples

cor_ar(~visit|patient, p = 2)

Description

This function is a constructor for the cor_arma class, representing an autoregression-moving average correlation structure of order \((p, q)\).

Usage

cor_arma(formula = ~1, p = 0, q = 0, r = 0, cov = FALSE)

Arguments

- **formula**: A one-sided formula of the form ~ t, or ~ t | g, specifying a time covariate t and, optionally, a grouping factor g. A covariate for this correlation structure must be integer valued. When a grouping factor is present in formula, the correlation structure is assumed to apply only to observations within the same grouping level; observations with different grouping levels are assumed to be uncorrelated. Defaults to ~ 1, which corresponds to using the order of the observations in the data as a covariate, and no groups.

- **p**: A non-negative integer specifying the autoregressive (AR) order of the ARMA structure. Default is 0.

- **q**: A non-negative integer specifying the moving average (MA) order of the ARMA structure. Default is 0.

- **r**: No longer supported.

- **cov**: A flag indicating whether ARMA effects should be estimated by means of residual covariance matrices. This is currently only possible for stationary ARMA effects of order 1. If the model family does not have natural residuals, latent residuals are added automatically. If FALSE (the default) a regression formulation is used that is considerably faster and allows for ARMA effects of order higher than 1 but is only available for gaussian models and some of its generalizations.

Value

An object of class cor_arma, representing an autoregression-moving-average correlation structure.

See Also

cor_ar, cor_ma
Examples

```r
cor_arma(~ visit | patient, p = 2, q = 2)
```

cor_brms
Correlation structure classes for the brms package

Description

Classes of correlation structures available in the brms package. cor_brms is not a correlation structure itself, but the class common to all correlation structures implemented in brms.

Available correlation structures

- **cor_arma** autoregressive-moving average (ARMA) structure, with arbitrary orders for the autoregressive and moving average components
- **cor_ar** autoregressive (AR) structure of arbitrary order
- **cor_ma** moving average (MA) structure of arbitrary order
- **cor_car** Spatial conditional autoregressive (CAR) structure
- **cor_sar** Spatial simultaneous autoregressive (SAR) structure
- **cor_fixed** fixed user-defined covariance structure

See Also

cor_arma, cor_ar, cor_ma, cor_car, cor_sar, cor_fixed

cor_car
Spatial conditional autoregressive (CAR) structures

Description

These functions are constructors for the cor_car class implementing spatial conditional autoregressive structures.

Usage

```r
cor_car(W, formula = ~1, type = "escar")
cor_icar(W, formula = ~1)
```
Arguments

\(W \)

Adjacency matrix of locations. All non-zero entries are treated as if the two locations are adjacent. If \(formula \) contains a grouping factor, the row names of \(W \) have to match the levels of the grouping factor.

\(formula \)

An optional one-sided formula of the form \(~ 1 | g\), where \(g \) is a grouping factor mapping observations to spatial locations. If not specified, each observation is treated as a separate location. It is recommended to always specify a grouping factor to allow for handling of new data in post-processing methods.

\(type \)

Type of the CAR structure. Currently implemented are "escar" (exact sparse CAR), "esicar" (exact sparse intrinsic CAR), "icar" (intrinsic CAR), and "bym2". More information is provided in the 'Details' section.

Details

The escar and esicar types are implemented based on the case study of Max Joseph (https://github.com/mbjoseph/CARstan). The icar and bym2 type is implemented based on the case study of Mitzi Morris (http://mc-stan.org/users/documentation/case-studies/icar_stan.html).

Examples

```r
## Not run:
# generate some spatial data
east <- north <- 1:10
Grid <- expand.grid(east, north)
K <- nrow(Grid)

# set up distance and neighbourhood matrices
distance <- as.matrix(dist(Grid))
W <- array(0, c(K, K))
W[distance == 1] <- 1

# generate the covariates and response data
x1 <- rnorm(K)
x2 <- rnorm(K)
theta <- rnorm(K, sd = 0.05)
phi <- rmulti_normal(1, mu = rep(0, K), Sigma = 0.4 * exp(-0.1 * distance))
eta <- x1 + x2 + phi
prob <- exp(eta) / (1 + exp(eta))
size <- rep(50, K)
y <- rbinom(n = K, size = size, prob = prob)
dat <- data.frame(y, size, x1, x2)

# fit a CAR model
fit <- brm(y | trials(size) ~ x1 + x2, data = dat,
            family = binomial(), autocor = cor_car(W))
summary(fit)
## End(Not run)
```
cor_cosy
Compound Symmetry (COSY) Correlation Structure

Description

This function is a constructor for the cor_cosy class, representing a compound symmetry structure corresponding to uniform correlation.

Usage

```r
cor_cosy(formula = ~1)
```

Arguments

- `formula` A one sided formula of the form `~ t`, or `~ t | g`, specifying a time covariate `t` and, optionally, a grouping factor `g`. A covariate for this correlation structure must be integer valued. When a grouping factor is present in `formula`, the correlation structure is assumed to apply only to observations within the same grouping level; observations with different grouping levels are assumed to be uncorrelated. Defaults to `~ 1`, which corresponds to using the order of the observations in the data as a covariate, and no groups.

Value

An object of class cor_cosy, representing a compound symmetry correlation structure.

Examples

```r
cor_cosy(~ visit | patient)
```

cor_fixed
Fixed user-defined covariance matrices

Description

Define a fixed covariance matrix of the response variable for instance to model multivariate effect sizes in meta-analysis.

Usage

```r
cor_fixed(V)
```

Arguments

- `V` Known covariance matrix of the response variable. If a vector is passed, it will be used as diagonal entries (variances) and covariances will be set to zero.
cor_ma

Value

An object of class cor_fixed.

Examples

Not run:

dat <- data.frame(y = rnorm(3))
V <- cbind(c(0.5, 0.3, 0.2), c(0.3, 1, 0.1), c(0.2, 0.1, 0.2))
fit <- brm(y~1, data = dat, autocor = cor_fixed(V))

End(Not run)

cor_ma

MA(q) correlation structure

Description

This function is a constructor for the cor_arma class, allowing for moving average terms only.

Usage

cor_ma(formula = ~1, q = 1, cov = FALSE)

Arguments

formula A one sided formula of the form ~ t, or ~ t | g, specifying a time covariate t and, optionally, a grouping factor g. A covariate for this correlation structure must be integer valued. When a grouping factor is present in formula, the correlation structure is assumed to apply only to observations within the same grouping level; observations with different grouping levels are assumed to be uncorrelated. Defaults to ~ 1, which corresponds to using the order of the observations in the data as a covariate, and no groups.

q A non-negative integer specifying the moving average (MA) order of the ARMA structure. Default is 1.

cov A flag indicating whether ARMA effects should be estimated by means of residual covariance matrices. This is currently only possible for stationary ARMA effects of order 1. If the model family does not have natural residuals, latent residuals are added automatically. If FALSE (the default) a regression formulation is used that is considerably faster and allows for ARMA effects of order higher than 1 but is only available for gaussian models and some of its generalizations.

Value

An object of class cor_arma containing solely moving average terms.
See Also

cor_arma

Examples

cor_ma(~visit|patient, q = 2)

cor_sar

Spatial simultaneous autoregressive (SAR) structures

Description

These functions are constructors for the cor_sar class implementing spatial simultaneous autoregressive structures. The lagsar structure implements SAR of the response values:

\[y = \rho Wy + \eta + e \]

The errorsar structure implements SAR of the residuals:

\[y = \eta + u, u = \rho Wu + e \]

In the above equations, \(\eta \) is the predictor term and \(e \) are independent normally or t-distributed residuals.

Usage

cor_sar(W, type = c("lag", "error"))
cor_lagsar(W)
cor_errorsar(W)

Arguments

W An object specifying the spatial weighting matrix. Can be either the spatial weight matrix itself or an object of class listw or nb, from which the spatial weighting matrix can be computed.

type Type of the SAR structure. Either "lag" (for SAR of the response values) or "error" (for SAR of the residuals).

Details

Currently, only families gaussian and student support SAR structures.

Value

An object of class cor_sar to be used in calls to brm.
Examples

```r
## Not run:
data(oldcol, package = "spdep")
fit1 <- brm(CRIME ~ INC + HOVAL, data = COL.OLD,
  autocor = cor_lagsar(COL.nb),
  chains = 2, cores = 2)
summary(fit1)
plot(fit1)

fit2 <- brm(CRIME ~ INC + HOVAL, data = COL.OLD,
  autocor = cor_errorsar(COL.nb),
  chains = 2, cores = 2)
summary(fit2)
plot(fit2)

## End(Not run)
```

cs
Category Specific Predictors in brms Models

Description

Category Specific Predictors in brms Models

Usage

```r
cs(expr)
```

Arguments

- `expr`
 Expression containing predictors, for which category specific effects should be estimated. For evaluation, R formula syntax is applied.

Details

For detailed documentation see help(brmsformula) as well as vignette("brms_overview").

This function is almost solely useful when called in formulas passed to the brms package.

See Also

- brmsformula
Examples

```r
## Not run:
fit <- brm(rating ~ period + carry + cs(treat),
           data = inhaler, family = sratio("cloglog"),
           prior = set_prior("normal(0,5)"), chains = 2)
summary(fit)
plot(fit, ask = FALSE)
## End(Not run)
```

custom_family

Custom Families in brms Models

Description

Define custom families (i.e. response distribution) for use in `brms` models. It allows users to benefit from the modeling flexibility of `brms`, while applying their self-defined likelihood functions. All of the post-processing methods for `brmsfit` objects can be made compatible with custom families. See `vignette("brms_customfamilies")` for more details. For a list of built-in families see `brmsfamily`.

Usage

```r
custom_family(
  name,
  dpars = "mu",
  links = "identity",
  type = c("real", "int"),
  lb = NA,
  ub = NA,
  vars = NULL,
  specials = NULL,
  threshold = c("flexible", "equidistant"),
  log_lik = NULL,
  predict = NULL,
  fitted = NULL,
  env = parent.frame()
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>name</code></td>
<td>Name of the custom family.</td>
</tr>
<tr>
<td><code>dpars</code></td>
<td>Names of the distributional parameters of the family. One parameter must be named "mu" and the main formula of the model will correspond to that parameter.</td>
</tr>
</tbody>
</table>
Links the link functions of the distributional parameters.

type

Indicates if the response distribution is continuous ("real") or discrete ("int").

lb

Vector of lower bounds of the distributional parameters. Defaults to NA that is no lower bound.

ub

Vector of upper bounds of the distributional parameters. Defaults to NA that is no upper bound.

vars

Names of variables, which are part of the likelihood function without being distributional parameters. That is, vars can be used to pass data to the likelihood. See stanvar for details about adding self-defined data to the generated Stan model.

specials

A character vector of special options to enable for this custom family. Currently for internal use only.

threshold

Optional threshold type for custom ordinal families. Ignored for non-ordinal families.

log_lik

Optional function to compute log-likelihood values of the model in R. This is only relevant if one wants to ensure compatibility with method log_lik.

predict

Optional function to compute predicted values of the model in R. This is only relevant if one wants to ensure compatibility with method predict.

fitted

Optional function to compute fitted values of the model in R. This is only relevant if one wants to ensure compatibility with method fitted.

env

An environment in which certain post-processing functions related to the custom family can be found, if there were not directly passed to custom_family. This is only relevant if one wants to ensure compatibility with the methods predict, fitted, or log_lik. By default, env is the environment from which custom_family is called.

Details

The corresponding probability density or mass Stan functions need to have the same name as the custom family. That is if a family is called myfamily, then the Stan functions should be called myfamily_lpdf or myfamily_lpmf depending on whether it defines a continuous or discrete distribution.

Value

An object of class customfamily inheriting from class brmsfamily.

See Also

brmsfamily, stanvar

Examples

Not run:
demonstrate how to fit a beta-binomial model
generate some fake data
phi <- 0.7
n <- 300
z <- rnorm(n, sd = 0.2)
ntrials <- sample(1:10, n, replace = TRUE)
eta <- 1 + z
mu <- exp(eta) / (1 + exp(eta))
a <- mu * phi
b <- (1 - mu) * phi
p <- rbeta(n, a, b)
y <- rbinom(n, ntrials, p)
dat <- data.frame(y, z, ntrials)

define a custom family
beta_binomial2 <- custom_family(
 "beta_binomial2", dpars = c("mu", "phi"),
 links = c("logit", "log"), lb = c(NA, 0),
 type = "int", vars = "trials[n]"
)

define the corresponding Stan density function
stan_funs <- "
real beta_binomial2_lpmf(int y, real mu, real phi, int N) {
 return beta_binomial_lpmf(y | N, mu * phi, (1 - mu) * phi);
}
"

fit the model
fit <- brm(y | trials(ntrials) ~ z, data = dat,
 family = beta_binomial2, stan_funs = stan_funs)
summary(fit)
End(Not run)

density_ratio	Compute Density Ratios

Description

Compute the ratio of two densities at given points based on samples of the corresponding distributions.

Usage

density_ratio(x, y = NULL, point = 0, n = 4096, ...)

Arguments

x Vector of samples from the first distribution, usually the posterior distribution of
 the quantity of interest.
y Optional vector of samples from the second distribution, usually the prior distribution of the quantity of interest. If NULL (the default), only the density of \(x \) will be evaluated.

point Numeric values at which to evaluate and compare the densities. Defaults to 0.

n Single numeric value. Influences the accuracy of the density estimation. See \texttt{density} for details.

... Further arguments passed to \texttt{density}.

Details

In order to achieve sufficient accuracy in the density estimation, more samples than usual are required. That is you may need an effective sample size of 10,000 or more to reliably estimate the densities.

Value

A vector of length equal to \texttt{length(point)}. If \(y \) is provided, the density ratio of \(x \) against \(y \) is returned. Else, only the density of \(x \) is returned.

Examples

\begin{verbatim}
x <- rnorm(10000)
y <- rnorm(10000, mean = 1)
density_ratio(x, y, point = c(0, 1))
\end{verbatim}

\section*{diagnostic-quantities \ Extract Diagnostic Quantities of \texttt{brms} Models}

Description

Extract quantities that can be used to diagnose sampling behavior of the algorithms applied by \texttt{Stan} at the back-end of \texttt{brms}.

Usage

\begin{verbatim}
S3 method for class 'brmsfit'
log_posterior(object, ...)

S3 method for class 'brmsfit'
nuts_params(object, pars = NULL, ...)

S3 method for class 'brmsfit'
rhat(object, pars = NULL, ...)

S3 method for class 'brmsfit'
neff_ratio(object, pars = NULL, ...)
\end{verbatim}
Arguments

object A brmsfit object.
...
Arguments passed to individual methods.
pars An optional character vector of parameter names. For nuts_params these will be NUTS sampler parameter names rather than model parameters. If pars is omitted all parameters are included.

Details

For more details see bayesplot-extractors.

Value

The exact form of the output depends on the method.

Examples

```r
## Not run:
fit <- brm(time ~ age * sex, data = kidney)

lp <- log_posterior(fit)
head(lp)

np <- nuts_params(fit)
str(np)
# extract the number of divergence transitions
sum(subset(np, Parameter == "divergent__")$Value)

head(rhat(fit))
head(neff_ratio(fit))

## End(Not run)
```

Dirichlet

The Dirichlet Distribution

Description

Density function and random number generation for the dirichlet distribution with shape parameter vector alpha.

Usage

```r
ddirichlet(x, alpha, log = FALSE)
rdirichlet(n, alpha)
```
Arguments

- `x`: Matrix of quantiles. Each row corresponds to one probability vector.
- `alpha`: Matrix of positive shape parameters. Each row corresponds to one probability vector.
- `log`: Logical; If TRUE, values are returned on the log scale.
- `n`: Number of samples to draw from the distribution.

Details

See vignette("brms_families") for details on the parameterization.

epilepsy

Epileptic seizure counts

Description

Breslow and Clayton (1993) analyze data initially provided by Thall and Vail (1990) concerning seizure counts in a randomized trial of anti-convulsant therapy in epilepsy. Covariates are treatment, 8-week baseline seizure counts, and age of the patients in years.

Usage

epilepsy

Format

A data frame of 236 observations containing information on the following 9 variables.

- **Age**: The age of the patients in years
- **Base**: The seizure count at 8-weeks baseline
- **Trt**: Either 0 or 1 indicating if the patient received anti-convulsant therapy
- **patient**: The patient number
- **visit**: The session number from 1 (first visit) to 4 (last visit)
- **count**: The seizure count between two visits
- **obs**: The observation number, that is a unique identifier for each observation
- **zAge**: Standardized Age
- **zBase**: Standardized Base

Source

Not run:
Exponential regression without random effects.
```r
fit1 <- brm(count ~ zAge + zBase * Trt,
             data = epilepsy, family = poisson())
summary(fit1)
plot(fit1)
```
Exponential regression with varying intercepts of patients
as well as normal priors for overall effects parameters.
```r
fit2 <- brm(count ~ zAge + zBase * Trt + (1|patient),
             data = epilepsy, family = poisson(),
             prior = set_prior("normal(0,5)"))
summary(fit2)
plot(fit2)
```
End(Not run)

ExGaussian

The Exponentially Modified Gaussian Distribution

Description

Density, distribution function, and random generation for the exponentially modified Gaussian distribution with mean μ and standard deviation σ of the gaussian component, as well as scale β of the exponential component.

Usage

```r
dexgaussian(x, mu, sigma, beta, log = FALSE)
pexgaussian(q, mu, sigma, beta, lower.tail = TRUE, log.p = FALSE)
rexgaussian(n, mu, sigma, beta)
```

Arguments

- `x, q` Vector of quantiles.
- `mu` Vector of means of the combined distribution.
- `sigma` Vector of standard deviations of the gaussian component.
- `beta` Vector of scales of the exponential component.
- `log` Logical; If TRUE, values are returned on the log scale.
- `lower.tail` Logical; If TRUE (default), return $P(X \leq x)$. Else, return $P(X > x)$.
- `log.p` Logical; If TRUE, values are returned on the log scale.
- `n` Number of samples to draw from the distribution.
expose_functions.brmsfit

Details
See vignette("brms_families") for details on the parameterization.

expose_functions.brmsfit

Expose user-defined Stan functions

Description
Export user-defined Stan function and optionally vectorize them. For more details see expose_stan_functions.

Usage
S3 method for class 'brmsfit'
expose_functions(x, vectorize = FALSE, env = globalenv(), ...)

Arguments
x
An object of class brmsfit.

vectorize
Logical; Indicates if the exposed functions should be vectorized via Vectorize. Defaults to FALSE.

env
Environment where the functions should be made available. Defaults to the global environment.

...
Further arguments passed to expose_stan_functions.

expp1

Exponential function plus one.

Description
Computes exp(x) + 1.

Usage
expp1(x)

Arguments
x
A numeric or complex vector.
extract_draws.brmsfit

Extract Data and Posterior Draws

Description

This method helps in preparing `brms` models for certain post-processing tasks most notably various forms of predictions. Unless you are a package developer, you will rarely need to call `extract_draws` directly.

Usage

```r
## S3 method for class 'brmsfit'
extract_draws(
  x,
  newdata = NULL,
  re_formula = NULL,
  allow_new_levels = FALSE,
  sample_new_levels = "uncertainty",
  incl_autocor = TRUE,
  oos = NULL,
  resp = NULL,
  nsamples = NULL,
  subset = NULL,
  nug = NULL,
  smooths_only = FALSE,
  offset = TRUE,
  new_objects = list(),
  point = NULL,
  ...
)
```

Arguments

- **x**
 An R object typically of class `brmsfit`.
- **newdata**
 An optional data.frame for which to evaluate predictions. If `NULL` (default), the original data of the model is used. NA values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.
- **re_formula**
 formula containing group-level effects to be considered in the prediction. If `NULL` (default), include all group-level effects; if `NA`, include no group-level effects.
- **allow_new_levels**
 A flag indicating if new levels of group-level effects are allowed (defaults to `FALSE`). Only relevant if `newdata` is provided.
sample_new_levels
Indicates how to sample new levels for grouping factors specified in re_formula. This argument is only relevant if newdata is provided and allow_new_levels is set to TRUE. If "uncertainty" (default), include group-level uncertainty in the predictions based on the variation of the existing levels. If "gaussian", sample new levels from the (multivariate) normal distribution implied by the group-level standard deviations and correlations. This option may be useful for conducting Bayesian power analysis. If "old_levels", directly sample new levels from the existing levels.

incl_autocor
A flag indicating if correlation structures originally specified via autocor should be included in the predictions. Defaults to TRUE.

oos
Optional indices of observations for which to compute out-of-sample rather than in-sample predictions. Only required in models that make use of response values to make predictions, that is currently only ARMA models.

resp
Optional names of response variables. If specified, predictions are performed only for the specified response variables.

nsamples
Positive integer indicating how many posterior samples should be used. If NULL (the default) all samples are used. Ignored if subset is not NULL.

subset
A numeric vector specifying the posterior samples to be used. If NULL (the default), all samples are used.

nug
Small positive number for Gaussian process terms only. For numerical reasons, the covariance matrix of a Gaussian process might not be positive definite. Adding a very small number to the matrix’s diagonal often solves this problem. If NULL (the default), nug is chosen internally.

smooths_only
Logical; If TRUE only draws related to the computation of smooth terms will be extracted.

offset
Logical; Indicates if offsets should be included in the predictions. Defaults to TRUE.

new_objects
A named list of objects containing new data, which cannot be passed via argument newdata. Required for objects passed via stanvars and for cor_sar and cor_fixed correlation structures.

point
Shall the returned object contain only point estimates of the parameters instead of their posterior samples? Defaults to NULL in which case no point estimate is computed. Alternatively, may be set to "mean" or "median". This argument is primarily implemented to ensure compatibility with the loo_subsample method.

... Further arguments passed to validate_newdata.

Value
An object of class 'brmsdraws' or 'mvbrmsdraws', depending on whether a univariate or multivariate model is passed.
family.brmsfit

Extract Model Family Objects

Description

Extract Model Family Objects

Usage

```r
## S3 method for class 'brmsfit'
family(object, resp = NULL, ...)
```

Arguments

- `object`: An object of class `brmsfit`.
- `resp`: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- `...`: Currently unused.

Value

A `brmsfamily` object or a list of such objects for multivariate models.

fitted.brmsfit

Expected Values of the Posterior Predictive Distribution

Description

This method is an alias of `pp_expect.brmsfit` with additional arguments for obtaining summaries of the computed samples.

Usage

```r
## S3 method for class 'brmsfit'
fitted(
  object, 
  newdata = NULL, 
  re_formula = NULL, 
  scale = c("response", "linear"), 
  resp = NULL, 
  dpar = NULL, 
  nlpar = NULL, 
  nsamples = NULL, 
  subset = NULL, 
  sort = FALSE, 
  ...)
```
Arguments

object An object of class brmsfit.
newdata An optional data.frame for which to evaluate predictions. If NULL (default), the original data of the model is used. NA values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.
re_formula formula containing group-level effects to be considered in the prediction. If NULL (default), include all group-level effects; if NA, include no group-level effects.
scale Either "response" or "linear". If "response", results are returned on the scale of the response variable. If "linear", results are returned on the scale of the linear predictor term, that is without applying the inverse link function or other transformations.
resp Optional names of response variables. If specified, predictions are performed only for the specified response variables.
dpar Optional name of a predicted distributional parameter. If specified, fitted values of this parameters are returned.
nlpar Optional name of a predicted non-linear parameter. If specified, fitted values of this parameters are returned.
nsamples Positive integer indicating how many posterior samples should be used. If NULL (the default) all samples are used. Ignored if subset is not NULL.
subset A numeric vector specifying the posterior samples to be used. If NULL (the default), all samples are used.
sort Logical. Only relevant for time series models. Indicating whether to return predicted values in the original order (FALSE; default) or in the order of the time series (TRUE).
summary Should summary statistics be returned instead of the raw values? Default is TRUE.
robust If FALSE (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If TRUE, the median and the median absolute deviation (MAD) are applied instead. Only used if summary is TRUE.
probs The percentiles to be computed by the quantile function. Only used if summary is TRUE.
... Further arguments passed to extract_draws that control several aspects of data validation and prediction.
Value

An array of predicted mean response values. If summary = FALSE the output resembles those of `pp_expect.brmsfit`.

If summary = TRUE the output depends on the family: For categorical and ordinal families, the output is an N x E x C array, where N is the number of observations, E is the number of summary statistics, and C is the number of categories. For all other families, the output is an N x E matrix. The number of summary statistics E is equal to 2 + length(probs): The Estimate column contains point estimates (either mean or median depending on argument robust), while the Est.Error column contains uncertainty estimates (either standard deviation or median absolute deviation depending on argument robust). The remaining columns starting with Q contain quantile estimates as specified via argument probs.

In multivariate models, an additional dimension is added to the output which indexes along the different response variables.

See Also

`pp_expect.brmsfit`

Examples

```r
## Not run:
## fit a model
fit <- brm(rating ~ treat + period + carry + (1|subject),
           data = inhaler)

## extract fitted values
fitted_values <- fitted(fit)
head(fitted_values)

## plot fitted means against actual response
dat <- as.data.frame(cbind(Y = standata(fit)$Y, fitted_values))
ggplot(dat) + geom_point(aes(x = Estimate, y = Y))

## End(Not run)
```

Description

Extract the population-level ('fixed') effects from a `brmsfit` object.
Usage

```r
## S3 method for class 'brmsfit'
fixef(
    object,
    summary = TRUE,
    robust = FALSE,
    probs = c(0.025, 0.975),
    pars = NULL,
    ...
)
```

Arguments

- `object`: An object of class `brmsfit`.
- `summary`: Should summary statistics be returned instead of the raw values? Default is TRUE.
- `robust`: If FALSE (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If TRUE, the median and the median absolute deviation (MAD) are applied instead. Only used if `summary` is TRUE.
- `probs`: The percentiles to be computed by the `quantile` function. Only used if `summary` is TRUE.
- `pars`: Optional names of coefficients to extract. By default, all coefficients are extracted.
- `...`: Currently ignored.

Value

If `summary` is TRUE, a matrix returned by `posterior_summary` for the population-level effects. If `summary` is FALSE, a matrix with one row per posterior draw and one column per population-level effect.

Examples

```r
## Not run:
fit <- brm(time | cens(censored) ~ age + sex + disease,
           data = kidney, family = "exponential")
fixef(fit)
# extract only some coefficients
fixef(fit, pars = c("age", "sex"))
## End(Not run)
```
Frechet

The Frechet Distribution

Description

Density, distribution function, quantile function and random generation for the Frechet distribution with location \(\text{loc} \), scale \(\text{scale} \), and shape \(\text{shape} \).

Usage

\[
\begin{align*}
dfrechet(x, \text{loc} = 0, \text{scale} = 1, \text{shape} = 1, \log = \text{FALSE}) \\
pfrechet(q, \text{loc} = 0, \text{scale} = 1, \text{shape} = 1, \text{lower.tail} = \text{TRUE}, \log.p = \text{FALSE}) \\
qfrechet(p, \text{loc} = 0, \text{scale} = 1, \text{shape} = 1, \text{lower.tail} = \text{TRUE}, \log.p = \text{FALSE}) \\
rfrechet(n, \text{loc} = 0, \text{scale} = 1, \text{shape} = 1)
\end{align*}
\]

Arguments

- \(x, q \) Vector of quantiles.
- \(\text{loc} \) Vector of locations.
- \(\text{scale} \) Vector of scales.
- \(\text{shape} \) Vector of shapes.
- \(\log \) Logical; If \(\text{TRUE} \), values are returned on the log scale.
- \(\text{lower.tail} \) Logical; If \(\text{TRUE} \) (default), return \(P(X \leq x) \). Else, return \(P(X > x) \).
- \(\log.p \) Logical; If \(\text{TRUE} \), values are returned on the log scale.
- \(p \) Vector of probabilities.
- \(n \) Number of samples to draw from the distribution.

Details

See vignette("brms_families") for details on the parameterization.

GenExtremeValue

The Generalized Extreme Value Distribution

Description

Density, distribution function, and random generation for the generalized extreme value distribution with location \(\mu \), scale \(\sigma \) and shape \(\xi \).
Usage

dgen_extreme_value(x, mu = 0, sigma = 1, xi = 0, log = FALSE)

pgen_extreme_value(
 q,
 mu = 0,
 sigma = 1,
 xi = 0,
 lower.tail = TRUE,
 log.p = FALSE
)

rgen_extreme_value(n, mu = 0, sigma = 1, xi = 0)

Arguments

- **x, q** Vector of quantiles.
- **mu** Vector of locations.
- **sigma** Vector of scales.
- **xi** Vector of shapes.
- **log** Logical; If TRUE, values are returned on the log scale.
- **lower.tail** Logical; If TRUE (default), return P(X ≤ x). Else, return P(X > x).
- **log.p** Logical; If TRUE, values are returned on the log scale.
- **n** Number of samples to draw from the distribution.

Details

See vignette("brms_families") for details on the parameterization.
get_prior

```
internal = FALSE,
...
)

Arguments

formula     An object of class `formula`, `brmsformula`, or `mvbrmsformula` (or one that can be coerced to that classes): A symbolic description of the model to be fitted. The details of model specification are explained in `brmsformula`.
data        An object of class `data.frame` (or one that can be coerced to that class) containing data of all variables used in the model.
family      A description of the response distribution and link function to be used in the model. This can be a family function, a call to a family function or a character string naming the family. Every family function has a `link` argument allowing to specify the link function to be applied on the response variable. If not specified, default links are used. For details of supported families see `brmsfamily`. By default, a linear gaussian model is applied. In multivariate models, family might also be a list of families.
autocor     An optional `cor_brms` object describing the correlation structure within the response variable (i.e., the 'autocorrelation'). See the documentation of `cor_brms` for a description of the available correlation structures. Defaults to NULL, corresponding to no correlations. In multivariate models, autocor might also be a list of autocorrelation structures.
sparse      (Deprecated) Logical; indicates whether the population-level design matrices should be treated as sparse (defaults to FALSE). For design matrices with many zeros, this can considerably reduce required memory. Sampling speed is currently not improved or even slightly decreased. It is now recommended to use the sparse argument of `brmsformula` and related functions.
internal    A flag indicating if the names of additional internal parameters should be displayed. Setting priors on these parameters is not recommended
...

Value

A data.frame with columns `prior`, `class`, `coef`, and `group` and several rows, each providing information on a parameter (or parameter class) on which priors can be specified. The prior column is empty except for internal default priors.

See Also

`set_prior`

Examples

```r
get all parameters and parameters classes to define priors on
(prior <- get_prior(count ~ zAge + zBase * Trt + (1|patient) + (1|obs),
 data = epilepsy, family = poisson()))
```
## define a prior on all population-level effects a once
prior$prior[1] <- "normal(0,10)"

## define a specific prior on the population-level effect of Trt
prior$prior[5] <- "student_t(10, 0, 5)"

## verify that the priors indeed found their way into Stan's model code
make_stancode(count ~ zAge + zBase * Trt + (1|patient) + (1|obs),
data = epilepsy, family = poisson(),
prior = prior)

---

**gp**

*Set up Gaussian process terms in brms*

**Description**

Set up a Gaussian process (GP) term in *brms*. The function does not evaluate its arguments – it exists purely to help set up a model with GP terms.

**Usage**

```r
gp(
 ...,
 by = NA,
 k = NA,
 cov = "exp_quad",
 iso = TRUE,
 gr = FALSE,
 cmc = TRUE,
 scale = TRUE,
 c = NULL
)
```

**Arguments**

- `...`: One or more predictors for the GP.
- `by`: A numeric or factor variable of the same length as each predictor. In the numeric vector case, the elements multiply the values returned by the GP. In the factor variable case, a separate GP is fitted for each factor level.
- `k`: Optional number of basis functions for computing approximate GPs. If `NA` (the default), exact GPs are computed.
- `cov`: Name of the covariance kernel. By default, the exponentiated-quadratic kernel "exp_quad" is used.
- `iso`: A flag to indicate whether an isotropic (`TRUE`; the default) of a non-isotropic GP should be used. In the former case, the same amount of smoothing is applied to all predictors. In the latter case, predictors may have different smoothing. Ignored if only a single predictors is supplied.
Logical; Indicates if auto-grouping should be used (defaults to FALSE). If enabled, observations sharing the same predictor values will be represented by the same latent variable in the GP. This will improve sampling efficiency drastically if the number of unique predictor combinations is small relative to the number of observations.

cmc
Logical; Only relevant if by is a factor. If TRUE (the default), cell-mean coding is used for the by-factor, that is one GP per level is estimated. If FALSE, contrast GPs are estimated according to the contrasts set for the by-factor.

scale
Logical; If TRUE (the default), predictors are scaled so that the maximum Euclidean distance between two points is 1. This often improves sampling speed and convergence.

c
Numeric value only used in approximate GPs. Defines the multiplicative constant of the predictors’ range over which predictions should be computed. A good default could be $c = 5/4$ but we are still working on providing better recommendations.

Details

A GP is a stochastic process, which describes the relation between one or more predictors $x = (x_1, ..., x_d)$ and a response $f(x)$, where $d$ is the number of predictors. A GP is the generalization of the multivariate normal distribution to an infinite number of dimensions. Thus, it can be interpreted as a prior over functions. Any finite sample realized from this stochastic process is jointly multivariate normal, with a covariance matrix defined by the covariance kernel $k_p(x)$, where $p$ is the vector of parameters of the GP:

$$f(x) \sim \text{MVN}(0, k_p(x))$$

The smoothness and general behavior of the function $f$ depends only on the choice of covariance kernel. For a more detailed introduction to Gaussian processes, see https://en.wikipedia.org/wiki/Gaussian_process.

Below, we describe the currently supported covariance kernels:

- "exp_quad": The exponentiated-quadratic kernel is defined as $k(x_i, x_j) = \text{sdgp}^2 \exp(-||x_i - x_j||^2/(2l_{scale}^2))$, where $||.||$ is the Euclidean norm, $\text{sdgp}$ is a standard deviation parameter, and $l_{scale}$ is characteristic length-scale parameter. The latter practically measures how close two points $x_i$ and $x_j$ have to be to influence each other substantially.

In the current implementation, "exp_quad" is the only supported covariance kernel. More options will follow in the future.

Value

An object of class 'gpTerm', which is a list of arguments to be interpreted by the formula parsing functions of brms.

See Also

brmsformula
Examples

## Not run:
# simulate data using the mgcv package
dat <- mgcv::gamSim(1, n = 30, scale = 2)

# fit a simple GP model
fit1 <- brm(y ~ gp(x2), dat, chains = 2)
summary(fit1)
me1 <- marginal_effects(fit1, nsamples = 200, spaghetti = TRUE)
plot(me1, ask = FALSE, points = TRUE)

# fit a more complicated GP model
fit2 <- brm(y ~ gp(x0) + x1 + gp(x2) + x3, dat, chains = 2)
summary(fit2)
me2 <- marginal_effects(fit2, nsamples = 200, spaghetti = TRUE)
plot(me2, ask = FALSE, points = TRUE)

# fit a multivariate GP model
fit3 <- brm(y ~ gp(x1, x2), dat, chains = 2)
summary(fit3)
me3 <- marginal_effects(fit3, nsamples = 200, spaghetti = TRUE)
plot(me3, ask = FALSE, points = TRUE)

# compare model fit
LOO(fit1, fit2, fit3)

# simulate data with a factor covariate
dat2 <- mgcv::gamSim(4, n = 90, scale = 2)

# fit separate gaussian processes for different levels of 'fac'
fit4 <- brm(y ~ gp(x2, by = fac), dat2, chains = 2)
summary(fit4)
plot(marginal_effects(fit4), points = TRUE)

## End(Not run)

---

**gr**

Set up basic grouping terms in **brms**

### Description

Function used to set up a basic grouping term in **brms**. The function does not evaluate its arguments – it exists purely to help set up a model with grouping terms. **gr** is called implicitly inside the package and there is usually no need to call it directly.

### Usage

```r
gr(..., by = NULL, dist = "gaussian")
```

---

**gr**

Set up basic grouping terms in **brms**

### Description

Function used to set up a basic grouping term in **brms**. The function does not evaluate its arguments – it exists purely to help set up a model with grouping terms. **gr** is called implicitly inside the package and there is usually no need to call it directly.

### Usage

```r
gr(..., by = NULL, dist = "gaussian")
```
Arguments

... One or more terms containing grouping factors.

by An optional factor variable, specifying sub-populations of the groups. For each level of the by variable, a separate variance-covariance matrix will be fitted. Levels of the grouping factor must be nested in levels of the by variable.

dist Name of the distribution of the group-level effects. Currently "gaussian" is the only option.

See Also

brmsformula

Examples

```r
Not run:
model using basic lme4-style formula
fit1 <- brm(count ~ Trt + (1|patient), data = epilepsy)
summary(fit1)

equivalent model using 'gr' which is called anyway internally
fit2 <- brm(count ~ Trt + (1|gr(patient)), data = epilepsy)
summary(fit2)

include Trt as a by variable
fit3 <- brm(count ~ Trt + (1|gr(patient, by = Trt)), data = epilepsy)
summary(fit3)

End(Not run)
```

horseshoe  

Regularized horseshoe priors in brms

Description

Function used to set up regularized horseshoe priors and related hierarchical shrinkage priors for population-level effects in brms. The function does not evaluate its arguments – it exists purely to help set up the model.

Usage

```r
horseshoe(
 df = 1,
 scale_global = 1,
 df_global = 1,
 scale_slab = 2,
 df_slab = 4,
)```

The horseshoe prior is a special shrinkage prior initially proposed by Carvalho et al. (2009). It is symmetric around zero with fat tails and an infinitely large spike at zero. This makes it ideal for sparse models that have many regression coefficients, although only a minority of them is non-zero. The horseshoe prior can be applied on all population-level effects at once (excluding the intercept) by using set_prior("horseshoe(1)"). The 1 implies that the student-t prior of the local shrinkage parameters has 1 degrees of freedom. This may, however, lead to an increased number of divergent transition in Stan. Accordingly, increasing the degrees of freedom to slightly higher values (e.g., 3) may often be a better option, although the prior no longer resembles a horseshoe in this case. Further, the scale of the global shrinkage parameter plays an important role in amount of shrinkage applied. It defaults to 1, but this may result in too few shrinkage (Piironen & Vehtari, 2016). It is thus possible to change the scale using argument scale_global of the horseshoe prior, for instance horseshoe(1, scale_global = 0.5). In linear models, scale_global will internally be multiplied by the residual standard deviation parameter sigma. See Piironen and Vehtari (2016) for recommendations how to properly set the global scale. The degrees of freedom of the global shrinkage parameter can be set using df_global. If df_global is greater than 1, the shape of the prior will no longer resemble a horseshoe and it may be more appropriately called an hierarchical shrinkage prior in this case. Further, the scale of the global shrinkage parameter plays an important role in amount of shrinkage applied. It defaults to 1, but this may result in too few shrinkage (Piironen & Vehtari, 2016). It is thus possible to change the scale using argument scale_global of the horseshoe prior, for instance horseshoe(1, scale_global = 0.5). In linear models, scale_global will internally be multiplied by the residual standard deviation parameter sigma. See Piironen and Vehtari (2016) for recommendations how to properly set the global scale. The degrees of freedom of the global shrinkage parameter can be set using df_global. If df_global is greater than 1, the shape of the prior will no longer resemble a horseshoe and it may be more appropriately called an hierarchical shrinkage prior in this case.
shrinkage prior may also be adjusted via argument df_global. Piironen and Vehtari (2017) recommend to specifying the ratio of the expected number of non-zero coefficients to the expected number of zero coefficients par_ratio rather than scale_global directly. As proposed by Piironen and Vehtari (2017), an additional regularization is applied that only affects non-zero coefficients. The amount of regularization can be controlled via scale_slab and df_slab. To make sure that shrinkage can equally affect all coefficients, predictors should be on the same scale. Generally, models with horseshoe priors are more likely than other models to have divergent transitions so that increasing adapt_delta from 0.8 to values closer to 1 will often be necessary. See the documentation of brm for instructions on how to increase adapt_delta.

Value

A character string obtained by match.call() with additional arguments.

References

Carvalho, C. M., Polson, N. G., & Scott, J. G. (2009). Handling sparsity via the horseshoe. In International Conference on Artificial Intelligence and Statistics (pp. 73-80).

See Also

set_prior

Examples

set_prior(horseshoe(df = 3, par_ratio = 0.1))

Hurdle

Hurdle Distributions

Description

Density and distribution functions for hurdle distributions.

Usage

dhurdle_poisson(x, lambda, hu, log = FALSE)

phurdle_poisson(q, lambda, hu, lower.tail = TRUE, log.p = FALSE)

dhurdle_negbinomial(x, mu, shape, hu, log = FALSE)
phurdle_negbinomial(q, mu, shape, hu, lower.tail = TRUE, log.p = FALSE)
dhurdle_gamma(x, shape, scale, hu, log = FALSE)
phurdle_gamma(q, shape, scale, hu, lower.tail = TRUE, log.p = FALSE)
dhurdle_lognormal(x, mu, sigma, hu, log = FALSE)
phurdle_lognormal(q, mu, sigma, hu, lower.tail = TRUE, log.p = FALSE)

Arguments

- x Vector of quantiles.
- hu hurdle probability
- log Logical; If TRUE, values are returned on the log scale.
- q Vector of quantiles.
- lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x).
- log.p Logical; If TRUE, values are returned on the log scale.
- mu, lambda location parameter
- shape shape parameter
- sigma, scale scale parameter

Details

The density of a hurdle distribution can be specified as follows. If \(x = 0 \) set \(f(x) = \theta \). Else set \(f(x) = (1 - \theta) \ast g(x)/(1 - G(0)) \) where \(g(x) \) and \(G(x) \) are the density and distribution function of the non-hurdle part, respectively.

hypothesis.brmsfit
Non-Linear Hypothesis Testing

Description

Perform non-linear hypothesis testing for all model parameters.

Usage

```r
# S3 method for class 'brmsfit'
hypothesis(
  x,
  hypothesis,
  class = "b",
  group = "",
  scope = c("standard", "ranef", "coef"),
  alpha = 0.05,
  ...)
```
hypothesis.brmsfit

```
seed = NULL,
...
)

hypothesis(x, ...)
```

Default S3 method:
hypothesis(x, hypothesis, alpha = 0.05, ...)

Arguments

- **x**: An R object. If it is not a `brmsfit` object, it must be coercible to a `data.frame`.
- **hypothesis**: A character vector specifying one or more non-linear hypothesis concerning parameters of the model.
- **class**: A string specifying the class of parameters being tested. Default is "b" for population-level effects. Other typical options are "sd" or "cor". If `class = NULL`, all parameters can be tested against each other, but have to be specified with their full name (see also `parnames`).
- **group**: Name of a grouping factor to evaluate only group-level effects parameters related to this grouping factor.
- **scope**: Indicates where to look for the variables specified in `hypothesis`. If "standard", use the full parameter names (subject to the restriction given by `class` and `group`). If "coef" or "ranef", compute the hypothesis for all levels of the grouping factor given in "group", based on the output of `coef.brmsfit` and `ranef.brmsfit`, respectively.
- **alpha**: The alpha-level of the tests (default is 0.05; see 'Details' for more information).
- **seed**: A single numeric value passed to `set.seed` to make results reproducible.
- **...**: Currently ignored.

Details

Among others, `hypothesis` computes an evidence ratio (`Evid.Ratio`) for each hypothesis. For a one-sided hypothesis, this is just the posterior probability (`Post.Prob`) under the hypothesis against its alternative. That is, when the hypothesis is of the form \(a > b \), the evidence ratio is the ratio of the posterior probability of \(a > b \) and the posterior probability of \(a < b \). In this example, values greater than one indicate that the evidence in favor of \(a > b \) is larger than evidence in favor of \(a < b \). For an two-sided (point) hypothesis, the evidence ratio is a Bayes factor between the hypothesis and its alternative computed via the Savage-Dickey density ratio method. That is the posterior density at the point of interest divided by the prior density at that point. Values greater than one indicate that evidence in favor of the point hypothesis has increased after seeing the data. In order to calculate this Bayes factor, all parameters related to the hypothesis must have proper priors and argument `sample_prior` of function `brm` must be set to "yes". Otherwise `Evid.Ratio` (and `Post.Prob`) will be `NA`. Please note that, for technical reasons, we cannot sample from priors of certain parameters classes. Most notably, these include overall intercept parameters (prior class "Intercept") as well as group-level coefficients. When interpreting Bayes factors, make sure that your priors are reasonable and carefully chosen, as the result will depend heavily on the priors. In particular, avoid using default priors.
The Evid.Ratio may sometimes be 0 or Inf implying very small or large evidence, respectively, in favor of the tested hypothesis. For one-sided hypotheses pairs, this basically means that all posterior samples are on the same side of the value dividing the two hypotheses. In that sense, instead of 0 or Inf, you may rather read it as Evid.Ratio smaller 1 / S or greater S, respectively, where S denotes the number of posterior samples used in the computations.

The argument alpha specifies the size of the credible interval (i.e., Bayesian confidence interval). For instance, if we tested a two-sided hypothesis and set alpha = 0.05 (5%) an, the credible interval will contain 1 -alpha = 0.95 (95%) of the posterior values. Hence, alpha * 100% of the posterior values will lie outside of the credible interval. Although this allows testing of hypotheses in a similar manner as in the frequentist null-hypothesis testing framework, we strongly argue against using arbitrary cutoffs (e.g., p < .05) to determine the 'existence' of an effect.

Value

A brmshypothesis object.

Author(s)

Paul-Christian Buerkner <paul.buerkner@gmail.com>

See Also

brmshypothesis

Examples

```r
## Not run:
## define priors
prior <- c(set_prior("normal(0,2)", class = "b"),
set_prior("student_t(10,0,1)", class = "sigma"),
set_prior("student_t(10,0,1)", class = "sd"))

## fit a linear mixed effects models
fit <- brm(time ~ age + sex + disease + (1 + age|patient),
data = kidney, family = lognormal(),
prior = prior, sample_prior = "yes",
control = list(adapt_delta = 0.95))

## perform two-sided hypothesis testing
(hyp1 <- hypothesis(fit, "sexfemale = age + diseasePKD"))
plot(hyp1)
hypothesis(fit, "exp(age) - 3 = 0", alpha = 0.01)

## perform one-sided hypothesis testing
hypothesis(fit, "diseasePKD + diseaseGN - 3 < 0")
hypothesis(fit, "age < Intercept",
class = "sd", group = "patient")

## test the amount of random intercept variance on all variance
h <- paste("sd_patient__Intercept^2 / (sd_patient__Intercept^2 +",
```

inhaler

Clarity of inhaler instructions

Description

Ezzet and Whitehead (1991) analyze data from a two-treatment, two-period crossover trial to compare 2 inhalation devices for delivering the drug salbutamol in 286 asthma patients. Patients were asked to rate the clarity of leaflet instructions accompanying each device, using a 4-point ordinal scale.

Usage

inhaler

Format

A data frame of 572 observations containing information on the following 5 variables.

subject The subject number
rating The rating of the inhaler instructions on a scale ranging from 1 to 4
treat A contrast to indicate which of the two inhaler devices was used
period A contrast to indicate the time of administration
carry A contrast to indicate possible carry over effects

Source

InvGaussian

Description

Density, distribution function, and random generation for the inverse Gaussian distribution with location \(\mu \) and shape \(\tau \).

Usage

- `dinv_gaussian(x, mu = 1, shape = 1, log = FALSE)`
- `pinv_gaussian(q, mu = 1, shape = 1, lower.tail = TRUE, log.p = FALSE)`
- `rinv_gaussian(n, mu = 1, shape = 1)`

Arguments

- `x, q`: Vector of quantiles.
- `mu`: Vector of locations.
- `shape`: Vector of shapes.
- `log`: Logical; If TRUE, values are returned on the log scale.
- `lower.tail`: Logical; If TRUE (default), return \(P(X \leq x) \). Else, return \(P(X > x) \).
- `log.p`: Logical; If TRUE, values are returned on the log scale.
- `n`: Number of samples to draw from the distribution.
Details

See vignette("brms_families") for details on the parameterization.

inv_logit_scaled
Scaled inverse logit-link

Description

Computes \(\text{inv_logit}(x) \times (ub - lb) + lb\)

Usage

\[
\text{inv_logit_scaled}(x, lb = 0, ub = 1)
\]

Arguments

- \(x\)
 A numeric or complex vector.
- \(lb\)
 Lower bound defaulting to 0.
- \(ub\)
 Upper bound defaulting to 1.

Value

A numeric or complex vector between \(lb\) and \(ub\).

is.brmsfit
Checks if argument is a brmsfit object

Description

Checks if argument is a brmsfit object

Usage

\[
is\text{.brmsfit}(x)
\]

Arguments

- \(x\)
 An \(R\) object
is.brmsfit_multiple

Checks if argument is a brmsfit_multiple object

Description

Checks if argument is a `brmsfit_multiple` object

Usage

```
is.brmsfit_multiple(x)
```

Arguments

- `x` An `R` object

is.brmsformula

Checks if argument is a brmsformula object

Description

Checks if argument is a `brmsformula` object

Usage

```
is.brmsformula(x)
```

Arguments

- `x` An `R` object

is.brmsprior

Checks if argument is a brmsprior object

Description

Checks if argument is a `brmsprior` object

Usage

```
is.brmsprior(x)
```

Arguments

- `x` An `R` object
is.brmsterms
Checks if argument is a brmsterms object

Description

Checks if argument is a brmsterms object

Usage

is.brmsterms(x)

Arguments

x
An R object

See Also

parse_bf

is.cor_brms
Check if argument is a correlation structure

Description

Check if argument is one of the correlation structures used in `brms`.

Usage

is.cor_brms(x)

is.cor_arma(x)

is.cor_cosy(x)

is.cor_sar(x)

is.cor_car(x)

is.cor_fixed(x)

Arguments

x
An R object.
is.mvbrmsformula

Checks if argument is a mvbrmsformula object

Description

Checks if argument is a mvbrmsformula object

Usage

is.mvbrmsformula(x)

Arguments

x An R object

is.mvbrmsterms

Checks if argument is a mvbrmsterms object

Description

Checks if argument is a mvbrmsterms object

Usage

is.mvbrmsterms(x)

Arguments

x An R object

See Also

parse_bf
kfold.brmsfit

K-Fold Cross-Validation

Description

Perform exact K-fold cross-validation by refitting the model K times each leaving out one-Kth of the original data. Folds can be run in parallel using the `future` package.

Usage

```r
## S3 method for class 'brmsfit'
kfold(
  x,
  ..., K = 10,
  Ksub = NULL,
  folds = NULL,
  group = NULL,
  exact_loo = NULL,
  compare = TRUE,
  resp = NULL,
  model_names = NULL,
  save_fits = FALSE
)
```

Arguments

- **x**

 A `brmsfit` object.

- **...**

 More `brmsfit` objects or further arguments passed to the underlying post-processing functions. In particular, see `extract_draws` for further supported arguments.

- **K**

 The number of subsets of equal (if possible) size into which the data will be partitioned for performing K-fold cross-validation. The model is refit K times, each time leaving out one of the K subsets. If K is equal to the total number of observations in the data then K-fold cross-validation is equivalent to exact leave-one-out cross-validation.

- **Ksub**

 Optional number of subsets (of those subsets defined by K) to be evaluated. If NULL (the default), K-fold cross-validation will be performed on all subsets. If Ksub is a single integer, Ksub subsets (out of all K) subsets will be randomly chosen. If Ksub consists of multiple integers or a one-dimensional array (created via `as.array`) potentially of length one, the corresponding subsets will be used. This argument is primarily useful, if evaluation of all subsets is infeasible for some reason.

- **folds**

 Determines how the subsets are being constructed. Possible values are NULL (the default), "stratified", "grouped", or "loo". May also be a vector of length equal to the number of observations in the data. Alters the way `group` is handled. More information is provided in the 'Details' section.
group Optional name of a grouping variable or factor in the model. What exactly is done with this variable depends on argument folds. More information is provided in the 'Details' section.

exact_loo Deprecated! Please use folds = "loo" instead.

compare A flag indicating if the information criteria of the models should be compared to each other via loo_compare.

resp Optional names of response variables. If specified, predictions are performed only for the specified response variables.

model_names If NULL (the default) will use model names derived from deparsing the call. Otherwise will use the passed values as model names.

save_fits If TRUE, a component fits is added to the returned object to store the cross-validated brmsfit objects and the indices of the omitted observations for each fold. Defaults to FALSE.

Details

The kfold function performs exact K-fold cross-validation. First the data are partitioned into K folds (i.e. subsets) of equal (or as close to equal as possible) size by default. Then the model is refit K times, each time leaving out one of the K subsets. If K is equal to the total number of observations in the data then K-fold cross-validation is equivalent to exact leave-one-out cross-validation (to which loo is an efficient approximation). The compare_ic function is also compatible with the objects returned by kfold.

The subsets can be constructed in multiple different ways:

- If both folds and group are NULL, the subsets are randomly chosen so that they have equal (or as close to equal as possible) size.
- If folds is NULL but group is specified, the data is split up into subsets, each time omitting all observations of one of the factor levels, while ignoring argument K.
- If folds = "stratified" the subsets are stratified after group using loo::kfold_split_stratified.
- If folds = "grouped" the subsets are split by group using loo::kfold_split_grouped.
- If folds = "loo" exact leave-one-out cross-validation will be performed and K will be ignored. Further, if group is specified, all observations corresponding to the factor level of the currently predicted single value are omitted. Thus, in this case, the predicted values are only a subset of the omitted ones.
- If folds is a numeric vector, it must contain one element per observation in the data. Each element of the vector is an integer in 1:K indicating to which of the K folds the corresponding observation belongs. There are some convenience functions available in the loo package that create integer vectors to use for this purpose (see the Examples section below and also the kfold-helpers page).

Value

kfold returns an object that has a similar structure as the objects returned by the loo and waic methods and can be used with the same post-processing functions.
kfold_predict

Predictions from K-Fold Cross-Validation

Description

Compute and evaluate predictions after performing K-fold cross-validation via \texttt{kfold}.

Usage

\begin{verbatim}
kfold_predict(x, method = c("predict", "fitted"), resp = NULL, ...)
\end{verbatim}

Arguments

- \texttt{x} Object of class 'kfold' computed by \texttt{kfold}. For \texttt{kfold_predict} to work, the fitted model objects need to have been stored via argument \texttt{save_fits} of \texttt{kfold}.
- \texttt{method} The method used to make predictions. Either "predict" or "fitted". See \texttt{predict.brmsfit} for details.
- \texttt{resp} Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- \texttt{...} Further arguments passed to \texttt{extract_draws} that control several aspects of data validation and prediction.

Value

A list with two slots named 'y' and 'yrep'. Slot \texttt{y} contains the vector of observed responses. Slot \texttt{yrep} contains the matrix of predicted responses, with rows being posterior draws and columns being observations.

Examples

\begin{verbatim}
Not run:
fit1 <- brm(count ~ zAge + zBase * Trt + (1|patient) + (1|obs),
 data = epilepsy, family = poisson())
throws warning about some pareto k estimates being too high
(loo1 <- loo(fit1))
perform 10-fold cross validation
(kfold1 <- kfold(fit1, chains = 1))
use the future package for parallelization
library(future)
plan(multiprocess)
kfold(fit1, chains = 1)

End(Not run)
\end{verbatim}
See Also

kfold

Examples

```r
## Not run:
fit <- brm(count ~ zBase * Trt + (1|patient),
           data = epilepsy, family = poisson())

# perform k-fold cross validation
(kf <- kfold(fit, save_fits = TRUE, chains = 1))

# define a loss function
rmse <- function(y, yrep) {
  yrep_mean <- colMeans(yrep)
  sqrt(mean((yrep_mean - y)^2))
}

# predict responses and evaluate the loss
kfp <- kfold_predict(kf)
rmse(y = kfp$y, yrep = kfp$yrep)
## End(Not run)
```

kidney

Infections in kidney patients

Description

This dataset, originally discussed in McGilchrist and Aisbett (1991), describes the first and second (possibly right censored) recurrence time of infection in kidney patients using portable dialysis equipment. In addition, information on the risk variables age, sex and disease type is provided.

Usage

kidney

Format

A data frame of 76 observations containing information on the following 7 variables.

- **time** The time to first or second recurrence of the infection, or the time of censoring
- **recur** A factor of levels 1 or 2 indicating if the infection recurred for the first or second time for this patient
- **censored** Either 0 or 1, where 0 indicates no censoring of recurrence time and 1 indicates right censoring
- **patient** The patient number
age The age of the patient
sex The sex of the patient
disease A factor of levels other, GN, AN, and PKD specifying the type of disease

Source

Examples

```r
# Not run:
# performing survival analysis using the "weibull" family
fit1 <- brm(time | cens(censored) ~ age + sex + disease,
              data = kidney, family = weibull(), inits = "0")
summary(fit1)
plot(fit1)

# adding random intercepts over patients
fit2 <- brm(time | cens(censored) ~ age + sex + disease + (1|patient),
              data = kidney, family = weibull(), inits = "0",
              prior = set_prior("cauchy(0,2)", class = "sd"))
summary(fit2)
plot(fit2)

# End(Not run)
```

lasso
Set up a lasso prior in brms

Description
Function used to set up a lasso prior for population-level effects in brms. The function does not evaluate its arguments – it exists purely to help set up the model.

Usage

```r
lasso(df = 1, scale = 1)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>Degrees of freedom of the chi-square prior of the inverse tuning parameter. Defaults to 1.</td>
</tr>
<tr>
<td>scale</td>
<td>Scale of the lasso prior. Defaults to 1.</td>
</tr>
</tbody>
</table>
Details

The lasso prior is the Bayesian equivalent to the LASSO method for performing variable selection (Park & Casella, 2008). With this prior, independent Laplace (i.e. double exponential) priors are placed on the population-level effects. The scale of the Laplace priors depends on a tuning parameter that controls the amount of shrinkage. In brms, the inverse of the tuning parameter is used so that smaller values imply more shrinkage. The inverse tuning parameter has a chi-square distribution and with degrees of freedom controlled via argument df of function lasso (defaults to 1). For instance, one can specify a lasso prior using set_prior("lasso(1)"). To make sure that shrinkage can equally affect all coefficients, predictors should be one the same scale. If you do not want to standardized all variables, you can adjust the general scale of the lasso prior via argument scale, for instance, lasso(1, scale = 10).

Value

A character string obtained by match.call() with additional arguments.

References

See Also

set_prior

Examples

set_prior(lasso(df = 1, scale = 10))

launch_shinystan.brmsfit

Interface to shinystan

Description

Provide an interface to shinystan for models fitted with brms

Usage

S3 method for class 'brmsfit'
launch_shinystan(object, rstudio = getOption("shinystan.rstudio"), ...)

logit_scaled

Scaled logit-link

Description
Computes \(\text{logit}(\frac{x - \text{lb}}{\text{ub} - \text{lb}}) \)

Usage
logit_scaled(x, lb = 0, ub = 1)

Arguments
- \(x \): A numeric or complex vector.
- \(\text{lb} \): Lower bound defaulting to 0.
- \(\text{ub} \): Upper bound defaulting to 1.

Value
A numeric or complex vector.
logm1

Logarithm with a minus one offset.

Description

Computes log(x -1).

Usage

logm1(x, base = exp(1))

Arguments

- x: A numeric or complex vector.
- base: A positive or complex number: the base with respect to which logarithms are computed. Defaults to e = exp(1).

log_lik.brmsfit

Compute the Pointwise Log-Likelihood

Description

Compute the Pointwise Log-Likelihood

Usage

S3 method for class 'brmsfit'
log_lik(
 object,
 newdata = NULL,
 re_formula = NULL,
 resp = NULL,
 nsamples = NULL,
 subset = NULL,
 pointwise = FALSE,
 combine = TRUE,
 add_point_draws = FALSE,
 ...
)

Arguments

object A fitted model object of class brmsfit.
newdata An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors are interpreted as if
all dummy variables of this factor are zero. This allows, for instance, to make
predictions of the grand mean when using sum coding.
re_formula formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA, include no group-level ef-
fects.
resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.
nsamples Positive integer indicating how many posterior samples should be used. If NULL
(the default) all samples are used. Ignored if subset is not NULL.
subset A numeric vector specifying the posterior samples to be used. If NULL (the
default), all samples are used.
pointwise A flag indicating whether to compute the full log-likelihood matrix at once (the
default), or just return the likelihood function along with all data and samples
required to compute the log-likelihood separately for each observation. The
latter option is rarely useful when calling log_lik directly, but rather when
computing waic or loo.
combine Only relevant in multivariate models. Indicates if the log-likelihoods of the sub-
models should be combined per observation (i.e. added together; the default) or
if the log-likelihoods should be returned separately.
add_point_draws For internal use only. Ensures compatibility with the loo_subsmaple method.
... Further arguments passed to extract_draws that control several aspects of data
validation and prediction.

Value

Usually, an S x N matrix containing the pointwise log-likelihood samples, where S is the number of
samples and N is the number of observations in the data. For multivariate models and if combine is
FALSE, an S x N x R array is returned, where R is the number of response variables. If pointwise
= TRUE, the output is a function with a draws attribute containing all relevant data and posterior
samples.

Description

Perform approximate leave-one-out cross-validation based on the posterior likelihood using the loo
package. For more details see loo.
Usage

```r
## S3 method for class 'brmsfit'
loo(
  x,
  ..., 
  compare = TRUE,
  resp = NULL,
  pointwise = FALSE,
  reloo = FALSE,
  k_threshold = 0.7,
  reloo_args = list(),
  model_names = NULL
)
```

Arguments

- `x` A `brmsfit` object.
- `...` More `brmsfit` objects or further arguments passed to the underlying post-processing functions. In particular, see `extract_draws` for further supported arguments.
- `compare` A flag indicating if the information criteria of the models should be compared to each other via `loo_compare`.
- `resp` Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- `pointwise` A flag indicating whether to compute the full log-likelihood matrix at once or separately for each observation. The latter approach is usually considerably slower but requires much less working memory. Accordingly, if one runs into memory issues, `pointwise = TRUE` is the way to go.
- `reloo` Logical; Indicate whether `reloo` should be applied on problematic observations. Defaults to `FALSE`.
- `k_threshold` The threshold at which pareto k estimates are treated as problematic. Defaults to `0.7`. Only used if argument `reloo` is `TRUE`. See `pareto_k_ids` for more details.
- `reloo_args` Optional list of additional arguments passed to `reloo`.
- `model_names` If `NULL` (the default) will use model names derived from deparsing the call. Otherwise will use the passed values as model names.

Details

See `loo_compare` for details on model comparisons. For `brmsfit` objects, `LOO` is an alias of `loo`. Use method `add_criterion` to store information criteria in the fitted model object for later usage.

Value

If just one object is provided, an object of class `loo`. If multiple objects are provided, an object of class `loolist`.
References

Examples

```r
## Not run:
# model with population-level effects only
fit1 <- brm(rating ~ treat + period + carry,
  data = inhaler)
(loo1 <- loo(fit1))

# model with an additional varying intercept for subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),
  data = inhaler)
(loo2 <- loo(fit2))

# compare both models
loo_compare(loo1, loo2)
## End(Not run)
```

Description

For more details see `loo_compare`.

Usage

```r
# S3 method for class 'brmsfit'
loo_compare(x, ..., criterion = c("loo", "waic", "kfold"), model_names = NULL)
```

Arguments

- `x` A brmsfit object.
- `...` More brmsfit objects.
- `criterion` The name of the criterion to be extracted from brmsfit objects.
- `model_names` If NULL (the default) will use model names derived from deparsing the call. Otherwise will use the passed values as model names.
Details

All brmsfit objects should contain precomputed criterion objects. See add_criterion for more help.

Value

An object of class "compare.loo".

Examples

```r
## Not run:
# model with population-level effects only
fit1 <- brm(rating ~ treat + period + carry,
            data = inhaler)
fit1 <- add_criterion(fit1, "waic")

# model with an additional varying intercept for subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),
            data = inhaler)
fit2 <- add_criterion(fit2, "waic")

# compare both models
loo_compare(fit1, fit2, criterion = "waic")
## End(Not run)
```

Description

Compute model weights for brmsfit objects via stacking or pseudo-BMA weighting. For more details, see `loo::loo_model_weights`.

Usage

```r
## S3 method for class 'brmsfit'
loo_model_weights(x, ..., model_names = NULL)
```

Arguments

- `x` A brmsfit object.
- `...` More brmsfit objects or further arguments passed to the underlying post-processing functions. In particular, see `extract_draws` for further supported arguments.
- `model_names` If NULL (the default) will use model names derived from deparsing the call. Otherwise will use the passed values as model names.
Value

A named vector of model weights.

Examples

```r
## Not run:
# model with population-level effects only
fit1 <- brm(rating ~ treat + period + carry,
            data = inhaler, family = "gaussian")
# model with an additional varying intercept for subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),
            data = inhaler, family = "gaussian")
loo_model_weights(fit1, fit2)

## End(Not run)
```

loo_predict.brmsfit

Compute Weighted Expectations Using LOO

Description

These functions are wrappers around the `E_loo` function of the `loo` package.

Usage

```r
## S3 method for class 'brmsfit'
loo_predict(object,
            type = c("mean", "var", "quantile"),
            probs = 0.5,
            psis_object = NULL,
            resp = NULL,
            ...
)

## S3 method for class 'brmsfit'
loo_linpred(object,
            type = c("mean", "var", "quantile"),
            probs = 0.5,
            psis_object = NULL,
            resp = NULL,
            ...
)

## S3 method for class 'brmsfit'
loo_predictive_interval(object, prob = 0.9, psis_object = NULL, ...)
```
Arguments

- **object**: An object of class `brmsfit`.
- **type**: The statistic to be computed on the results. Can be either "mean" (default), "var", or "quantile".
- **probs**: A vector of quantiles to compute. Only used if `type = quantile`.
- **psis_object**: An optional object returned by `psis`. If `psis_object` is missing then `psis` is executed internally, which may be time consuming for models fit to very large datasets.
- **resp**: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- **...**: Optional arguments passed to the underlying methods that is `log_lik`, as well as `posterior_predict` or `posterior_linpred`.
- **prob**: For `loo_predictive_interval`, a scalar in (0,1) indicating the desired probability mass to include in the intervals. The default is `prob = 0.9` (90% intervals).

Value

`loo_predict` and `loo_linpred` return a vector with one element per observation. The only exception is if `type = "quantile"` and `length(probs) >= 2`, in which case a separate vector for each element of `probs` is computed and they are returned in a matrix with `length(probs)` rows and one column per observation.

`loo_predictive_interval` returns a matrix with one row per observation and two columns. `loo_predictive_interval(...) -> prob = p)` is equivalent to `loo_predict(..., type = "quantile", probs = c(a,1-a))` with `a = (1 -p)/2`, except it transposes the result and adds informative column names.

Examples

```r
## Not run:
## data from help("lm")
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
d <- data.frame(
  weight = c(ctl, trt),
  group = gl(2, 10, 20, labels = c("Ctl", "Trt"))
)
fit <- brm(weight ~ group, data = d)
loo_predictive_interval(fit, prob = 0.8)

## optionally log-weights can be pre-computed and reused
psis <- loo::psis(log_lik(fit), cores = 2)
loo_predictive_interval(fit, prob = 0.8, psis_object = psis)
loo_predict(fit, type = "var", psis_object = psis)
## End(Not run)
```
Description

Compute a LOO-adjusted R-squared for regression models

Usage

```r
## S3 method for class 'brmsfit'
loo_R2(object, resp = NULL, ...)
```

Arguments

- `object`: An object of class `brmsfit`.
- `resp`: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- `...`: Further arguments passed to `pp_expect` and `log_lik`, which are used in the computation of the R-squared values.

Value

A real value per response variable indicating the LOO-adjusted R-squared.

Examples

```r
## Not run:
fit <- brm(mpg ~ wt + cyl, data = mtcars)
summary(fit)
loo_R2(fit)

# compute R2 with new data
nd <- data.frame(mpg = c(10, 20, 30), wt = c(4, 3, 2), cyl = c(8, 6, 4))
loo_R2(fit, newdata = nd)
## End(Not run)
```

Description

Efficient approximate leave-one-out cross-validation (LOO) using subsampling

Description

Efficient approximate leave-one-out cross-validation (LOO) using subsampling
Usage

```r
## S3 method for class 'brmsfit'
loosubsample(x, ..., compare = TRUE, resp = NULL, model_names = NULL)
```

Arguments

- `x`: A `brmsfit` object.
- `...`: More `brmsfit` objects or further arguments passed to the underlying post-processing functions. In particular, see `extract_draws` for further supported arguments.
- `compare`: A flag indicating if the information criteria of the models should be compared to each other via `loo_compare`.
- `resp`: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- `model_names`: If `NULL` (the default) will use model names derived from deparsing the call. Otherwise will use the passed values as model names.

Details

More details can be found on `loo_subsample`.

Examples

```r
## Not run:
# model with population-level effects only
fit1 <- brm(rating ~ treat + period + carry,
            data = inhaler)
(loo1 <- loo_subsample(fit1))

# model with an additional varying intercept for subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),
            data = inhaler)
(loo2 <- loo_subsample(fit2))

# compare both models
loo_compare(loo1, loo2)
## End(Not run)
```

make_conditions
Prepare Fully Crossed Conditions

Description

This is a helper function to prepare fully crossed conditions primarily for use with the `conditions` argument of `conditional_effects`. Automatically creates labels for each row in the `cond__` column.
Usage
make_conditions(x, vars, ...)

Arguments
x An R object from which to extract the variables that should be part of the conditions.
vars Names of the variables that should be part of the conditions.
... Arguments passed to rows2labels.

Details
For factor like variables, all levels are used as conditions. For numeric variables, mean + (-1:1) * SD are used as conditions.

Value
A data.frame where each row indicates a condition.

See Also
conditional_effects, rows2labels

Examples
df <- data.frame(x = c("a", "b"), y = rnorm(10))
make_conditions(df, vars = c("x", "y"))

make_stancode Stan Code for brms Models

Description
Generate Stan code for brms models

Usage
make_stancode(
 formula,
 data,
 family = gaussian(),
 prior = NULL,
 autocor = NULL,
 cov_ranef = NULL,
 sparse = NULL,
 sample_prior = c("no", "yes", "only"),
 make_stancode
Arguments

formula An object of class formula, brmsformula, or mvbrmsformula (or one that can be coerced to that class): A symbolic description of the model to be fitted. The details of model specification are explained in brmsformula.

data An object of class data.frame (or one that can be coerced to that class) containing data of all variables used in the model.

family A description of the response distribution and link function to be used in the model. This can be a family function, a call to a family function or a character string naming the family. Every family function has a link argument allowing to specify the link function to be applied on the response variable. If not specified, default links are used. For details of supported families see brmsfamily. By default, a linear gaussian model is applied. In multivariate models, family might also be a list of families.

prior One or more brmsprior objects created by set_prior or related functions and combined using the c method or the + operator. See also get_prior for more help.

 autocor An optional cor_brms object describing the correlation structure within the response variable (i.e., the 'autocorrelation'). See the documentation of cor_brms for a description of the available correlation structures. Defaults to NULL, corresponding to no correlations. In multivariate models, autocor might also be a list of autocorrelation structures.

cov_ranef A list of matrices that are proportional to the (within) covariance structure of the group-level effects. The names of the matrices should correspond to columns in data that are used as grouping factors. All levels of the grouping factor should appear as rownames of the corresponding matrix. This argument can be used, among others to model pedigrees and phylogenetic effects. See vignette("brms_phylogenetics") for more details.

sparse (Deprecated) Logical; indicates whether the population-level design matrices should be treated as sparse (defaults to FALSE). For design matrices with many zeros, this can considerably reduce required memory. Sampling speed is currently not improved or even slightly decreased. It is now recommended to use the sparse argument of brmsformula and related functions.

sample_prior Indicate if samples from priors should be drawn additionally to the posterior samples (defaults to "no"). Among others, these samples can be used to calculate Bayes factors for point hypotheses via hypothesis. Please note that improper priors are not sampled, including the default improper priors used by brm. See set_prior on how to set (proper) priors. Please also note that prior samples for the overall intercept are not obtained by default for technical reasons. See brmsformula how to obtain prior samples for the intercept. If sample_prior...
is set to "only", samples are drawn solely from the priors ignoring the likelihood, which allows among others to generate samples from the prior predictive distribution. In this case, all parameters must have proper priors.

stanvars
An optional `stanvars` object generated by function `stanvar` to define additional variables for use in Stan's program blocks.

stan_funs
(Deprecated) An optional character string containing self-defined Stan functions, which will be included in the functions block of the generated Stan code. It is now recommended to use the `stanvars` argument for this purpose, instead.

save_model
Either NULL or a character string. In the latter case, the model's Stan code is saved via `cat` in a text file named after the string supplied in `save_model`.

silent
logical; If `TRUE`, warnings of the Stan parser will be suppressed.

... Other arguments for internal usage only

Value
A character string containing the fully commented Stan code to fit a brms model.

Examples

```r
make_stancode(rating ~ treat + period + carry + (1|subject),
             data = inhaler, family = "cumulative")
```

```r
make_stancode(count ~ zAge + zBase * Trt + (1|patient),
               data = epilepsy, family = "poisson")
```

Description
Generate data for brms models to be passed to Stan

Usage

```r
make_standata(
    formula,  # required
    data,     # required
    family = gaussian(),
    prior = NULL,
    autocor = NULL,
    cov_ranef = NULL,
    sample_prior = c("no", "yes", "only"),
    stanvars = NULL,
    knots = NULL,
    check_response = TRUE,
    ...)  # unused
```

Value
A character string containing the fully commented Stan code to fit a brms model.
only_response = FALSE,
control = list(),
...)

Arguments

formula
An object of class `formula`, `brmsformula`, or `mvbrmsformula` (or one that can be coerced to that classes): A symbolic description of the model to be fitted. The details of model specification are explained in `brmsformula`.

data
An object of class `data.frame` (or one that can be coerced to that class) containing data of all variables used in the model.

family
A description of the response distribution and link function to be used in the model. This can be a family function, a call to a family function or a character string naming the family. Every family function has a `link` argument allowing to specify the link function to be applied on the response variable. If not specified, default links are used. For details of supported families see `brmsfamily`. By default, a linear gaussian model is applied. In multivariate models, family might also be a list of families.

prior
One or more `brmsprior` objects created by `set_prior` or related functions and combined using the `+` method or the `c` operator. See also `get_prior` for more help.

autocor
An optional `cor_brms` object describing the correlation structure within the response variable (i.e., the 'autocorrelation'). See the documentation of `cor_brms` for a description of the available correlation structures. Defaults to `NULL`, corresponding to no correlations. In multivariate models, autocor might also be a list of autocorrelation structures.

cov_ranef
A list of matrices that are proportional to the (within) covariance structure of the group-level effects. The names of the matrices should correspond to columns in `data` that are used as grouping factors. All levels of the grouping factor should appear as rownames of the corresponding matrix. This argument can be used, among others to model pedigrees and phylogenetic effects. See vignette("brms_phylogenetics") for more details.

sample_prior
Indicate if samples from priors should be drawn additionally to the posterior samples (defaults to "no"). Among others, these samples can be used to calculate Bayes factors for point hypotheses via `hypothesis`. Please note that improper priors are not sampled, including the default improper priors used by `brm`. See `set_prior` on how to set (proper) priors. Please also note that prior samples for the overall intercept are not obtained by default for technical reasons. See `brmsformula` how to obtain prior samples for the intercept. If `sample_prior` is set to "only", samples are drawn solely from the priors ignoring the likelihood, which allows among others to generate samples from the prior predictive distribution. In this case, all parameters must have proper priors.

stanvars
An optional `stanvars` object generated by function `stanvar` to define additional variables for use in Stan's program blocks.

knots
Optional list containing user specified knot values to be used for basis construction of smoothing terms. See `gamm` for more details.
check_response Logical; check validity of the response?
only_response Logical; extract data related to the response only?
control A named list currently for internal usage only
... Other potential arguments

Value

A named list of objects containing the required data to fit a \textbf{brms} model with \textbf{Stan}.

Author(s)

Paul-Christian Buerkner <paul.buerkner@gmail.com>

Examples

data1 <- make_standata(rating ~ treat + period + carry + (1|subject),
 data = inhaler, family = "cumulative")
names(data1)

data2 <- make_standata(count ~ zAge + zBase * Trt + (1|patient),
 data = epilepsy, family = "poisson")
names(data2)

\section*{Description}

Convenient way to call MCMC plotting functions implemented in the \textbf{bayesplot} package.

Usage

```r
## S3 method for class 'brmsfit'
mcmc_plot(
  object, 
  pars = NA, 
  type = "intervals", 
  fixed = FALSE, 
  exact_match = FALSE, 
  ...
)
mcmc_plot(object, ...)
```
Arguments

object
 An R object typically of class brmsfit
pars
 Names of parameters to be plotted, as given by a character vector or regular expressions. By default, all parameters except for group-level and smooth effects are plotted. May be ignored for some plots.
type
 The type of the plot. Supported types are (as names) hist, dens, hist_by_chain, dens_overlay, violin, intervals, areas, acf, acf_bar, trace, trace_highlight, scatter, rhat, rhat_hist, neff, neff_hist, nuts_acceptance, nuts_divergence, nuts_stepsize, nuts_treedepth, and nuts_energy. For an overview on the various plot types see `MCMC-overview`.
fixed
 Indicates whether parameter names should be matched exactly (TRUE) or treated as regular expressions (FALSE). Default is FALSE.
exact_match
 Deprecated alias of argument fixed.
...
 Additional arguments passed to the plotting functions. See `MCMC-overview` for more details.

Details

Also consider using the `shinystan` package available via method `launch_shinystan` in `brms` for flexible and interactive visual analysis.

Value

A `ggplot` object that can be further customized using the `ggplot2` package.

Examples

```r
## Not run:
model <- brm(count ~ zAge + zBase * Trt + (1|patient),
              data = epilepsy, family = "poisson")

# plot posterior intervals
mcmc_plot(model)

# only show population-level effects in the plots
mcmc_plot(model, pars = "^b_.")

# show histograms of the posterior distributions
mcmc_plot(model, type = "hist")

# plot some diagnostics of the sampler
mcmc_plot(model, type = "neff")
mcmc_plot(model, type = "rhat")

# plot some diagnostics specific to the NUTS sampler
mcmc_plot(model, type = "nuts_acceptance")
mcmc_plot(model, type = "nuts_divergence")

## End(Not run)
```
Predictors with Measurement Error in **brms** Models

Description

Specify predictors with measurement error. The function does not evaluate its arguments – it exists purely to help set up a model.

Usage

```r
me(x, sdx, gr = NULL)
```

Arguments

- `x`
 The variable measured with error.
- `sdx`
 Known measurement error of `x` treated as standard deviation.
- `gr`
 Optional grouping factor to specify which values of `x` correspond to the same value of the latent variable. If `NULL` (the default) each observation will have its own value of the latent variable.

Details

For detailed documentation see `help(brmsformula)`.

By default, latent noise-free variables are assumed to be correlated. To change that, add `set_mecor(FALSE)` to your model formula object (see examples).

See Also

`brmsformula`, `brmsformula-helpers`

Examples

```r
## Not run:
# sample some data
N <- 100
dat <- data.frame(
  y = rnorm(N), x1 = rnorm(N),
  x2 = rnorm(N), sdx = abs(rnorm(N, 1))
)
# fit a simple error-in-variables model
fit1 <- brm(y ~ me(x1, sdx) + me(x2, sdx), data = dat,
  save_mevars = TRUE)
summary(fit1)

# turn off modeling of correlations
bform <- bf(y ~ me(x1, sdx) + me(x2, sdx)) + set_mecor(FALSE)
fit2 <- brm(bform, data = dat, save_mevars = TRUE)
summary(fit2)
```
mi

Predictors with Missing Values in \texttt{brms} Models

Description

Specify predictor term with missing values in \texttt{brms}. The function does not evaluate its arguments – it exists purely to help set up a model.

Usage

\texttt{mi(x)}

Arguments

\texttt{x} \hspace{1cm} \text{The variable containing missings.}

Details

For detailed documentation see \texttt{help(brmsformula)}.

See Also

\texttt{brmsformula}

Examples

\begin{verbatim}
Not run:
data("nhanes", package = "mice")
bform <- \texttt{bf(bmi | mi() \sim age \times mi(chl))} +
 \texttt{bf(chl | mi() \sim age) + set_rescor(FALSE)}
fit <- \texttt{brm(bform, data = nhanes)}
summary(fit)
plot(marginal_effects(fit, resp = "bmi"), ask = FALSE)
LOO(fit, newdata = na.omit(fit$data))
\end{verbatim}

End(Not run)
Description

Set up a finite mixture family for use in \texttt{brms}.

Usage

\begin{verbatim}
mixture(..., flist = NULL, nmix = 1, order = NULL)
\end{verbatim}

Arguments

\begin{verbatim}
... One or more objects providing a description of the response distributions to be
combined in the mixture model. These can be family functions, calls to family
functions or character strings naming the families. For details of supported
families see \texttt{brmsfamily}.
flist Optional list of objects, which are treated in the same way as objects passed via
the \dots argument.
nmix Optional numeric vector specifying the number of times each family is repeated.
If specified, it must have the same length as the number of families passed via
\dots and \texttt{flist}.
order Ordering constraint to identify mixture components. If 'mu' or TRUE, population-
level intercepts of the mean parameters are ordered in non-ordinal models and
fixed to the same value in ordinal models (see details). If 'none' or FALSE, no
ordering constraint is applied. If NULL (the default), order is set to 'mu' if all
families are the same and 'none' otherwise. Other ordering constraints may be
implemented in the future.
\end{verbatim}

Details

Most families supported by \texttt{brms} can be used to form mixtures. The response variable has to be
valid for all components of the mixture family. Currently, the number of mixture components has to
be specified by the user. It is not yet possible to estimate the number of mixture components from
the data.

Ordering intercepts in mixtures of ordinal families is not possible as each family has itself a set of
vector of intercepts (i.e. ordinal thresholds). Instead, \texttt{brms} will fix the vector of intercepts across
components in ordinal mixtures, if desired, so that users can try to identify the mixture model via
selective inclusion of predictors.

For most mixture models, you may want to specify priors on the population-level intercepts via
\texttt{set_prior} to improve convergence. In addition, it is sometimes necessary to set \texttt{inits = 0} in the
call to \texttt{brm} to allow chains to initialize properly.

For more details on the specification of mixture models, see \texttt{brmsformula}.
mixture

Value

An object of class `mixfamily`.

Examples

```r
## Not run:
## simulate some data
set.seed(1234)
Dat <- data.frame(
  y = c(rnorm(200), rnorm(100, 6)),
  x = rnorm(300),
  z = sample(0:1, 300, TRUE)
)

## fit a simple normal mixture model
mix <- mixture(gaussian, gaussian)
prior <- c(
  prior(normal(0, 7), Intercept, dpar = mu1),
  prior(normal(5, 7), Intercept, dpar = mu2)
)
fit1 <- brm(bf(y ~ x + z), Dat, family = mix,
  prior = prior, chains = 2)
summary(fit1)
pp_check(fit1)

## use different predictors for the components
fit2 <- brm(bf(y ~ 1, mu1 ~ x, mu2 ~ z), Dat, family = mix,
  prior = prior, chains = 2)
summary(fit2)

## fix the mixing proportions
fit3 <- brm(bf(y ~ x + z, theta1 = 1, theta2 = 2),
  Dat, family = mix, prior = prior,
  inits = 0, chains = 2)
summary(fit3)
pp_check(fit3)

## predict the mixing proportions
fit4 <- brm(bf(y ~ x + z, theta2 ~ x),
  Dat, family = mix, prior = prior,
  inits = 0, chains = 2)
summary(fit4)
pp_check(fit4)

## compare model fit
loo(fit1, fit2, fit3, fit4)

## End(Not run)
```
Set up multi-membership grouping terms in \texttt{brms}

\section*{Description}

Function to set up a multi-membership grouping term in \texttt{brms}. The function does not evaluate its arguments – it exists purely to help set up a model with grouping terms.

\section*{Usage}

\begin{verbatim}
mm(..., weights = NULL, scale = TRUE, dist = "gaussian")
\end{verbatim}

\section*{Arguments}

\begin{itemize}
 \item \texttt{...} One or more terms containing grouping factors.
 \item \texttt{weights} A matrix specifying the weights of each member. It should have as many columns as grouping terms specified in \texttt{...}. If \texttt{NULL} (the default), equally weights are used.
 \item \texttt{scale} Logical; if \texttt{TRUE} (the default), weights are standardized in order to sum to one per row. If negative weights are specified, \texttt{scale} needs to be set to \texttt{FALSE}.
 \item \texttt{dist} Name of the distribution of the group-level effects. Currently \texttt{"gaussian"} is the only option.
\end{itemize}

\section*{See Also}

\texttt{brmsformula, mmc}

\section*{Examples}

\begin{verbatim}
Not run:
simulate some data
dat <- data.frame(
y = rnorm(100), x1 = rnorm(100), x2 = rnorm(100),
g1 = sample(1:10, 100, TRUE), g2 = sample(1:10, 100, TRUE)
)

multi-membership model with two members per group and equal weights
fit1 <- brm(y ~ x1 + (1|mm(g1, g2)), data = dat)
summary(fit1)

weight the first member two times for than the second member
dat$w1 <- rep(2, 100)
dat$w2 <- rep(1, 100)
fit2 <- brm(y ~ x1 + (1|mm(g1, g2, weights = cbind(w1, w2))), data = dat)
summary(fit2)

multi-membership model with level specific covariate values
dat$xc <- (dat$x1 + dat$x2) / 2
\end{verbatim}
fit3 <- brm(y ~ xc + (1 + mmc(x1, x2) | mm(g1, g2)), data = dat)
summary(fit3)

End(Not run)

mmc

Multi-Membership Covariates

Description

Specify covarariates that vary over different levels of multi-membership grouping factors thus re-
quiring special treatment. This function is almost solely useful, when called in combination with
mm. Outside of multi-membership terms it will behave very much like `cbind`.

Usage

`mmc(...)`

Arguments

`...` One or more terms containing covariates corresponding to the grouping levels
specified in `mm`.

Value

A matrix with covariates as columns.

See Also

`mm`

Examples

```r
## Not run:
# simulate some data
dat <- data.frame(
  y = rnorm(100), x1 = rnorm(100), x2 = rnorm(100),
  g1 = sample(1:10, 100, TRUE), g2 = sample(1:10, 100, TRUE)
)

# multi-membership model with level specific covariate values
dat$xc <- (dat$x1 + dat$x2) / 2
fit <- brm(y ~ xc + (1 + mmc(x1, x2) | mm(g1, g2)), data = dat)
summary(fit)

## End(Not run)
```
Monotonic Predictors in **brms** Models

Description

Specify a monotonic predictor term in **brms**. The function does not evaluate its arguments – it exists purely to help set up a model.

Usage

```r
mo(x)
```

Arguments

- `x` An integer variable or an ordered factor to be modeled as monotonic.

Details

For detailed documentation see `help(brmsformula)` as well as `vignette("brms_monotonic")`.

References

See Also

`brmsformula`

Examples

```r
## Not run:
# generate some data
income_options <- c("below_20", "20_to_40", "40_to_100", "greater_100")
income <- factor(sample(income_options, 100, TRUE),
                 levels = income_options, ordered = TRUE)
mean_ls <- c(30, 60, 70, 75)
ls <- mean_ls[income] + rnorm(100, sd = 7)
dat <- data.frame(income, ls)

# fit a simple monotonic model
fit1 <- brm(ls ~ mo(income), data = dat)

# summarise the model
summary(fit1)
plot(fit1, N = 6)
plot(marginal_effects(fit1), points = TRUE)
```
model interaction with other variables

dat$x <- sample(c("a", "b", "c"), 100, TRUE)
fit2 <- brm(ls ~ mo(income)*x, data = dat)

summarise the model
summary(fit2)
plot(marginal_effects(fit2), points = TRUE)

End(Not run)

model_weights.brmsfit Model Weighting Methods

Description

Compute model weights in various ways, for instance via stacking of predictive distributions, Akaike weights, or marginal likelihoods.

Usage

```r
## S3 method for class 'brmsfit'
model_weights(x, ..., weights = "stacking", model_names = NULL)
```

Arguments

- `x` A `brmsfit` object.
- `...` More `brmsfit` objects or further arguments passed to the underlying post-processing functions. In particular, see `extract_draws` for further supported arguments.
- `weights` Name of the criterion to compute weights from. Should be one of "loo", "waic", "kfold", "stacking" (current default), or "bma", "pseudobma". For the former three options, Akaike weights will be computed based on the information criterion values returned by the respective methods. For "stacking" and "pseudobma" method `loo_model_weights` will be used to obtain weights. For "bma", method `post_prob` will be used to compute Bayesian model averaging weights based on log marginal likelihood values (make sure to specify reasonable priors in this case). Some some method, weights may also be be a numeric vector of pre-specified weights.
- `model_names` If `NULL` (the default) will use model names derived from deparsing the call. Otherwise will use the passed values as model names.

Value

A numeric vector of weights for the models.
Examples

```r
## Not run:
# model with 'treat' as predictor
fit1 <- brm(rating ~ treat + period + carry, data = inhaler)
summary(fit1)

# model without 'treat' as predictor
fit2 <- brm(rating ~ period + carry, data = inhaler)
summary(fit2)

# obtain Akaike weights based on the WAIC
model_weights(fit1, fit2, weights = "waic")

## End(Not run)
```

MultiNormal

The Multivariate Normal Distribution

Description

Density function and random generation for the multivariate normal distribution with mean vector \(\mu \) and covariance matrix \(\Sigma \).

Usage

```r
dmulti_normal(x, mu, Sigma, log = FALSE, check = FALSE)
rmulti_normal(n, mu, Sigma, check = FALSE)
```

Arguments

- `x` Vector or matrix of quantiles. If `x` is a matrix, each row is taken to be a quantile.
- `mu` Mean vector with length equal to the number of dimensions.
- `Sigma` Covariance matrix.
- `log` Logical; If TRUE, values are returned on the log scale.
- `check` Logical; Indicates whether several input checks should be performed. Defaults to FALSE to improve efficiency.
- `n` Number of samples to draw from the distribution.

Details

See the Stan user’s manual http://mc-stan.org/documentation/ for details on the parameterization.
MultiStudentT

The Multivariate Student-t Distribution

Description
Density function and random generation for the multivariate Student-t distribution with location vector \(\mu \), covariance matrix \(\Sigma \), and degrees of freedom \(df \).

Usage

dmulti_student_t(x, df, mu, Sigma, log = FALSE, check = FALSE)

rmulti_student_t(n, df, mu, Sigma, check = FALSE)

Arguments

- \(x \) Vector or matrix of quantiles. If \(x \) is a matrix, each row is taken to be a quantile.
- \(df \) Vector of degrees of freedom.
- \(\mu \) Location vector with length equal to the number of dimensions.
- \(\Sigma \) Covariance matrix.
- \(\log \) Logical; If TRUE, values are returned on the log scale.
- \(\text{check} \) Logical; Indicates whether several input checks should be performed. Defaults to FALSE to improve efficiency.
- \(n \) Number of samples to draw from the distribution.

Details
See the Stan user’s manual http://mc-stan.org/documentation/ for details on the parameterization

mvbind

Bind response variables in multivariate models

Description
Can be used to specify a multivariate \texttt{brms} model within a single formula. Outside of \texttt{brmsformula}, it just behaves like \texttt{cbind}.

Usage

mvbind(...)

Arguments

... Same as in \texttt{cbind}
mvbrmsformula

See Also
brmsformula, mvbrmsformula

Examples

\[
\text{bf}(\text{mvbind}(y_1, y_2) \sim x)
\]

\[
\text{bf1} \leftarrow \text{bf}(y_1 \sim x + (1|g))
\]
\[
\text{bf2} \leftarrow \text{bf}(y_2 \sim s(z))
\]
\[
\text{mvbf}(\text{bf1}, \text{bf2})
\]

Description

Set up a multivariate model formula for use in the \texttt{brms} package allowing to define (potentially non-linear) additive multilevel models for all parameters of the assumed response distributions.

Usage

\[
\text{mvbrmsformula}(..., \text{flist} = \text{NULL}, \text{rescor} = \text{NULL})
\]

Arguments

\text{...} \quad \text{Objects of class formula or brmsformula, each specifying a univariate model. See \texttt{brmsformula} for details on how to specify univariate models.}

\text{flist} \quad \text{Optional list of formulas, which are treated in the same way as formulas passed via the \texttt{...} argument.}

\text{rescor} \quad \text{Logical; Indicates if residual correlation between the response variables should be modeled. Currently, this is only possible in multivariate \texttt{gaussian} and \texttt{student} models. If \texttt{NULL} (the default), \texttt{rescor} is internally set to \texttt{TRUE} when possible.}

Details

See vignette("brms_multivariate") for a case study.

Value

An object of class \texttt{mvbrmsformula}, which is essentially a list containing all model formulas as well as some additional information for multivariate models.

See Also

brmsformula, brmsformula-helpers

Examples

\[
\text{bf1} \leftarrow \text{bf}(y_1 \sim x + (1|g))
\]
\[
\text{bf2} \leftarrow \text{bf}(y_2 \sim s(z))
\]
\[
\text{mvbf}(\text{bf1}, \text{bf2})
\]
ngrps.brmsfit

Number of Grouping Factor Levels

Description

Extract the number of levels of one or more grouping factors.

Usage

```r
## S3 method for class 'brmsfit'
gngrps(object, ...)
```

Arguments

- `object`: An R object.
- `...`: Currently ignored.

Value

A named list containing the number of levels per grouping factor.

nsamples.brmsfit

Number of Posterior Samples

Description

Extract the number of posterior samples stored in a fitted Bayesian model.

Usage

```r
## S3 method for class 'brmsfit'
nsamples(object, subset = NULL, incl_warmup = FALSE, ...)
```

Arguments

- `object`: An object of class `brmsfit`.
- `subset`: An optional integer vector defining a subset of samples to be considered.
- `incl_warmup`: A flag indicating whether to also count warmup / burn-in samples.
- `...`: Currently ignored.
pairs.brmsfit

Description

A `pairs` method that is customized for MCMC output.

Usage

```r
## S3 method for class 'brmsfit'
pairs(x, pars = NA, fixed = FALSE, exact_match = FALSE, ...)
```

Arguments

- `x` An object of class `brmsfit`
- `pars` Names of the parameters to plot, as given by a character vector or a regular expression. By default, all parameters except for group-level and smooth effects are plotted.
- `fixed` Indicates whether parameter names should be matched exactly (TRUE) or treated as regular expressions (FALSE). Default is FALSE.
- `exact_match` Deprecated alias of argument `fixed`.
- `...` Further arguments to be passed to `mcmc_pairs`.

Details

For a detailed description see `mcmc_pairs`.

Examples

```r
## Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1|patient) + (1|visit),
            data = epilepsy, family = "poisson")
pairs(fit, pars = parnames(fit)[1:3], fixed = TRUE)
pairs(fit, pars = "^sd_")
## End(Not run)
```
parnames

Extract Parameter Names

Description

Extract all parameter names of a given model.

Usage

```r
parnames(x, ...)
```

Arguments

- `x` An R object
- `...` Further arguments passed to or from other methods.

Value

A character vector containing the parameter names of the model.

parse_bf

Parse Formulas of brms Models

Description

Parse formulas objects for use in brms.

Usage

```r
parse_bf(formula, ..., family = NULL, autocor = NULL, check_response = TRUE, resp_rhs_all = TRUE, mv = FALSE, ...)
```

```r
## S3 method for class 'brmsformula'
parse_bf(
  formula,
  family = NULL,
  autocor = NULL,
  check_response = TRUE,
  resp_rhs_all = TRUE,
  mv = FALSE,
  ...
)
```

```r
## S3 method for class 'mvbrmsformula'
parse_bf(formula, family = NULL, autocor = NULL, ...)
```
Arguments

formula An object of class `formula`, `brmsformula`, or `mvbrmsformula` (or one that can be coerced to that classes): A symbolic description of the model to be fitted. The details of model specification are explained in `brmsformula`.

family A description of the response distribution and link function to be used in the model. This can be a family function, a call to a family function or a character string naming the family. Every family function has a `link` argument allowing to specify the link function to be applied on the response variable. If not specified, default links are used. For details of supported families see `brmsfamily`. By default, a linear gaussian model is applied. In multivariate models, family might also be a list of families.

autocor An optional `cor_brms` object describing the correlation structure within the response variable (i.e., the ‘autocorrelation’). See the documentation of `cor_brms` for a description of the available correlation structures. Defaults to `NULL`, corresponding to no correlations. In multivariate models, autocor might also be a list of autocorrelation structures.

check_response Logical; Indicates whether the left-hand side of formula (i.e. response variables and addition arguments) should be parsed. If FALSE, formula may also be one-sided.

corr_rhs_all Logical; Indicates whether to also include response variables on the right-hand side of formula .$allvars, where . represents the output of parse_bf.

mv Indicates if the univariate model is part of a multivariate model.

Details

This is the main formula parsing function of `brms`. It should usually not be called directly, but is exported to allow package developers making use of the formula syntax implemented in `brms`. As long as no other packages depend on this functions, it may be changed without deprecation warnings, when new features make this necessary.

Value

An object of class `brmsterms` or `mvbrmsterms` (for multivariate models), which is a list containing all required information initially stored in formula in an easier to use format, basically a list of formulas (not an abstract syntax tree).

See Also

`brm`, `brmsformula`, `mvbrmsformula`
Description
Trace and Density Plots for MCMC Samples

Usage
S3 method for class 'brmsfit'
plot(
x, pars = NA, combo = c("dens", "trace"), N = 5, fixed = FALSE, exact_match = FALSE, theme = NULL, plot = TRUE, ask = TRUE, newpage = TRUE, ...
)

Arguments
x An object of class brmsfit.
pars Names of the parameters to plot, as given by a character vector or a regular
expression. By default, all parameters except for group-level and smooth effects
are plotted.
combo A character vector with at least two elements. Each element of combo corre-
sponds to a column in the resulting graphic and should be the name of one of
the available MCMC functions (omitting the mcmc_ prefix).
N The number of parameters plotted per page.
fixed Indicates whether parameter names should be matched exactly (TRUE) or treated
as regular expressions (FALSE). Default is FALSE.
exact_match Deprecated alias of argument fixed.
theme A theme object modifying the appearance of the plots. For some basic themes
see ggtheme and theme_default.
plot Logical; indicates if plots should be plotted directly in the active graphic device.
Defaults to TRUE.
ask Logical; indicates if the user is prompted before a new page is plotted. Only
used if plot is TRUE.
newpage Logical; indicates if the first set of plots should be plotted to a new page. Only
used if plot is TRUE.
... Further arguments passed to mcmc_combo.
Value

An invisible list of \texttt{gtable} objects.

Examples

```r
## Not run:
fit <- brm(count ~ zAge + zBase * Trt
+ (1|patient) + (1|visit),
  data = epilepsy, family = "poisson")
plot(fit)
## plot population-level effects only
plot(fit, pars = "^b_")
## End(Not run)
```

\texttt{posterior_average.brmsfit}

\textit{Posterior samples of parameters averaged across models}

Description

Extract posterior samples of parameters averaged across models. Weighting can be done in various ways, for instance using Akaike weights based on information criteria or marginal likelihoods.

Usage

```r
## S3 method for class 'brmsfit'
posterior\_average(
  x,
  ..., pars = NULL,
  weights = "stacking",
  nsamples = NULL,
  missing = NULL,
  model\_names = NULL,
  control = list(),
  seed = NULL
)
```

Arguments

\begin{itemize}
 \item \texttt{x} \hspace{1cm} A \texttt{brmsfit} object.
 \item \texttt{...} \hspace{1cm} More \texttt{brmsfit} objects or further arguments passed to the underlying post-processing functions. In particular, see \texttt{extract_draws} for further supported arguments.
\end{itemize}
posterior_average.brmsfit

pars
Names of parameters for which to average across models. Only those parameters can be averaged that appear in every model. Defaults to all overlapping parameters.

weights
Name of the criterion to compute weights from. Should be one of "loo", "waic", "kfold", "stacking" (current default), or "bma", "pseudobma". For the former three options, Akaike weights will be computed based on the information criterion values returned by the respective methods. For "stacking" and "pseudobma" method loo_model_weights will be used to obtain weights. For "bma", method post_prob will be used to compute Bayesian model averaging weights based on log marginal likelihood values (make sure to specify reasonable priors in this case). Some some method, weights may also be be a numeric vector of pre-specified weights.

nsamples
Total number of posterior samples to use.

missing
An optional numeric value or a named list of numeric values to use if a model does not contain a parameter for which posterior samples should be averaged. Defaults to NULL, in which case only those parameters can be averaged that are present in all of the models.

model_names
If NULL (the default) will use model names derived from deparsing the call. Otherwise will use the passed values as model names.

control
Optional list of further arguments passed to the function specified in weights.

seed
A single numeric value passed to set.seed to make results reproducible.

Details
Weights are computed with the model_weights method.

Value
A data.frame of posterior samples. Samples are rows and parameters are columns.

See Also
model_weights, pp_average

Examples
Not run:
model with 'treat' as predictor
fit1 <- brm(rating ~ treat + period + carry, data = inhaler)
summary(fit1)

model without 'treat' as predictor
fit2 <- brm(rating ~ period + carry, data = inhaler)
summary(fit2)

compute model-averaged posteriors of overlapping parameters
posterior_average(fit1, fit2, weights = "waic")

End(Not run)
posterior_interval.brmsfit

Compute posterior uncertainty intervals

Description

Compute posterior uncertainty intervals for `brmsfit` objects.

Usage

```r
## S3 method for class 'brmsfit'
posterior_interval(object, pars = NA, prob = 0.95, ...)
```

Arguments

- `object` An object of class `brmsfit`
- `pars` Names of parameters for which posterior samples should be returned, as given by a character vector or regular expressions. By default, all posterior samples of all parameters are extracted.
- `prob` A value between 0 and 1 indicating the desired probability to be covered by the uncertainty intervals. The default is 0.95.
- `...` More arguments passed to `as.matrix.brmsfit`.

Value

A matrix with lower and upper interval bounds as columns and as many rows as selected parameters.

Examples

```r
## Not run:
fit <- brm(count ~ zAge + zBase * Trt,
            data = epilepsy, family = negbinomial())
posterior_interval(fit)

## End(Not run)
```
Description

Compute posterior samples of the linear predictor. This method is an alias of \texttt{pp_expect.brmsfit} with \texttt{scale = "linear"}.

Usage

```r
## S3 method for class 'brmsfit'
posterior_linpred(
  object, 
  transform = FALSE, 
  newdata = NULL, 
  re_formula = NULL, 
  re.form = NULL, 
  resp = NULL, 
  dpar = NULL, 
  nlpar = NULL, 
  nsamples = NULL, 
  subset = NULL, 
  sort = FALSE, 
  ...
)
```

Arguments

- **object**: An object of class \texttt{brmsfit}.
- **transform**: Logical; alias of \texttt{scale}. If \texttt{TRUE}, \texttt{scale} is set to "response". If \texttt{FALSE}, \texttt{scale} is set to "linear". Only implemented for compatibility with the \texttt{posterior_linpred} generic.
- **newdata**: An optional data.frame for which to evaluate predictions. If \texttt{NULL} (default), the original data of the model is used. \texttt{NA} values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.
- **re_formula**: formula containing group-level effects to be considered in the prediction. If \texttt{NULL} (default), include all group-level effects; if \texttt{NA}, include no group-level effects.
- **re.form**: Alias of \texttt{re_formula}.
- **resp**: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- **dpar**: Optional name of a predicted distributional parameter. If specified, fitted values of this parameters are returned.
posterior_predict.brmsfit

Samples from the Posterior Predictive Distribution

Description

Compute posterior samples of the posterior predictive distribution. Can be performed for the data used to fit the model (posterior predictive checks) or for new data. By definition, these samples have higher variance than samples of the means of the posterior predictive distribution computed by `posterior_predict.brmsfit`. This is because the residual error is incorporated in `posterior_predict`. However, the estimated means of both methods averaged across samples should be very similar.

Examples

```r
## Not run:
## fit a model
fit <- brm(rating ~ treat + period + carry + (1|subject),
           data = inhaler)

## extract linear predictor values
pl <- posterior_linpred(fit)
str(pl)
```

nlpar

Optional name of a predicted non-linear parameter. If specified, fitted values of this parameters are returned.

nsamples

Positive integer indicating how many posterior samples should be used. If NULL (the default) all samples are used. Ignored if `subset` is not NULL.

subset

A numeric vector specifying the posterior samples to be used. If NULL (the default), all samples are used.

sort

Logical. Only relevant for time series models. Indicating whether to return predicted values in the original order (FALSE; default) or in the order of the time series (TRUE).

...

Further arguments passed to `extract_draws` that control several aspects of data validation and prediction.

See Also

- `pp_expect.brmsfit`

```r
## Not run:
## fit a model
fit <- brm(rating ~ treat + period + carry + (1|subject),
           data = inhaler)

## extract linear predictor values
pl <- posterior_linpred(fit)
str(pl)
```

posterior_predict.brmsfit

Samples from the Posterior Predictive Distribution

Description

Compute posterior samples of the posterior predictive distribution. Can be performed for the data used to fit the model (posterior predictive checks) or for new data. By definition, these samples have higher variance than samples of the means of the posterior predictive distribution computed by `posterior_predict.brmsfit`. This is because the residual error is incorporated in `posterior_predict`. However, the estimated means of both methods averaged across samples should be very similar.

Examples

```r
## Not run:
## fit a model
fit <- brm(rating ~ treat + period + carry + (1|subject),
           data = inhaler)

## extract linear predictor values
pl <- posterior_linpred(fit)
str(pl)
```

nlpar

Optional name of a predicted non-linear parameter. If specified, fitted values of this parameters are returned.

nsamples

Positive integer indicating how many posterior samples should be used. If NULL (the default) all samples are used. Ignored if `subset` is not NULL.

subset

A numeric vector specifying the posterior samples to be used. If NULL (the default), all samples are used.

sort

Logical. Only relevant for time series models. Indicating whether to return predicted values in the original order (FALSE; default) or in the order of the time series (TRUE).

...

Further arguments passed to `extract_draws` that control several aspects of data validation and prediction.

See Also

- `pp_expect.brmsfit`

```r
## Not run:
## fit a model
fit <- brm(rating ~ treat + period + carry + (1|subject),
           data = inhaler)

## extract linear predictor values
pl <- posterior_linpred(fit)
str(pl)
```
Usage

S3 method for class 'brmsfit'
posterior_predict(
 object,
 newdata = NULL,
 re_formula = NULL,
 re.form = NULL,
 transform = NULL,
 resp = NULL,
 negative_rt = FALSE,
 nsamples = NULL,
 subset = NULL,
 sort = FALSE,
 ntrys = 5,
 ...
)

Arguments

- **object**: An object of class `brmsfit`.
- **newdata**: An optional data.frame for which to evaluate predictions. If `NULL` (default), the original data of the model is used. `NA` values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.
- **re_formula**: formula containing group-level effects to be considered in the prediction. If `NULL` (default), include all group-level effects; if `NA`, include no group-level effects.
- **re.form**: Alias of `re_formula`.
- **transform**: A function or a character string naming a function to be applied on the predicted responses before summary statistics are computed.
- **resp**: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- **negative_rt**: Only relevant for Wiener diffusion models. A flag indicating whether response times of responses on the lower boundary should be returned as negative values. This allows to distinguish responses on the upper and lower boundary. Defaults to `FALSE`.
- **nsamples**: Positive integer indicating how many posterior samples should be used. If `NULL` (the default) all samples are used. Ignored if `subset` is not `NULL`.
- **subset**: A numeric vector specifying the posterior samples to be used. If `NULL` (the default), all samples are used.
- **sort**: Logical. Only relevant for time series models. Indicating whether to return predicted values in the original order (`FALSE`; default) or in the order of the time series (`TRUE`).
- **ntrys**: Parameter used in rejection sampling for truncated discrete models only (defaults to 5). See Details for more information.
Further arguments passed to `extract_draws` that control several aspects of data validation and prediction.

Details

NA values within factors in `newdata`, are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.

For truncated discrete models only: In the absence of any general algorithm to sample from truncated discrete distributions, rejection sampling is applied in this special case. This means that values are sampled until a value lies within the defined truncation boundaries. In practice, this procedure may be rather slow (especially in R). Thus, we try to do approximate rejection sampling by sampling each value `ntrys` times and then select a valid value. If all values are invalid, the closest boundary is used, instead. If there are more than a few of these pathological cases, a warning will occur suggesting to increase argument `ntrys`.

Value

An array of predicted response values. If `summary = FALSE`, the output is as an S x N matrix, where S is the number of posterior samples and N is the number of observations. In multivariate models, an additional dimension is added to the output which indexes along the different response variables.

Examples

```r
## Not run:
## fit a model
fit <- brm(time | cens(censored) ~ age + sex + (1 + age || patient),
    data = kidney, family = "exponential", inits = "0")

## predicted responses
pp <- posterior_predict(fit)
str(pp)

## predicted responses excluding the group-level effect of age
pp <- posterior_predict(fit, re_formula = ~ (1 | patient))
str(pp)

## predicted responses of patient 1 for new data
newdata <- data.frame(
    sex = factor(c("male", "female"),
    age = c(20, 50),
    patient = c(1, 1)
)
pp <- posterior_predict(fit, newdata = newdata)
str(pp)

## End(Not run)
```
posterior_samples.brmsfit

Extract Posterior Samples

Description

Extract posterior samples of specified parameters.

Usage

```r
## S3 method for class 'brmsfit'
posterior_samples(
  x,
  pars = NA,
  fixed = FALSE,
  add_chain = FALSE,
  subset = NULL,
  as.matrix = FALSE,
  as.array = FALSE,
  ...
)
```

```r
posterior_samples(x, pars = NA, ...)
```

```r
## S3 method for class 'brmsfit'
as.data.frame(x, row.names = NULL, optional = TRUE, ...)
```

```r
## S3 method for class 'brmsfit'
as.matrix(x, ...)
```

```r
## S3 method for class 'brmsfit'
as.array(x, ...)
```

Arguments

- `x`
 An R object typically of class `brmsfit`
- `pars`
 Names of parameters for which posterior samples should be returned, as given by a character vector or regular expressions. By default, all posterior samples of all parameters are extracted.
- `fixed`
 Indicates whether parameter names should be matched exactly (TRUE) or treated as regular expressions (FALSE). Default is FALSE.
- `add_chain`
 A flag indicating if the returned data.frame should contain two additional columns. The chain column indicates the chain in which each sample was generated, the iter column indicates the iteration number within each chain.
- `subset`
 A numeric vector indicating the rows (i.e., posterior samples) to be returned. If NULL (the default), all posterior samples are returned.
as.matrix Should the output be a matrix instead of a data.frame? Defaults to FALSE.

as.array Should the output be an array instead of a data.frame? Defaults to FALSE.

... For as.data.frame, as.matrix, and as.array: Further arguments to be passed to posterior_samples.

row.names, optional See as.data.frame.

Details

Currently there are methods for brmsfit objects. as.data.frame.brmsfit, as.matrix.brmsfit, and as.array.brmsfit are basically aliases of posterior_samples.brmsfit and differ from each other only in type of the returned object.

Value

A data.frame (matrix or array) containing the posterior samples, with one column per parameter. In case an array is returned, it contains one additional dimension for the chains.

Examples

```r
## Not run:
fit <- brm(rating ~ treat + period + carry + (1|subject),
    data = inhaler, family = "cumulative")

# extract posterior samples of population-level effects
samples1 <- posterior_samples(fit, "^b")
head(samples1)

# extract posterior samples of group-level standard deviations
samples2 <- posterior_samples(fit, "^sd_")
head(samples2)

## End(Not run)
```
Usage

posterior_summary(x, ...)

Default S3 method:
posterior_summary(x, probs = c(0.025, 0.975), robust = FALSE, ...)

S3 method for class 'brmsfit'
posterior_summary(x, pars = NA, probs = c(0.025, 0.975), robust = FALSE, ...)

Arguments

x
An R object.

... More arguments passed to or from other methods.

probs The percentiles to be computed by the quantile function.

robust If FALSE (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If TRUE, the median and the median absolute deviation (MAD) are applied instead.

pars Names of parameters for which posterior samples should be returned, as given by a character vector or regular expressions. By default, all posterior samples of all parameters are extracted.

Value

A matrix where rows indicate parameters and columns indicate the summary estimates.

Examples

Not run:
fit <- brm(time ~ age * sex, data = kidney)
posterior_summary(fit)

End(Not run)

posterior_table Table Creation for Posterior Samples

Description

Create a table for unique values of posterior samples. This is usually only useful when summarizing predictions of ordinal models.

Usage

posterior_table(x, levels = NULL)
Arguments

x A matrix of posterior samples where rows indicate samples and columns indicate parameters.

levels Optional values of possible posterior values. Defaults to all unique values in x.

Value

A matrix where rows indicate parameters and columns indicate the unique values of posterior samples.

Examples

```r
## Not run:
fit <- brm(rating ~ period + carry + treat,
           data = inhaler, family = cumulative())
pr <- predict(fit, summary = FALSE)
posterior_table(pr)
## End(Not run)
```

post_prob.brmsfit
Posterior Model Probabilities from Marginal Likelihoods

Description

Compute posterior model probabilities from marginal likelihoods. The `brmsfit` method is just a thin wrapper around the corresponding method for `bridge` objects.

Usage

```r
## S3 method for class 'brmsfit'
post_prob(x, ..., prior_prob = NULL, model_names = NULL)
```

Arguments

x A `brmsfit` object.

... More `brmsfit` objects or further arguments passed to the underlying post-processing functions. In particular, see `extract_draws` for further supported arguments.

prior_prob Numeric vector with prior model probabilities. If omitted, a uniform prior is used (i.e., all models are equally likely a priori). The default `NULL` corresponds to equal prior model weights.

model_names If `NULL` (the default) will use model names derived from deparsing the call. Otherwise will use the passed values as model names.
Computing the marginal likelihood requires samples of all variables defined in Stan's `parameters` block to be saved. Otherwise `post_prob` cannot be computed. Thus, please set `save_all_pars = TRUE` in the call to `brm`, if you are planning to apply `post_prob` to your models.

The computation of model probabilities based on bridge sampling requires a lot more posterior samples than usual. A good conservative rule of thump is perhaps 10-fold more samples (read: the default of 4000 samples may not be enough in many cases). If not enough posterior samples are provided, the bridge sampling algorithm tends to be unstable leading to considerably different results each time it is run. We thus recommend running `post_prob` multiple times to check the stability of the results.

More details are provided under `bridgesampling:post_prob`.

See Also

`bridge_sampler`, `bayes_factor`

Examples

```r
## Not run:
# model with the treatment effect
fit1 <- brm(
  count ~ zAge + zBase + Trt,
  data = epilepsy, family = negbinomial(),
  prior = prior(normal(0, 1), class = b),
  save_all_pars = TRUE
)
summary(fit1)

# model without the treatment effect
fit2 <- brm(
  count ~ zAge + zBase,
  data = epilepsy, family = negbinomial(),
  prior = prior(normal(0, 1), class = b),
  save_all_pars = TRUE
)
summary(fit2)

# compute the posterior model probabilities
post_prob(fit1, fit2)

# specify prior model probabilities
post_prob(fit1, fit2, prior_prob = c(0.8, 0.2))
```

End(Not run)
pp_average.brmsfit Posterior predictive samples averaged across models

Description

Compute posterior predictive samples averaged across models. Weighting can be done in various ways, for instance using Akaike weights based on information criteria or marginal likelihoods.

Usage

```r
## S3 method for class 'brmsfit'
pp_average(
  x, 
  ..., 
  weights = "stacking", 
  method = "posterior_predict", 
  nsamples = NULL, 
  summary = TRUE, 
  probs = c(0.025, 0.975), 
  robust = FALSE, 
  model_names = NULL, 
  control = list(), 
  seed = NULL
)
```

Arguments

- `x`: A `brmsfit` object.
- `...`: More `brmsfit` objects or further arguments passed to the underlying post-processing functions. In particular, see `extract_draws` for further supported arguments.
- `weights`: Name of the criterion to compute weights from. Should be one of "loo", "waic", "kfold", "stacking" (current default), or "bma", "pseudobma". For the former three options, Akaike weights will be computed based on the information criterion values returned by the respective methods. For "stacking" and "pseudobma" method `loo_model_weights` will be used to obtain weights. For "bma", method `post_prob` will be used to compute Bayesian model averaging weights based on log marginal likelihood values (make sure to specify reasonable priors in this case). Some some method, weights may also be be a numeric vector of pre-specified weights.
- `method`: Method used to obtain predictions to average over. Should be one of "posterior_predict" (default), "pp_expect", or "predictive_error".
- `nsamples`: Total number of posterior samples to use.
- `summary`: Should summary statistics (i.e. means, sds, and 95% intervals) be returned instead of the raw values? Default is TRUE.
probs The percentiles to be computed by the quantile function. Only used if summary is TRUE.

robust If FALSE (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If TRUE, the median and the median absolute deviation (MAD) are applied instead. Only used if summary is TRUE.

model_names If NULL (the default) will use model names derived from deparsing the call. Otherwise will use the passed values as model names.

control Optional list of further arguments passed to the function specified in weights.

seed A single numeric value passed to set.seed to make results reproducible.

Details

Weights are computed with the model_weights method.

Value

Same as the output of the method specified in argument method.

See Also

model_weights, posterior_average

Examples

```r
## Not run:
# model with 'treat' as predictor
fit1 <- brm(rating ~ treat + period + carry, data = inhaler)
summary(fit1)

# model without 'treat' as predictor
fit2 <- brm(rating ~ period + carry, data = inhaler)
summary(fit2)

# compute model-averaged predicted values
(df <- unique(inhaler[, c("treat", "period", "carry")]))
pp_average(fit1, fit2, newdata = df)

# compute model-averaged fitted values
pp_average(fit1, fit2, method = "fitted", newdata = df)

## End(Not run)
```
Posterior Predictive Checks for brmsfit Objects

Description

Perform posterior predictive checks with the help of the bayesplot package.

Usage

```r
## S3 method for class 'brmsfit'
pp_check(
  object,
  type,
  nsamples,
  group = NULL,
  x = NULL,
  newdata = NULL,
  resp = NULL,
  subset = NULL,
  ...
)
```

Arguments

- `object`: An object of class `brmsfit`.
- `type`: Type of the ppc plot as given by a character string. See `PPC` for an overview of currently supported types. You may also use an invalid type (e.g. `type = "xyz"`) to get a list of supported types in the resulting error message.
- `nsamples`: Positive integer indicating how many posterior samples should be used. If `NULL` all samples are used. If not specified, the number of posterior samples is chosen automatically. Ignored if `subset` is not `NULL`.
- `group`: Optional name of a factor variable in the model by which to stratify the ppc plot. This argument is required for `ppc_*_grouped` types and ignored otherwise.
- `x`: Optional name of a variable in the model. Only used for ppc types having an `x` argument and ignored otherwise.
- `newdata`: An optional data.frame for which to evaluate predictions. If `NULL` (default), the original data of the model is used. NA values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.
- `resp`: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- `subset`: A numeric vector specifying the posterior samples to be used. If `NULL` (the default), all samples are used.
- `...`: Further arguments passed to `predict.brmsfit` as well as to the PPC function specified in `type`.
Details

For a detailed explanation of each of the ppc functions, see the PPC documentation of the bayesplot package.

Value

A ggplot object that can be further customized using the ggplot2 package.

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt
 + (1|patient) + (1|obs),
 data = epilepsy, family = poisson())

pp_check(fit) # shows dens_overlay plot by default
pp_check(fit, type = "error_hist", nsamples = 11)
pp_check(fit, type = "scatter_avg", nsamples = 100)
pp_check(fit, type = "stat_2d")
pp_check(fit, type = "rootogram")
pp_check(fit, type = "loo_pit")

get an overview of all valid types
pp_check(fit, type = "xyz")

End(Not run)
Arguments

object
An object of class \texttt{brmsfit}.

newdata
An optional data.frame for which to evaluate predictions. If NULL (default), the original data of the model is used. NA values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.

re_formula
formula containing group-level effects to be considered in the prediction. If NULL (default), include all group-level effects; if NA, include no group-level effects.

re.form
Alias of \texttt{re_formula}.

resp
Optional names of response variables. If specified, predictions are performed only for the specified response variables.

dpar
Optional name of a predicted distributional parameter. If specified, fitted values of this parameter are returned.

nlpar
Optional name of a predicted non-linear parameter. If specified, fitted values of this parameter are returned.

nsamples
Positive integer indicating how many posterior samples should be used. If NULL (the default) all samples are used. Ignored if \texttt{subset} is not NULL.

subset
A numeric vector specifying the posterior samples to be used. If NULL (the default), all samples are used.

sort
Logical. Only relevant for time series models. Indicating whether to return predicted values in the original order (\texttt{FALSE}; default) or in the order of the time series (\texttt{TRUE}).

...
Further arguments passed to \texttt{extract_draws} that control several aspects of data validation and prediction.

Details

NA values within factors in \texttt{newdata}, are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.
Value

An array of predicted mean response values. For categorical and ordinal models, the output is an S x N x C array. Otherwise, the output is an S x N matrix, where S is the number of posterior samples, N is the number of observations, and C is the number of categories. In multivariate models, an additional dimension is added to the output which indexes along the different response variables.

Examples

```r
## Not run:
## fit a model
fit <- brm(rating ~ treat + period + carry + (1|subject),
           data = inhaler)

## extract fitted values
ppe <- pp_expect(fit)
str(ppe)

## End(Not run)
```

pp_mixture.brmsfit

Posterior Probabilities of Mixture Component Memberships

Description

Compute the posterior probabilities of mixture component memberships for each observation including uncertainty estimates.

Usage

```r
## S3 method for class 'brmsfit'
pp_mixture(
x,
newdata = NULL,
re_formula = NULL,
resp = NULL,
nsamples = NULL,
subset = NULL,
log = FALSE,
summary = TRUE,
robust = FALSE,
probs = c(0.025, 0.975),
...
)
```

pp_mixture(x, ...)

Arguments

- **x**: An R object usually of class `brmsfit`.
- **newdata**: An optional data.frame for which to evaluate predictions. If `NULL` (default), the original data of the model is used. `NA` values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.
- **re_formula**: formula containing group-level effects to be considered in the prediction. If `NULL` (default), include all group-level effects; if `NA`, include no group-level effects.
- **resp**: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- **nsamples**: Positive integer indicating how many posterior samples should be used. If `NULL` (the default) all samples are used. Ignored if `subset` is not `NULL`.
- **subset**: A numeric vector specifying the posterior samples to be used. If `NULL` (the default), all samples are used.
- **log**: Logical; Indicates whether to return probabilities on the log-scale.
- **summary**: Should summary statistics be returned instead of the raw values? Default is `TRUE`.
- **robust**: If `FALSE` (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If `TRUE`, the median and the median absolute deviation (MAD) are applied instead. Only used if `summary` is `TRUE`.
- **probs**: The percentiles to be computed by the `quantile` function. Only used if `summary` is `TRUE`.
- ... Further arguments passed to `extract_draws` that control several aspects of data validation and prediction.

Details

The returned probabilities can be written as $P(K_n = k | Y_n)$, that is the posterior probability that observation n originates from component k. They are computed using Bayes’ Theorem

$$P(K_n = k | Y_n) = P(Y_n | K_n = k) P(K_n = k) / P(Y_n),$$

where $P(Y_n | K_n = k)$ is the (posterior) likelihood of observation n for component k, $P(K_n = k)$ is the (posterior) mixing probability of component k (i.e. parameter θ_k), and

$$P(Y_n) = \sum_{k = 1, \ldots, K} P(Y_n | K_n = k) P(K_n = k)$$

is a normalizing constant.

Value

If `summary = TRUE`, an $N \times E \times K$ array, where N is the number of observations, K is the number of mixture components, and E is equal to `length(probs) + 2`. If `summary = FALSE`, an $S \times N \times K$ array, where S is the number of posterior samples.
Examples

```r
## Not run:
## simulate some data
set.seed(1234)
dat <- data.frame(
  y = c(rnorm(100), rnorm(50, 2)),
  x = rnorm(150)
)
## fit a simple normal mixture model
mix <- mixture(gaussian, nmix = 2)
prior <- c(
  prior(normal(0, 5), Intercept, nlpar = mu1),
  prior(normal(0, 5), Intercept, nlpar = mu2),
  prior(dirichlet(2, 2), theta)
)
fit1 <- brm(bf(y ~ x), dat, family = mix,
  prior = prior, chains = 2, inits = 0)
summary(fit1)

## compute the membership probabilities
ppm <- pp_mixture(fit1)
str(ppm)

## extract point estimates for each observation
head(ppm[, 1, ])

## classify every observation according to
## the most likely component
apply(ppm[, 1, ], 1, which.max)

## End(Not run)
```

predict.brmsfit

Samples from the Posterior Predictive Distribution

Description

This method is an alias of `posterior_predict.brmsfit` with additional arguments for obtaining summaries of the computed samples.

Usage

```r
## S3 method for class 'brmsfit'
predict(
  object,
  newdata = NULL,
  re_formula = NULL,
  transform = NULL,
  ...)
```
predict.brmsfit

```
resp = NULL,
negative_rt = FALSE,
nsamples = NULL,
subset = NULL,
sort = FALSE,
ntrys = 5,
summary = TRUE,
robust = FALSE,
probs = c(0.025, 0.975),
...  
```

Arguments

- **object**: An object of class `brmsfit`.
- **newdata**: An optional data.frame for which to evaluate predictions. If `NULL` (default), the original data of the model is used. `NA` values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.
- **re_formula**: formula containing group-level effects to be considered in the prediction. If `NULL` (default), include all group-level effects; if `NA`, include no group-level effects.
- **transform**: A function or a character string naming a function to be applied on the predicted responses before summary statistics are computed.
- **resp**: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- **negative_rt**: Only relevant for Wiener diffusion models. A flag indicating whether response times of responses on the lower boundary should be returned as negative values. This allows to distinguish responses on the upper and lower boundary. Defaults to `FALSE`.
- **nsamples**: Positive integer indicating how many posterior samples should be used. If `NULL` (the default) all samples are used. Ignored if `subset` is not `NULL`.
- **subset**: A numeric vector specifying the posterior samples to be used. If `NULL` (the default), all samples are used.
- **sort**: Logical. Only relevant for time series models. Indicating whether to return predicted values in the original order (`FALSE`; default) or in the order of the time series (`TRUE`).
- **ntrys**: Parameter used in rejection sampling for truncated discrete models only (defaults to 5). See Details for more information.
- **summary**: Should summary statistics be returned instead of the raw values? Default is `TRUE`.
- **robust**: If `FALSE` (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If `TRUE`, the median and the median absolute deviation (MAD) are applied instead. Only used if `summary` is `TRUE`.

probs: The percentiles to be computed by the quantile function. Only used if summary is TRUE.

... Further arguments passed to `extract_draws` that control several aspects of data validation and prediction.

Value

An array of predicted response values. If summary = FALSE the output resembles those of `posterior_predict.brmsfit`.

If summary = TRUE the output depends on the family: For categorical and ordinal families, the output is an N x C matrix, where N is the number of observations, C is the number of categories, and the values are predicted category probabilities. For all other families, the output is a N x E matrix where E = 2 + length(probs) is the number of summary statistics: The Estimate column contains point estimates (either mean or median depending on argument robust), while the Est.Error column contains uncertainty estimates (either standard deviation or median absolute deviation depending on argument robust). The remaining columns starting with Q contain quantile estimates as specified via argument probs.

See Also

`posterior_predict.brmsfit`

Examples

```r
## Not run:
## fit a model
fit <- brm(time | cens(censored) ~ age + sex + (1 + age || patient),
           data = kidney, family = "exponential", inits = "0")

## predicted responses
pp <- predict(fit)
head(pp)

## predicted responses excluding the group-level effect of age
pp <- predict(fit, re_formula = ~(1 | patient))
head(pp)

## predicted responses of patient 1 for new data
newdata <- data.frame(
  sex = factor(c("male", "female")),
  age = c(20, 50),
  patient = c(1, 1)
)
predict(fit, newdata = newdata)

## End(Not run)
```
Posterior Samples of Predictive Errors

Description

Compute posterior samples of predictive errors, that is, observed minus predicted responses. Can be performed for the data used to fit the model (posterior predictive checks) or for new data.

Usage

```r
## S3 method for class 'brmsfit'
predictive_error(
  object,
  newdata = NULL,
  re_formula = NULL,
  re.form = NULL,
  resp = NULL,
  nsamples = NULL,
  subset = NULL,
  sort = FALSE,
  ...
)
```

Arguments

- **object**: An object of class `brmsfit`.
- **newdata**: An optional data.frame for which to evaluate predictions. If `NULL` (default), the original data of the model is used. NA values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.
- **re_formula**: formula containing group-level effects to be considered in the prediction. If `NULL` (default), include all group-level effects; if `NA`, include no group-level effects.
- **re.form**: Alias of `re_formula`.
- **resp**: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- **nsamples**: Positive integer indicating how many posterior samples should be used. If `NULL` (the default), all samples are used. Ignored if `subset` is not `NULL`.
- **subset**: A numeric vector specifying the posterior samples to be used. If `NULL` (the default), all samples are used.
- **sort**: Logical. Only relevant for time series models. Indicating whether to return predicted values in the original order (`FALSE`; default) or in the order of the time series (`TRUE`).
- **...**: Further arguments passed to `extract_draws` that control several aspects of data validation and prediction.
predictive_interval.brmsfit

Value

An S \times N array of predictive error samples, where S is the number of posterior samples and N is the number of observations.

Examples

```r
## Not run:
## fit a model
fit <- brm(rating ~ treat + period + carry + (1|subject),
    data = inhaler, cores = 2)

## extract predictive errors
pe <- predictive_error(fit)
str(pe)

## End(Not run)
```

predictive_interval.brmsfit

Predictive Intervals

Description

Compute intervals from the posterior predictive distribution.

Usage

```r
## S3 method for class 'brmsfit'
predictive_interval(object, prob = 0.9, ...)
```

Arguments

- **object**: An R object of class `brmsfit`.
- **prob**: A number p (0 < p < 1) indicating the desired probability mass to include in the intervals. Defaults to 0.9.
- **...**: Further arguments passed to `posterior_predict`.

Value

A matrix with 2 columns for the lower and upper bounds of the intervals, respectively, and as many rows as observations being predicted.
Examples

Not run:
```r
fit <- brm(count ~ zBase, data = epilepsy, family = poisson())
predictive_interval(fit)
```
End(Not run)

print.brmsfit

Print a summary for a fitted model represented by a brmsfit object

Description

Print a summary for a fitted model represented by a `brmsfit` object

Usage

```r
## S3 method for class 'brmsfit'
print(x, digits = 2, ...)
```

Arguments

- `x`: An object of class `brmsfit`
- `digits`: The number of significant digits for printing out the summary; defaults to 2. The effective sample size is always rounded to integers.
- `...`: Additional arguments that would be passed to method `summary` of `brmsfit`.

See Also

`summary.brmsfit`

print.brmsprior

Print method for brmsprior objects

Description

Print method for `brmsprior` objects

Usage

```r
## S3 method for class 'brmsprior'
print(x, show_df, ...)
```
prior_samples.brmsfit

Arguments

x An object of class brmsprior.
show_df Logical; Print priors as a single data.frame (TRUE) or as a sequence of sampling
statements (FALSE)?
... Currently ignored.

Description

Extract prior samples of specified parameters

Usage

S3 method for class 'brmsfit'
prior_samples(x, pars = NA, ...)
prior_samples(x, pars = NA, ...)

Arguments

x An R object typically of class brmsfit
pars Names of parameters for which prior samples should be returned, as given by
a character vector or regular expressions. By default, all prior samples are ex-
tacted
... Currently ignored

Details

To make use of this function, the model must contain samples of prior distributions. This can be
ensured by setting sample_prior = TRUE in function brm. Priors of certain parameters cannot be
saved for technical reasons. For instance, this is the case for the population-level intercept, which
is only computed after fitting the model by default. If you want to treat the intercept as part of all
the other regression coefficients, so that sampling from its prior becomes possible, use ... ~ 0 +
Intercept + ... in the formulas.

Value

A data frame containing the prior samples.
Examples

```r
## Not run:
fit <- brm(rating ~ treat + period + carry + (1|subject),
  data = inhaler, family = "cumulative",
  prior = set_prior("normal(0,2)", class = "b"),
  sample_prior = TRUE)

# extract all prior samples
samples1 <- prior_samples(fit)
head(samples1)

# extract prior samples for the population-level effects of 'treat'
samples2 <- prior_samples(fit, "b_treat")
head(samples2)

## End(Not run)
```

prior_summary.brmsfit
Extract Priors of a Bayesian Model Fitted with brms

Description

Extract Priors of a Bayesian Model Fitted with **brms**

Usage

```r
## S3 method for class 'brmsfit'
prior_summary(object, all = TRUE, ...)
```

Arguments

- `object`
 A `brmsfit` object
- `all`
 Logical; Show all parameters in the model which may have priors (TRUE) or only those with proper priors (FALSE)?
- `...`
 Further arguments passed to or from other methods.

Value

For `brmsfit` objects, an object of class `brmsprior`.

Examples

```r
## Not run:
fit <- brm(count ~ zAge + zBase * Trt
  + (1|patient) + (1|obs),
  data = epilepsy, family = poisson(),
  prior = c(prior(student_t(5,0,10), class = b),
```
prior(cauchy(0,2), class = sd))

prior_summary(fit)
prior_summary(fit, all = FALSE)
print(prior_summary(fit, all = FALSE), show_df = FALSE)

End(Not run)

Description

Extract the group-level ('random') effects of each level from a \texttt{brmsfit} object.

Usage

```r
## S3 method for class 'brmsfit'
ranef(
  object,
  summary = TRUE,
  robust = FALSE,
  probs = c(0.025, 0.975),
  pars = NULL,
  groups = NULL,
  ...
)
```

Arguments

- **object** An object of class \texttt{brmsfit}.
- **summary** Should summary statistics be returned instead of the raw values? Default is \texttt{TRUE}.
- **robust** If \texttt{FALSE} (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If \texttt{TRUE}, the median and the median absolute deviation (MAD) are applied instead. Only used if \texttt{summary} is \texttt{TRUE}.
- **probs** The percentiles to be computed by the \texttt{quantile} function. Only used if \texttt{summary} is \texttt{TRUE}.
- **pars** Optional names of coefficients to extract. By default, all coefficients are extracted.
- **groups** Optional names of grouping variables for which to extract effects.
- **...** Currently ignored.
Value

A list of 3D arrays (one per grouping factor). If summary is TRUE, the 1st dimension contains the factor levels, the 2nd dimension contains the summary statistics (see posterior_summary), and the 3rd dimension contains the group-level effects. If summary is FALSE, the 1st dimension contains the posterior draws, the 2nd dimension contains the factor levels, and the 3rd dimension contains the group-level effects.

Examples

```r
## Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1+Trt|visit),
           data = epilepsy, family = gaussian(), chains = 2)
ranef(fit)
## End(Not run)
```

reloo.brmsfit
Compute exact cross-validation for problematic observations

Description

Compute exact cross-validation for problematic observations for which approximate leave-one-out cross-validation may return incorrect results. Models for problematic observations can be run in parallel using the future package.

Usage

```r
## S3 method for class 'brmsfit'
reloo(
  x,
  loo,
  k_threshold = 0.7,
  newdata = NULL,
  resp = NULL,
  check = TRUE,
  ...
)
```

```r
## S3 method for class 'loo'
reloo(x, fit, ...)  
reloo(x, ...)
```
reloo.brmsfit

 Arguments

 x An R object of class brmsfit or loo depending on the method.

 loo An R object of class loo.

 k_threshold The threshold at which pareto k estimates are treated as problematic. Defaults to 0.7. See pareto_k_ids for more details.

 newdata An optional data.frame for which to evaluate predictions. If NULL (default), the original data of the model is used. NA values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.

 resp Optional names of response variables. If specified, predictions are performed only for the specified response variables.

 check Logical; If TRUE (the default), some checks are performed if the loo object was generated from the brmsfit object passed to argument fit.

 ... Further arguments passed to update.brmsfit and log_lik.brmsfit.

 fit An R object of class brmsfit.

 Details

 Warnings about Pareto k estimates indicate observations for which the approximation to LOO is problematic (this is described in detail in Vehtari, Gelman, and Gabry (2017) and the loo package documentation). If there are J observations with k estimates above $k_{\text{threshold}}$, then reloo will refit the original model J times, each time leaving out one of the J problematic observations. The pointwise contributions of these observations to the total ELPD are then computed directly and substituted for the previous estimates from these J observations that are stored in the original loo object.

 Value

 An object of the class loo.

 See Also

 loo, kfold

 Examples

 ```r
 ## Not run:
 fit1 <- brm(count ~ zAge + zBase * Trt + (1|patient),
             data = epilepsy, family = poisson())
 # throws warning about some pareto k estimates being too high
 (loo1 <- loo(fit1))
 (reloo1 <- reloo(fit1, loo = loo1, chains = 1))
 # End(Not run)
 ```
residuals.brmsfit Posterior Samples of Residuals/Predictive Errors

Description

This method is an alias of predictive_error.brmsfit with additional arguments for obtaining summaries of the computed samples.

Usage

```r
## S3 method for class 'brmsfit'
residuals(
  object,
  newdata = NULL,
  re_formula = NULL,
  method = "pp_expect",
  type = c("ordinary", "pearson"),
  resp = NULL,
  nsamples = NULL,
  subset = NULL,
  sort = FALSE,
  summary = TRUE,
  robust = FALSE,
  probs = c(0.025, 0.975),
  ...
)
```

Arguments

- **object**: An object of class `brmsfit`.
- **newdata**: An optional data.frame for which to evaluate predictions. If `NULL` (default), the original data of the model is used. `NA` values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.
- **re_formula**: formula containing group-level effects to be considered in the prediction. If `NULL` (default), include all group-level effects; if `NA`, include no group-level effects.
- **method**: Method use to obtain predictions. Either "pp_expect" (the default) or "posterior_predict". Using "posterior_predict" is recommended but "pp_expect" is the current default for reasons of backwards compatibility.
- **type**: The type of the residuals, either "ordinary" or "pearson". More information is provided under 'Details'.
- **resp**: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
residuals.brmsfit

- **nsamples**: Positive integer indicating how many posterior samples should be used. If NULL (the default) all samples are used. Ignored if subset is not NULL.

- **subset**: A numeric vector specifying the posterior samples to be used. If NULL (the default), all samples are used.

- **sort**: Logical. Only relevant for time series models. Indicating whether to return predicted values in the original order (FALSE; default) or in the order of the time series (TRUE).

- **summary**: Should summary statistics be returned instead of the raw values? Default is TRUE.

- **robust**: If FALSE (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If TRUE, the median and the median absolute deviation (MAD) are applied instead. Only used if summary is TRUE.

- **probs**: The percentiles to be computed by the quantile function. Only used if summary is TRUE.

- **...**: Further arguments passed to extract_draws that control several aspects of data validation and prediction.

Details

Residuals of type 'ordinary' are of the form \(R = Y - Y_{rep} \), where \(Y \) is the observed and \(Y_{rep} \) is the predicted response. Residuals of type pearson are of the form \(R = (Y - Y_{rep})/SD(Y) \), where \(SD(Y) \) is an estimation of the standard deviation of \(Y \).

Value

An array of predictive error/residual samples. If summary = FALSE the output resembles those of predictive_error.brmsfit. If summary = TRUE the output is an N x E matrix, where N is the number of observations and E denotes the summary statistics computed from the samples.

Examples

```r
## Not run:
## fit a model
fit <- brm(rating ~ treat + period + carry + (1|subject),
           data = inhaler, cores = 2)

## extract residuals/predictive errors
res <- residuals(fit)
head(res)

## End(Not run)
```
restructure

Restructure Old brmsfit Objects

Description
Restructure old brmsfit objects to work with the latest brms version. This function is called internally when applying post-processing methods. However, in order to avoid unnecessary runtime caused by the restructuring, I recommend explicitly calling restrict once per model after updating brms.

Usage
restructure(x, rstr_summary = FALSE)

Arguments
x
An object of class brmsfit.

rstr_summary
Logical; If TRUE, the cached summary stored by rstan is restructured as well.

Value
A brmsfit object compatible with the latest version of brms.

rows2labels

Convert Rows to Labels

Description
Convert information in rows to labels for each row.

Usage
rows2labels(x, digits = 2, sep = " & ", incl_vars = TRUE, ...)

Arguments
x
A data.frame for which to extract labels.

digits
Minimal number of decimal places shown in the labels of numeric variables.

sep
A single character string defining the separator between variables used in the labels.

incl_vars
Indicates if variable names should be part of the labels. Defaults to TRUE.

...
Currently unused.
\textbf{Value}

A character vector of the same length as the number of rows of \textit{x}.

\textbf{See Also}

\texttt{make_conditions}, \texttt{conditional_effects}

\textbf{s} \textit{Defining smooths in \texttt{brms} formulas}

\textbf{Description}

Functions used in definition of smooth terms within a model formulas. The function does not evaluate a (spline) smooth - it exists purely to help set up a model using spline based smooths.

\textbf{Usage}

\begin{verbatim}
s(...) t2(...) \end{verbatim}

\textbf{Arguments}

\begin{verbatim}
... \end{verbatim}

Arguments passed to \texttt{mgcv::s} or \texttt{mgcv::t2}.

\textbf{Details}

The function defined here are just simple wrappers of the respective functions of the \texttt{mgcv} package.

\textbf{See Also}

\texttt{brmsformula}, \texttt{mgcv::s}, \texttt{mgcv::t2}

\textbf{Examples}

\begin{verbatim}
Not run:
simulate some data
dat <- mgcv::gamSim(1, n = 200, scale = 2)

fit univariate smooths for all predictors
fit1 <- brm(y ~ s(x0) + s(x1) + s(x2) + s(x3),
 data = dat, chains = 2)
summary(fit1)
plot(marginal_smooths(fit1), ask = FALSE)

fit a more complicated smooth model
fit2 <- brm(y ~ t2(x0, x1) + s(x2, by = x3),
 data = dat, chains = 2)
summary(fit2)
\end{verbatim}
plot(marginal_smooths(fit2), ask = FALSE)

End(Not run)

set_prior

Prior Definitions for brms Models

Description

Define priors for specific parameters or classes of parameters

Usage

```r
set_prior(
  prior,
  class = "b",
  coef = "",
  group = "",
  resp = "",
  dpar = "",
  nlpar = "",
  lb = NA,
  ub = NA,
  check = TRUE
)
```

```r
prior(prior, ...)
```

```r
prior_(prior, ...)
```

```r
prior_string(prior, ...)
```

```r
empty_prior()
```

Arguments

- **prior**
 A character string defining a distribution in **Stan** language

- **class**
 The parameter class. Defaults to "b" (i.e. population-level effects). See 'Details' for other valid parameter classes.

- **coef**
 Name of the (population- or group-level) parameter.

- **group**
 Grouping factor of group-level parameters.

- **resp**
 Name of the response variable / category. Only used in multivariate models.

- **dpar**
 Name of a distributional parameter. Only used in distributional models.

- **nlpar**
 Name of a non-linear parameter. Only used in non-linear models.
Details

`set_prior` is used to define prior distributions for parameters in `brms` models. The functions `prior`, `prior_`, and `prior_string` are aliases of `set_prior` each allowing for a different kind of argument specification. `prior` allows specifying arguments as expression without quotation marks using non-standard evaluation. `prior_` allows specifying arguments as one-sided formulas or wrapped in `quote`. `prior_string` allows specifying arguments as strings just as `set_prior` itself.

Below, we explain its usage and list some common prior distributions for parameters. A complete overview on possible prior distributions is given in the Stan Reference Manual available at http://mc-stan.org/.

To combine multiple priors, use `c(...)` or the `+` operator (see 'Examples'). `brms` does not check if the priors are written in correct Stan language. Instead, Stan will check their syntactical correctness when the model is parsed to C++ and returns an error if they are not. This, however, does not imply that priors are always meaningful if they are accepted by Stan. Although `brms` tries to find common problems (e.g., setting bounded priors on unbounded parameters), there is no guarantee that the defined priors are reasonable for the model. Below, we list the types of parameters in `brms` models, for which the user can specify prior distributions.

1. **Population-level (‘fixed’) effects**

Every Population-level effect has its own regression parameter represents the name of the corresponding population-level effect. Suppose, for instance, that `y` is predicted by `x1` and `x2` (i.e., `y ~ x1 + x2` in formula syntax). Then, `x1` and `x2` have regression parameters `b_x1` and `b_x2` respectively. The default prior for population-level effects (including monotonic and category specific effects) is an improper flat prior over the reals. Other common options are normal priors or student-t priors. If we want to have a normal prior with mean 0 and standard deviation 5 for `x1`, and a unit student-t prior with 10 degrees of freedom for `x2`, we can specify this via `set_prior("normal(0,5)", class = "b", coef = "x1")` and `set_prior("student_t(10,0,1)",class = "b",coef = "x2")`. To put the same prior on all population-level effects at once, we may write as a shortcut `set_prior("<prior>",class = "b")`. This also leads to faster sampling, because priors can be vectorized in this case. Both ways of defining priors can be combined using for instance `set_prior("normal(0,2)", class = "b")` and `set_prior("normal(0,10)",class = "b",coef = "x1")` at the same time. This will set a normal(0,10) prior on the effect of `x1` and a normal(0,2) prior on all other population-level effects. However, this will break vectorization and may slow down the sampling procedure a bit.

In case of the default intercept parameterization (discussed in the 'Details' section of `brmsformula`), general priors on class "b" will not affect the intercept. Instead, the intercept has its own parameter class named "Intercept" and priors can thus be specified via `set_prior("<prior>",class = "Intercept")`.
"Intercept"). Setting a prior on the intercept will not break vectorization of the other population-level effects. Note that technically, this prior is set on an intercept that results when internally centering all population-level predictors around zero to improve sampling efficiency. On this centered intercept, specifying a prior is actually much easier and intuitive than on the original intercept, since the former represents the expected response value when all predictors are at their means. To treat the intercept as an ordinary population-level effect and avoid the centering parameterization, use \(0 + \text{intercept} \) on the right-hand side of the model formula.

A special shrinkage prior to be applied on population-level effects is the (regularized) horseshoe prior and related priors. See \texttt{horseshoe} for details. Another shrinkage prior is the so-called lasso prior. See \texttt{lasso} for details.

In non-linear models, population-level effects are defined separately for each non-linear parameter. Accordingly, it is necessary to specify the non-linear parameter in \texttt{set_prior} so that priors we can be assigned correctly. If, for instance, \(\alpha \) is the parameter and \(x \) the predictor for which we want to define the prior, we can write \texttt{set_prior("<prior>", coef = "x", nlpar = "alpha")}. As a shortcut we can use \texttt{set_prior("<prior>", nlpar = "alpha")} to set the same prior on all population-level effects of \(\alpha \) at once.

If desired, population-level effects can be restricted to fall only within a certain interval using the \(\text{lb} \) and \(\text{ub} \) arguments of \texttt{set_prior}. This is often required when defining priors that are not defined everywhere on the real line, such as uniform or gamma priors. When defining a \texttt{uniform(2,4)} prior, you should write \texttt{set_prior("uniform(2,4)", lb = 2, ub = 4)}. When using a prior that is defined on the positive reals only (such as a gamma prior) set \(\text{lb} = 0 \). In most situations, it is not useful to restrict population-level parameters through bounded priors (non-linear models are an important exception), but if you really want to this is the way to go.

2. Standard deviations of group-level ('random') effects

Each group-level effect of each grouping factor has a standard deviation named \(\text{sd}_{<\text{group}>}_{<\text{coef}>} \). Consider, for instance, the formula \(y \sim x_1 + x_2 + (1 + x_1 \mid g) \). We see that the intercept as well as \(x_1 \) are group-level effects nested in the grouping factor \(g \). The corresponding standard deviation parameters are named as \(\text{sd}_{g_\text{Intercept}} \) and \(\text{sd}_{g_x1} \) respectively. These parameters are restricted to be non-negative and, by default, have a half student-t prior with 3 degrees of freedom and a scale parameter that depends on the standard deviation of the response after applying the link function. Minimally, the scale parameter is 10. This prior is used (a) to be only very weakly informative in order to influence results as few as possible, while (b) providing at least some regularization to considerably improve convergence and sampling efficiency. To define a prior distribution only for standard deviations of a specific grouping factor, use

\texttt{set_prior("<prior>", class = "sd", group = "<group>")}

To define a prior distribution only for a specific standard deviation of a specific grouping factor, you may write

\texttt{set_prior("<prior>", class = "sd", group = "<group>", coef = "<coef>")}

Recommendations on useful prior distributions for standard deviations are given in Gelman (2006), but note that he is no longer recommending uniform priors, anymore.

When defining priors on group-level parameters in non-linear models, please make sure to specify the corresponding non-linear parameter through the \texttt{nlpar} argument in the same way as for population-level effects.

3. Correlations of group-level ('random') effects

If there is more than one group-level effect per grouping factor, the correlations between those effects have to be estimated. The prior \texttt{"lkj_corr_cholesky(eta)"} or in short \texttt{"lkj(eta)"} with eta
> 0 is essentially the only prior for (Cholesky factors) of correlation matrices. If $\eta = 1$ (the default) all correlations matrices are equally likely a priori. If $\eta > 1$, extreme correlations become less likely, whereas $0 < \eta < 1$ results in higher probabilities for extreme correlations. Correlation matrix parameters in \textit{brms} models are named as \texttt{cor_<group>}, (e.g., \texttt{cor_g} if \texttt{g} is the grouping factor).

To set the same prior on every correlation matrix, use for instance \texttt{set_prior("lkj(2)",\texttt{class = "cor")}}. Internally, the priors are transformed to be put on the Cholesky factors of the correlation matrices to improve efficiency and numerical stability. The corresponding parameter class of the Cholesky factors is \texttt{L}, but it is not recommended to specify priors for this parameter class directly.

4. Splines

Splines are implemented in \textit{brms} using the 'random effects' formulation as explained in \textit{gamm}). Thus, each spline has its corresponding standard deviations modeling the variability within this term. In \textit{brms}, this parameter class is called \texttt{sds} and priors can be specified via \texttt{set_prior("<prior>",\texttt{class = "sds",\texttt{coef = "<term label>"}})}. The default prior is the same as for standard deviations of group-level effects.

5. Gaussian processes

Gaussian processes as currently implemented in \textit{brms} have two parameters, the standard deviation parameter \texttt{sdp}, and characteristic length-scale parameter \texttt{lscale} (see \texttt{gp} for more details). The default prior of \texttt{sdp} is the same as for standard deviations of group-level effects. The default prior of \texttt{lscale} is an informative inverse-gamma prior specifically tuned to the covariates of the Gaussian process (for more details see \url{https://betanalpha.github.io/assets/case_studies/gp_part3/part3.html}). This tuned prior may be overly informative in some cases, so please consider other priors as well to make sure inference is robust to the prior specification. If tuning fails, a half-normal prior is used instead.

6. Autocorrelation parameters

The autocorrelation parameters currently implemented are named \texttt{ar} (autoregression), \texttt{ma} (moving average), \texttt{arr} (autoregression of the response), \texttt{car} (spatial conditional autoregression), as well as \texttt{lagsar} and \texttt{errorsar} (Spatial simultaneous autoregression).

Priors can be defined by \texttt{set_prior("<prior>",\texttt{class = "ar")}) for \texttt{ar} and similar for other autocorrelation parameters. By default, \texttt{ar} and \texttt{ma} are bounded between -1 and 1, \texttt{car}, \texttt{lagsar}, and \texttt{errorsar} are bounded between 0, and 1, and \texttt{arr} is unbounded (you may change this by using the arguments \texttt{lb} and \texttt{ub}). The default prior is flat over the definition area.

7. Distance parameters of monotonic effects

As explained in the details section of \textit{brm}, monotonic effects make use of a special parameter vector to estimate the 'normalized distances' between consecutive predictor categories. This is realized in \textit{Stan} using the \texttt{simplex} parameter type. This class is named "\texttt{simo}" (short for simplex monotonic) in \textit{brms}. The only valid prior for simplex parameters is the dirichlet prior, which accepts a vector of length $K - 1$ (K = number of predictor categories) as input defining the 'concentration' of the distribution. Explaining the dirichlet prior is beyond the scope of this documentation, but we want to describe how to define this prior syntactically correct. If a predictor x with K categories is modeled as monotonic, we can define a prior on its corresponding simplex via \texttt{prior(dirichlet(<vector>),\texttt{class = "simo",\texttt{coef = "<term label>"})}}. The 1 in the end of \texttt{coef} indicates that this is the first simplex in this term. If interactions between multiple monotonic variables are modeled, multiple simplexes per term are required. For \texttt{<vector>}, we can put in any \texttt{R} expression defining a vector of length $K - 1$. The default is a uniform prior (i.e. \texttt{<vector> = rep(1,K-1)}) over all simplexes of the respective dimension.
8. Parameters for specific families

Some families need additional parameters to be estimated. Families `gaussian`, `student`, `skew_normal`, `lognormal`, and `gen_extreme_value` need the parameter `sigma` to account for the residual standard deviation. By default, `sigma` has a half-student-t prior that scales in the same way as the group-level standard deviations. Further, family `student` needs the parameter `nu` representing the degrees of freedom of students-t distribution. By default, `nu` has prior \(\text{gamma}(2, 0.1) \) and a fixed lower bound of 1. Families `gamma`, `weibull`, `inverse.gaussian`, and `negbinomial` need a shape parameter that has a \(\text{gamma}(0.01, 0.01) \) prior by default. For families `cumulative`, `cratio`, `sratio`, and `acat`, and only if `threshold = \"equidistant\"`, the parameter `delta` is used to model the distance between two adjacent thresholds. By default, `delta` has an improper flat prior over the reals. The `von_mises` family needs the parameter `kappa`, representing the concentration parameter. By default, `kappa` has prior \(\text{gamma}(2, 0.01) \).

Every family specific parameter has its own prior class, so that `set_prior("<prior>", class = "<parameter>")` is the right way to go. All of these priors are chosen to be weakly informative, having only minimal influence on the estimations, while improving convergence and sampling efficiency.

Often, it may not be immediately clear, which parameters are present in the model. To get a full list of parameters and parameter classes for which priors can be specified (depending on the model) use function `get_prior`.

Value

An object of class `brmsprior` to be used in the prior argument of `brm`.

Functions

- `prior`: Alias of `set_prior` allowing to specify arguments as expressions without quotation marks.
- `prior_`: Alias of `set_prior` allowing to specify arguments as as one-sided formulas or wrapped in quote.
- `prior_string`: Alias of `set_prior` allowing to specify arguments as strings.
- `empty_prior`: Create an empty `brmsprior` object.

References

See Also

`get_prior`

Examples

```r
# use alias functions
(prior1 <- prior(cauchy(0, 1), class = sd))
(prior2 <- prior(~cauchy(0, 1), class = ~sd))
(prior3 <- prior_string("cauchy(0, 1)", class = "sd"))
```
Shifted_Lognormal

Description

Density, distribution function, quantile function and random generation for the shifted log normal distribution with mean \(\text{meanlog} \), standard deviation \(\text{sdlog} \), and shift parameter \(\text{shift} \).

Usage

- **Density:**
  ```r
dshifted_lnorm(x, meanlog = 0, sdlog = 1, shift = 0, log = FALSE)
  ```

- **Cumulative Distribution:**
  ```r
pshifted_lnorm(q, meanlog = 0, sdlog = 1, shift = 0, lower.tail = TRUE)
  ```

- **Quantile Function:**
  ```r
qshifted_lnorm(p, meanlog = 0, sdlog = 1, shift = 0, lower.tail = TRUE)
  ```

- **Random Generation:**
  ```r
rshifted_lnorm(n, meanlog = 0, sdlog = 1, shift = 0)
  ```
lower.tail = TRUE,
log.p = FALSE)

qshifted_lnorm(
 p,
 meanlog = 0,
 sdlog = 1,
 shift = 0,
 lower.tail = TRUE,
 log.p = FALSE
)

rshifted_lnorm(n, meanlog = 0, sdlog = 1, shift = 0)

Arguments

x, q Vector of quantiles.
meanlog Vector of means.
sdlog Vector of standard deviations.
shift Vector of shifts.
log Logical; If TRUE, values are returned on the log scale.
lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x).
log.p Logical; If TRUE, values are returned on the log scale.
p Vector of probabilities.
n Number of samples to draw from the distribution.

Details

See vignette("brms_families") for details on the parameterization.

SkewNormal The Skew-Normal Distribution

Description

Density, distribution function, and random generation for the skew-normal distribution with mean mu, standard deviation sigma, and skewness alpha.
Usage

\[
dskew_normal(x, \\
u = 0, \\
sigma = 1, \\
alpha = 0, \\
x = \text{NULL}, \\
\omega = \text{NULL}, \\
\log = \text{FALSE}
\]

\[
pskew_normal(q, \\
u = 0, \\
sigma = 1, \\
alpha = 0, \\
x = \text{NULL}, \\
\omega = \text{NULL}, \\
lower.tail = \text{TRUE}, \\
log.p = \text{FALSE}
\]

\[
qskew_normal(p, \\
u = 0, \\
sigma = 1, \\
alpha = 0, \\
x = \text{NULL}, \\
\omega = \text{NULL}, \\
lower.tail = \text{TRUE}, \\
log.p = \text{FALSE}, \\
tol = 1e-08
\]

\[
rskew_normal(n, u = 0, \sigma = 1, \alpha = 0, x = \text{NULL}, \omega = \text{NULL})
\]

Arguments

- **x, q**: Vector of quantiles.
- **mu**: Vector of mean values.
- **sigma**: Vector of standard deviation values.
- **alpha**: Vector of skewness values.
- **xi**: Optional vector of location values. If NULL (the default), will be computed internally.
- **omega**: Optional vector of scale values. If NULL (the default), will be computed internally.
- **log**: Logical; If TRUE, values are returned on the log scale.
lower.tail Logical; If TRUE (default), return \(P(X \leq x) \). Else, return \(P(X > x) \).

log.p Logical; If TRUE, values are returned on the log scale.

p Vector of probabilities.

tol Tolerance of the approximation used in the computation of quantiles.

n Number of samples to draw from the distribution.

details

See vignette("brms_families") for details on the parameterization.

stancode.brmsfit

Extract Stan model code

Description

Extract Stan code that was used to specify the model.

Usage

```r
## S3 method for class 'brmsfit'
stancode(object, version = TRUE, ...)
```

Arguments

- **object** An object of class `brmsfit`.
- **version** Logical; indicates if the first line containing the `brms` version number should be included. Defaults to `TRUE`.
- **...** Currently ignored.

Value

Stan model code for further processing.
standata.brmsfit

Extract data passed to Stan

Description

Extract all data that was used by Stan to fit the model.

Usage

```r
## S3 method for class 'brmsfit'
standata(
  object,
  newdata = NULL,
  re_formula = NULL,
  incl_autocor = TRUE,
  new_objects = list(),
  internal = FALSE,
  control = list(),
  ...
)

standata(object, ...)
```

Arguments

- **object**: An object of class `brmsfit`.
- **newdata**: An optional data.frame for which to evaluate predictions. If `NULL` (default), the original data of the model is used. NA values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.
- **re_formula**: formula containing group-level effects to be considered in the prediction. If `NULL` (default), include all group-level effects; if `NA`, include no group-level effects.
- **incl_autocor**: A flag indicating if correlation structures originally specified via `autocor` should be included in the predictions. Defaults to `TRUE`.
- **new_objects**: A named list of objects containing new data, which cannot be passed via argument `newdata`. Required for objects passed via `stanvars` and for `cor_sar` and `cor_fixed` correlation structures.
- **internal**: Logical, indicates if the data should be prepared for internal use in other post-processing methods.
- **control**: A named list currently for internal usage only.
- **...**: More arguments passed to `make_standata`.

Value

A named list containing the data originally passed to Stan.
stanvar

User-defined variables passed to Stan

Description

Prepare user-defined variables to be passed to one of Stan’s program blocks. This is primarily useful for defining more complex priors, for refitting models without recompilation despite changing priors, or for defining custom Stan functions.

Usage

stanvar(x = NULL, name = NULL, scode = NULL, block = "data")

Arguments

x An R object containing data to be passed to Stan. Only required if block = 'data' and ignored otherwise.

name Optional character string providing the desired variable name of the object in x. If NULL (the default) the variable name is directly inferred from x.

scode Line of Stan code to define the variable in Stan language. If block = 'data', the Stan code is inferred based on the class of x by default.

block Name of one of Stan’s program blocks in which the variable should be defined. Can be 'data', 'tdata' (transformed data), 'parameters', 'tparameters' (transformed parameters), 'model', 'genquant' (generated quantities) or 'functions'.

Value

An object of class stanvars.

Examples

bprior <- prior(normal(mean_intercept, 10), class = "Intercept")
stanvars <- stanvar(5, name = "mean_intercept")
make_stancode(count ~ Trt, epilepsy, prior = bprior, stanvars = stanvars)

define a multi-normal prior with known covariance matrix
bprior <- prior(multi_normal(M, V), class = "b")
stanvars <- stanvar(rep(0, 2), "M", scode = " vector[K] M;") +
stanvar(diag(2), "V", scode = " matrix[K, K] V;")
make_stancode(count ~ Trt + zBase, epilepsy, prior = bprior, stanvars = stanvars)

define a hierarchical prior on the regression coefficients
bprior <- set_prior("normal(0, tau)", class = "b") +
set_prior("target += normal_lpdf(tau | 0, 10)", check = FALSE)
stanvars <- stanvar(scode = "real<lower=0> tau;",
block = "parameters")
The Student-t Distribution

Description

Density, distribution function, quantile function and random generation for the Student-t distribution with location mu, scale sigma, and degrees of freedom df.

Usage

dstudent_t(x, df, mu = 0, sigma = 1, log = FALSE)
pstudent_t(q, df, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qstudent_t(p, df, mu = 0, sigma = 1)
rstudent_t(n, df, mu = 0, sigma = 1)

Arguments

x, q Vector of quantiles.
df Vector of degrees of freedom.
mu Vector of location values.
sigma Vector of scale values.
log, log.p Logical; If TRUE, values are returned on the log scale.
lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x).
p Vector of probabilities.
n Number of samples to draw from the distribution.

Details

See vignette("brms_families") for details on the parameterization.

See Also

TDist
summary.brmsfit
Create a summary of a fitted model represented by a brmsfit object

Description
Create a summary of a fitted model represented by a brmsfit object

Usage
S3 method for class 'brmsfit'
summary(object, priors = FALSE, prob = 0.95, mc_se = FALSE, ...)

Arguments
- **object**: An object of class brmsfit
- **priors**: Logical; Indicating if priors should be included in the summary. Default is FALSE.
- **prob**: A value between 0 and 1 indicating the desired probability to be covered by the uncertainty intervals. The default is 0.95.
- **mc_se**: Logical; Indicating if the uncertainty caused by the MCMC sampling should be shown in the summary. Defaults to FALSE.
- **...**: Other potential arguments

Details
The convergence diagnostics Rhat, Bulk_ESS, and Tail_ESS are described in detail in Vehtari et al. (2019).

References
Arguments

- base_size base font size
- base_family base font family

Details

When using theme_black in plots powered by the bayesplot package such as pp_check or stanplot, I recommend using the "viridisC" color scheme (see examples).

Value

A theme object used in ggplot2 graphics.

Examples

```r
## Not run:
# change default ggplot theme
ggplot2::theme_set(theme_black())

# change default bayesplot color scheme
bayesplot::color_scheme_set("viridisC")

# fit a simple model
fit <- brm(count ~ zAge + zBase * Trt + (1|patient),
            data = epilepsy, family = poisson(), chains = 2)
summary(fit)

# create various plots
plot(marginal_effects(fit), ask = FALSE)
pp_check(fit)
stanplot(fit, type = "hex", pars = c("b_Intercept", "b_Trt1"))
## End(Not run)
```

theme_default

Default bayesplot Theme for ggplot2 Graphics

Description

This theme is imported from the bayesplot package. See theme_default for a complete documentation.

Arguments

- base_size base font size
- base_family base font family
update.brmsfit

Value

A theme object used in ggplot2 graphics.

Description

This method allows to update an existing brmsfit object.

Usage

```r
## S3 method for class 'brmsfit'
update(object, formula., newdata = NULL, recompile = NULL, ...)
```

Arguments

- `object` An object of class brmsfit.
- `formula.` Changes to the formula; for details see `update.formula` and `brmsformula`.
- `newdata` Optional data.frame to update the model with new data.
- `recompile` Logical, indicating whether the Stan model should be recompiled. If NULL (the default), update tries to figure out internally, if recompilation is necessary. Setting it to FALSE will cause all Stan code changing arguments to be ignored.
- `...` Other arguments passed to `brm`.

Details

Sometimes, when updating the model formula, it may happen that R complains about a mismatch between model frame and formula. This error can be avoided by supplying your original data again via argument newdata.

Examples

```r
## Not run:
fit1 <- brm(time | cens(censored) ~ age * sex + disease + (1|patient),
           data = kidney, family = gaussian("log"))
summary(fit1)

## remove effects of 'disease'
fit2 <- update(fit1, formula. = ~ . ~ disease)
summary(fit2)

## remove the group specific term of 'patient' and
## change the data (just take a subset in this example)
fit3 <- update(fit1, formula. = ~ . ~ (1|patient),
              newdata = kidney[1:38, ])
summary(fit3)
```
use another family and add population-level priors
fit4 <- update(fit1, family = weibull(), inits = "0",
 prior = set_prior("normal(0,5)"))
summary(fit4)

End(Not run)

update.brmsfit_multiple

Update brms models based on multiple data sets

Description

This method allows to update an existing `brmsfit_multiple` object.

Usage

```r
## S3 method for class 'brmsfit_multiple'
update(object, formula., newdata = NULL, ...)
```

Arguments

- **object**: An object of class `brmsfit_multiple`.
- **formula.**: Changes to the formula; for details see `update.formula` and `brmsformula`.
- **newdata**: List of data.frames to update the model with new data. Currently required even if the original data should be used.
- **...**: Other arguments passed to `update.brmsfit` and `brm_multiple`.

Examples

```r
## Not run:
library(mice)
imp <- mice(nhanes2)

# initially fit the model
fit_imp1 <- brm_multiple(bmi ~ age + hyp + chl, data = imp, chains = 1)
summary(fit_imp1)

# update the model using fewer predictors
fit_imp2 <- update(fit_imp1, formula. = . ~ hyp + chl, newdata = imp)
summary(fit_imp2)

## End(Not run)
```
update_adterms
Update Formula Addition Terms

Description

Update additions terms used in formulas of \texttt{brms}. See \texttt{addition-terms} for details.

Usage

```r
update_adterms(formula, adform, action = c("update", "replace"))
```

Arguments

- `formula`: Two-sided formula to be updated.
- `adform`: One-sided formula containing addition terms to update `formula` with.
- `action`: Indicates what should happen to the existing addition terms in `formula`. If "update" (the default), old addition terms that have no corresponding term in `adform` will be kept. If "replace", all old addition terms will be removed.

Value

An object of class `formula`.

Examples

```r
form <- y | trials(size) ~ x
update_adterms(form, ~ trials(10))
update_adterms(form, ~ weights(w))
update_adterms(form, ~ weights(w), action = "replace")
update_adterms(y ~ x, ~ trials(10))
```

validate_newdata
Validate New Data

Description

Validate new data passed to post-processing methods of \texttt{brms}. Unless you are a package developer, you will rarely need to call `validate_newdata` directly.
Usage

validate_newdata(
 newdata, object,
 re_formula = NULL,
 allow_new_levels = FALSE,
 resp = NULL,
 check_response = TRUE,
 incl_autocor = TRUE,
 all_group_vars = NULL,
 ...
)

Arguments

newdata A data.frame containing new data to be validated.
object A brmsfit object.
re_formula formula containing group-level effects to be considered in the prediction. If NULL (default), include all group-level effects; if NA, include no group-level effects.
allow_new_levels A flag indicating if new levels of group-level effects are allowed (defaults to FALSE). Only relevant if newdata is provided.
resp Optional names of response variables. If specified, predictions are performed only for the specified response variables.
check_response Logical; Indicates if response variables should be checked as well. Defaults to TRUE.
incl_autocor A flag indicating if correlation structures originally specified via autocor should be included in the predictions. Defaults to TRUE.
all_group_vars Optional names of grouping variables to be validated. Defaults to all grouping variables in the model.
...
Currently ignored.

Value

A validated 'data.frame' based on newdata.

VarCorr.brmsfit Extract Variance and Correlation Components

Description

This function calculates the estimated standard deviations, correlations and covariances of the group-level terms in a multilevel model of class brmsfit. For linear models, the residual standard deviations, correlations and covariances are also returned.
Usage

```r
## S3 method for class 'brmsfit'
VarCorr(
  x, 
  sigma = 1, 
  summary = TRUE, 
  robust = FALSE, 
  probs = c(0.025, 0.975), 
  ...
)
```

Arguments

- `x` An object of class `brmsfit`.
- `sigma` Ignored (included for compatibility with `VarCorr`).
- `summary` Should summary statistics be returned instead of the raw values? Default is `TRUE`.
- `robust` If `FALSE` (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If `TRUE`, the median and the median absolute deviation (MAD) are applied instead. Only used if `summary` is `TRUE`.
- `probs` The percentiles to be computed by the `quantile` function. Only used if `summary` is `TRUE`.
- `...` Currently ignored.

Value

A list of lists (one per grouping factor), each with three elements: a matrix containing the standard deviations, an array containing the correlation matrix, and an array containing the covariance matrix with variances on the diagonal.

Examples

```r
## Not run:
fit <- brm(count ~ zAge + zBase + Trt + (1+Trt|visit), 
  data = epilepsy, family = gaussian(), chains = 2)
VarCorr(fit)

## End(Not run)
```
vcov.brmsfit

Covariance and Correlation Matrix of Population-Level Effects

Description

Get a point estimate of the covariance or correlation matrix of population-level parameters.

Usage

```r
## S3 method for class 'brmsfit'
vcov(object, correlation = FALSE, pars = NULL, ...)
```

Arguments

- `object`: An object of class `brmsfit`.
- `correlation`: Logical; if `FALSE` (the default), compute the covariance matrix, if `TRUE`, compute the correlation matrix.
- `pars`: Optional names of coefficients to extract. By default, all coefficients are extracted.
- `...`: Currently ignored.

Details

Estimates are obtained by calculating the maximum likelihood covariances (correlations) of the posterior samples.

Value

covariance or correlation matrix of population-level parameters

Examples

```r
## Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1+Trt|visit),
            data = epilepsy, family = gaussian(), chains = 2)
vcov(fit)
## End(Not run)
```
VonMises
The von Mises Distribution

Description
Density, distribution function, and random generation for the von Mises distribution with location \(\mu \), and precision \(\kappa \).

Usage

- `dvon_mises(x, mu, kappa, log = FALSE)`
- `pvon_mises(q, mu, kappa, lower.tail = TRUE, log.p = FALSE, acc = 1e-20)`
- `rvon_mises(n, mu, kappa)`

Arguments
- `x, q` Vector of quantiles.
- `mu` Vector of location values.
- `kappa` Vector of precision values.
- `log` Logical; If `TRUE`, values are returned on the log scale.
- `lower.tail` Logical; If `TRUE` (default), return \(P(X <= x) \). Else, return \(P(X > x) \).
- `log.p` Logical; If `TRUE`, values are returned on the log scale.
- `acc` Accuracy of numerical approximations.
- `n` Number of samples to draw from the distribution.

Details
See vignette("brms_families") for details on the parameterization.

waic.brmsfit
Widely Applicable Information Criterion (WAIC)

Description
Compute the widely applicable information criterion (WAIC) based on the posterior likelihood using the `loo` package. For more details see `waic`.
Usage

```r
## S3 method for class 'brmsfit'
waic(
  x,
  ..., 
  compare = TRUE,
  resp = NULL,
  pointwise = FALSE,
  model_names = NULL
)
```

Arguments

- `x` A `brmsfit` object.
- `...` More `brmsfit` objects or further arguments passed to the underlying post-processing functions. In particular, see `extract_draws` for further supported arguments.
- `compare` A flag indicating if the information criteria of the models should be compared to each other via `loo_compare`.
- `resp` Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- `pointwise` A flag indicating whether to compute the full log-likelihood matrix at once or separately for each observation. The latter approach is usually considerably slower but requires much less working memory. Accordingly, if one runs into memory issues, `pointwise = TRUE` is the way to go.
- `model_names` If `NULL` (the default) will use model names derived from deparsing the call. Otherwise will use the passed values as model names.

Details

See `loo_compare` for details on model comparisons. For `brmsfit` objects, WAIC is an alias of `waic`. Use method `addCriterion` to store information criteria in the fitted model object for later usage.

Value

If just one object is provided, an object of class `loo`. If multiple objects are provided, an object of class `loolist`.

References

Examples

```
## Not run:
# model with population-level effects only
fit1 <- brm(rating ~ treat + period + carry,
            data = inhaler)
(waic1 <- waic(fit1))

# model with an additional varying intercept for subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),
            data = inhaler)
(waic2 <- waic(fit2))

# compare both models
loo_compare(waic1, waic2)

## End(Not run)
```

Wiener

The Wiener Diffusion Model Distribution

Description

Density function and random generation for the Wiener diffusion model distribution with boundary separation alpha, non-decision time tau, bias beta and drift rate delta.

Usage

```r
dwiener(x, alpha, tau, beta, delta, resp = 1, log = FALSE)
```

```r
rwiener(n, alpha, tau, beta, delta, types = c("q", "resp"))
```

Arguments

- `x`: Vector of quantiles.
- `alpha`: Boundary separation parameter.
- `tau`: Non-decision time parameter.
- `beta`: Bias parameter.
- `delta`: Drift rate parameter.
- `resp`: Response: "upper" or "lower". If no character vector, it is coerced to logical where TRUE indicates "upper" and FALSE indicates "lower".
- `log`: Logical; If TRUE, values are returned on the log scale.
- `n`: Number of samples to draw from the distribution.
- `types`: Which types of responses to return? By default, return both the response times "q" and the dichotomous responses "resp". If either "q" or "resp", return only one of the two types.
Details

These are wrappers around functions of the **RWiener** package. See vignette("brms_families") for details on the parameterization.

See Also

wienerdist

ZeroInflated Zero-Inflated Distributions

Description

Density and distribution functions for zero-inflated distributions.

Usage

```r
dzero_inflated_poisson(x, lambda, zi, log = FALSE)
pzero_inflated_poisson(q, lambda, zi, lower.tail = TRUE, log.p = FALSE)
dzero_inflated_negbinomial(x, mu, shape, zi, log = FALSE)
pzero_inflated_negbinomial(q, mu, shape, zi, lower.tail = TRUE, log.p = FALSE)
dzero_inflated_binomial(x, size, prob, zi, log = FALSE)
pzero_inflated_binomial(q, size, prob, zi, lower.tail = TRUE, log.p = FALSE)
dzero_inflated_beta(x, shape1, shape2, zi, log = FALSE)
pzero_inflated_beta(q, shape1, shape2, zi, lower.tail = TRUE, log.p = FALSE)
```

Arguments

- `x` Vector of quantiles.
- `zi` zero-inflation propability
- `log` Logical; If TRUE, values are returned on the log scale.
- `q` Vector of quantiles.
- `lower.tail` Logical; If TRUE (default), return P(X <= x). Else, return P(X > x).
- `log.p` Logical; If TRUE, values are returned on the log scale.
- `mu, lambda` location parameter
- `shape, shape1, shape2` shape parameter
- `size` number of trials
- `prob` probability of success on each trial
Details

The density of a zero-inflated distribution can be specified as follows. If $x = 0$ set $f(x) = \theta + (1 - \theta) \ast g(0)$. Else set $f(x) = (1 - \theta) \ast g(x)$, where $g(x)$ is the density of the non-zero-inflated part.
Index

+Topic datasets
 epilepsy, 69
 inhaler, 90
 kidney, 99

acat (brmsfamily), 24
add_criterion, 8, 10, 48, 105, 107, 189
add_ic, 48
add_ic (add_loo), 10
add_ic< (add_loo), 10
add_loo, 10
add_waic (add_loo), 10
addition-terms, 6
as.array.brmsfit
 (posterior_samples.brmsfit), 141
as.data.frame, 142
as.data.frame.brmsfit
 (posterior_samples.brmsfit), 141
as.matrix.brmsfit, 136
as.matrix.brmsfit
 (posterior_samples.brmsfit), 141
as.mcmc (as.mcmc.brmsfit), 11
as.mcmc.brmsfit, 11
asym_laplace (brmsfamily), 24
AsymLaplace, 12
autocor (autocor.brmsfit), 13
autocor.brmsfit, 13
bayes_factor, 5, 17, 145
bayes_factor (bayes_factor.brmsfit), 13
bayes_factor.brmsfit, 13
bayes_R2 (bayes_R2.brmsfit), 14
bayes_R2.brmsfit, 14
bayesplot, 5, 149
bernoulli (brmsfamily), 24
Beta (brmsfamily), 24
bf (brmsformula), 30
bf-helpers (brmsformula-helpers), 39
bridge_sampler, 13, 14, 145
bridge_sampler
 (bridge_sampler.brmsfit), 16
bridge_sampler.brmsfit, 16
bridge_sampler.stanfit, 16
bridgesampling: bayes_factor, 14
bridgesampling: bridge_sampler, 16
bridgesampling: post_prob, 145
brm, 5, 6, 8, 17, 29–31, 45, 62, 86, 120, 132,
 171, 172, 182
brm_multiple, 33, 43, 183
brms, 22, 29, 30
brms (brms-package), 5
brms-package, 5
brmsfamily, 6, 18, 21, 22, 24, 30, 36, 43, 64,
 65, 80, 113, 115, 120, 132
brmsfit, 6, 22
brmsfit (brmsfit-class), 29
brmsfit-class, 29
brmsformula, 5–8, 18, 19, 21, 22, 28, 30, 30,
 39, 41, 43, 44, 63, 80, 82, 84, 113,
 115, 118–120, 122, 124, 127, 128,
 132, 167, 169, 182, 183
brmsformula-helpers, 39
brmshypothesis, 41, 89
brmsprior, 30
brmsprior (set_prior), 168
brmsprior-class (set_prior), 168

cat, 21, 114
categorical (brmsfamily), 24
cbind, 123, 127
coeff.brmsfit, 46, 88
combine_models, 44, 47
compare_ic, 47
conditional_effects, 5, 55, 111, 112, 167
conditional_effects
 (conditional_effects.brmsfit), 48
<table>
<thead>
<tr>
<th>Function/Method</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>conditional_effects.brmsfit</td>
<td>48</td>
</tr>
<tr>
<td>conditional_smooths</td>
<td>53</td>
</tr>
<tr>
<td>conditional_smooths.brmsfit</td>
<td>53</td>
</tr>
<tr>
<td>control_params</td>
<td>55</td>
</tr>
<tr>
<td>cor_ar, 56, 57, 58</td>
<td></td>
</tr>
<tr>
<td>cor_arma, 56, 57, 58, 62</td>
<td></td>
</tr>
<tr>
<td>cor_brms-class (cor_brms)</td>
<td>58</td>
</tr>
<tr>
<td>cor_car</td>
<td>58, 58</td>
</tr>
<tr>
<td>cor_cosy</td>
<td>60</td>
</tr>
<tr>
<td>cor_cosy-class (cor_cosy)</td>
<td>60</td>
</tr>
<tr>
<td>cor_errorsar</td>
<td>62</td>
</tr>
<tr>
<td>cor_fixed, 58, 60, 73, 177</td>
<td></td>
</tr>
<tr>
<td>cor_icar (cor_car), 58</td>
<td></td>
</tr>
<tr>
<td>cor_fixed</td>
<td>60</td>
</tr>
<tr>
<td>cratio (brmsfamily)</td>
<td>24</td>
</tr>
<tr>
<td>cs, 63</td>
<td></td>
</tr>
<tr>
<td>cse (cs)</td>
<td>63</td>
</tr>
<tr>
<td>cumulative (brmsfamily)</td>
<td>24, 64</td>
</tr>
<tr>
<td>custom_family, 24, 64</td>
<td></td>
</tr>
<tr>
<td>custom_family (custom_family), 64</td>
<td></td>
</tr>
<tr>
<td>dasym_laplace (AsymLaplace)</td>
<td>12</td>
</tr>
<tr>
<td>ddirichlet (Dirichlet)</td>
<td>68</td>
</tr>
<tr>
<td>density</td>
<td>67</td>
</tr>
<tr>
<td>density_ratio, 66</td>
<td></td>
</tr>
<tr>
<td>dexgaussian (ExGaussian)</td>
<td>70</td>
</tr>
<tr>
<td>dfrechet (Frechet)</td>
<td>78</td>
</tr>
<tr>
<td>dgen_extreme_value (GenExtremeValue)</td>
<td>78</td>
</tr>
<tr>
<td>dhurdle_gamma (Hurdle)</td>
<td>86</td>
</tr>
<tr>
<td>dhurdle_lognormal (Hurdle)</td>
<td>86</td>
</tr>
<tr>
<td>dhurdle_negbinomial (Hurdle)</td>
<td>86</td>
</tr>
<tr>
<td>dhurdle_poisson (Hurdle)</td>
<td>86</td>
</tr>
<tr>
<td>diagnostic_quantities</td>
<td>67</td>
</tr>
<tr>
<td>dinv_gaussian (InvGaussian)</td>
<td>91</td>
</tr>
<tr>
<td>Dirichlet, 68</td>
<td></td>
</tr>
<tr>
<td>dirichlet (brmsfamily)</td>
<td>24</td>
</tr>
<tr>
<td>dmulti_normal (MultiNormal)</td>
<td>126</td>
</tr>
<tr>
<td>dmulti_student_t (MultiStudentT)</td>
<td>127</td>
</tr>
<tr>
<td>dshifted_lnorm (Shifted_Lognormal)</td>
<td>173</td>
</tr>
<tr>
<td>dskew_normal (SkewNormal)</td>
<td>174</td>
</tr>
<tr>
<td>dstudent_t (StudentT)</td>
<td>179</td>
</tr>
<tr>
<td>dvon_mises (VonMises)</td>
<td>188</td>
</tr>
<tr>
<td>dwiener (Wiener)</td>
<td>190</td>
</tr>
<tr>
<td>dzero_inflated_beta (ZeroInflated)</td>
<td>191</td>
</tr>
<tr>
<td>dzero_inflated_binomial (ZeroInflated)</td>
<td>191</td>
</tr>
<tr>
<td>dzero_inflated_negbinomial</td>
<td>191</td>
</tr>
<tr>
<td>dzero_inflated_poisson (ZeroInflated)</td>
<td>191</td>
</tr>
<tr>
<td>E_loo</td>
<td>108</td>
</tr>
<tr>
<td>empty_prior (set_prior)</td>
<td>168</td>
</tr>
<tr>
<td>environment</td>
<td>65</td>
</tr>
<tr>
<td>epilepsy</td>
<td>69</td>
</tr>
<tr>
<td>ExGaussian</td>
<td>70</td>
</tr>
<tr>
<td>exgaussian (brmsfamily)</td>
<td>24</td>
</tr>
<tr>
<td>exponential (brmsfamily)</td>
<td>24</td>
</tr>
<tr>
<td>expose_functions</td>
<td>71</td>
</tr>
<tr>
<td>(expose_functions.brmsfit)</td>
<td></td>
</tr>
<tr>
<td>expose_functions.brmsfit</td>
<td>71</td>
</tr>
<tr>
<td>expose Stan Functions</td>
<td>71</td>
</tr>
<tr>
<td>expp1</td>
<td>71</td>
</tr>
<tr>
<td>extract Draws, 75, 96, 98, 104, 105, 107, 111, 125, 134, 138, 140, 144, 146, 150, 152, 155, 156, 165, 189</td>
<td></td>
</tr>
<tr>
<td>extract Draws (extract Draws.brmsfit)</td>
<td>72</td>
</tr>
<tr>
<td>extract Draws.brmsfit</td>
<td>72</td>
</tr>
<tr>
<td>facet_wrap</td>
<td>52</td>
</tr>
<tr>
<td>family, 24, 29</td>
<td></td>
</tr>
<tr>
<td>family.brmsfit</td>
<td>74</td>
</tr>
<tr>
<td>fitted</td>
<td>65</td>
</tr>
<tr>
<td>fitted.brmsfit</td>
<td>74</td>
</tr>
<tr>
<td>fixef (fixef.brmsfit)</td>
<td>76</td>
</tr>
<tr>
<td>fixef.brmsfit</td>
<td>46, 76</td>
</tr>
<tr>
<td>formula</td>
<td>18, 43, 80, 113, 115, 132</td>
</tr>
<tr>
<td>Frechet</td>
<td>78</td>
</tr>
<tr>
<td>frechet (brmsfamily)</td>
<td>24</td>
</tr>
<tr>
<td>future</td>
<td>20</td>
</tr>
<tr>
<td>gam, 32</td>
<td></td>
</tr>
<tr>
<td>gamm, 19, 32, 44, 115, 171</td>
<td></td>
</tr>
<tr>
<td>Gamma</td>
<td>29</td>
</tr>
<tr>
<td>gen_extreme_value (brmsfamily)</td>
<td>24</td>
</tr>
<tr>
<td>GenExtremeValue</td>
<td>78</td>
</tr>
<tr>
<td>geom_contour</td>
<td>51</td>
</tr>
<tr>
<td>geom_errorbar</td>
<td>51</td>
</tr>
<tr>
<td>geom_jitter</td>
<td>51</td>
</tr>
</tbody>
</table>
geom_point, 51
geom_raster, 51
geom_rug, 51, 52
geom_smooth, 51
geometric (brmsfamily), 24
get_prior, 19, 21, 43, 79, 113, 115, 172
ggplot, 52, 117
ggtheme, 42, 52, 133
gp, 32, 81, 171
gtable, 134

horseshoe, 84, 170
Hucl, 86
hurdle_gammar (brmsfamily), 24
hurdle_lognormal (brmsfamily), 24
hurdle_negbinomial (brmsfamily), 24
hurdle_poisson (brmsfamily), 24
hypothesis, 19, 41, 42, 44, 113, 115
hypothesis (hypothesis.brmsfit), 87
hypothesis.brmsfit, 87

inhaler, 90
inv_logit_scaled, 92
InvGaussian, 91
is.brmsfit, 92
is.brmsfit_multiple, 93
is.brmsformula, 93
is.brmsprior, 93
is.brmsterms, 94
is.cor_arima (is.cor_brms), 94
is.cor_brms, 94
is.cor_car (is.cor_brms), 94
is.cor_cossy (is.cor_brms), 94
is.cor_fixed (is.cor_brms), 94
is.cor_sar (is.cor_brms), 94
is.mvbrmsformula, 95
is.mvbrmsterms, 95

kfold, 98, 99, 163
kfold (kfold.brmsfit), 96
kfold-helpers, 97
kfold.brmsfit, 96
kfold_predict, 98
kidney, 99

lasso, 100, 170
launch_shinystan, 102, 117
launch_shinystan (launch_shinystan.brmsfit), 101

launch_shinystan.brmsfit, 101
lf (brmsformula-helpers), 39
log_lik, 65, 109, 110
log_lik (log_lik.brmsfit), 103
log_lik.brmsfit, 103, 163
log_posterior (diagnostic-quantities), 67
logit_scaled, 102
logLik.brmsfit (log_lik.brmsfit), 103
logml, 103
lognormal (brmsfamily), 24
Log (loo.brmsfit), 104
loo, 5, 47, 48, 98, 104, 163
loo (loo.brmsfit), 104
LOO.brmsfit (loo.brmsfit), 104
loo.brmsfit, 104
loo::kfold_split_grouped, 97
loo::kfold_split_stratified, 97
loo::loo_model_weights, 107
loo_compare, 47, 48, 97, 105, 106, 111, 189
loo_compare (loo_compare.brmsfit), 106
loo_compare.brmsfit, 106
loo_linpred (loo_predict.brmsfit), 108
loo_model_weights, 125, 135, 146
loo_model_weights (loo_model_weights.brmsfit), 107
loo_model_weights.brmsfit, 107
loo_predict (loo_predict.brmsfit), 108
loo_predict.brmsfit, 108
loo_predictive_interval (loo_predict.brmsfit), 108
loo_R2 (loo_R2.brmsfit), 110
loo_R2.brmsfit, 110
loo_subsample, 73, 104, 111
loo_subsample (loo_subsample.brmsfit), 110
loo_subsample.brmsfit, 110

make_conditions, 50, 111, 167
make_stancode, 5, 112
make_standata, 5, 114, 177
marginal_effects (conditional_effects.brmsfit), 48
marginal_smooths (conditional_smooths.brmsfit), 53
MCMC, 133
mcmc_combo, 133
mcmc_pairs, 130
mcmc_plot (mcmc_plot.brmsfit), 116
mcmc_plot.brmsfit, 116
me, 41, 118
mgcv::ss, 167
mgcv::s2, 167
mi, 33, 119
mixture, 37, 120
mm, 32, 122, 123
mmc, 122, 123
mo, 124
model_weights, 135, 147
model_weights (model_weights.brmsfit), 125
model_weights.brmsfit, 125
multinomial (brmsfamily), 24
MultiNormal, 126
MultiStudentT, 127
mvbf, 37
mvbf (mvbrmsformula), 128
mvbind, 127
mvbrmsformula, 18, 37, 41, 43, 80, 113, 115, 128, 129, 132
nlf (brmsformula-helpers), 39
nsamples (nsamples.brmsfit), 129
nsamples.brmsfit, 129
nuts_params (diagnostic-quantities), 67
neff_ratio (diagnostic-quantities), 67
negbinomial (brmsfamily), 24
ngrps (ngrps.brmsfit), 129
ngrps.brmsfit, 129
nlf (brmsformula-helpers), 39
nsamples (nsamples.brmsfit), 129
nsamples.brmsfit, 129
nobs (diagnostic-quantities), 67
pairs, 130
pairs.brmsfit, 130
pareto_k_ids, 105, 163
parnames, 88, 131
parse_bf, 94, 95, 131
pasymlaplace (AsymLaplace), 12
pexgaussian (ExGaussian), 70
pfrechet (Frechet), 78
pgen_extreme_value (GenExtremeValue), 78
phurdle_gamma (Hurdle), 86
phurdle_lognormal (Hurdle), 86
phurdle_negbinomial (Hurdle), 86
phurdle_poisson (Hurdle), 86
piv_gaussian (InvGaussian), 91
plan, 20
plot.brms_conditional_effects
(conditional_effects.brmsfit), 48
plot.brmsfit, 133
plot.brmsfits (brmsfits), 41
post_prob, 14, 17, 125, 135, 146
post_prob (post_prob.brmsfit), 144
post_prob.brmsfit, 144
posterior_average, 147
posterior_average
(posterior_average.brmsfit), 147
posterior_average.brmsfit, 147
posterior_interval
(posterior_interval.brmsfit), 136
posterior_interval.brmsfit, 136
posterior_linpred, 109, 137
posterior_linpred
(posterior_linpred.brmsfit), 137
posterior_linpred.brmsfit, 137
posterior_predict, 51, 109, 157
posterior_predict
(posterior_predict.brmsfit), 138
posterior_predict.brmsfit, 138, 139, 149, 152, 155
posterior_samples
(posterior_samples.brmsfit), 141
posterior_samples.brmsfit, 141
posterior_summary, 46, 77, 142, 162
posterior_table, 143
pp_average, 135
pp_average (pp_average.brmsfit), 146
pp_average.brmsfit, 146
pp_check, 5
pp_check (pp_check.brmsfit), 148
pp_check.brmsfit, 148
pp_expect, 15, 51, 110
pp_expect (pp_expect.brmsfit), 149
pp_expect.brmsfit, 74, 76, 137, 138, 149
pp_mixture (pp_mixture.brmsfit), 151
pp_mixture.brmsfit, 151
PPC, 148, 149
predict, 65
predict.brmsfit, 98, 148, 153
predictive_error.brmsfit, 156
predictive_error, 156, 164, 165
predictive_interval.brmsfit, 157
predictive_interval, 157
print.brmsfit, 158
print.brmsprior, 158
print.brmssummary (print.brmsfit), 158
print.default, 42
prior (set_prior), 168
prior_ (set_prior), 168
prior_samples (prior_samples.brmsfit), 159
prior_samples.brmsfit, 159
prior_string (set_prior), 168
prior_summary (prior_summary.brmsfit), 160
prior_summary.brmsfit, 160
pshifted_lnorm (Shifted_Lognormal), 173
psis, 109
pskew_normal (SkewNormal), 174
pstudent_t (StudentT), 179
pvon_mises (VonMises), 188
pzero_inflated_beta (ZeroInflated), 191
pzero_inflated_binomial (ZeroInflated), 191
pzero_inflated_negbinomial (ZeroInflated), 191
pzero_inflated_poisson (ZeroInflated), 191
qasym_laplace (AsymLaplace), 12
qfrechet (Frechet), 78
qshifted_lnorm (Shifted_Lognormal), 173
qskew_normal (SkewNormal), 174
qstudent_t (StudentT), 179
ranef (ranef.brmsfit), 161
ranef.brmsfit, 46, 88, 161
rasym_laplace (AsymLaplace), 12
rdichlet (Dirichlet), 68
reloo, 98, 105
reloo (reloo.brmsfit), 162
reloo.brmsfit, 162
residuals.brmsfit, 164
resp_cat (addition-terms), 6
resp_cens (addition-terms), 6
resp_dec (addition-terms), 6
resp_mi (addition-terms), 6
resp_rate (addition-terms), 6
resp_se (addition-terms), 6
resp_subset (addition-terms), 6
resp_thres (addition-terms), 6
resp_trials (addition-terms), 6
resp_trunc (addition-terms), 6
resp_vint (addition-terms), 6
resp_vreal (addition-terms), 6
resp_weights (addition-terms), 6
restructure, 166
rexgaussian (ExGaussian), 70
rfrechet (Frechet), 78
rgen_extreme_value (GenExtremeValue), 78
rhat (diagnostic-quantities), 67
rinv_gaussian (InvGaussian), 91
rmulti_normal (MultiNormal), 126
rmulti_student_t (MultiStudentT), 127
rows2labels, 112, 166
rshifted_lnorm (Shifted_Lognormal), 173
rskew_normal (SkewNormal), 174
rstudent_t (StudentT), 179
runApp, 102
rvon_mises (VonMises), 188
rwiener (Wiener), 190
s, 32, 167
sampling, 21
saveRDS, 9, 21, 44
scale_colour_gradient, 52
scale_colour_grey, 52
set.seed, 88, 135, 147
set_mecor (brmsformula-helpers), 39
set_nl (brmsformula-helpers), 39
set_prior, 19, 21, 35, 36, 43, 44, 80, 86, 101, 113, 115, 120, 168
set_rescor (brmsformula-helpers), 39
Shifted_Lognormal, 173
shifted_lognormal (brmsfamily), 24
skew_normal (brmsfamily), 24
SkewNormal, 174
sratio (brmsfamily), 24
Stan, 5
stan, 20, 22, 55
stan_model, 21
stancode (stancode.brmsfit), 176
stancode.brmsfit, 176
standata(standata.brmsfit), 177
standata.brmsfit, 177
stanfit, 30
stanplot, 5
stanplot(mcmc_plot.brmsfit), 116
stanvar, 19, 44, 65, 114, 115, 178
stanvars, 30, 73, 177
stanvars(stanvar), 178
student(brmsfamily), 24
StudentT, 179
summary, 5
summary.brmsfit, 158, 180
t2, 32
t2(s), 167
TDist, 179
theme, 42, 52, 133
theme_black, 180
theme_default, 42, 52, 133, 181, 181
update, 19, 44
update.brmsfit, 163, 182, 183
update.brmsfit_multiple, 183
update.formula, 182, 183
update_adterms, 184
validate_newdata, 73, 184
VarCorr, 186
VarCorr(VarCorr.brmsfit), 185
VarCorr.brmsfit, 185
vb, 21
vcov.brmsfit, 187
Vectorize, 71
von_mises(brmsfamily), 24
VonMises, 188
WAIC(waic.brmsfit), 188
waic, 5, 47, 48, 104, 188
waic(waic.brmsfit), 188
WAIC.brmsfit(waic.brmsfit), 188
waic.brmsfit, 188
weibull(brmsfamily), 24
Wiener, 190
wiener(brmsfamily), 24
wienerdist, 191
zero_inflated_beta(brmsfamily), 24
zero_inflated_binomial(brmsfamily), 24
zero_inflated_negbinomial(brmsfamily), 24
zero_inflated_poisson(brmsfamily), 24
zero_one_inflated_beta(brmsfamily), 24
ZeroInflated, 191